US5915381A - Breathing apparatus and method for controlling same - Google Patents

Breathing apparatus and method for controlling same Download PDF

Info

Publication number
US5915381A
US5915381A US08/759,302 US75930296A US5915381A US 5915381 A US5915381 A US 5915381A US 75930296 A US75930296 A US 75930296A US 5915381 A US5915381 A US 5915381A
Authority
US
United States
Prior art keywords
compliance
momentary
inspiratory phase
threshold value
breathing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/759,302
Inventor
Magnus Nord
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maquet Critical Care AB
Original Assignee
Siemens Elema AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Elema AB filed Critical Siemens Elema AB
Assigned to SIEMENS ELEMA AB reassignment SIEMENS ELEMA AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NORD, MAGNUS
Application granted granted Critical
Publication of US5915381A publication Critical patent/US5915381A/en
Assigned to MAQUET CRITICAL CARE AB reassignment MAQUET CRITICAL CARE AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS-ELEMA AB
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0036Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the breathing tube and used in both inspiratory and expiratory phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/46Resistance or compliance of the lungs

Abstract

In a method and apparatus for controlling breathing of a patient, momentary compliance is calculated during an inspiration. The calculated momentary compliance is then compared to a threshold value. If momentary compliance is less than the threshold value during a first interval, positive end expiratory pressure is reduced for subsequent breathing cycles so momentary compliance is greater than the threshold value during the first interval. If momentary compliance is less than the threshold value during a second interval, the ratio between inspiration time and expiration time, as well as the breathing rate, is changed so momentary compliance is greater than the threshold value during the second interval, at the same time as a pre-defined minute volume is generated.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a breathing apparatus, such as a ventilator or an anesthetic apparatus, wherein breathing gas is delivered to and removed from a respiratory system at the same time as the pressure and flow of the breathing gas is being measured, at least during delivery of the breathing gas, as well as to a method for controlling such a breathing apparatus.
2. Description of the Prior Art
Breathing apparatus supplying a breathing gas to a respiratory system (in humans or animals) and carrying expired breathing gas out of the respiratory system must be controlled in some way in order to avoid risks of damage to the respiratory system. In particular, the supply operation must be appropriately controlled. Preventing an excessive rise in pressure is essential, since excessive pressure could cause barotrauma. In a corresponding manner, supplying large volumes f gas to the respiratory system could cause volutrauma.
This is particularly the case in the ventilation of patients with diseased or damaged lungs. Ventilators connected to the patient's lungs are generally equipped with, or connected to, flow and pressure meters. Pressure and volume in the lungs can thus be monitored with the aid of pressure and flow measurements.
One problem in monitoring a patient with respect to pressure and volume is that damage-causing levels of pressure and volume can vary from patient to patient. In some patients, damaging pressure builds up in certain parts of the lung, whereas pressure remains on a harmless level in other parts of the lung.
At the same time, pressure must not be allowed to drop too much in certain patients, since their lungs might then collapse, making it necessary to supply an extra large amount of breathing gas to re-open the lungs. Lung collapse can also be partial, i.e. only parts of the lungs collapse. Positive end expiratory pressure (PEEP), a greater than atmospheric pressure produced at the end of expiration, is sued for keeping the lung open until the following inspiration commences.
In addition, the patient must also be supplied with a sufficient amount of breathing gas. Breathing gas supplied can be designated in terms of the minute volume supplied.
SUMMARY OF THE INVENTION
An object of the invention is to provide a method for controlling breathing apparatuses which solves the aforementioned problems.
Another object of the invention is to achieve a breathing apparatus which permits safe and reliable delivery of breathing gas to a respiratory system.
The above object is inventively achieved in a breathing apparatus, and in a method for controlling a breathing apparatus, wherein a breathing gas is delivered to and removed from a respiratory system at the same time as the pressure and flow of the breathing gas are being measured, at least during delivery of the breathing gas, and wherein a momentary compliance of the respiratory system is calculated from the measured pressure and flow at selected points in the inspiratory phase and this compliance is compared to a predetermined threshold value. One or more of the pressure level, PEEP, a ratio between the inspiration time and the expiration time, or the breathing rate is changed if the calculated momentary compliance is less than the predetermined threshold.
Compliance designates the elasticity of the respiratory system. Compliance is determined as the ratio between volume and pressure in the respiratory system. A healthy lung has high compliance and can therefore accommodate relatively large changes in volume without major changes in pressure. Pressure rises rapidly, when there is a small increase in volume, only when the lung's physical volume limitations are approached. In other words, compliance drops rapidly when the healthy lung nears its maximum volume.
The situation is rather different for a damaged or diseased lung. At the start of inspiration with a collapsed lung, pressure rises rapidly with small changes in volume, so compliance is initially very poor. When the lung then opens, compliance is more like the compliance of the healthy lung but is usually much poorer. If the lung is also inherently stiff (atelectatic), the upper limit for volume capacity is reached more quickly, i.e. the stiffness of the lung, rather than the thorax, governs when the lung is full, and compliance drops rapidly. In other words, the damaged or diseased lung has a much smaller effective ventilation range than a healthy lung.
Momentary compliance (the ratio between the derivative of volume and the derivative of pressure in the respiratory system) is therefore an excellent control parameter. When an appropriate threshold value is determined for each patient, parameters such as the level of pressure, PEEP, inspiration time, expiration time, respiratory rate etc. can be automatically controlled by the breathing apparatus.
DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an embodiment of the breathing apparatus according to the invention.
FIG. 2 shows a respiratory curve.
FIG. 3 shows several compliance curves during inspiration.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In FIG. 1, a breathing apparatus 2 is connected to a patient 4 to supply the patient 4 with breathing gas and remove expired breathing gas.
The breathing apparatus 2 can accommodate one or a plurality of gases, via three gas connectors (inlets) of 6A, 6B and 6C, which are then mixed into a breathing gas in a mixing chamber 8. Regulation of breathing gas supplied to the patient 4 is performed via an inspiratory valve 10 which is regulated by a control device 12. Alternatively, the respective gas can be regulated at the gas connectors 6A, 6B and 6C, i.e. before the breathing gas is mixed in the mixing chamber 8.
Breathing gas is carried from the breathing apparatus 2 to the patient 4 in an inspiratory line 14 and a connector line 16. The connector line 16 can include a breathing mask or a Y-piece with a tracheal tube or some other known connector means. Expired breathing gas is carried from the patient 4 back to the breathing apparatus 2 through the connector line 16 and an expiratory line 18. An expiratory valve 20 is arranged in the expiratory line 18. The expiratory valve 20 is regulated by the control device 12. With it a positive end expiratory pressure (PEEP) can be maintained at the end of expiration to e.g. prevent collapse of the lung of the patient 4. Expired breathing gas can be discharged into ambient air through an evacuation unit 22 or collected from the evacuation unit 22 for analysis, filtering or similar.
A pressure meter 24 and a flow meter 26 are arranged in the breathing apparatus 2 to measure the pressure and flow of the breathing gas. The measurement signals can be used for regulating the inspiratory valve 10 so the correct pressure and/or flow are/is supplied to the patient 4. With the aid of measurement signals, pressure and flow in or near the lungs of the patient 4 and airways can be calculated. Volume can be determined from flow. Momentary compliance can be determined when pressure and flow are known, as is described in greater detail in connection with FIG. 2. It should be noted that pressure and flow meters can also be arranged near the patient 4, as illustrated with the meters 28 and 30 in FIG. 1. More accurate values for the actual conditions in or near the patient 4 are accordingly obtained. The pressure meter can also be situated in the respiratory system of the patient 4, e.g. near the carina.
The pressure-volume diagram in FIG. 2 shows an inspiratory and expiratory curve for a diseased or damaged lung. The diagram shows an inspiratory curve 32 and an expiratory curve 34. "Pressure" refers to absolute pressure in the lung, and "volume" refers to the supplied (inspired) volume. As the inspiratory curve 32 shows, pressure initially (area 36A) rises more rapidly than volume. This may be because the lung has collapsed in whole or part and a large positive pressure is needed to open the lung to permit the influx of breathing gas. Compliance in area 36A is accordingly poor.
When the lung has opened (area 36B), breathing gas can flow in more easily, so pressure does not increase as rapidly. This area displays the lung's maximum compliance. The lung ultimately expands as much as it can and is accordingly full. Breathing gas is unable to flow in as easily (area 36C), and every increase in volume causes a sharp rise in pressure. Thus compliance is again poor in the area 36C.
During expiration (curve 34), pressure and volume drop back to their initial values. Since expiration is passive, and the expiratory valve 20 in the breathing apparatus 2 regulates flow and pressure in expiration, the expiratory curve 34 is therefore of less interest than the inspiratory curve 32.
If momentary compliance is determined, the breathing apparatus can be controlled so ventilation only takes place in area 36B in which the lung displays maximum compliance. Here, momentary compliance can be determined in a number of ways. Volume and pressure can be established and the ratio of the respective derivatives can be calculated. Alternatively, the momentary flow value can be divided by the derivative of momentary pressure. Derivatives can be determined in the known manner.
FIG. 3 shows three of the situations, which can occur during an inspiration, in order to illustrate the invention. The diagram shows compliance on one axis and time on the other. A first compliance curve 38 shows that compliance in a first interval 40A rises sharply and passes a first threshold value 42. Compliance then remains constant for the rest of inspiration, a second interval 40B. The rapidly rising compliance during the first interval 40A indicates that at least some of the lung opens up at the start of inspiration. This imposes a needless pressure load on the lungs, so the PEEP value set is automatically switched to a higher value. The increase can be performed in specific steps until the all of the first compliance curve 38 is above the first threshold value throughout inspiration. Alternatively, a new PEEP can be calculated from measured pressure immediately after compliance exceeds the first threshold value 42.
A second compliance curve 44 is initially constant, but compliance drops below the first threshold value 42 at the end of the second interval 40B. This means that inspiration occurred in the third area 36C in FIG. 2, so excessively high pressure could develop in the lungs. The duration of inspiration is therefore shortened somewhat in order to reduce the risk of harmful excess pressure. A simultaneous change in rate may be necessary to ensure that s sufficient minute volume of breathing gas is supplied to the patient. As an additional safety precaution for some patients, it may be necessary to terminate inspiration as soon as compliance drops below the first threshold value 42. Momentary compliance can also be utilized for determining appropriate reference pressures in pressure-controlled modes, such as PC and PRVC.
The third situation is illustrated by the third compliance curve 46 which is on a constantly high level throughout inspiration. It is even higher than a second threshold value 48. This could mean that the patient's condition has improved and that the first threshold value is no longer relevant. The breathing apparatus can then automatically switch to the use of the second threshold value in the manner described above. Thus, ventilation can be continuously adapted to the patients' condition. If the patient's condition worsens, however, a physician should decide on the course of future treatment.
The high compliance of the third compliance curve 46 also suggests that only part of the maximum area 36B is being utilized in ventilation. PEEP can therefore be successively reduced, in order to reduce peak inspiratory pressure (PIP). At the same time, minute volume can be increased by prolongation of inspiration time. If the minute volume is the target volume, the breathing rate can be reduced at the same time.
Momentary compliance needs not be calculated continuously. From the compliance curves shown, it is apparent that the beginning and end of the inspiration are of greatest interest. It would therefore be sufficient for the operation of the method according to the invention to study these parts only.
The invention has been described above in conjunction with a ventilator. But the same method can be implemented in e.g. anesthetic equipment and other breathing apparatuses. It is also important to avoid the build-up of excessive pressure in healthy lungs, e.g. because more breathing gas is supplied in inspiration than is removed in expiration. Analysis of momentary compliance supplies an additional control parameter for the patient's safety.
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventors to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of their contribution to the art.

Claims (16)

I claim as my invention:
1. A breathing apparatus comprising:
means for delivering a breathing gas to and removing expired breathing gas from, a respiratory system;
means for measuring a pressure and a flow of said breathing gas at least during delivery of said breathing gas;
calculating means for calculating a momentary compliance of said respiratory system from respective measurements of said pressure and flow obtained at selected points in time during delivery of said breathing gas in an inspiratory phase;
means for comparing said momentary compliance to a threshold value; and
adjustment means for, if said momentary compliance is less than said threshold value, changing at least one parameter in a group of parameters consisting of pressure level, PEEP, a ratio between inspiration time and expiration time, and breathing rate.
2. An apparatus as claimed in claim 1 wherein said calculating means comprises means for calculating said momentary compliance substantially continuously throughout a complete inspiratory phase.
3. An apparatus as claimed in claim 1 wherein said calculating means for calculating said momentary compliance as a ratio between momentarily measured flow and a time derivative of the measured pressure.
4. An apparatus as claimed in claim 1 wherein said adjustment means comprises means for increasing PEEP for a next inspiratory phase, following an inspiratory phase in which said momentary compliance is calculated, if the momentary compliance is less than said threshold value during an initial predetermined portion of said inspiratory phase.
5. An apparatus as claimed in claim 4 wherein said adjustment means comprises means for reducing PEEP for said next inspiratory phase if said momentary compliance exceeds a further threshold value during said initial predetermined portion of said inspiratory phase.
6. An apparatus as claimed in claim 1 wherein said adjustment means comprises means for changing said ratio between inspiration time and expiration time if said momentary compliance falls below said threshold after an end portion of said inspiratory phase for causing said momentary compliance in a next expiratory phase to exceed said threshold value during a corresponding portion of said inspiratory phase, while maintaining a predetermined minute volume of breathing gas to said respiratory system.
7. An apparatus as claimed in claim 1 wherein said adjustment means comprises means for changing the breathing rate if said momentary compliance falls below said threshold after an end portion of said inspiratory phase for causing said momentary compliance in a next expiratory phase to exceed said threshold value during a corresponding portion of said inspiratory phase, while maintaining a predetermined minute volume of breathing gas to said respiratory system.
8. An apparatus as claimed in claim 1 said adjustment means comprises means for changing said ratio between inspiration time and expiration time and the breathing rate if said momentary compliance falls below said threshold after an end portion of said inspiratory phase for causing said momentary compliance in a next expiratory phase to exceed said threshold value during a corresponding portion of said inspiratory phase, while maintaining a predetermined minute volume of breathing gas to said respiratory system.
9. A method for controlling a breathing apparatus comprising the steps of:
delivering a breathing gas to and removing expired breathing gas from, a respiratory system;
measuring a pressure and a flow of said breathing gas at least during delivery of said breathing gas;
calculating a momentary compliance of said respiratory system from respective measurements of said pressure and flow obtained at selected points in time during delivery of said breathing gas in an inspiratory phase;
comparing said momentary compliance to a threshold value; and
if said momentary compliance is less than said threshold value, changing at least one parameter in a group of parameters consisting of pressure level, PEEP, a ratio between inspiration time and expiration time, and breathing rate.
10. A method as claimed in claim 9 comprising calculating said momentary compliance substantially continuously throughout a complete inspiratory phase.
11. A method as claimed in claim 9 comprising calculating said momentary compliance as a ratio between momentarily measured flow and a time derivative of the measured pressure.
12. A method as claimed in claim 9 wherein the step of changing at least one parameter comprises increasing PEEP for a next inspiratory phase, following an inspiratory phase in which said momentary compliance is calculated, if the momentary compliance is less than said threshold value during an initial predetermined portion of said inspiratory phase.
13. A method as claimed in claim 12 comprising reducing PEEP for said next inspiratory phase if said momentary compliance exceeds a further threshold value during said initial predetermined portion of said inspiratory phase.
14. A method as claimed in claim 9 wherein the step of changing at least one parameter comprises changing said ratio between inspiration time and expiration time if said momentary compliance falls below said threshold after an end portion of said inspiratory phase for causing said momentary compliance in a next expiratory phase to exceed said threshold value during a corresponding portion of said inspiratory phase, while maintaining a predetermined minute volume of breathing gas to said respiratory system.
15. A method as claimed in claim 9 wherein the step of changing at least one parameter comprises changing the breathing rate if said momentary compliance falls below said threshold after an end portion of said inspiratory phase for causing said momentary compliance in a next expiratory phase to exceed said threshold value during a corresponding portion of said inspiratory phase, while maintaining a predetermined minute volume of breathing gas to said respiratory system.
16. A method as claimed in claim 9 wherein the step of changing at least one parameter comprises changing said ratio between inspiration time and expiration time and the breathing rate if said momentary compliance falls below said threshold after an end portion of said inspiratory phase for causing said momentary compliance in a next expiratory phase to exceed said threshold value during a corresponding portion of said inspiratory phase, while maintaining a predetermined minute volume of breathing gas to said respiratory system.
US08/759,302 1995-12-01 1996-12-02 Breathing apparatus and method for controlling same Expired - Fee Related US5915381A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9504312A SE9504312L (en) 1995-12-01 1995-12-01 When controlling a breathing apparatus and a breathing apparatus
SE9504312 1995-12-01

Publications (1)

Publication Number Publication Date
US5915381A true US5915381A (en) 1999-06-29

Family

ID=20400443

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/759,302 Expired - Fee Related US5915381A (en) 1995-12-01 1996-12-02 Breathing apparatus and method for controlling same

Country Status (4)

Country Link
US (1) US5915381A (en)
EP (1) EP0776672A1 (en)
JP (1) JPH09173456A (en)
SE (1) SE9504312L (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095139A (en) * 1997-09-11 2000-08-01 Siemens Elema Ab Ventilator suitable for miniaturization
US6186142B1 (en) * 1997-07-25 2001-02-13 Minnesota Innovative Technologies & Instruments Corporation (Miti) Control of respiratory oxygen delivery
US6240920B1 (en) * 1998-04-23 2001-06-05 Siemens Elema Ab Method for determining a parameter related to spontaneous breathing efforts by a subject, and breathing-assist apparatus operating in accordance with the method
US6308706B1 (en) * 1996-03-08 2001-10-30 LAMMERS LéON Device and process for monitoring the respiration parameters of an artificial respiration system
US6371114B1 (en) 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
US6463930B2 (en) 1995-12-08 2002-10-15 James W. Biondi System for automatically weaning a patient from a ventilator, and method thereof
US6568387B2 (en) 2000-07-19 2003-05-27 University Of Florida Method for treating chronic obstructive pulmonary disorder
US6571796B2 (en) 2001-02-08 2003-06-03 University Of Florida Tracheal pressure ventilation respiratory system
US6584973B1 (en) 1995-12-08 2003-07-01 Cardiopulmonary Corporation Ventilator control system and method
US20030188748A1 (en) * 1998-06-04 2003-10-09 Christer Sinderby Automatic adjustment of applied levels of ventilatory support and extrinsic peep by closed-loop control of neuro-ventilatory efficiency
US6631716B1 (en) * 1998-07-17 2003-10-14 The Board Of Trustees Of The Leland Stanford Junior University Dynamic respiratory control
US6651656B2 (en) * 2001-05-29 2003-11-25 Deka Products Limited Partnership Method and apparatus for non-invasive breathing assist
US20050133033A1 (en) * 2003-12-20 2005-06-23 Drager Medical Ag & Co. Device and process for metering breathing gas
US20060086357A1 (en) * 2004-10-25 2006-04-27 Soliman Ihab S Patient circuit disconnect system for a ventilator and method of detecting patient circuit disconnect
US20070062533A1 (en) * 2005-09-21 2007-03-22 Choncholas Gary J Apparatus and method for identifying FRC and PEEP characteristics
US20070062529A1 (en) * 2005-09-21 2007-03-22 Choncholas Gary J Apparatus and method for determining and displaying functional residual capacity data and related parameters of ventilated patients
US7393329B1 (en) * 1997-05-23 2008-07-01 William Beaumont Hospital Method and apparatus for delivering radiation therapy during suspended ventilation
US8136527B2 (en) 2003-08-18 2012-03-20 Breathe Technologies, Inc. Method and device for non-invasive ventilation with nasal interface
US20120138057A1 (en) * 2010-12-06 2012-06-07 General Electric Company System and Method of Automated Lung Recruitment Maneuvers
US8251876B2 (en) 2008-04-22 2012-08-28 Hill-Rom Services, Inc. Breathing exercise apparatus
WO2012139159A1 (en) * 2011-04-11 2012-10-18 Murdoch Childrens Research Institute System and process for determining a positive end-expiratory pressure for a mechanical ventilation system
US8381729B2 (en) 2003-06-18 2013-02-26 Breathe Technologies, Inc. Methods and devices for minimally invasive respiratory support
US20130047989A1 (en) * 2011-08-31 2013-02-28 Nellcor Puritan Bennett Llc Methods and systems for adjusting tidal volume during ventilation
US8418694B2 (en) 2003-08-11 2013-04-16 Breathe Technologies, Inc. Systems, methods and apparatus for respiratory support of a patient
US8485183B2 (en) 2008-06-06 2013-07-16 Covidien Lp Systems and methods for triggering and cycling a ventilator based on reconstructed patient effort signal
US8567399B2 (en) 2007-09-26 2013-10-29 Breathe Technologies, Inc. Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
US8677999B2 (en) 2008-08-22 2014-03-25 Breathe Technologies, Inc. Methods and devices for providing mechanical ventilation with an open airway interface
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
US8770193B2 (en) 2008-04-18 2014-07-08 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8776792B2 (en) 2011-04-29 2014-07-15 Covidien Lp Methods and systems for volume-targeted minimum pressure-control ventilation
US8776793B2 (en) 2008-04-18 2014-07-15 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US8925545B2 (en) 2004-02-04 2015-01-06 Breathe Technologies, Inc. Methods and devices for treating sleep apnea
US8939152B2 (en) 2010-09-30 2015-01-27 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
US8955518B2 (en) 2003-06-18 2015-02-17 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
US8985099B2 (en) 2006-05-18 2015-03-24 Breathe Technologies, Inc. Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer
US9022031B2 (en) 2012-01-31 2015-05-05 Covidien Lp Using estimated carinal pressure for feedback control of carinal pressure during ventilation
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US9180271B2 (en) 2012-03-05 2015-11-10 Hill-Rom Services Pte. Ltd. Respiratory therapy device having standard and oscillatory PEP with nebulizer
US9180270B2 (en) 2009-04-02 2015-11-10 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube
US20160051780A1 (en) * 2003-07-17 2016-02-25 Zoll Medical Corporation Automatic Patient Ventilator System and Method
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9492629B2 (en) 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US9649458B2 (en) 2008-09-30 2017-05-16 Covidien Lp Breathing assistance system with multiple pressure sensors
US9713689B2 (en) 2010-07-12 2017-07-25 Laurent Brochard Methods of evaluating a patient for PEEP therapy
DE102016109528A1 (en) * 2016-03-01 2017-09-07 Ventinova Technologies B.V. Method and device for ventilating a patient
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
CN107970510A (en) * 2016-10-25 2018-05-01 德尔格制造股份两合公司 For suitably adjusting end-expiratory positive pressure(PEEP)Method and apparatus
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US10058668B2 (en) 2007-05-18 2018-08-28 Breathe Technologies, Inc. Methods and devices for sensing respiration and providing ventilation therapy
US10099028B2 (en) 2010-08-16 2018-10-16 Breathe Technologies, Inc. Methods, systems and devices using LOX to provide ventilatory support
CN109513079A (en) * 2017-09-20 2019-03-26 德尔格制造股份两合公司 Artificial respiration instrument for running the method for artificial respiration instrument and being worked according to the method
US10252020B2 (en) 2008-10-01 2019-04-09 Breathe Technologies, Inc. Ventilator with biofeedback monitoring and control for improving patient activity and health
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
WO2020103163A1 (en) * 2018-11-23 2020-05-28 深圳迈瑞生物医疗电子股份有限公司 Positive end expiratory pressure determining method and apparatus, aeration device, and storage medium
US10792449B2 (en) 2017-10-03 2020-10-06 Breathe Technologies, Inc. Patient interface with integrated jet pump
US10905837B2 (en) 2015-04-02 2021-02-02 Hill-Rom Services Pte. Ltd. Respiratory therapy cycle control and feedback
DE102019129549A1 (en) * 2019-10-31 2021-05-06 Hamilton Medical Ag Method for carrying out an automated P / V maneuver that avoids lung overexpansion and ventilation device designed for carrying out the method
US11154672B2 (en) 2009-09-03 2021-10-26 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US11324954B2 (en) 2019-06-28 2022-05-10 Covidien Lp Achieving smooth breathing by modified bilateral phrenic nerve pacing
US11478594B2 (en) 2018-05-14 2022-10-25 Covidien Lp Systems and methods for respiratory effort detection utilizing signal distortion
CN115944820A (en) * 2023-03-15 2023-04-11 广州蓝仕威克医疗科技有限公司 Control method and device for accurately quantifying respirator parameters
US11642480B2 (en) * 2017-01-27 2023-05-09 Ventinova Technologies B.V. Devices and methods for ventilating a patient
US11752287B2 (en) 2018-10-03 2023-09-12 Covidien Lp Systems and methods for automatic cycling or cycling detection
US11896767B2 (en) 2020-03-20 2024-02-13 Covidien Lp Model-driven system integration in medical ventilators

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9802827D0 (en) 1998-08-25 1998-08-25 Siemens Elema Ab ventilator
US6152131A (en) * 1998-08-26 2000-11-28 Instrumentarium Corp. Method and apparatus for detecting an empty breathing gas compartment in a patient ventilator
JP4597377B2 (en) * 1999-01-15 2010-12-15 レスメド・リミテッド Method and apparatus for achieving equilibrium against the inherent positive end expiratory pressure
AU2003259632B2 (en) * 1999-01-15 2007-03-15 ResMed Pty Ltd Method and Apparatus to Counterbalance Intrinsic Positive End Expiratory Pressure
AU2007202796B2 (en) * 1999-01-15 2010-06-10 ResMed Pty Ltd Method and Apparatus to Counterbalance Intrinsic Positive End Expiratory Pressure
SE9902709D0 (en) * 1999-07-15 1999-07-15 Siemens Elema Ab Method for controlling an expiratory valve in a fan
SE9904643D0 (en) 1999-12-17 1999-12-17 Siemens Elema Ab Method for assessing pulmonary stress and a breathing apparatus
SE0002849D0 (en) 2000-08-08 2000-08-08 Siemens Elema Ab ventilator
SE0102221D0 (en) 2001-06-19 2001-06-19 Siemens Elema Ab Method for assessing pulmonary stress and a breathing apparatus
DE10164313A1 (en) * 2001-12-28 2003-07-10 Muefa Ag breathing device
JP5053083B2 (en) * 2004-06-24 2012-10-17 コンヴァージェント エンジニアリング インコーポレイティッド Method and apparatus for non-invasive prediction of positive end expiratory pressure (PEEPi) in a patient receiving ventilator support
DE102015216895A1 (en) 2015-09-03 2017-03-09 Hamilton Medical Ag Ventilation device with error detection for flow sensors
JP7004748B2 (en) * 2017-02-22 2022-02-04 コーニンクレッカ フィリップス エヌ ヴェ Automatic PEEP selection for mechanical ventilation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031885A (en) * 1975-10-15 1977-06-28 Puritan-Bennett Corporation Method and apparatus for determining patient lung pressure, compliance and resistance
US4036221A (en) * 1972-05-01 1977-07-19 Sutter Hospitals Medical Research Foundation Respirator
DE2744327C2 (en) * 1976-10-07 1982-04-15 Drägerwerk AG, 2400 Lübeck Ventilation system
US4587967A (en) * 1985-07-09 1986-05-13 Lifecare Services, Inc. Oxygen enriched reciprocating piston respirator
EP0671180A1 (en) * 1994-02-14 1995-09-13 Siemens-Elema AB Device for determining an opening pressure in a lung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036221A (en) * 1972-05-01 1977-07-19 Sutter Hospitals Medical Research Foundation Respirator
US4031885A (en) * 1975-10-15 1977-06-28 Puritan-Bennett Corporation Method and apparatus for determining patient lung pressure, compliance and resistance
DE2744327C2 (en) * 1976-10-07 1982-04-15 Drägerwerk AG, 2400 Lübeck Ventilation system
US4587967A (en) * 1985-07-09 1986-05-13 Lifecare Services, Inc. Oxygen enriched reciprocating piston respirator
EP0671180A1 (en) * 1994-02-14 1995-09-13 Siemens-Elema AB Device for determining an opening pressure in a lung
US5575283A (en) * 1994-02-14 1996-11-19 Siemens-Elema Ab Device for determining an opening pressure in the lungs

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050051167A1 (en) * 1995-12-08 2005-03-10 Biondi James W. System for automatically weaning a patient from a ventilator, and method thereof
US6668829B2 (en) 1995-12-08 2003-12-30 Cardiopulmonary Corporation System for automatically weaning a patient from a ventilator, and method thereof
US7334578B2 (en) 1995-12-08 2008-02-26 Cardiopulmonary Corporation System for automatically weaning a patient from a ventilator, and method thereof
US7017574B2 (en) 1995-12-08 2006-03-28 Cardiopulmonary Corporation System for automatically weaning a patient from a ventilator, and method thereof
US6463930B2 (en) 1995-12-08 2002-10-15 James W. Biondi System for automatically weaning a patient from a ventilator, and method thereof
US6584973B1 (en) 1995-12-08 2003-07-01 Cardiopulmonary Corporation Ventilator control system and method
US6308706B1 (en) * 1996-03-08 2001-10-30 LAMMERS LéON Device and process for monitoring the respiration parameters of an artificial respiration system
US7393329B1 (en) * 1997-05-23 2008-07-01 William Beaumont Hospital Method and apparatus for delivering radiation therapy during suspended ventilation
US20060213519A1 (en) * 1997-07-25 2006-09-28 Minnesota Innovative Technologies And Instruments Control of respiratory oxygen delivery
US6561187B2 (en) 1997-07-25 2003-05-13 Minnesota Innovative Technologies & Instruments Corporation Control of supplemental respiratory oxygen
US20030145852A1 (en) * 1997-07-25 2003-08-07 Minnesota Innovative Technologies And Instruments Control of supplemental respiratory Oxygen
US7331343B2 (en) * 1997-07-25 2008-02-19 Minnesota Innovative Technologies & Instruments Corporation (Miti) Control of supplemental respiratory oxygen
US6186142B1 (en) * 1997-07-25 2001-02-13 Minnesota Innovative Technologies & Instruments Corporation (Miti) Control of respiratory oxygen delivery
US20040159323A1 (en) * 1997-07-25 2004-08-19 Minnesota Innovative Technologies And Instruments Control of respiratory oxygen delivery
US6095139A (en) * 1997-09-11 2000-08-01 Siemens Elema Ab Ventilator suitable for miniaturization
US6240920B1 (en) * 1998-04-23 2001-06-05 Siemens Elema Ab Method for determining a parameter related to spontaneous breathing efforts by a subject, and breathing-assist apparatus operating in accordance with the method
US6920878B2 (en) 1998-06-04 2005-07-26 Universite De Montreal Proportional pressure assist ventilation controlled by a diaphragm electromyographic signal
US20030188748A1 (en) * 1998-06-04 2003-10-09 Christer Sinderby Automatic adjustment of applied levels of ventilatory support and extrinsic peep by closed-loop control of neuro-ventilatory efficiency
US7021310B1 (en) * 1998-06-04 2006-04-04 Universite De Montreal Proportional pressure assist ventilation controlled by a diaphragm electromyographic signal
US7661427B2 (en) 1998-06-04 2010-02-16 Universite De Montreal Proportional pressure assist ventilation controlled by a diaphragm electromyographic signal
US6631716B1 (en) * 1998-07-17 2003-10-14 The Board Of Trustees Of The Leland Stanford Junior University Dynamic respiratory control
US6371114B1 (en) 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
US6568387B2 (en) 2000-07-19 2003-05-27 University Of Florida Method for treating chronic obstructive pulmonary disorder
US6571796B2 (en) 2001-02-08 2003-06-03 University Of Florida Tracheal pressure ventilation respiratory system
US6651656B2 (en) * 2001-05-29 2003-11-25 Deka Products Limited Partnership Method and apparatus for non-invasive breathing assist
US8955518B2 (en) 2003-06-18 2015-02-17 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
US8381729B2 (en) 2003-06-18 2013-02-26 Breathe Technologies, Inc. Methods and devices for minimally invasive respiratory support
US11596753B2 (en) * 2003-07-17 2023-03-07 Zoll Medical Corporation Automatic patient ventilator system and method
US20160051780A1 (en) * 2003-07-17 2016-02-25 Zoll Medical Corporation Automatic Patient Ventilator System and Method
US8418694B2 (en) 2003-08-11 2013-04-16 Breathe Technologies, Inc. Systems, methods and apparatus for respiratory support of a patient
US8136527B2 (en) 2003-08-18 2012-03-20 Breathe Technologies, Inc. Method and device for non-invasive ventilation with nasal interface
US8573219B2 (en) 2003-08-18 2013-11-05 Breathe Technologies, Inc. Method and device for non-invasive ventilation with nasal interface
US6929006B2 (en) * 2003-12-20 2005-08-16 Dräger Medical AG & Co. KGaA Device and process for metering breathing gas
US20050133033A1 (en) * 2003-12-20 2005-06-23 Drager Medical Ag & Co. Device and process for metering breathing gas
US8925545B2 (en) 2004-02-04 2015-01-06 Breathe Technologies, Inc. Methods and devices for treating sleep apnea
US20060086357A1 (en) * 2004-10-25 2006-04-27 Soliman Ihab S Patient circuit disconnect system for a ventilator and method of detecting patient circuit disconnect
US7984712B2 (en) * 2004-10-25 2011-07-26 Bird Products Corporation Patient circuit disconnect system for a ventilator and method of detecting patient circuit disconnect
US20070062533A1 (en) * 2005-09-21 2007-03-22 Choncholas Gary J Apparatus and method for identifying FRC and PEEP characteristics
US8469027B2 (en) 2005-09-21 2013-06-25 General Electric Company Apparatus and method for identifying FRC and PEEP characteristics
US20070062529A1 (en) * 2005-09-21 2007-03-22 Choncholas Gary J Apparatus and method for determining and displaying functional residual capacity data and related parameters of ventilated patients
US7530353B2 (en) 2005-09-21 2009-05-12 The General Electric Company Apparatus and method for determining and displaying functional residual capacity data and related parameters of ventilated patients
US8985099B2 (en) 2006-05-18 2015-03-24 Breathe Technologies, Inc. Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer
US10058668B2 (en) 2007-05-18 2018-08-28 Breathe Technologies, Inc. Methods and devices for sensing respiration and providing ventilation therapy
US8567399B2 (en) 2007-09-26 2013-10-29 Breathe Technologies, Inc. Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
US8770193B2 (en) 2008-04-18 2014-07-08 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8776793B2 (en) 2008-04-18 2014-07-15 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8251876B2 (en) 2008-04-22 2012-08-28 Hill-Rom Services, Inc. Breathing exercise apparatus
US9126001B2 (en) 2008-06-06 2015-09-08 Covidien Lp Systems and methods for ventilation in proportion to patient effort
US8485184B2 (en) 2008-06-06 2013-07-16 Covidien Lp Systems and methods for monitoring and displaying respiratory information
US9956363B2 (en) 2008-06-06 2018-05-01 Covidien Lp Systems and methods for triggering and cycling a ventilator based on reconstructed patient effort signal
US9925345B2 (en) 2008-06-06 2018-03-27 Covidien Lp Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system
US8826907B2 (en) 2008-06-06 2014-09-09 Covidien Lp Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system
US10828437B2 (en) 2008-06-06 2020-11-10 Covidien Lp Systems and methods for triggering and cycling a ventilator based on reconstructed patient effort signal
US8485183B2 (en) 2008-06-06 2013-07-16 Covidien Lp Systems and methods for triggering and cycling a ventilator based on reconstructed patient effort signal
US9114220B2 (en) 2008-06-06 2015-08-25 Covidien Lp Systems and methods for triggering and cycling a ventilator based on reconstructed patient effort signal
US8485185B2 (en) 2008-06-06 2013-07-16 Covidien Lp Systems and methods for ventilation in proportion to patient effort
US8677999B2 (en) 2008-08-22 2014-03-25 Breathe Technologies, Inc. Methods and devices for providing mechanical ventilation with an open airway interface
US9649458B2 (en) 2008-09-30 2017-05-16 Covidien Lp Breathing assistance system with multiple pressure sensors
US10252020B2 (en) 2008-10-01 2019-04-09 Breathe Technologies, Inc. Ventilator with biofeedback monitoring and control for improving patient activity and health
US9227034B2 (en) 2009-04-02 2016-01-05 Beathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation for treating airway obstructions
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
US10695519B2 (en) 2009-04-02 2020-06-30 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within nasal pillows
US10709864B2 (en) 2009-04-02 2020-07-14 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube
US9675774B2 (en) 2009-04-02 2017-06-13 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles in free space
US11103667B2 (en) 2009-04-02 2021-08-31 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space
US9180270B2 (en) 2009-04-02 2015-11-10 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube
US11896766B2 (en) 2009-04-02 2024-02-13 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space
US10232136B2 (en) 2009-04-02 2019-03-19 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation for treating airway obstructions
US11707591B2 (en) 2009-04-02 2023-07-25 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube
US10046133B2 (en) 2009-04-02 2018-08-14 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation for providing ventilation support
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US11154672B2 (en) 2009-09-03 2021-10-26 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US10265486B2 (en) 2009-09-03 2019-04-23 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US9713689B2 (en) 2010-07-12 2017-07-25 Laurent Brochard Methods of evaluating a patient for PEEP therapy
US10099028B2 (en) 2010-08-16 2018-10-16 Breathe Technologies, Inc. Methods, systems and devices using LOX to provide ventilatory support
US9358358B2 (en) 2010-09-30 2016-06-07 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
US8939152B2 (en) 2010-09-30 2015-01-27 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
US20120138057A1 (en) * 2010-12-06 2012-06-07 General Electric Company System and Method of Automated Lung Recruitment Maneuvers
US8695594B2 (en) * 2010-12-06 2014-04-15 General Electric Company System and method of automated lung recruitment maneuvers
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
EP2696925A1 (en) * 2011-04-11 2014-02-19 Murdoch Childrens Research Institute System and process for determining a positive end-expiratory pressure for a mechanical ventilation system
EP2696925A4 (en) * 2011-04-11 2014-09-03 Murdoch Childrens Res Inst System and process for determining a positive end-expiratory pressure for a mechanical ventilation system
WO2012139159A1 (en) * 2011-04-11 2012-10-18 Murdoch Childrens Research Institute System and process for determining a positive end-expiratory pressure for a mechanical ventilation system
US8776792B2 (en) 2011-04-29 2014-07-15 Covidien Lp Methods and systems for volume-targeted minimum pressure-control ventilation
US20130047989A1 (en) * 2011-08-31 2013-02-28 Nellcor Puritan Bennett Llc Methods and systems for adjusting tidal volume during ventilation
US10543327B2 (en) 2011-12-07 2020-01-28 Covidien Lp Methods and systems for adaptive base flow
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US11497869B2 (en) 2011-12-07 2022-11-15 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US11833297B2 (en) 2011-12-31 2023-12-05 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US10709854B2 (en) 2011-12-31 2020-07-14 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US9022031B2 (en) 2012-01-31 2015-05-05 Covidien Lp Using estimated carinal pressure for feedback control of carinal pressure during ventilation
US9180271B2 (en) 2012-03-05 2015-11-10 Hill-Rom Services Pte. Ltd. Respiratory therapy device having standard and oscillatory PEP with nebulizer
US10029057B2 (en) 2012-03-30 2018-07-24 Covidien Lp Methods and systems for triggering with unknown base flow
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US11642042B2 (en) 2012-07-09 2023-05-09 Covidien Lp Systems and methods for missed breath detection and indication
US9492629B2 (en) 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US10864336B2 (en) 2014-08-15 2020-12-15 Covidien Lp Methods and systems for breath delivery synchronization
US11712174B2 (en) 2014-10-27 2023-08-01 Covidien Lp Ventilation triggering
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US10940281B2 (en) 2014-10-27 2021-03-09 Covidien Lp Ventilation triggering
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
US10905837B2 (en) 2015-04-02 2021-02-02 Hill-Rom Services Pte. Ltd. Respiratory therapy cycle control and feedback
US10905836B2 (en) 2015-04-02 2021-02-02 Hill-Rom Services Pte. Ltd. Manifold for respiratory device
DE102016109528A1 (en) * 2016-03-01 2017-09-07 Ventinova Technologies B.V. Method and device for ventilating a patient
CN107970510B (en) * 2016-10-25 2020-08-11 德尔格制造股份两合公司 Method and apparatus for appropriately regulating Positive End Expiratory Pressure (PEEP)
US10898671B2 (en) 2016-10-25 2021-01-26 Drägerwerk AG & Co. KGaA Method and device for the adaptive regulation of a positive end-expiratory pressure (PEEP)
CN107970510A (en) * 2016-10-25 2018-05-01 德尔格制造股份两合公司 For suitably adjusting end-expiratory positive pressure(PEEP)Method and apparatus
US11642480B2 (en) * 2017-01-27 2023-05-09 Ventinova Technologies B.V. Devices and methods for ventilating a patient
US11679216B2 (en) 2017-09-20 2023-06-20 Drägerwerk AG & Co. KGaA Process for operating a ventilator and ventilator operating according to the process
CN109513079A (en) * 2017-09-20 2019-03-26 德尔格制造股份两合公司 Artificial respiration instrument for running the method for artificial respiration instrument and being worked according to the method
US10792449B2 (en) 2017-10-03 2020-10-06 Breathe Technologies, Inc. Patient interface with integrated jet pump
US11478594B2 (en) 2018-05-14 2022-10-25 Covidien Lp Systems and methods for respiratory effort detection utilizing signal distortion
US11752287B2 (en) 2018-10-03 2023-09-12 Covidien Lp Systems and methods for automatic cycling or cycling detection
CN111479605A (en) * 2018-11-23 2020-07-31 深圳迈瑞生物医疗电子股份有限公司 Positive end-expiratory pressure determining method and device, ventilation equipment and storage medium
WO2020103163A1 (en) * 2018-11-23 2020-05-28 深圳迈瑞生物医疗电子股份有限公司 Positive end expiratory pressure determining method and apparatus, aeration device, and storage medium
US11324954B2 (en) 2019-06-28 2022-05-10 Covidien Lp Achieving smooth breathing by modified bilateral phrenic nerve pacing
DE102019129549A1 (en) * 2019-10-31 2021-05-06 Hamilton Medical Ag Method for carrying out an automated P / V maneuver that avoids lung overexpansion and ventilation device designed for carrying out the method
WO2021083981A1 (en) 2019-10-31 2021-05-06 Hamilton Medical Ag Method for carrying out a p/v maneuver which automatically prevents an over-dilation of the lungs, and ventilation device designed to carry out the method
US11896767B2 (en) 2020-03-20 2024-02-13 Covidien Lp Model-driven system integration in medical ventilators
CN115944820A (en) * 2023-03-15 2023-04-11 广州蓝仕威克医疗科技有限公司 Control method and device for accurately quantifying respirator parameters
CN115944820B (en) * 2023-03-15 2024-04-16 广州蓝仕威克医疗科技有限公司 Control method and device for accurately quantifying respirator parameters

Also Published As

Publication number Publication date
SE504285C2 (en) 1996-12-23
EP0776672A1 (en) 1997-06-04
SE9504312D0 (en) 1995-12-01
SE9504312L (en) 1996-12-23
JPH09173456A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
US5915381A (en) Breathing apparatus and method for controlling same
EP2539001B1 (en) Spontaneous breathing trial manager
US5575283A (en) Device for determining an opening pressure in the lungs
US5957130A (en) Device for compensating for flow resistance in a ventilator/respirator
US9144658B2 (en) Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
DE69936735T2 (en) DETERMINATION OF MASK MATCH PRESSURE AND CORRECTION OF MASK MATCHING
EP0475993B1 (en) Improvements in or relating to medical ventilators
US5937853A (en) Ventilator for respiratory treatment
US6571796B2 (en) Tracheal pressure ventilation respiratory system
US6837241B2 (en) Method for adaptive triggering of a breathing device, and breathing device with adaptive triggering
EP1108391B1 (en) Method for assessing pulmonary stress and a breathing apparatus
JPH10505765A (en) Pressure controlled breathing assist device
JP2000070370A (en) Artificial respiratory apparatus
EP3520850B1 (en) System for detecting a patient's respiratory effort
US7086098B2 (en) Mechanical breathing aid with adaptive expiration control
CN109152899B (en) Method and apparatus for ventilating a patient
JP7437459B2 (en) Devices and methods for ventilating patients
EP4140525A2 (en) Respirators and control methods for respirators
JP2001245985A (en) Anesthesia ventilator automatically controlling selected ventilation mode
CN109091735A (en) A kind of Anesthesia machine, ventilator intelligence ventilatory control system
DE102009025327A1 (en) Respiratory device for patient, has patient hose system supplying respiratory gas to patient during phases of inspiration and expiration, where respiratory gas provided from conveying device cools blower
AU2004203313B2 (en) Method and apparatus for providing breathing gas to a patient
AU9703598A (en) Method and apparatus for providing breathing gas to a patient

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS ELEMA AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORD, MAGNUS;REEL/FRAME:008332/0627

Effective date: 19961122

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: MAQUET CRITICAL CARE AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS-ELEMA AB;REEL/FRAME:014227/0766

Effective date: 20031204

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20070629