US5862465A - Hysteresis-free anti-saturation circuit - Google Patents

Hysteresis-free anti-saturation circuit Download PDF

Info

Publication number
US5862465A
US5862465A US08/774,784 US77478496A US5862465A US 5862465 A US5862465 A US 5862465A US 77478496 A US77478496 A US 77478496A US 5862465 A US5862465 A US 5862465A
Authority
US
United States
Prior art keywords
gain
signal
variable
rssi
power level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/774,784
Inventor
Waho Ou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Assigned to OKI ELECTRIC INDUSTRY CO., LTD. reassignment OKI ELECTRIC INDUSTRY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OU, WAHO
Application granted granted Critical
Publication of US5862465A publication Critical patent/US5862465A/en
Assigned to CANON KABUSHIKI KAISHA reassignment CANON KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKI ELECTRIC INDUSTRY CO., LTD.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal

Definitions

  • the amount of gain reduction is limited only by the capabilities of the low-noise amplifier 12.
  • a large gain reduction such as thirty decibels, for example, can be accommodated by increasing the upper threshold RSSI TH2.

Abstract

An anti-saturation circuit controls the gain of a variable-gain element in the front-end section of a receiver, responsive to a desired signal strength indicated by an indicator signal. The gain of the variable-gain element varies monotonically over a certain range, being reduced as the desired signal strength increases, in order to avoid intermodulation of the desired signal with an interfering signal. If the receiver also has an automatic-gain-control circuit, the automatic-gain-control signal is adjusted to compensate for the changing gain of the variable-gain element.

Description

BACKGROUND OF THE INVENTION
The present invention relates to an anti-saturation circuit for preventing saturation in a communications receiver despite the presence of a strong interfering signal.
Saturation in this context refers to a condition in which an amplifier or other circuit element becomes overloaded and cannot respond linearly to an input signal. Communications receivers generally have an automatic-gain-control facility that avoids this condition by keeping the level of the desired signal below the saturation level, but when an interfering signal stronger than the desired signal is present, saturation may occur despite automatic gain control. Depending on the frequency relationship between the desired signal and interfering signal, the result will be intermodulation interference, defined in the IEEE Standard Dictionary of Electrical and Electronics Terms as "modulation products attributable to the components of a complex wave that on injection into a nonlinear circuit produce interference on the desired signal."
One system in which intermodulation causes problems is the North American code-division multiple-access (CDMA) digital cellular telephone system, which receives strong interfering signals from the analog Advanced Mobile Phone System (AMPS). CDMA receivers are designed for linear operation of their circuit elements up to a specified level of interference, but interference from nearby AMPS stations can easily exceed the specified level. If saturation occurs, the resulting intermodulation products impair the sensitivity of the receiver, making further anti-saturation measures necessary.
A simple anti-saturation scheme employed in conventional CDMA receivers reduces the gain of the low-noise amplifier that amplifies the radio-frequency signal received from the antenna. The low-noise amplifier operates with a standard fixed gain until the strength of the desired signal reaches a certain threshold; then the gain is reduced by a fixed amount. To avoid oscillation between the standard and reduced gain values, a pair of thresholds is employed. The standard gain is used below the lower threshold, the reduced gain is used above the upper threshold, and the standard or reduced gain is left unchanged between the two thresholds. The gain control characteristic is thus a step-function with hysteresis.
This simple system is unsatisfactory for several reasons. A first reason is that, to allow a margin for fading, the lower threshold must be set conservatively, at a relatively high value, leaving a large range of signal strengths over which no anti-saturation measures are taken. A second reason is that a gain reduction large enough to have an adequate anti-saturation effect is also large enough to impair the receiver sensitivity in the region just above the lower threshold. A third reason is that the abrupt switching of the low-noise-amplifier gain between the standard and reduced values tends to disrupt automatic gain control, even if a compensatory signal is applied to the automatic-gain-control amplifier. In CDMA systems, the strength of the received signal is used for both receiving and transmitting gain control, so both forms of automatic gain control are disrupted. Further details will be given later.
SUMMARY OF THE INVENTION
It is accordingly an object of the present invention to avoid saturation over a wide range of received signal strengths.
Another object of the invention is to avoid saturation without loss of receiver sensitivity.
A further object is to avoid saturation without disruption of automatic gain control.
The invented anti-saturation circuit operates in a receiver having a front-end section and a back-end section. The front-end section receives and amplifies a high-frequency signal, and converts the high-frequency signal to a lower-frequency signal. The back-end section processes the lower-frequency signal. The front-end section has a first variable-gain element.
From the lower-frequency signal, the anti-saturation circuit generates an indicator signal that indicates a power level of the lower-frequency signal. From the indicator signal, the anti-saturation circuit then generates a first control signal that controls the gain of the first variable-gain element. The gain of the first variable-gain element is made to vary monotonically when the power of the lower-frequency signal is within a certain first range, to remain fixed at a first value when the power of the lower-frequency signal is below the first range, and to remain fixed at a second, higher value when the power of the lower-frequency signal is above the first range. The gain of the variable-gain element preferably varies in a substantially continuous manner between the first and second values.
The receiver may also have a second variable-gain element, used for automatic gain control. The anti-saturation circuit then also generates a second control signal that controls the gain of the second variable-gain element. In one aspect of the invention, the second control signal is held constant when the power level of the lower-frequency signal is within the first range, to compensate for the changing gain of the first variable-gain element.
BRIEF DESCRIPTION OF THE DRAWINGS
In the attached drawings:
FIG. 1 is a block diagram illustrating transmitting and receiving circuits commonly employed in mobile communications systems;
FIG. 2 is a block diagram of additional circuits that output a received signal strength indication;
FIG. 3 is a block diagram illustrating a novel circuit for generating the adjustment signals shown in FIG. 1;
FIG. 4 is a scatter plot of typical pairs of desired-signal and interfering-signal power levels;
FIG. 5 illustrates the saturation-prevention characteristic of the circuit in FIG. 3;
FIG. 6 illustrates a conventional circuit for generating the adjustment signals shown in FIG. 1;
FIG. 7 illustrates the saturation-prevention characteristic of the circuit in FIG. 6; and
FIG. 8 illustrates a problem area in the characteristic shown in FIG. 7.
DETAILED DESCRIPTION OF THE INVENTION
The invention will be described by way of an example with reference to the attached drawings. The example will pertain to CDMA communications apparatus of the type employed in a mobile station such as a portable telephone set.
FIG. 1 shows the transmitting and receiving circuits this apparatus. Both the transmitting and receiving circuits share the same antenna 1.
The receiving circuits can be divided into a front-end section 2 and a back-end section 3. The front-end section 2 comprises a low-noise amplifier (LNA) 12 that amplifies a received radio-frequency signal, and a band-pass filter and mixer (BPF/MIXER) 13 that filters the received signal and down-converts the received signal to an intermediate frequency. The low-noise amplifier 12 is a variable-gain amplifier with a gain that varies in response to an LNA gain adjustment signal (LNA GAIN ADJ). The back-end section 3 comprises an automatic-gain-control amplifier (AGC-AMP) 14 that amplifies the intermediate-frequency signal by an amount controlled by a receive AGC adjustment signal RX AGC ADJ, a band-pass filter (BPF) 15 that rejects frequencies differing from the intermediate frequency, an intermediate-frequency amplifier (IF-AMP) that amplifies the intermediate-frequency signal by a fixed amount, and a digital demodulator (DGTL DEMOD) 17. The digital demodulator 17 demodulates the intermediate-frequency signal by spectrum despreading to produce received in-phase and quadrature data signals RX I DATA and RX Q DATA, also referred to below as baseband signals.
The receiving and transmitting circuits share an antenna duplexer (ANT DUP) 18 that couples the antenna 1 to the low-noise amplifier 12, a radio-frequency local oscillator module (RF OSC) 19 that supplies a high-frequency sinusoidal signal to the band-pass filter and mixer 13, and an intermediate-frequency local oscillator module (IF OSC) 20 that supplies an orthogonal pair of intermediate-frequency sinusoidal signals to the demodulator 17.
The transmitting circuits comprise a power amplifier (PA) 21, a band-pass filter and mixer 22, a power-control amplifier (PC-AMP) 23, a band-pass filter 24, an intermediate-frequency amplifier 25 with a fixed gain, and a digital modulator (DGTL MOD) 26. The digital modulator 26 receives a pair of orthogonal intermediate-frequency sinusoidal signals from the second local oscillator 20, modulates these signals by spectrum spreading and quaternary phase-shift keying (QPSK), responsive to in-phase and quadrature transmit data signals (TX I DATA and TX Q DATA), and thereby produces a modulated intermediate-frequency signal. The intermediate-frequency amplifier 25 amplifies the modulated intermediate signal, and the band-pass filter 24 rejects unwanted frequency components differing from the intermediate frequency. The power-control amplifier 23 is a variable-gain amplifier with a gain that varies in response to a transmit AGC adjustment signal TX AGC ADJ. The band-pass filter and mixer 22 up-converts the signal output from the power-control amplifier 23 to the frequency of a carrier signal received from the radio-frequency local oscillator module 19. The power amplifier 21 amplifies the modulated radio-frequency carrier signal for transmission via the antenna duplexer 18 from the antenna 1.
The apparatus also comprises an indicator circuit, shown in FIG. 2, that generates the transmit AGC adjustment signal (TX AGC ADJ) and a radio signal strength indicator signal RSSI IN. The indicator circuit comprises a summing circuit 31 to which the received data signals (RX I DATA and RX Q DATA) and a power reference signal (POWER REF) are supplied. The received data signals are n-bit digital signals, while the power reference signal is an N-bit digital signal, n and N being suitable positive integers. The summing circuit 31 adds the two received data signals and subtracts the power reference signal from their combined sum, producing an N-bit difference signal.
This difference signal is integrated by an integrator 32 to produce, at periodic intervals, an N-bit integrated signal. The integrated signal is multiplied by a certain gain constant in a multiplier 33 to produce RSSI IN, the value of which indicates the power level of the data signals RX I DATA and RX Q DATA. The RSSI IN value also indirectly indicates the power level of the intermediate-frequency signal from which the data signals are derived, and the electrical field strength of the desired carrier signal at the antenna 1. The RSSI IN value is substantially unaffected by interfering carrier signals such as AMPS signals, which have different carrier frequencies and are therefore rejected before the received signal reaches the digital demodulator 17. RSSI IN is supplied to a digital-to-analog converter (DAC) 34, the analog output of which is the transmit AGC adjustment signal TX AGC ADJ.
FIG. 3 illustrates the novel anti-saturation control circuit that generates the receive AGC and LNA gain adjustment signals RX AGC ADJ and LNA GAIN ADJ. This control circuit receives RSSI IN from the multiplier 33 in FIG. 2, and receives a pair of threshold signals RSSI TH1 and RSSI TH2, all three of these signals being N-bit digital signals. The value of RSSI TH1 is less than the value of RSSI TH2.
These three signals RSSI IN, RSSI TH1, and RSSI TH2 are supplied to a first level-converting circuit 41 that converts the RSSI IN level in a monotonic non-decreasing manner to generate a first digital control signal RSSI OUT1. The input-output characteristic of the first level-converting circuit 41 is as illustrated: RSSI OUT1 increases together with RSSI IN when RSSI IN is less than RSSI TH1 or greater than RSSI TH2, and remains constant when RSSI IN is between RSSI TH1 and RSSI TH2. More precisely,
RSSI OUT1=RSSI IN when RSSI IN<RSSI TH1
RSSI OUT1=RSSI TH1 when RSSI TH1<RSSI IN<RSSI TH2
RSSI OUT1=RSSI IN-RSSI TH2+RSSI TH1 when RSSI IN≧RSSI TH2
A digital-to-analog converter 42 converts RSSI OUT1 to an analog signal, which is used as the receive AGC adjustment signal RX AGC ADJ.
RSSI IN, RSSI TH1, and RSSI TH2 are supplied as well to a second level-converting circuit 43, which also converts the RSSI IN level in a monotonic non-decreasing manner, generating a second digital control signal RSSI OUT2. The input-output characteristic of the first level-converting circuit 41 is as illustrated: RSSI OUT2 remains constant when RSSI IN is less than RSSJ TH1 or greater than RSSI TH2, and increases together with RSSJ IN when RSSI IN is between RSSI TH1 and RSSI TH2. More precisely,
RSSI OUT2=0 when RSSI IN<RSSI TH1
RSSI OUT2=RSSI IN-RSSI TH1 when RSSI TH1≦RSSI IN<RSSI TH2
RSSI OUT2=RSSI TH2-RSSI TH1 when RSSI IN≧RSSI TH2
Another digital-to-analog converter 44 converts RSSI OUT2 to an analog signal, which is used as the LNA gain adjustment signal LNA GAIN ADJ.
Next the operation of this apparatus will be described.
A description of transmitting operations will be omitted, save to note that the transmitting circuits employ a type of open-loop automatic gain control: the gain of the power control amplifier 23 responds to TX AGC ADJ, which is derived from the received signal, instead of from the transmitted signal. This type of open-loop control enables a CDMA system to serve more subscribers at once, by reducing interference between different subscribers' CDMA signals.
The description of receiving operations will be confined to the control of the gain of the low-noise amplifier 12 and AGC amplifier 14. Other aspects of the receiving operation are conventional and will be familiar to those skilled in the art.
The gain of the low-noise amplifier 12 is continuously variable, rising when the value of the LNA GAIN ADJ signal falls, and falling when the value of the LNA GAIN ADJ signal rises. If the gain when the LNA GAIN ADJ signal has the minimum value of zero is regarded as the standard gain, then the low-noise amplifier 12 can be described as attenuating the received signal (in comparison with the standard gain) by increasing amounts as the LNA GAIN ADJ signal rises.
The gain of the AGC amplifier 14 is also continuously variable, rising when the value of the RX AGC ADJ signal falls, and falling when the value of the RX AGC ADJ signal rises.
When the power level of the received baseband signal is low enough that RSSI IN is less than RSSI TH1, the RSSI OUT1 signal and hence the RX AGC ADJ signal vary continuously, while RSSI OUT2 and LNA GAIN ADJ remain fixed, as can be seen from the equations above, or from the characteristics in FIG. 3. The low-noise amplifier 12 thus operates at a fixed standard gain, while the gain of the AGC amplifier 14 varies so as to carry out normal automatic gain control, keeping the intermediate-frequency signal safely below the saturation level of the intermediate-frequency amplifier 16.
When the value of RSSI IN is in the range between RSSI TH1 and RSSI TH2, the RSSI OUT2 and LNA GAIN ADJ signals vary continuously while the RSSI OUT1 and RX AGC ADJ remain fixed. In this range the decreasing gain of the low-noise amplifier 12 keeps the intermediate-frequency signal below the saturation level of the intermediate-frequency amplifier 16, and also reduces the level of any interfering signals that may be present in the radio-frequency signal, thereby preventing saturation of the bandpass filter and mixer 13.
When the received baseband signal level is high enough that RSSI IN exceeds RSSI TH2, the RSSI OUT1 and RX AGC ADJ signals again vary continuously while RSSI OUT2 and LNA GAIN ADJ remain fixed. The low-noise amplifier 12 now operates at a fixed reduced gain, lower than the standard gain, while the gain of the AGC amplifier 14 varies to keep the intermediate-frequency signal below the saturation level.
In the range between RSSI TH1 and RSSI TH2, when the AGC amplifier 14 is held at a fixed gain, the automatic-gain-control function is taken over by the low-noise amplifier 12. Automatic gain control thus operates smoothly over the entire dynamic range of RSSI IN, with no abrupt changes. In the transmitting circuits, the TX AGC ADJ signal output by digital-to-analog converter 34 changes smoothly, making for stable control of the transmit power level. In the receiving circuits, the power level of the intermediate-frequency signal is kept within a range suitable for the operation of the bandpass filter 15, intermediate-frequency amplifier 16, and digital demodulator 17, and the combined power level of the baseband signals RX I DATA and RX Q DATA is kept within a certain range that includes the range between RSSI TH1 and RSSI TH2.
Next, the saturation-avoidance effect of the circuit in FIG. 3 will be described with reference to FIGS. 4 and 5.
FIG. 4 is a scatter plot of data taken from a geographical area in which CDMA and AMPS systems both operate. The field strength of the desired CDMA carrier signal received at the antenna of a mobile CDMA receiver is shown in milliwatt decibels (dBm) on the horizontal axis; the field strength of the interfering AMPS carrier signal received at the same antenna is shown on the vertical axis. The black dots are data points indicating the field strengths of both carrier signals. The straight line 50 is the line below which a CDMA receiver complying with North American Intermediate Standard IS-98 must be capable of maintaining linear operation. About one-fourth (25%) of the data points lie above the line 50, indicating that the user of a CDMA receiver which merely complies with the IS-98 standard can expect intermodulation interference about one-fourth of the time.
FIG. 5 illustrates the effect of the novel anti-saturation control circuit, again with the desired signal level and interfering signal level indicated in decibels (dBm) on the horizontal and vertical axes. The desired signal levels corresponding to RSSI TH1 and RSSI TH2 are indicated on the horizontal axis. Line 51 is the same as line 50 in FIG. 4.
Line 52 is a line with a slope adjusted to catch substantially all of the data points in FIG. 4. If a CDMA receiver could be made to operate linearly at all points below line 52, by steadily reducing the gain of the low-noise amplifier 12 throughout the entire dynamic range of RSSI IN, that would eliminate substantially all intermodulation interference, but a serious loss of receiver sensitivity would occur due to inadequate amplification at the low end of the RSSI IN dynamic range.
Line 53 represents the interference tolerance characteristic of the novel circuit. In the comparatively wide range between RSSI TH1 and RSSI TH2, the gain of the low-noise amplifier 12 is gradually reduced and the interference tolerance characteristic parallels line 52. Above and below this range, the gain of the low-noise amplifier 12 is held constant, and the interference tolerance characteristic parallels line 51. INT1 indicates the level of interference at which anti-saturation control begins to take effect, and INT2 indicates the level at which the full anti-saturation effect is reached.
A comparison of FIG. 4 with FIG. 5 shows that the area below line 53, in which the receiver incorporating the novel anti-saturation control circuit in FIG. 3 behaves linearly and avoids intermodulation interference, includes almost all of the data points in FIG. 4. The receiver is thus able to operate in the same geographical area as an AMPS system with very little intermodulation interference. At the same time, there is no unnecessary loss of sensitivity at the low end of the RSSI IN range, where lines 51 and 53 coincide.
For comparison, FIG. 6 shows a conventional anti-saturation control circuit of the type described earlier, employing a step-function control rule with hysteresis. This circuit, which replaces the control circuit shown in FIG. 3, comprises a binary decision circuit 61, a subtracting circuit 62, and a digital-to-analog converter 63. The binary decision circuit 61 receives the RSSI IN signal produced by the indicator circuit in FIG. 2, together with two fixed threshold signals: LNA FALL and LNA RISE. The LNA GAIN ADJ signal output by this circuit has only two values: zero and one. When RSSI IN is less than the LNA FALL threshold, the LNA GAIN ADJ value is zero. When RSSI IN is greater than LNA RISE, the LNA GAIN ADJ value is one. When RSSI IN is between these two thresholds, LNA GAIN ADJ remains at its current value of either zero or one.
The binary decision circuit 61 also outputs an RSSI OUT signal with a value that varies in the same step-like fashion, taking on either a value of zero or a certain fixed positive value (LNA OFFSET). The subtracting circuit 62 subtracts RSSI OUT from RSSI IN, and the digital-to-analog converter 63 converts the result to analog form to generate the RX AGC ADJ signal.
FIG. 7 illustrates the interference tolerance characteristic of this conventional circuit. The horizontal and vertical axes have the same meaning as in FIG. 5, with LNA FALL and LNA RISE now being indicated instead of RSSI TH1 and RSSI TH2. Line 51 is the same as in FIG. 5. By switching the gain of the low-noise amplifier 12 at LNA FALL and LNA RISE, the conventional circuit is able to maintain linear operation below line 64.
INT3 and INT4 indicate the size of the anti-saturation effect. When the desired signal level, as indicated by RSSI IN, is at the LNA RISE level, the reduced low-noise amplifier gain enables interference up to level INT4 to be tolerated, instead of interference up to level INT3. The difference between INT4 and INT3 corresponds to the size of LNA OFFSET in FIG. 6.
FIG. 8 compares the interference tolerance characteristic 64 of this conventional circuit with the line 52 that avoids all intermodulation interference. The horizontal and vertical axes and line 52 have the same meanings as in FIG. 5. Hatching is used to indicate the difference between lines 52 and 64. Due to the step-like control characteristic, there is a large area 65 (indicated by cross-hatching) in which the conventional circuit operates above line 52. In this area the gain of the low-noise amplifier 12 is reduced by an unnecessarily large amount, resulting in an undesirable loss of receiver sensitivity.
It would be possible to reduce the size of area 65 by reducing the low-noise-amplifier gain by a lesser amount, thereby lowering the value of INT4. In that case, however, much of the anti-saturation effect would be lost, and intermodulation interference would be likely to occur at RSSI IN levels around LNA RISE.
In contrast, in the invented anti-saturation circuit, the amount of gain reduction is limited only by the capabilities of the low-noise amplifier 12. A large gain reduction, such as thirty decibels, for example, can be accommodated by increasing the upper threshold RSSI TH2. There is no particular upper limit on the value of INT2 in FIG. 5.
Although FIGS. 5 and 8 are drawn with RSSI TH1 equal to LNA FALL, due to the continuous manner of operation of the circuit in FIG. 3, it is possible (and preferable) for RSSI TH1 to be set at a lower level than LNA FALL. Moreover, the interval between RSSI TH1 and RSSI TH2 can be much wider than the interval between LNA FALL and LNA RISE. The corresponding interval between interference levels INT1 and INT2 in FIG. 5 can therefore also be wider than the interval between the interference levels INT3 and INT4 in corresponding to LNA FALL and LNA RISE FIG. 8. The invented circuit can accordingly avoid saturation and intermodulation interference over a wider range of received signal levels than the conventional circuit, without undesirable loss of receiver sensitivity.
The lack of hysteresis in the control characteristic of the invented circuit is an advantage, not only in that abrupt gain changes can be avoided, but also in that hysteresis-free control signals are easier to generate. For each value of RSSI IN, as shown in FIG. 3, RSSI OUT2 takes on only one value, instead of the two value taken on by RSSI OUT between LNA FALL and LNA RISE in FIG. 6.
In the receiving apparatus described above, the variable-gain element in the front-end section 2 was the low-noise amplifier 12, but the invention can be practiced with other variable-gain elements. The signal output by the digital-to-analog converter 44 in FIG. 3 can control the gain of an element in the bandpass filter and mixer 13, for example, or the gain of a variable attenuator inserted between the low-noise amplifier 12 and the bandpass filter and mixer 13. The variable-gain element may comprise either active or passive electronic devices, or a combination of both.
The RSSI OUT2 signal was shown as increasing in a continuous, linear manner in the range between RSSI TH1 and RSSI TH2, but this is not a necessary requirement. In fact, since RSSI OUT2 is an N-bit digital signal, it has at most 2N discrete levels (where N>1), so a more detailed drawing would show that the RSSI OUT2 characteristic has a staircase-like form. In general, it is only necessary for RSSI OUT2 to vary monotonically over the range from RSSI TH1 to RSSI TH2, without hysteresis, and to assume at least one value between the value assumed at RSSI TH1 and the value assumed at RSSI TH2.
Similarly, it is not necessary for the variable-gain element in the front-end section 2 to have a continuously variable gain. A variable-gain element with at least three discrete gain settings can be used.
It is not necessary for the gain of the automatic-gain-control amplifier 14 to be held constant while RSSI IN is in the range between RSSI TH1 and RSSI TH2. Depending on the way in which the RSSI OUT2 signal varies in this range, the RSSI OUT1 signal may vary in a compensatory manner, RSSI OUT1 decreasing when RSSI OUT2 increases, for example; or RSSI OUT1 and RSSI OUT2 may both increase simultaneously.
That having been said, it is nevertheless desirable for RSSI OUT2 to vary in a continuous manner, or a substantially continuous manner, and the arrangement shown in FIG. 3, in which RSSI OUT1 and RSSI OUT2 vary over different ranges of RSSI IN, has the advantage of simple design.
No restriction is placed on the structure of the level-converting circuits 41 and 43. They may have digital inputs and outputs, as shown in FIG. 3, or analog inputs and outputs. In the digital case, the level-converting circuits 41 and 43 may comprise specially-designed logic circuits, or both level-converting circuits 41 and 43 may be implemented by a program executed by a computing device such as a microprocessor or microcontroller. In this case, arbitrary control functions can be constructed from values stored in a read-only memory (ROM).
Although the invention has been described in relation to the North American CDMA digital cellular system, the invention can also be practiced in other communication systems, not necessarily limited to wireless systems, in which a desired signal is accompanied by a strong interfering signal and measures must be taken to prevent intermodulation. Moreover, in a cellular system, use of the invention is not limited to mobile stations; the invention can also be used to prevent intermodulation at base stations.
Although both transmitting and receiving circuits were shown in FIG. 1, the invention can be practiced in receiving apparatus without transmitting circuits, and if transmitting circuits are present, it is not necessary for the transmit gain to be controlled according to the received signal strength.
Those skilled in the art will recognize that further variations are possible within the scope claimed below.

Claims (11)

What is claimed is:
1. A method of preventing saturation in a receiver having a front-end section with a first variable-gain element, said front-end section receiving a high-frequency signal, amplifying said high-frequency signal, and converting said high-frequency signal to a lower-frequency signal, said receiver also having a back-end section for processing said lower-frequency signal, comprising the steps of:
generating from said lower-frequency signal an indicator signal indicating a power level of said lower-frequency signal;
operating said first variable-gain element with a first gain when said indicator signal indicates that said power level is below a first threshold;
operating said first variable-gain element with a second gain, lower than said first gain, when said indicator signal indicates that said power level is above a second threshold higher than said first threshold; and
operating said first variable-gain element with at least one gain intermediate between said first gain and said second gain, when said indicator signal indicates that said power level is between said first threshold and said second threshold; wherein
as said power level increases from said first threshold to said second threshold, the gain of said first variable-gain element decreases without hysteresis from said first gain to said second gain.
2. The method of claim 1 wherein, as said power level increases from said first threshold to said second threshold, the gain of said first variable-gain element decreases continuously from said first gain to said second gain.
3. The method of claim 1, wherein said receiver also has a second variable-gain element, comprising the further steps of:
generating an automatic-gain-control signal from said indicator signal;
using said automatic-gain-control signal to control said second variable-gain element, thereby keeping said power level within a predetermined range including said first threshold and said second threshold; and
adjusting said automatic-gain-control signal to compensate for the gain of said first variable-gain element.
4. The method of claim 3, wherein said automatic-gain-control signal remains constant when said power level is between said first threshold and said second threshold.
5. An anti-saturation circuit for a receiver having a front-end section and a back-end section, said front-end section having a first variable-gain element, said front-end section receiving a high-frequency signal, said front-end section amplifying said high-frequency signal, said front-end section converting said high-frequency signal to a lower-frequency signal, comprising:
an indicator circuit generating an indicator signal indicating a power level of said lower-frequency signal; and
a control circuit receiving said indicator signal and generating therefrom a first control signal that controls said first variable-gain element; wherein
said first control signal varies monotonically, assuming at least three different values, when said power level varies in a first range, and said first control signal does not vary when said power level is outside said first range.
6. The anti-saturation circuit of claim 5, wherein said first variable-gain element is a low-noise amplifier.
7. The anti-saturation circuit of claim 5, wherein said receiver also has a second variable-gain element for controlling the power level of said lower-frequency signal, and said control circuit generates a second control signal that controls said second variable-gain element to keep said power level within a second range, said second range including said first range.
8. The anti-saturation circuit of claim 7, wherein said second control signal remains fixed when said power level is in said first range.
9. The anti-saturation circuit of claim 7, wherein said second variable-gain element is disposed in said back-end section.
10. The anti-saturation circuit of claim 7, wherein said second variable-gain element is an automatic-gain-control amplifier.
11. The anti-saturation circuit of claim 5, wherein:
said receiver also has an antenna coupled to said front-end section, said antenna receiving a desired carrier signal and an interfering carrier signal; and
said first control signal reduces the gain of said variable-gain element to a level sufficiently low to avoid intermodulation between said desired carrier signal and said interfering carrier signal.
US08/774,784 1996-01-29 1996-12-30 Hysteresis-free anti-saturation circuit Expired - Lifetime US5862465A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1244796A JP3274055B2 (en) 1996-01-29 1996-01-29 Receiver saturation prevention circuit based on spread spectrum method.
JP8-012447 1996-01-29

Publications (1)

Publication Number Publication Date
US5862465A true US5862465A (en) 1999-01-19

Family

ID=11805597

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/774,784 Expired - Lifetime US5862465A (en) 1996-01-29 1996-12-30 Hysteresis-free anti-saturation circuit

Country Status (5)

Country Link
US (1) US5862465A (en)
JP (1) JP3274055B2 (en)
KR (1) KR970060719A (en)
CN (1) CN1092874C (en)
CA (1) CA2194535A1 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008751A1 (en) * 1998-08-06 2000-02-17 Qualcomm Incorporated Automatic gain control circuit for controlling multiple variable gain amplifier stages while estimating received signal power
US6067450A (en) * 1996-07-26 2000-05-23 Nec Corporation Pager eliminating intermodulation
US6078798A (en) * 1997-03-31 2000-06-20 Sanyo Electric Co., Ltd. Radio receiver with object station sensitivity
US6148048A (en) * 1997-09-26 2000-11-14 Cirrus Logic, Inc. Receive path implementation for an intermediate frequency transceiver
US6208849B1 (en) * 1997-06-21 2001-03-27 Samsung Electronics Co., Ltd. Receiver with suppressed intermodulation distortion and method for operating the same
US6229797B1 (en) * 1996-10-29 2001-05-08 Samsung Electronics Co., Inc. Circuit for eliminating external interference signals in code division multiple access mobile phone
US6272327B1 (en) * 1998-06-18 2001-08-07 Lucent Technologies Inc. High power wireless telephone with over-voltage protection
US6304216B1 (en) 1999-03-30 2001-10-16 Conexant Systems, Inc. Signal detector employing correlation analysis of non-uniform and disjoint sample segments
US6327471B1 (en) 1998-02-19 2001-12-04 Conexant Systems, Inc. Method and an apparatus for positioning system assisted cellular radiotelephone handoff and dropoff
US6348744B1 (en) 1998-04-14 2002-02-19 Conexant Systems, Inc. Integrated power management module
US20020064131A1 (en) * 2000-11-07 2002-05-30 Marcus Boesinger Method for operating a data network
US20020098814A1 (en) * 2001-01-10 2002-07-25 Hughes Electronics Method and system for automatic gain control in a satellite communications system
US6445732B1 (en) * 1998-09-23 2002-09-03 Conexant Systems, Inc. Dynamic range reduction circuitry for a digital communications receiver
US6448925B1 (en) 1999-02-04 2002-09-10 Conexant Systems, Inc. Jamming detection and blanking for GPS receivers
US20020131514A1 (en) * 2001-03-13 2002-09-19 Ng Jason Wee Peng Waveform diversity for communication using pulse decoding
US20020141511A1 (en) * 2001-01-12 2002-10-03 Vishakhadatta G. Diwakar Digital interface in radio-frequency apparatus and associated methods
US20020167994A1 (en) * 2000-03-24 2002-11-14 Hideyuki Takahashi Receiving apparatus and gain control method
US20020168952A1 (en) * 2001-01-12 2002-11-14 Vishakhadatta G. Diwakar Apparatus and methods for calibrating signal-processing circuitry
US20020168942A1 (en) * 2001-01-12 2002-11-14 Scott Jeffrey W. Calibrated low-noise current and voltage references and associated methods
US20020168951A1 (en) * 2001-01-12 2002-11-14 Tod Paulus Notch filter for DC offset reduction in radio-frequency apparatus and associated methods
US20020187763A1 (en) * 1998-05-29 2002-12-12 Lysander Lim Apparatus and methods for generating radio frequencies in communication circuitry
US6496145B2 (en) 1999-03-30 2002-12-17 Sirf Technology, Inc. Signal detector employing coherent integration
US20030017809A1 (en) * 2001-01-12 2003-01-23 Garlepp Eric R. Apparatus and method for front-end circuitry in radio-frequency apparatus
US20030027538A1 (en) * 2001-07-27 2003-02-06 Hiroshi Masumoto Receiving apparatus and a receiver system having the receiving apparatus
US6519277B2 (en) 1999-05-25 2003-02-11 Sirf Technology, Inc. Accelerated selection of a base station in a wireless communication system
US6531982B1 (en) 1997-09-30 2003-03-11 Sirf Technology, Inc. Field unit for use in a GPS system
US20030063690A1 (en) * 2001-01-12 2003-04-03 Tod Paulus DC offset reduction in radio-frequency apparatus and associated methods
US20030147475A1 (en) * 2001-03-16 2003-08-07 Akihiro Sasabata Wireless communication apparatus
US6606349B1 (en) * 1999-02-04 2003-08-12 Sirf Technology, Inc. Spread spectrum receiver performance improvement
US6614806B1 (en) * 2000-01-06 2003-09-02 Motorola Inc. Method and apparatus for interfering receiver signal overload protection
US20030181180A1 (en) * 2002-03-25 2003-09-25 Hooman Darabi LNA gain adjustment for intermodulation interference reduction
US20030232613A1 (en) * 2001-01-12 2003-12-18 Kerth Donald A. Quadrature signal generation in radio-frequency apparatus and associated methods
US6693953B2 (en) 1998-09-30 2004-02-17 Skyworks Solutions, Inc. Adaptive wireless communication receiver
US20040042539A1 (en) * 2002-03-15 2004-03-04 Vishakhadatta G. Diwakar Radio-frequency apparatus and associated methods
US6714158B1 (en) 2000-04-18 2004-03-30 Sirf Technology, Inc. Method and system for data detection in a global positioning system satellite receiver
US20040077327A1 (en) * 1998-05-29 2004-04-22 Lysander Lim Frequency modification circuitry for use in radio-frequency communication apparatus and associated methods
US6778136B2 (en) 2001-12-13 2004-08-17 Sirf Technology, Inc. Fast acquisition of GPS signal
US20040162044A1 (en) * 2002-12-28 2004-08-19 Lg Electronics Inc. RF switch
US20040166815A1 (en) * 1998-05-29 2004-08-26 James Maligeorgos Partitioning of radio-frequency apparatus
US6788655B1 (en) 2000-04-18 2004-09-07 Sirf Technology, Inc. Personal communications device with ratio counter
US6804497B2 (en) 2001-01-12 2004-10-12 Silicon Laboratories, Inc. Partitioned radio-frequency apparatus and associated methods
US6831957B2 (en) * 2001-03-14 2004-12-14 Texas Instruments Incorporated System and method of dual mode automatic gain control for a digital radio receiver
US20050025222A1 (en) * 1998-09-01 2005-02-03 Underbrink Paul A. System and method for despreading in a spread spectrum matched filter
US20050079842A1 (en) * 2001-09-28 2005-04-14 Hong Shi Timing based LNA gain adjustment in an RF receiver to compensate for intermodulation interference
US6903617B2 (en) 2000-05-25 2005-06-07 Silicon Laboratories Inc. Method and apparatus for synthesizing high-frequency signals for wireless communications
US6931055B1 (en) 2000-04-18 2005-08-16 Sirf Technology, Inc. Signal detector employing a doppler phase correction system
US20050209762A1 (en) * 2004-03-18 2005-09-22 Ford Global Technologies, Llc Method and apparatus for controlling a vehicle using an object detection system and brake-steer
US6952440B1 (en) 2000-04-18 2005-10-04 Sirf Technology, Inc. Signal detector employing a Doppler phase correction system
US6970717B2 (en) 2001-01-12 2005-11-29 Silicon Laboratories Inc. Digital architecture for radio-frequency apparatus and associated methods
US7054605B1 (en) * 2001-01-16 2006-05-30 Sequoia Communications Corporation Variable-gain low noise amplifier to reduce linearity requirements on a radio receiver
US20060141965A1 (en) * 2004-12-28 2006-06-29 Microtune (Texas), L.P. System for dynamic control of automatic gain control take-over-point and method of operation
US20060154634A1 (en) * 2005-01-10 2006-07-13 Siemens Vdo Automotive Corporation Gain controlled external low noise amplifier
US7138858B2 (en) 2001-01-12 2006-11-21 Silicon Laboratories, Inc. Apparatus and methods for output buffer circuitry with constant output power in radio-frequency circuitry
US20070054629A1 (en) * 1998-05-29 2007-03-08 Silicon Laboratories Inc. Partitioning of radio-frequency apparatus
US20070205200A1 (en) * 2006-03-02 2007-09-06 Brain Box Concepts Soap bar holder and method of supporting a soap bar
US7412213B1 (en) 2001-07-23 2008-08-12 Sequoia Communications Envelope limiting for polar modulators
US7479815B1 (en) 2005-03-01 2009-01-20 Sequoia Communications PLL with dual edge sensitivity
US7489916B1 (en) 2002-06-04 2009-02-10 Sequoia Communications Direct down-conversion mixer architecture
US7496338B1 (en) 2003-12-29 2009-02-24 Sequoia Communications Multi-segment gain control system
US7522017B1 (en) 2004-04-21 2009-04-21 Sequoia Communications High-Q integrated RF filters
US7522005B1 (en) 2006-07-28 2009-04-21 Sequoia Communications KFM frequency tracking system using an analog correlator
US7548122B1 (en) 2005-03-01 2009-06-16 Sequoia Communications PLL with switched parameters
US7587179B1 (en) 2001-10-04 2009-09-08 Sequoia Communications Direct synthesis transmitter
US7595626B1 (en) 2005-05-05 2009-09-29 Sequoia Communications System for matched and isolated references
US7609118B1 (en) 2003-12-29 2009-10-27 Sequoia Communications Phase-locked loop calibration system
US7672648B1 (en) 2004-06-26 2010-03-02 Quintics Holdings System for linear amplitude modulation
US7675379B1 (en) 2005-03-05 2010-03-09 Quintics Holdings Linear wideband phase modulation system
US7679468B1 (en) 2006-07-28 2010-03-16 Quintic Holdings KFM frequency tracking system using a digital correlator
US7711038B1 (en) 1998-09-01 2010-05-04 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
US7885314B1 (en) 2000-05-02 2011-02-08 Kenneth Scott Walley Cancellation system and method for a wireless positioning system
US7894545B1 (en) 2006-08-14 2011-02-22 Quintic Holdings Time alignment of polar transmitter
US7920033B1 (en) 2006-09-28 2011-04-05 Groe John B Systems and methods for frequency modulation adjustment
US7974374B2 (en) 2006-05-16 2011-07-05 Quintic Holdings Multi-mode VCO for direct FM systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777511B1 (en) * 2001-12-28 2007-11-16 엘지노텔 주식회사 Receiver and his control method
JP4208088B2 (en) 2006-03-31 2009-01-14 国立大学法人東京工業大学 Wireless communication apparatus and wireless communication method
JP4688722B2 (en) * 2006-04-27 2011-05-25 京セラ株式会社 Wireless communication device
TWI355856B (en) 2006-12-14 2012-01-01 Au Optronics Corp Method and related apparatus of compensating color
JP6045296B2 (en) * 2012-10-25 2016-12-14 株式会社Nttドコモ RF front end module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553105A (en) * 1983-01-31 1985-11-12 Fujitsu Limited Multistage linear amplifier for a wide range of input signal levels
US4742565A (en) * 1983-07-22 1988-05-03 Nec Corporation Radio receiver with field intensity detector
JPH0255428A (en) * 1988-08-20 1990-02-23 Fujitsu Ltd Microwave agc circuit
US5036527A (en) * 1990-02-05 1991-07-30 Hayes Microcomputer Products, Inc. Iterative automatic gain control for an analog front end of a modem
US5377231A (en) * 1993-11-30 1994-12-27 At&T Corp. Automatic gain control circuit for a digital baseband line equalizer
US5507023A (en) * 1993-07-29 1996-04-09 Japan Radio Co., Ltd. Receiver with an AGC circuit capable of expanding a dynamic range
US5603114A (en) * 1993-12-03 1997-02-11 Nec Corporation Distortionless receiving circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484476A4 (en) * 1990-04-27 1993-02-24 Motorola Inc. Digital automatic gain control
JP3454882B2 (en) * 1992-12-25 2003-10-06 株式会社東芝 Wireless receiver
US5469115A (en) * 1994-04-28 1995-11-21 Qualcomm Incorporated Method and apparatus for automatic gain control in a digital receiver
JPH07336283A (en) * 1994-06-06 1995-12-22 Oki Electric Ind Co Ltd Linear receiver
JP2885267B2 (en) * 1994-07-15 1999-04-19 日本電気株式会社 Digitally modulated signal receiver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553105A (en) * 1983-01-31 1985-11-12 Fujitsu Limited Multistage linear amplifier for a wide range of input signal levels
US4742565A (en) * 1983-07-22 1988-05-03 Nec Corporation Radio receiver with field intensity detector
JPH0255428A (en) * 1988-08-20 1990-02-23 Fujitsu Ltd Microwave agc circuit
US5036527A (en) * 1990-02-05 1991-07-30 Hayes Microcomputer Products, Inc. Iterative automatic gain control for an analog front end of a modem
US5507023A (en) * 1993-07-29 1996-04-09 Japan Radio Co., Ltd. Receiver with an AGC circuit capable of expanding a dynamic range
US5377231A (en) * 1993-11-30 1994-12-27 At&T Corp. Automatic gain control circuit for a digital baseband line equalizer
US5603114A (en) * 1993-12-03 1997-02-11 Nec Corporation Distortionless receiving circuit

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067450A (en) * 1996-07-26 2000-05-23 Nec Corporation Pager eliminating intermodulation
US6229797B1 (en) * 1996-10-29 2001-05-08 Samsung Electronics Co., Inc. Circuit for eliminating external interference signals in code division multiple access mobile phone
US6078798A (en) * 1997-03-31 2000-06-20 Sanyo Electric Co., Ltd. Radio receiver with object station sensitivity
US6208849B1 (en) * 1997-06-21 2001-03-27 Samsung Electronics Co., Ltd. Receiver with suppressed intermodulation distortion and method for operating the same
US6148048A (en) * 1997-09-26 2000-11-14 Cirrus Logic, Inc. Receive path implementation for an intermediate frequency transceiver
US6531982B1 (en) 1997-09-30 2003-03-11 Sirf Technology, Inc. Field unit for use in a GPS system
US6327471B1 (en) 1998-02-19 2001-12-04 Conexant Systems, Inc. Method and an apparatus for positioning system assisted cellular radiotelephone handoff and dropoff
US6348744B1 (en) 1998-04-14 2002-02-19 Conexant Systems, Inc. Integrated power management module
US20060160512A1 (en) * 1998-05-29 2006-07-20 Silicon Laboratories Inc. Frequency modification circuitry for use in radio-frequency communication apparatus and associated methods
US20040166815A1 (en) * 1998-05-29 2004-08-26 James Maligeorgos Partitioning of radio-frequency apparatus
US20020187763A1 (en) * 1998-05-29 2002-12-12 Lysander Lim Apparatus and methods for generating radio frequencies in communication circuitry
US20070054629A1 (en) * 1998-05-29 2007-03-08 Silicon Laboratories Inc. Partitioning of radio-frequency apparatus
US20040077327A1 (en) * 1998-05-29 2004-04-22 Lysander Lim Frequency modification circuitry for use in radio-frequency communication apparatus and associated methods
US6272327B1 (en) * 1998-06-18 2001-08-07 Lucent Technologies Inc. High power wireless telephone with over-voltage protection
AU761548B2 (en) * 1998-08-06 2003-06-05 Qualcomm Incorporated Automatic gain control circuit for controlling multiple variable gain amplifier stages while estimating received signal power
WO2000008751A1 (en) * 1998-08-06 2000-02-17 Qualcomm Incorporated Automatic gain control circuit for controlling multiple variable gain amplifier stages while estimating received signal power
US7711038B1 (en) 1998-09-01 2010-05-04 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
US7545854B1 (en) 1998-09-01 2009-06-09 Sirf Technology, Inc. Doppler corrected spread spectrum matched filter
US7852905B2 (en) 1998-09-01 2010-12-14 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
US20050025222A1 (en) * 1998-09-01 2005-02-03 Underbrink Paul A. System and method for despreading in a spread spectrum matched filter
US6445732B1 (en) * 1998-09-23 2002-09-03 Conexant Systems, Inc. Dynamic range reduction circuitry for a digital communications receiver
US6693953B2 (en) 1998-09-30 2004-02-17 Skyworks Solutions, Inc. Adaptive wireless communication receiver
US6448925B1 (en) 1999-02-04 2002-09-10 Conexant Systems, Inc. Jamming detection and blanking for GPS receivers
US6606349B1 (en) * 1999-02-04 2003-08-12 Sirf Technology, Inc. Spread spectrum receiver performance improvement
US20050035905A1 (en) * 1999-03-30 2005-02-17 Gronemeyer Steven A. Signal detector employing correlation analysis of non-uniform and disjoint sample segments
US6496145B2 (en) 1999-03-30 2002-12-17 Sirf Technology, Inc. Signal detector employing coherent integration
US6636178B2 (en) 1999-03-30 2003-10-21 Sirf Technology, Inc. Signal detector employing correlation analysis of non-uniform and disjoint sample segments
US6304216B1 (en) 1999-03-30 2001-10-16 Conexant Systems, Inc. Signal detector employing correlation analysis of non-uniform and disjoint sample segments
US6577271B1 (en) 1999-03-30 2003-06-10 Sirf Technology, Inc Signal detector employing coherent integration
US7002516B2 (en) 1999-03-30 2006-02-21 Sirf Technology, Inc. Signal detector employing correlation analysis of non-uniform and disjoint sample segments
US6519277B2 (en) 1999-05-25 2003-02-11 Sirf Technology, Inc. Accelerated selection of a base station in a wireless communication system
US6614806B1 (en) * 2000-01-06 2003-09-02 Motorola Inc. Method and apparatus for interfering receiver signal overload protection
US7039095B2 (en) * 2000-03-24 2006-05-02 Matsushita Electric Industrial Co., Ltd. Receiving apparatus and gain control method
US20020167994A1 (en) * 2000-03-24 2002-11-14 Hideyuki Takahashi Receiving apparatus and gain control method
US6788655B1 (en) 2000-04-18 2004-09-07 Sirf Technology, Inc. Personal communications device with ratio counter
US6961660B2 (en) 2000-04-18 2005-11-01 Sirf Technology, Inc. Method and system for data detection in a global positioning system satellite receiver
US20050264446A1 (en) * 2000-04-18 2005-12-01 Underbrink Paul A Method and system for data detection in a global positioning system satellite receiver
US6952440B1 (en) 2000-04-18 2005-10-04 Sirf Technology, Inc. Signal detector employing a Doppler phase correction system
US6714158B1 (en) 2000-04-18 2004-03-30 Sirf Technology, Inc. Method and system for data detection in a global positioning system satellite receiver
US7269511B2 (en) 2000-04-18 2007-09-11 Sirf Technology, Inc. Method and system for data detection in a global positioning system satellite receiver
US6931055B1 (en) 2000-04-18 2005-08-16 Sirf Technology, Inc. Signal detector employing a doppler phase correction system
US20040172195A1 (en) * 2000-04-18 2004-09-02 Underbrink Paul A. Method and system for data detection in a global positioning system satellite receiver
US7885314B1 (en) 2000-05-02 2011-02-08 Kenneth Scott Walley Cancellation system and method for a wireless positioning system
US6903617B2 (en) 2000-05-25 2005-06-07 Silicon Laboratories Inc. Method and apparatus for synthesizing high-frequency signals for wireless communications
EP1227604A3 (en) * 2000-11-07 2005-01-19 DaimlerChrysler AG Method for connecting a data network
EP1227604A2 (en) * 2000-11-07 2002-07-31 DaimlerChrysler AG Method for connecting a data network
US7020088B2 (en) 2000-11-07 2006-03-28 Daimlerchrysler Ag Method for operating a data network
US20020064131A1 (en) * 2000-11-07 2002-05-30 Marcus Boesinger Method for operating a data network
US6904273B2 (en) * 2001-01-10 2005-06-07 Hughes Electronics Corporation Method and system for automatic gain control in a satellite communications system
US20020098814A1 (en) * 2001-01-10 2002-07-25 Hughes Electronics Method and system for automatic gain control in a satellite communications system
US7366478B2 (en) 2001-01-12 2008-04-29 Silicon Laboratories Inc. Partitioned radio-frequency apparatus and associated methods
US6804497B2 (en) 2001-01-12 2004-10-12 Silicon Laboratories, Inc. Partitioned radio-frequency apparatus and associated methods
US6970717B2 (en) 2001-01-12 2005-11-29 Silicon Laboratories Inc. Digital architecture for radio-frequency apparatus and associated methods
US20020168942A1 (en) * 2001-01-12 2002-11-14 Scott Jeffrey W. Calibrated low-noise current and voltage references and associated methods
US20020141511A1 (en) * 2001-01-12 2002-10-03 Vishakhadatta G. Diwakar Digital interface in radio-frequency apparatus and associated methods
US20020168952A1 (en) * 2001-01-12 2002-11-14 Vishakhadatta G. Diwakar Apparatus and methods for calibrating signal-processing circuitry
US7138858B2 (en) 2001-01-12 2006-11-21 Silicon Laboratories, Inc. Apparatus and methods for output buffer circuitry with constant output power in radio-frequency circuitry
US20050003762A1 (en) * 2001-01-12 2005-01-06 Silicon Laboratories Inc. Partitioned radio-frequency apparatus and associated methods
US20020168951A1 (en) * 2001-01-12 2002-11-14 Tod Paulus Notch filter for DC offset reduction in radio-frequency apparatus and associated methods
US7177610B2 (en) 2001-01-12 2007-02-13 Silicon Laboratories Inc. Calibrated low-noise current and voltage references and associated methods
US7158574B2 (en) 2001-01-12 2007-01-02 Silicon Laboratories Inc. Digital interface in radio-frequency apparatus and associated methods
US20030017809A1 (en) * 2001-01-12 2003-01-23 Garlepp Eric R. Apparatus and method for front-end circuitry in radio-frequency apparatus
US20030063690A1 (en) * 2001-01-12 2003-04-03 Tod Paulus DC offset reduction in radio-frequency apparatus and associated methods
US7024221B2 (en) 2001-01-12 2006-04-04 Silicon Laboratories Inc. Notch filter for DC offset reduction in radio-frequency apparatus and associated methods
US7031683B2 (en) 2001-01-12 2006-04-18 Silicon Laboratories Inc. Apparatus and methods for calibrating signal-processing circuitry
US7035611B2 (en) 2001-01-12 2006-04-25 Silicon Laboratories Inc. Apparatus and method for front-end circuitry in radio-frequency apparatus
US7228109B2 (en) 2001-01-12 2007-06-05 Silicon Laboratories Inc. DC offset reduction in radio-frequency apparatus and associated methods
US20030232613A1 (en) * 2001-01-12 2003-12-18 Kerth Donald A. Quadrature signal generation in radio-frequency apparatus and associated methods
US7054605B1 (en) * 2001-01-16 2006-05-30 Sequoia Communications Corporation Variable-gain low noise amplifier to reduce linearity requirements on a radio receiver
US20020131514A1 (en) * 2001-03-13 2002-09-19 Ng Jason Wee Peng Waveform diversity for communication using pulse decoding
US6831957B2 (en) * 2001-03-14 2004-12-14 Texas Instruments Incorporated System and method of dual mode automatic gain control for a digital radio receiver
US20030147475A1 (en) * 2001-03-16 2003-08-07 Akihiro Sasabata Wireless communication apparatus
US7120202B2 (en) * 2001-03-16 2006-10-10 Murata Manufacturing Co., Ltd. Wireless communication apparatus
US7412213B1 (en) 2001-07-23 2008-08-12 Sequoia Communications Envelope limiting for polar modulators
US20030027538A1 (en) * 2001-07-27 2003-02-06 Hiroshi Masumoto Receiving apparatus and a receiver system having the receiving apparatus
US7242915B2 (en) * 2001-09-28 2007-07-10 Broadcom Corporation Timing based LNA gain adjustment in an RF receiver to compensate for intermodulation interference
US20050079842A1 (en) * 2001-09-28 2005-04-14 Hong Shi Timing based LNA gain adjustment in an RF receiver to compensate for intermodulation interference
US7587179B1 (en) 2001-10-04 2009-09-08 Sequoia Communications Direct synthesis transmitter
US20080198069A1 (en) * 2001-12-13 2008-08-21 Gronemeyer Steven A Fast Reacquisition of a GPS Signal
US7999733B2 (en) 2001-12-13 2011-08-16 Sirf Technology Inc. Fast reacquisition of a GPS signal
US6778136B2 (en) 2001-12-13 2004-08-17 Sirf Technology, Inc. Fast acquisition of GPS signal
US8467483B2 (en) 2002-03-15 2013-06-18 Silicon Laboratories Inc. Radio-frequency apparatus and associated methods
US20040042539A1 (en) * 2002-03-15 2004-03-04 Vishakhadatta G. Diwakar Radio-frequency apparatus and associated methods
US6961552B2 (en) * 2002-03-25 2005-11-01 Broadcom Corporation LNA gain adjustment for intermodulation interference reduction
US20030181180A1 (en) * 2002-03-25 2003-09-25 Hooman Darabi LNA gain adjustment for intermodulation interference reduction
US7489916B1 (en) 2002-06-04 2009-02-10 Sequoia Communications Direct down-conversion mixer architecture
US7305218B2 (en) * 2002-12-28 2007-12-04 Lg Electronics Inc. RF switch
US20040162044A1 (en) * 2002-12-28 2004-08-19 Lg Electronics Inc. RF switch
US7496338B1 (en) 2003-12-29 2009-02-24 Sequoia Communications Multi-segment gain control system
US7609118B1 (en) 2003-12-29 2009-10-27 Sequoia Communications Phase-locked loop calibration system
US20050209762A1 (en) * 2004-03-18 2005-09-22 Ford Global Technologies, Llc Method and apparatus for controlling a vehicle using an object detection system and brake-steer
US7522017B1 (en) 2004-04-21 2009-04-21 Sequoia Communications High-Q integrated RF filters
US7672648B1 (en) 2004-06-26 2010-03-02 Quintics Holdings System for linear amplitude modulation
US7606544B2 (en) * 2004-12-28 2009-10-20 Microtune (Texas), L.P. System for dynamic control of automatic gain control take-over-point and method of operation
US20060141965A1 (en) * 2004-12-28 2006-06-29 Microtune (Texas), L.P. System for dynamic control of automatic gain control take-over-point and method of operation
US7650127B2 (en) * 2005-01-10 2010-01-19 Continental Automotive Systems Us, Inc. Gain controlled external low noise amplifier
US20060154634A1 (en) * 2005-01-10 2006-07-13 Siemens Vdo Automotive Corporation Gain controlled external low noise amplifier
US7548122B1 (en) 2005-03-01 2009-06-16 Sequoia Communications PLL with switched parameters
US7479815B1 (en) 2005-03-01 2009-01-20 Sequoia Communications PLL with dual edge sensitivity
US7675379B1 (en) 2005-03-05 2010-03-09 Quintics Holdings Linear wideband phase modulation system
US7595626B1 (en) 2005-05-05 2009-09-29 Sequoia Communications System for matched and isolated references
US20070205200A1 (en) * 2006-03-02 2007-09-06 Brain Box Concepts Soap bar holder and method of supporting a soap bar
US7974374B2 (en) 2006-05-16 2011-07-05 Quintic Holdings Multi-mode VCO for direct FM systems
US7679468B1 (en) 2006-07-28 2010-03-16 Quintic Holdings KFM frequency tracking system using a digital correlator
US7522005B1 (en) 2006-07-28 2009-04-21 Sequoia Communications KFM frequency tracking system using an analog correlator
US7894545B1 (en) 2006-08-14 2011-02-22 Quintic Holdings Time alignment of polar transmitter
US7920033B1 (en) 2006-09-28 2011-04-05 Groe John B Systems and methods for frequency modulation adjustment

Also Published As

Publication number Publication date
JPH09205332A (en) 1997-08-05
CN1160953A (en) 1997-10-01
CN1092874C (en) 2002-10-16
KR970060719A (en) 1997-08-12
JP3274055B2 (en) 2002-04-15
CA2194535A1 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US5862465A (en) Hysteresis-free anti-saturation circuit
US6324387B1 (en) LNA control-circuit for receive closed loop automatic gain control
KR100312580B1 (en) Received power calculating method and mobile station
US6442380B1 (en) Automatic gain control in a zero intermediate frequency radio device
KR100221163B1 (en) Apparatus and method for optimizing the quality of a received signal in a radio receiver
US6011980A (en) Wireless telecommunication equipment
JP3240998B2 (en) Transmission power control circuit
US7379725B2 (en) LNA gain adjustment in an RF receiver to compensate for intermodulation interference
EP1787398B1 (en) Proactive gain control system for communications receivers
US20070142012A1 (en) Wireless communication receiver
US6718165B1 (en) Apparatus and method for reducing nonlinear distortion in an automatic gain control system
JP3358598B2 (en) Transmission power correction circuit
US6041081A (en) CDMA transmitter having a variable gain circuit inserted between a transmitter mixer and a transmitter antenna
EP2393216A1 (en) Communication method, transmission power control method and mobile station
JP2007013984A (en) Receiver
JP4160260B2 (en) Apparatus, system, and method for improving receiver dynamic range in the presence of narrowband interference signals
JP3689625B2 (en) Receiver
US20060222103A1 (en) Radio transmission apparatus with variable frequency bandwidth of transmission signal or variable method of modulating transmission signal
US6785324B1 (en) Transceiver including reactive termination for enhanced cross-modulation performance and related methods
EP1240728A1 (en) Method and apparatus for controlling the transmission power in a radio communications system
KR100249529B1 (en) A transceive circuit and method for system terminal in wireless local loop
KR100596975B1 (en) Method and apparatus for controlling the transmission power in a radio communications system
JP2004187153A (en) Radio equipment
KR100318405B1 (en) Apparatus for controlling transmision of an inter-mediate frequency in a mobile communication cell site system
KR19990050143A (en) Dual automatic gain control device through analog and digital loop

Legal Events

Date Code Title Description
AS Assignment

Owner name: OKI ELECTRIC INDUSTRY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OU, WAHO;REEL/FRAME:008386/0290

Effective date: 19961122

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CANON KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OKI ELECTRIC INDUSTRY CO., LTD.;REEL/FRAME:018757/0757

Effective date: 20060627

FPAY Fee payment

Year of fee payment: 12