US5960809A - Fuel equalizing system for plurality of fuel tanks - Google Patents

Fuel equalizing system for plurality of fuel tanks Download PDF

Info

Publication number
US5960809A
US5960809A US08/910,130 US91013097A US5960809A US 5960809 A US5960809 A US 5960809A US 91013097 A US91013097 A US 91013097A US 5960809 A US5960809 A US 5960809A
Authority
US
United States
Prior art keywords
fuel
valve
return
common passage
actuator member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/910,130
Inventor
Russell D. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
R D K Corp
Original Assignee
R D K Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R D K Corp filed Critical R D K Corp
Priority to US08/910,130 priority Critical patent/US5960809A/en
Assigned to R.D.K. CORPORATION reassignment R.D.K. CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KELLER, RUSSELL D.
Application granted granted Critical
Publication of US5960809A publication Critical patent/US5960809A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0023Valves in the fuel supply and return system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0052Details on the fuel return circuit; Arrangement of pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • F02M37/0088Multiple separate fuel tanks or tanks being at least partially partitioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/007Layout or arrangement of systems for feeding fuel characterised by its use in vehicles, in stationary plants or in small engines, e.g. hand held tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0379By fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2514Self-proportioning flow systems
    • Y10T137/2521Flow comparison or differential response
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4673Plural tanks or compartments with parallel flow
    • Y10T137/4841With cross connecting passage

Definitions

  • the present invention relates generally to fuel equalizing systems and methods for equalizing the fuel in a plurality of fuel tanks mounted on motor vehicles such as trucks in order to maintain substantially the same amount of fuel in each tank.
  • the fuel equalizing system and method of the present invention employs an equalization valve which senses the pressure in the fuel outlet of each fuel tank and controls the return flow of unused fuel from the motor to such tanks in order to equalize the amount of fuel in the tanks.
  • the equalization valve includes a valve actuator member having at least two pressure sensing elements on such actuator member which sense the pressure at the outlets of two fuel tanks and cause the actuator member to move longitudinally to operate the valve in accordance with the tank pressure.
  • a pair of valve elements are provided at the opposite ends of the actuator member to control the flow of unused return fuel flowing from the motor through two return fuel outlets of the valve back into the two fuel tanks.
  • the valve elements are moved by the actuator member to control the return fuel flow by varying the spacing between each valve element and its associated stop.
  • the fuel equalization system of the present invention is especially useful for diesel engines on trucks in order to equalize the amount of fuel in two or more fuel tanks on such trucks, but is also useful for other motor vehicles including boats and airplanes.
  • the two tanks in the fuel system of the Badger patent are interconnected by a modulating valve also having a flexible diaphragm therein and having an outlet connection to the pressure actuator control valve.
  • the fuel equalizing valve of the present invention differs from that of the above cited patents by fuel pressure sensors not employing flexible diaphragms which are subject to wear, but rather employing spherical ball sensor elements on a valve actuator member to sense the pressure difference at the fuel outlets of the two fuel tanks. This moves the actuator member and two valve elements on such actuator member to control the return flow of unused fuel from the motor though valve into such tanks to equalize the amount of fuel in the tanks.
  • the equalizing valve of the present invention is therefore much simpler, less expensive and more trouble-free in operation than that of the prior fuel equalizing system of such patents.
  • the valve is not provided with spherical sensing balls attached to the actuator member for sensing the pressure difference between the outlets of two fuel tanks and does not control the return flow of unused fuel from the motor to the fuel tanks in the manner of the present invention.
  • Another object of the invention is to provide such a fuel equalizing system and method which employs a simplified equalizer valve including an actuation member having a pair of pressure sensing elements mounted thereon for sensing the fuel pressure at the outlets of two fuel tanks movement of such actuator member to operate valve elements at the opposite ends thereof to equalize the fuel in such fuel tanks.
  • a fourth object of the invention is to provide such a fuel equalizing system and method for supplying fuel to a motor in which the equalizer valve is employed to control the return flow of unused fuel from the motor back to a plurality of fuel tanks through such valve to equalize the fuel content of the fuel tanks.
  • An additional object of the present invention is to provide such a fuel equalizing system and method including an equalizer valve having a valve actuator member connected to a pair of pressure sensing elements in a first common passage to sense the fuel pressure at the outlets of two different fuel tanks, and having a pair of valve elements at the opposite ends of the actuator member in order to control the return flow of excess fuel from the motor to the fuel tanks through a second common passage in such valve by moving the valve elements in the paths of two return outlet conduits.
  • Still another object of the present invention is to provide such a fuel equalizing system in which the valve elements engage adjustable stops provided in the second common passage through which the return fuel flows in order to limit the movement of one valve element by engagement with its associated stop while spacing the other valve element from its associated stop to allow more return flow to flow past it back to the fuel tank.
  • Still a further object of the invention is to provide a method of equalizing the amount of fuel in a plurality of fuel tanks connected to the same motor by controlling the return flow of unused excess fuel from the motor to the fuel tanks through an equalizing valve with pressure sensing elements that sense fuel tank outlet pressure and move a valve actuator member.
  • FIG. 1 is a schematic diagram of the fuel equalizing system of the present invention showing a equalizing valve connected to a motor and to a pair of fuel tanks;
  • FIG. 1A is an enlarged view of the equalizing valve used in the system of FIG. 1;
  • FIG. 2 is a partial enlarged section view of the equalizer valve of FIGS. 1 and 1A connected to the fuel tanks shown in top plan view and with the two fuel pressure sensing inlets of the valve rotated 90 p and shown in the same plane as the other inlets and outlets of such valve for purposes of clarity;
  • FIG. 3 is a partial section view showing another embodiment of the equalizer valve which employs fins on the actuator member to assist in rotational movement of the valve actuator member, and hemispherical valve elements connected thereto;
  • FIG. 4 is a partial section view of a third embodiment of the equalizer valve which is similar to that of FIG. 2, but does not employ sealing gaskets or spherical valve elements but rather employs O-ring seals and hemispherical ends of the actuator rod as valve elements.
  • the fuel equalizing system of the present invention includes an equalizer valve 10 connected between a motor 12 and a pair of fuel tanks 14 and 16.
  • the motor 12 may be the diesel engine of a truck or the internal combustion engine of another motorized vehicle such as a boat or airplane.
  • the fuel tanks 14 and 16 have fuel outlet conduits 18 and 20 respectively, connected to fuel inlets 22 and 24 on the top of the equalizer valve 10.
  • the motor 12 is connected by a fuel inlet conduit 26 to a fuel outlet 28 on the front of the equalizer valve.
  • An unused fuel return outlet conduit 30 is connected from the motor 12 to a fuel return inlet 32 on the back of the valve 10.
  • a pair of fuel return conduits 34 and 36 are connected to the fuel tanks 14 and 16, respectively, from two fuel return outlets 38 and 40 respectively, on the front of the valve 10.
  • the equalizer valve 10 includes a valve actuator member 42 in the form of a cylindrical rod having a pair of spherical pressure sensor elements 44 and 46 mounted in spaced positions on such actuator member in alignment with the fuel inlets 22 and 24, respectively, to sense the fuel pressure in the outlet conduits 18 and 20 of fuel tanks 14 and 16.
  • the fuel pressure is sensed by sensor elements 44 and 46 as fuel flows through inlets 22 and 24 into a first common passage 48 of the valve 10 and out through the fuel outlet 28 which is connected by outlet conduit 26 to the motor 12 as shown in FIG. 1.
  • the pressure sensor elements 44 and 46 are preferably spherical balls made of metal such as aluminum or of a suitable plastic material such as nylon or Delrin acetal resin and may be formed integral with actuator member 42 by molding.
  • the sensor balls may also be formed as separate elements and secured to a metal rod actuator member 42 in any suitable manner, such as by threaded fastening.
  • the opposite ends of the valve actuator member 42 extend through openings in two end walls 50 and 52 of the first common passageway 48.
  • the end walls are gaskets of rubber or other elastomer material forming liquid-tight seals between three sections of the valve housing.
  • the actuator rod ends are connected to valve elements 54 and 56, and extend through small diameter openings in gaskets 50 and 52 which form sliding seals with such rod.
  • the valve housing of the equalizing valve 10 is preferably made of any suitable metal such as aluminum, including a center section 58 and two end sections 60 and 62, which are each joined to such center section in any suitable manner, such as by four screws 64, as shown in FIGS. 1A and 2.
  • the opposite end sections 60 and 62 are separated from the center section 58 by the gaskets 50 and 52, which form the end walls of the first common passage 48 in such center section.
  • a second common passage 64 is formed in the center section 58 and in the end sections 60 and 62 to interconnect the fuel return inlet 32 with the fuel return outlets 38 and 40 through large diameter openings in gaskets 50 and 52.
  • the fuel return outlets 38 and 40 are connected by conduits 34 and 36, respectively, to the fuel tanks 12 and 16.
  • the fuel tanks 14 and 16 are shown from a top plane view, so that both the fuel outlet conduits 18 and 20 and the fuel return inlets 34 and 36 enter the same fitting on the top of the tank in accordance with FIG. 1. Also the fuel inlets 22 and 24 of the valve are shown rotated 90 degrees in FIG. 2 from their position in FIG. 1A for clarity.
  • valve elements 54, and 56 attached to the opposite end of actuator member 42 extend into branches 66 and 68 respectively of the second common passageway 64. They are partially aligned with the return outlets 38 and 40 when they are in a fully extended position such as valve element 56 is shown in FIG. 2. In this extended position, the valve element 56 engages a first adjustable stop 72 which is threaded through the wall of end section 62 of the housing. A second adjustable stop 74 is threaded through the wall of the housing end section 60 in position to engage the other valve lement 52 when the actuator rod 42 is moved to the left extended position away from the position shown in FIG. 2.
  • the pressure sensor elements 44 and 46 attached to the actuator rod 42 sense the fuel pressure in the fuel inlets 22 and 24 and cause the actuator rod to move either left or right longitudinally in the first common passage 48 depending upon which pressure is higher. This causes the valve elements 54 and 56 to be extended further into the second common passageway 64 in order to control the flow of return fuel from the return inlet 32 through the return fuel outlets 38 and 40 thereby equalizing the amount of fuel in the fuel tanks 14 and 16. It should be noted that while the valve elements 54 and 56 are shown to be small spherical balls in the embodiment of FIG. 2, they may be of a different configuration as hereafter discussed with respect to FIGS. 3 and 4.
  • FIG. 3 another embodiment of the equalizer valve 101 of the present invention is similar to that previously described with respect to FIG. 2 except that the sensor elements 44' and 46' and the actuator member 42' are attached to two spaced sets of fins 76 and 78.
  • Four fins 76 are provided on the actuator rod and joined to the second sensor ball 44, and four other fins 78 are provided on the actuator rod and joined to the second sensor ball 46'.
  • the fins, sensor balls and actuator rod may all be molded as one integral plastic member out of nylon or Delrin acetal resin. These fins cause the actuator shaft and the sensor balls to rotate for better fuel flow, and for improved longitudinal sliding operation of the valve actuator member.
  • valve elements 54' and 56' of hemispherical shape may be used rather than being the spherical balls of FIG. 2.
  • the valve elements may be provided as hemispherical end portions of the actuator rod 42 which are joined to the sensor balls 44' and 46' by intermediate shaft portions of the same diameter as such hemispheres where they extend through small holes in the end wall gaskets 50 and 52.
  • FIG. 4 shows a third embodiment of equalizer valve 10" of the invention which is similar to that of FIG. 2 except for the use of two O-rings 80 and 82 of elastomer material for each of the sealing gaskets 50 and 52 and the use of modified valve elements 54" and 56" which are of a hemispherical shape, rather than spherical.
  • the valve actuator rod 42" and the valve elements 54" and 56" at the opposite ends thereof are of larger diameter than rod 42 shown in FIG. 2.
  • the annular valve elements 54" and 56" extend through annular passages 84 and 86 in the housing end sections 60 and 62, respectively, which are of only slightly greater diameter than such valve elements for minimum fuel leakage.

Abstract

A fuel equalizing method and system for equalizing the amount of fuel in a plurality of fuel tanks connected to a motor, such as the diesel engine of a truck, is described. The system includes an equalization valve having a first common passage with two fuel inlets connected to two fuel tanks and a fuel outlet connected to the motor. A valve actuator member is mounted in the first common passage for longitudinal sliding movement in response to unequal fuel pressure in the two fuel inlets sensed by two fuel pressure sensing elements, which may be spherical balls, connected to the actuator member. A second common passage is provided in the equalization valve with a return fuel inlet connected to the excess fuel outlet of the motor, and two return fuel outlets connected to the two fuel tanks. A pair of valve elements connected to the opposition ends of the actuator member are positioned in the second common passage to control the flow of return fuel through the return fuel outlets and thereby equalize the amount of fuel in the fuel tanks.

Description

BACKGROUND OF THE INVENTION
The present invention relates generally to fuel equalizing systems and methods for equalizing the fuel in a plurality of fuel tanks mounted on motor vehicles such as trucks in order to maintain substantially the same amount of fuel in each tank. The fuel equalizing system and method of the present invention employs an equalization valve which senses the pressure in the fuel outlet of each fuel tank and controls the return flow of unused fuel from the motor to such tanks in order to equalize the amount of fuel in the tanks. The equalization valve includes a valve actuator member having at least two pressure sensing elements on such actuator member which sense the pressure at the outlets of two fuel tanks and cause the actuator member to move longitudinally to operate the valve in accordance with the tank pressure. A pair of valve elements are provided at the opposite ends of the actuator member to control the flow of unused return fuel flowing from the motor through two return fuel outlets of the valve back into the two fuel tanks. The valve elements are moved by the actuator member to control the return fuel flow by varying the spacing between each valve element and its associated stop.
The fuel equalization system of the present invention is especially useful for diesel engines on trucks in order to equalize the amount of fuel in two or more fuel tanks on such trucks, but is also useful for other motor vehicles including boats and airplanes.
It has previously been proposed in U.S. Pat. No. 2,860,651 of Davies, issued Nov. 18, 1958 and U.S. Pat. No. 2,860,652 of Badger, issued Nov. 18, 1958, to provide an apparatus for controlling the emptying of two fuel tanks on an airplane including a control valve having two pressure sensing chambers which sense the pressure within the two fuel tanks to operate a valve actuator which has its opposite ends connected to flexible diaphragms in such chambers. Each of the two separate sensing chambers is divided by a diaphragm into two separate sealed chambers, one of which is connected to the tank air pressure above the fuel in the tank and the other of which is connected to the fuel pressure within the tank. The two tanks in the fuel system of the Badger patent are interconnected by a modulating valve also having a flexible diaphragm therein and having an outlet connection to the pressure actuator control valve. The fuel equalizing valve of the present invention differs from that of the above cited patents by fuel pressure sensors not employing flexible diaphragms which are subject to wear, but rather employing spherical ball sensor elements on a valve actuator member to sense the pressure difference at the fuel outlets of the two fuel tanks. This moves the actuator member and two valve elements on such actuator member to control the return flow of unused fuel from the motor though valve into such tanks to equalize the amount of fuel in the tanks. The equalizing valve of the present invention is therefore much simpler, less expensive and more trouble-free in operation than that of the prior fuel equalizing system of such patents.
U.S. Pat. No. 4,722,358 of Christensen, dated Feb. 2, 1988, shows a pressure equalizing spool valve including a pair of sliding cylindrical valve elements at the opposite ends of a connecting rod which move in accordance with the pressure difference between a pair of pressure sensing ports in the opposite ends of the valve casing in communication with the bore passage of such sliding valves. Unlike the present invention, the valve is not provided with spherical sensing balls attached to the actuator member for sensing the pressure difference between the outlets of two fuel tanks and does not control the return flow of unused fuel from the motor to the fuel tanks in the manner of the present invention. U.S. Pat. No. 2,483,312 of Clay issued Sep. 27, 1949 shows a hydraulic pressure spool valve including a sliding valve actuator and a pair of pistons, the opposite ends of which engage two loose spherical valve elements. In their closed position the spherical valve elements engage valve seats to close the valve passages, but are urged against adjustable stops at the opposite ends of the valve in the open position of such valve elements. However, unlike the equalizer valve of the present invention, there are no spherical sensing elements attached to a valve actuator member for moving such actuator member and valve elements at the opposite ends thereof to change the spacing between such valve elements and adjustable stops in order to control the return flow of unused fuel from the motor to the fuel tanks in the manner of the present invention.
SUMMARY OF THE INVENTION
It is therefore one object of the present invention to provide an improved fuel equalizing system and method for equalizing fuel in a plurality of fuel tanks in a simple, inexpensive and trouble-free manner.
Another object of the invention is to provide such a fuel equalizing system and method which employs a simplified equalizer valve including an actuation member having a pair of pressure sensing elements mounted thereon for sensing the fuel pressure at the outlets of two fuel tanks movement of such actuator member to operate valve elements at the opposite ends thereof to equalize the fuel in such fuel tanks.
A fourth object of the invention is to provide such a fuel equalizing system and method for supplying fuel to a motor in which the equalizer valve is employed to control the return flow of unused fuel from the motor back to a plurality of fuel tanks through such valve to equalize the fuel content of the fuel tanks.
An additional object of the present invention is to provide such a fuel equalizing system and method including an equalizer valve having a valve actuator member connected to a pair of pressure sensing elements in a first common passage to sense the fuel pressure at the outlets of two different fuel tanks, and having a pair of valve elements at the opposite ends of the actuator member in order to control the return flow of excess fuel from the motor to the fuel tanks through a second common passage in such valve by moving the valve elements in the paths of two return outlet conduits.
Still another object of the present invention is to provide such a fuel equalizing system in which the valve elements engage adjustable stops provided in the second common passage through which the return fuel flows in order to limit the movement of one valve element by engagement with its associated stop while spacing the other valve element from its associated stop to allow more return flow to flow past it back to the fuel tank.
Still a further object of the invention is to provide a method of equalizing the amount of fuel in a plurality of fuel tanks connected to the same motor by controlling the return flow of unused excess fuel from the motor to the fuel tanks through an equalizing valve with pressure sensing elements that sense fuel tank outlet pressure and move a valve actuator member.
BRIEF DESCRIPTION OF THE DRAWINGS
Other objects and advantages of the present invention will be apparent from the following detailed description of preferred embodiments thereof and from the attached drawings of which:
FIG. 1 is a schematic diagram of the fuel equalizing system of the present invention showing a equalizing valve connected to a motor and to a pair of fuel tanks;
FIG. 1A is an enlarged view of the equalizing valve used in the system of FIG. 1;
FIG. 2 is a partial enlarged section view of the equalizer valve of FIGS. 1 and 1A connected to the fuel tanks shown in top plan view and with the two fuel pressure sensing inlets of the valve rotated 90 p and shown in the same plane as the other inlets and outlets of such valve for purposes of clarity;
FIG. 3 is a partial section view showing another embodiment of the equalizer valve which employs fins on the actuator member to assist in rotational movement of the valve actuator member, and hemispherical valve elements connected thereto;
FIG. 4 is a partial section view of a third embodiment of the equalizer valve which is similar to that of FIG. 2, but does not employ sealing gaskets or spherical valve elements but rather employs O-ring seals and hemispherical ends of the actuator rod as valve elements.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description of a preferred embodiment which proceeds with reference to the accompanying drawings.
DETAILED DESCRIPTION OF EMBODIMENTS
As shown in FIGS. 1 and 1A, the fuel equalizing system of the present invention includes an equalizer valve 10 connected between a motor 12 and a pair of fuel tanks 14 and 16. The motor 12 may be the diesel engine of a truck or the internal combustion engine of another motorized vehicle such as a boat or airplane. The fuel tanks 14 and 16 have fuel outlet conduits 18 and 20 respectively, connected to fuel inlets 22 and 24 on the top of the equalizer valve 10. The motor 12 is connected by a fuel inlet conduit 26 to a fuel outlet 28 on the front of the equalizer valve. An unused fuel return outlet conduit 30 is connected from the motor 12 to a fuel return inlet 32 on the back of the valve 10. A pair of fuel return conduits 34 and 36 are connected to the fuel tanks 14 and 16, respectively, from two fuel return outlets 38 and 40 respectively, on the front of the valve 10.
As shown in FIG. 2, the equalizer valve 10 includes a valve actuator member 42 in the form of a cylindrical rod having a pair of spherical pressure sensor elements 44 and 46 mounted in spaced positions on such actuator member in alignment with the fuel inlets 22 and 24, respectively, to sense the fuel pressure in the outlet conduits 18 and 20 of fuel tanks 14 and 16. Thus the fuel pressure is sensed by sensor elements 44 and 46 as fuel flows through inlets 22 and 24 into a first common passage 48 of the valve 10 and out through the fuel outlet 28 which is connected by outlet conduit 26 to the motor 12 as shown in FIG. 1. The pressure sensor elements 44 and 46 are preferably spherical balls made of metal such as aluminum or of a suitable plastic material such as nylon or Delrin acetal resin and may be formed integral with actuator member 42 by molding. However, the sensor balls may also be formed as separate elements and secured to a metal rod actuator member 42 in any suitable manner, such as by threaded fastening. The opposite ends of the valve actuator member 42 extend through openings in two end walls 50 and 52 of the first common passageway 48. The end walls are gaskets of rubber or other elastomer material forming liquid-tight seals between three sections of the valve housing. The actuator rod ends are connected to valve elements 54 and 56, and extend through small diameter openings in gaskets 50 and 52 which form sliding seals with such rod.
The valve housing of the equalizing valve 10 is preferably made of any suitable metal such as aluminum, including a center section 58 and two end sections 60 and 62, which are each joined to such center section in any suitable manner, such as by four screws 64, as shown in FIGS. 1A and 2. The opposite end sections 60 and 62 are separated from the center section 58 by the gaskets 50 and 52, which form the end walls of the first common passage 48 in such center section. A second common passage 64 is formed in the center section 58 and in the end sections 60 and 62 to interconnect the fuel return inlet 32 with the fuel return outlets 38 and 40 through large diameter openings in gaskets 50 and 52. The fuel return outlets 38 and 40 are connected by conduits 34 and 36, respectively, to the fuel tanks 12 and 16. It should be noted that in FIG. 2, the fuel tanks 14 and 16 are shown from a top plane view, so that both the fuel outlet conduits 18 and 20 and the fuel return inlets 34 and 36 enter the same fitting on the top of the tank in accordance with FIG. 1. Also the fuel inlets 22 and 24 of the valve are shown rotated 90 degrees in FIG. 2 from their position in FIG. 1A for clarity.
The valve elements 54, and 56 attached to the opposite end of actuator member 42 extend into branches 66 and 68 respectively of the second common passageway 64. They are partially aligned with the return outlets 38 and 40 when they are in a fully extended position such as valve element 56 is shown in FIG. 2. In this extended position, the valve element 56 engages a first adjustable stop 72 which is threaded through the wall of end section 62 of the housing. A second adjustable stop 74 is threaded through the wall of the housing end section 60 in position to engage the other valve lement 52 when the actuator rod 42 is moved to the left extended position away from the position shown in FIG. 2.
The pressure sensor elements 44 and 46 attached to the actuator rod 42 sense the fuel pressure in the fuel inlets 22 and 24 and cause the actuator rod to move either left or right longitudinally in the first common passage 48 depending upon which pressure is higher. This causes the valve elements 54 and 56 to be extended further into the second common passageway 64 in order to control the flow of return fuel from the return inlet 32 through the return fuel outlets 38 and 40 thereby equalizing the amount of fuel in the fuel tanks 14 and 16. It should be noted that while the valve elements 54 and 56 are shown to be small spherical balls in the embodiment of FIG. 2, they may be of a different configuration as hereafter discussed with respect to FIGS. 3 and 4.
As shown in FIG. 3, another embodiment of the equalizer valve 101 of the present invention is similar to that previously described with respect to FIG. 2 except that the sensor elements 44' and 46' and the actuator member 42' are attached to two spaced sets of fins 76 and 78. Four fins 76 are provided on the actuator rod and joined to the second sensor ball 44, and four other fins 78 are provided on the actuator rod and joined to the second sensor ball 46'. The fins, sensor balls and actuator rod may all be molded as one integral plastic member out of nylon or Delrin acetal resin. These fins cause the actuator shaft and the sensor balls to rotate for better fuel flow, and for improved longitudinal sliding operation of the valve actuator member. In addition, modified valve elements 54' and 56' of hemispherical shape may be used rather than being the spherical balls of FIG. 2. Thus, the valve elements may be provided as hemispherical end portions of the actuator rod 42 which are joined to the sensor balls 44' and 46' by intermediate shaft portions of the same diameter as such hemispheres where they extend through small holes in the end wall gaskets 50 and 52.
FIG. 4 shows a third embodiment of equalizer valve 10" of the invention which is similar to that of FIG. 2 except for the use of two O- rings 80 and 82 of elastomer material for each of the sealing gaskets 50 and 52 and the use of modified valve elements 54" and 56" which are of a hemispherical shape, rather than spherical. Also, the valve actuator rod 42" and the valve elements 54" and 56" at the opposite ends thereof are of larger diameter than rod 42 shown in FIG. 2. In addition, the annular valve elements 54" and 56" extend through annular passages 84 and 86 in the housing end sections 60 and 62, respectively, which are of only slightly greater diameter than such valve elements for minimum fuel leakage. Of course, other changes could be made in the actuator rods of FIG. 4 such as by providing the pressure sensing balls 44' and 46' with cylindrical center sections 88 and 90 and by providing the stops 72' and 74' as fixed elements with hemispherical ends that engage valve elements 56" and 54", respectively.
It will be apparent to those having ordinary skill in the art that many changes may be made in the above-described details of the preferred embodiments of the present invention while still providing the advantages of the invention. Therefore the scope of the present invention should be determined by the following claims.

Claims (20)

I claim:
1. Fuel system for equalizing fuel in several fuel tanks of a motor vehicle, comprising:
a plurality of fuel tanks including a first tank and a second tank;
an equalizer valve including a first fuel inlet connected to an outlet of the first tank, a second fuel inlet connected to an outlet of the second tank and a fuel outlet adapted to supply fuel to a motor, and a first common passage connecting said first and second fuel inlets to said fuel outlet;
a valve actuator ,member mounted in said first common passage for longitudinal movement;
a pair of spaced sensor elements attached to said actuator member and positioned in said first common passage to sense fuel pressure in different ones of the first and second fuel inlets and to move the actuator member longitudinally in opposite directions depending upon which of said fuel inlets has the greater fuel pressure;
said valve also including a fuel return inlet adapted to receive excess fuel returning from the motor, first and second return outlets connected, respectively, to the first fuel tank and to the second fuel tank, and a second common passage connecting said first and second return outlets to the fuel return inlet; and
a pair of return valve elements mounted on said actuator member for movement therewith in said second common passage between open and restricted positions in alignment with a different one of said first and second return outlets to vary the fuel flow therein so that more return fuel flows to the fuel tank containing less fuel to increase its outlet fuel pressure as detected by the associated sensor element and thereby equalize the fuel content of said first and second tanks.
2. A fuel system in accordance with claim 1 in which first and second stops are provided in the first and second return outlets respectively, to limit the movement of the valve closure elements in their closed positions.
3. A fuel system in accordance with claim 2 in which the stops are adjustable.
4. A fuel system in accordance with claim 1 in which the sensor elements are spherical.
5. A fuel system in accordance with claim 1 in which the valve actuator member is a spool valve member which is moved longitudinally by the sensor elements.
6. A fuel system in accordance with claim 1 in which the return valve elements are spherical.
7. A fuel system in accordance with claim 6 in which the valve elements are attached to the opposite ends of the actuator member, said opposite ends extending through the end walls of the first common passage into the second common passage.
8. A fuel system in accordance with claim 1 in which the return valve elements are at the opposite ends of the actuator member which extend through the end walls of the first common passage into the second common passage.
9. A fuel system in accordance with claim 4 in which the actuator member has vanes which cause the actuator member to rotate as fuel flows past said vanes.
10. A fuel system in accordance with claim 1 in which the sensor elements are made of a plastic material.
11. Fuel system for equalizing fuel in several fuel tanks of a truck, comprising:
an equalizer valve including a first fuel inlet adapted to be connected to the outlet of a first fuel tank, a second fuel inlet adapted to be connected to the outlet of a second fuel tank, a fuel supply outlet adapted to supply fuel to the motor of a truck, and a first common passage connecting said first and second fuel inlets to said fuel supply outlet;
a valve actuator member mounted in said first common passage for movement therein;
a pair of spaced sensor elements attached to said actuator member and positioned in said first common passage to sense fuel pressure in different ones of said first and second fuel inlets and to move the actuator member in opposite directions depending upon which of said fuel inlets has the greater fuel pressure;
said valve including a fuel return inlet adapted to be connected to the excess fuel return of the motor, first and second return outlets connected, respectively, to the first and second fuel tanks, and a second common passage connecting said first and second return outlets to the fuel return inlet; and
a pair of valve elements mounted on said actuator member for movement therewith in said second common passage between open and restricted positions in communication with a different one of said first and second return outlets to vary the fuel flow therein so that more return fuel flows to the fuel tank containing less fuel to increase its fuel pressure as detected by the associated sensor element and thereby equalize the fuel content of said first and second tanks.
12. A fuel system in accordance with claim 11 in which the truck has a diesel engine as its motor and the equalizer valve is connected to diesel fuel tanks.
13. A fuel system in accordance with claim 11 in which first and second adjustable stops are provided in the first and second return outlets respectively, to limit the movement of the valve elements in their restricted positions.
14. A fuel system in accordance with claim 11 in which the sensor elements are spherical.
15. A fuel system in accordance with claim 11 in which the actuator member is a rod which is moved longitudinally by the sensor elements.
16. A method of equalizing the amount of fuel in a plurality of fuel tanks connected to the same motor, comprising the steps of:
withdrawing fuel from at least two fuel tanks simultaneously through two outlet conduits and supplying such fuel to the motor through an inlet supply conduit;
returning unused excess fuel from the motor through an outlet return conduit to the two fuel tanks through two inlet return conduits;
sensing the fuel pressure in the two outlet conduits to determine which is greater;
controlling the flow of the excess fuel returning to said two fuel tanks with an equalizer valve in response to the sensed fuel pressure in the two outlet conduits; and
adjusting the positions of two return valve elements in said valve in response to the sensed fuel pressure, each valve element controlling the fuel flow in a different one of the two inlet return conduits to reduce the amount of excess fuel returned to the fuel tank which contains more fuel and has a corresponding higher fuel pressure in its outlet conduit.
17. A method in accordance with claim 16 in which the equalizer valve has a first common passage connecting the two outlet conduits to the inlet conduit, two sensor elements in said first common passage each in position to sense the fuel pressure in different one of said two outlet conduits, and a valve actuator member connected between said two sensor elements.
18. A method in accordance with claim 17 in which the equalizer valve has a second common passage connecting the two inlet return conduits to the outlet return conduit, and the two valve elements are in said second common passage, said valve elements being connected to the valve actuator member for movement in response to movement of the two sensor elements in the first common passage.
19. A method in accordance with claim 18 in which the valve has a pair of adjustable stops mounted in said second common passage which are adjusted to limit the movement of said valve elements in their restricted flow positions.
20. A method in accordance with claim 17 in which the two sensor elements are spherical.
US08/910,130 1997-08-13 1997-08-13 Fuel equalizing system for plurality of fuel tanks Expired - Fee Related US5960809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/910,130 US5960809A (en) 1997-08-13 1997-08-13 Fuel equalizing system for plurality of fuel tanks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/910,130 US5960809A (en) 1997-08-13 1997-08-13 Fuel equalizing system for plurality of fuel tanks

Publications (1)

Publication Number Publication Date
US5960809A true US5960809A (en) 1999-10-05

Family

ID=25428348

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/910,130 Expired - Fee Related US5960809A (en) 1997-08-13 1997-08-13 Fuel equalizing system for plurality of fuel tanks

Country Status (1)

Country Link
US (1) US5960809A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371151B1 (en) 2001-01-18 2002-04-16 Saylor Industries Fuel tank control for tractor trailors
US6382225B1 (en) 1999-09-21 2002-05-07 Federal-Mogul World Wide, Inc. Fuel transfer pump and control
US6394217B2 (en) * 1999-05-21 2002-05-28 International Truck Intellectual Property Company, L.L.C. Dual draw and return fuel manifold with integral mounting bracket for a vehicle
US20030056824A1 (en) * 2000-10-03 2003-03-27 Harvey Richard W. Fuel transfer pump and control
US6799562B2 (en) 2002-08-05 2004-10-05 International Truck Intellectual Property Company, Llc System and method for balancing fuel levels in multiple fuel tank vehicles
US20050087246A1 (en) * 2003-10-22 2005-04-28 Zeiner Robert W. Fuel valve assembly
EP1541858A1 (en) * 2002-08-13 2005-06-15 Isuzu Motors Limited Fuel return device of internal combustion engine
US20060065249A1 (en) * 2004-09-28 2006-03-30 Patrick Powell Fuel pump cutoff shuttle valve
US20060086342A1 (en) * 2004-10-27 2006-04-27 Studebaker Curt J Electronically controlled selective valve system for fuel level balancing and isolation of dual tank systems for motor vehicles
US7055543B2 (en) 2004-10-27 2006-06-06 International Truck Intellectual Property Company, Llc Solenoid actuated control for fuel distribution in a dual fuel tank vehicle
US20060185734A1 (en) * 2005-02-22 2006-08-24 Harald Hagen Multiway valve arrangement
US20060243346A1 (en) * 2005-05-02 2006-11-02 Imi Norgren, Inc. System and method for fuel balancing
US20070113901A1 (en) * 2005-11-24 2007-05-24 Joo Woong Youn Cooling apparatus
US20090107460A1 (en) * 2007-10-31 2009-04-30 Brp Us Inc. Fuel-injected engine and method of assembly thereof
US20090114193A1 (en) * 2007-11-05 2009-05-07 Michael Peter Cooke Fuel injection metering valves
CN101126362B (en) * 2003-05-20 2010-06-23 安德烈亚斯·斯蒂尔两合公司 Hand-held processing equipment
US20110114636A1 (en) * 2009-11-16 2011-05-19 Glenn Erckert Two-sided automobile fuel filling system
US20110209689A1 (en) * 2010-02-26 2011-09-01 International Truck Intellectual Property Company, Llc Motor vehicle fuel system having multiple fuel tanks
US20150204191A1 (en) * 2014-01-21 2015-07-23 Joy Mm Delaware, Inc. Fluid tank balancing system for mining machine
US9371774B2 (en) 2011-09-13 2016-06-21 Michael Lescure Fully automated emergency generator fuel oil system and method for operation thereof
WO2017027011A1 (en) * 2015-08-11 2017-02-16 Volvo Truck Corporation Vehicle comprising a pressurized liquid fuel system and method for operating a pressurized liquid fuel system
WO2018072839A1 (en) * 2016-10-21 2018-04-26 Volvo Truck Corporation A gas tank arrangement
US11111933B2 (en) * 2019-04-17 2021-09-07 Safran Aero Boosters S.A. Passive fluidic valve for fixed flow rate distribution
US20230020034A1 (en) * 2021-07-16 2023-01-19 Yamaha Hatsudoki Kabushiki Kaisha Fuel management system capable of freely performing transfer of fuel among a plurality of fuel tanks

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US658915A (en) * 1900-04-12 1900-10-02 Johannes Jacobsen Valve apparatus for hydraulic presses.
US925673A (en) * 1907-12-17 1909-06-22 Ingersoll Rand Co Electrically-controlled valve-operating mechanism.
US1123273A (en) * 1913-02-08 1915-01-05 Thorolf Gregersen Distributing-valve for hydraulic governors and the like.
US1780857A (en) * 1928-10-22 1930-11-04 Barclay John Galileo Engine drain or compression relief valve
US2255787A (en) * 1941-03-06 1941-09-16 Manly Corp Fluid pressure device and system
US2483312A (en) * 1944-08-02 1949-09-27 Bendix Aviat Corp Valve
US2584127A (en) * 1946-12-05 1952-02-05 Sperry Corp Servo system
US2584890A (en) * 1946-06-07 1952-02-05 John T Leonard Lubricant measuring valve
US2860651A (en) * 1955-01-24 1958-11-18 Parker Hannifin Corp Apparatus for controlling the emptying of tanks
US2860652A (en) * 1955-01-24 1958-11-18 Parker Hannifin Corp Apparatus for emptying tanks
US2860653A (en) * 1955-01-24 1958-11-18 Parker Appliance Co Apparatus for controlling the emptying of tanks
US3067775A (en) * 1958-04-10 1962-12-11 Citroen Sa Andre Hydraulic distributor
US3198212A (en) * 1963-05-22 1965-08-03 Caterpillar Tractor Co Metering slot configuration for hydraulic control valves
US3216441A (en) * 1961-04-04 1965-11-09 Honeywell Inc Pressure regulator control system
US3346012A (en) * 1963-10-11 1967-10-10 Commercial Shearing Fluid control valves with float position
US3528454A (en) * 1968-11-29 1970-09-15 Gen Electric Stabilized hydro-mechanical pressure control valve
US3581771A (en) * 1969-10-22 1971-06-01 Garrison Mfg Co Inc Power steering valve
US3724483A (en) * 1972-01-03 1973-04-03 Webster Electric Co Inc Spool release and sequence valve
US3890651A (en) * 1974-03-11 1975-06-24 Robert Arnold Wood Pressure tank water closet system
US4513653A (en) * 1982-05-17 1985-04-30 Kurt Varlemann Automatic hydraulic reversing valve for a double-action working cylinder
US4570672A (en) * 1983-06-13 1986-02-18 Koehring Company Hydraulic control valve with independently operable bypass valve
US4722358A (en) * 1986-03-12 1988-02-02 Wormald U.S., Inc. Pressure equalizing valve
US4923092A (en) * 1988-07-20 1990-05-08 The Coca-Cola Company Binary syrup metering system for beverage dispensing
US5020566A (en) * 1990-08-13 1991-06-04 Sullair Corporation Fuel supply system for portable engine driven equipment
US5183071A (en) * 1990-12-18 1993-02-02 Teijin Seiki Co., Ltd. Counterbalance valve
US5481871A (en) * 1995-03-02 1996-01-09 Teleflex (Canada) Ltd. Hydraulic steering system with spool pressure equalization
US5551664A (en) * 1993-09-16 1996-09-03 Burkert Werke Gmbh & Co. Pilot controlled valve for motor vehicle tank systems

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US658915A (en) * 1900-04-12 1900-10-02 Johannes Jacobsen Valve apparatus for hydraulic presses.
US925673A (en) * 1907-12-17 1909-06-22 Ingersoll Rand Co Electrically-controlled valve-operating mechanism.
US1123273A (en) * 1913-02-08 1915-01-05 Thorolf Gregersen Distributing-valve for hydraulic governors and the like.
US1780857A (en) * 1928-10-22 1930-11-04 Barclay John Galileo Engine drain or compression relief valve
US2255787A (en) * 1941-03-06 1941-09-16 Manly Corp Fluid pressure device and system
US2483312A (en) * 1944-08-02 1949-09-27 Bendix Aviat Corp Valve
US2584890A (en) * 1946-06-07 1952-02-05 John T Leonard Lubricant measuring valve
US2584127A (en) * 1946-12-05 1952-02-05 Sperry Corp Servo system
US2860651A (en) * 1955-01-24 1958-11-18 Parker Hannifin Corp Apparatus for controlling the emptying of tanks
US2860652A (en) * 1955-01-24 1958-11-18 Parker Hannifin Corp Apparatus for emptying tanks
US2860653A (en) * 1955-01-24 1958-11-18 Parker Appliance Co Apparatus for controlling the emptying of tanks
US3067775A (en) * 1958-04-10 1962-12-11 Citroen Sa Andre Hydraulic distributor
US3216441A (en) * 1961-04-04 1965-11-09 Honeywell Inc Pressure regulator control system
US3198212A (en) * 1963-05-22 1965-08-03 Caterpillar Tractor Co Metering slot configuration for hydraulic control valves
US3346012A (en) * 1963-10-11 1967-10-10 Commercial Shearing Fluid control valves with float position
US3528454A (en) * 1968-11-29 1970-09-15 Gen Electric Stabilized hydro-mechanical pressure control valve
US3581771A (en) * 1969-10-22 1971-06-01 Garrison Mfg Co Inc Power steering valve
US3724483A (en) * 1972-01-03 1973-04-03 Webster Electric Co Inc Spool release and sequence valve
US3890651A (en) * 1974-03-11 1975-06-24 Robert Arnold Wood Pressure tank water closet system
US4513653A (en) * 1982-05-17 1985-04-30 Kurt Varlemann Automatic hydraulic reversing valve for a double-action working cylinder
US4570672A (en) * 1983-06-13 1986-02-18 Koehring Company Hydraulic control valve with independently operable bypass valve
US4722358A (en) * 1986-03-12 1988-02-02 Wormald U.S., Inc. Pressure equalizing valve
US4923092A (en) * 1988-07-20 1990-05-08 The Coca-Cola Company Binary syrup metering system for beverage dispensing
US5020566A (en) * 1990-08-13 1991-06-04 Sullair Corporation Fuel supply system for portable engine driven equipment
US5183071A (en) * 1990-12-18 1993-02-02 Teijin Seiki Co., Ltd. Counterbalance valve
US5551664A (en) * 1993-09-16 1996-09-03 Burkert Werke Gmbh & Co. Pilot controlled valve for motor vehicle tank systems
US5481871A (en) * 1995-03-02 1996-01-09 Teleflex (Canada) Ltd. Hydraulic steering system with spool pressure equalization

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6394217B2 (en) * 1999-05-21 2002-05-28 International Truck Intellectual Property Company, L.L.C. Dual draw and return fuel manifold with integral mounting bracket for a vehicle
US6382225B1 (en) 1999-09-21 2002-05-07 Federal-Mogul World Wide, Inc. Fuel transfer pump and control
US20030056824A1 (en) * 2000-10-03 2003-03-27 Harvey Richard W. Fuel transfer pump and control
US6792966B2 (en) 2000-10-03 2004-09-21 Federal-Mogul World Wide, Inc. Fuel transfer pump and control
US6371151B1 (en) 2001-01-18 2002-04-16 Saylor Industries Fuel tank control for tractor trailors
US6799562B2 (en) 2002-08-05 2004-10-05 International Truck Intellectual Property Company, Llc System and method for balancing fuel levels in multiple fuel tank vehicles
EP1541858A4 (en) * 2002-08-13 2005-10-19 Isuzu Motors Ltd Fuel return device of internal combustion engine
EP1541858A1 (en) * 2002-08-13 2005-06-15 Isuzu Motors Limited Fuel return device of internal combustion engine
US20050224057A1 (en) * 2002-08-13 2005-10-13 Isuzu Motors Limited Fuel return device for internal combustion engine
US7246606B2 (en) 2002-08-13 2007-07-24 Isuzu Motors Limited Fuel return device for internal combustion engine
CN101126362B (en) * 2003-05-20 2010-06-23 安德烈亚斯·斯蒂尔两合公司 Hand-held processing equipment
US7533697B2 (en) 2003-10-22 2009-05-19 Parker-Hannifin Corporation Fuel valve assembly
US20050087246A1 (en) * 2003-10-22 2005-04-28 Zeiner Robert W. Fuel valve assembly
US20060065249A1 (en) * 2004-09-28 2006-03-30 Patrick Powell Fuel pump cutoff shuttle valve
US7121266B2 (en) * 2004-09-28 2006-10-17 Denso International America, Inc. Fuel pump cutoff shuttle valve
US7055543B2 (en) 2004-10-27 2006-06-06 International Truck Intellectual Property Company, Llc Solenoid actuated control for fuel distribution in a dual fuel tank vehicle
US7168415B2 (en) 2004-10-27 2007-01-30 International Truck Intellectual Property Company, Llc Electronically controlled selective valve system for fuel level balancing and isolation of dual tank systems for motor vehicles
US20060086342A1 (en) * 2004-10-27 2006-04-27 Studebaker Curt J Electronically controlled selective valve system for fuel level balancing and isolation of dual tank systems for motor vehicles
US7367352B2 (en) * 2005-02-22 2008-05-06 Voss Automotive Gmbh Multiway valve arrangement
US20060185734A1 (en) * 2005-02-22 2006-08-24 Harald Hagen Multiway valve arrangement
WO2006118868A1 (en) * 2005-05-02 2006-11-09 Norgren, Inc. A system and method for fuel balancing
US20060243346A1 (en) * 2005-05-02 2006-11-02 Imi Norgren, Inc. System and method for fuel balancing
US20070113901A1 (en) * 2005-11-24 2007-05-24 Joo Woong Youn Cooling apparatus
US20090107460A1 (en) * 2007-10-31 2009-04-30 Brp Us Inc. Fuel-injected engine and method of assembly thereof
US8327827B2 (en) * 2007-10-31 2012-12-11 Brp Us Inc. Fuel-injected engine and method of assembly thereof
US20090114193A1 (en) * 2007-11-05 2009-05-07 Michael Peter Cooke Fuel injection metering valves
US7757662B2 (en) * 2007-11-05 2010-07-20 Delphi Technologies, Inc. Fuel injection metering valves
US20110114636A1 (en) * 2009-11-16 2011-05-19 Glenn Erckert Two-sided automobile fuel filling system
US20110209689A1 (en) * 2010-02-26 2011-09-01 International Truck Intellectual Property Company, Llc Motor vehicle fuel system having multiple fuel tanks
US8333177B2 (en) 2010-02-26 2012-12-18 International Truck Intellectual Property Company, Llc Motor vehicle fuel system having multiple fuel tanks
US9371774B2 (en) 2011-09-13 2016-06-21 Michael Lescure Fully automated emergency generator fuel oil system and method for operation thereof
US20150204191A1 (en) * 2014-01-21 2015-07-23 Joy Mm Delaware, Inc. Fluid tank balancing system for mining machine
US9416658B2 (en) * 2014-01-21 2016-08-16 Joy Mm Delaware, Inc. Fluid tank balancing system for mining machine
RU2670624C9 (en) * 2014-01-21 2018-11-23 ДЖОЙ ЭмЭм ДЕЛАВЭР, ИНК. Fluid tank balancing system for mining machine
RU2670624C2 (en) * 2014-01-21 2018-10-24 ДЖОЙ ЭмЭм ДЕЛАВЭР, ИНК. Fluid tank balancing system for mining machine
US20180202395A1 (en) * 2015-08-11 2018-07-19 Volvo Truck Corporation Vehicle comprising a pressurized liquid fuel system and method for operating a pressurized liquid fuel system
CN107923350A (en) * 2015-08-11 2018-04-17 沃尔沃卡车集团 Vehicle including pressurized liquid fuel system and the method for running pressurized liquid fuel system
WO2017027011A1 (en) * 2015-08-11 2017-02-16 Volvo Truck Corporation Vehicle comprising a pressurized liquid fuel system and method for operating a pressurized liquid fuel system
US10184427B2 (en) * 2015-08-11 2019-01-22 Volvo Truck Corporation Vehicle comprising a pressurized liquid fuel system and method for operating a pressurized liquid fuel system
CN107923350B (en) * 2015-08-11 2020-10-27 沃尔沃卡车集团 Vehicle comprising a pressurized liquid fuel system and method for operating a pressurized liquid fuel system
WO2018072839A1 (en) * 2016-10-21 2018-04-26 Volvo Truck Corporation A gas tank arrangement
CN109863288A (en) * 2016-10-21 2019-06-07 沃尔沃卡车集团 Gas tank device
US11378023B2 (en) 2016-10-21 2022-07-05 Volvo Truck Corporation Gas tank arrangement
CN109863288B (en) * 2016-10-21 2022-07-29 沃尔沃卡车集团 Air box device
US11111933B2 (en) * 2019-04-17 2021-09-07 Safran Aero Boosters S.A. Passive fluidic valve for fixed flow rate distribution
US20230020034A1 (en) * 2021-07-16 2023-01-19 Yamaha Hatsudoki Kabushiki Kaisha Fuel management system capable of freely performing transfer of fuel among a plurality of fuel tanks
US11939033B2 (en) * 2021-07-16 2024-03-26 Yamaha Hatsudoki Kabushiki Kaisha Fuel management system capable of freely performing transfer of fuel among a plurality of fuel tanks

Similar Documents

Publication Publication Date Title
US5960809A (en) Fuel equalizing system for plurality of fuel tanks
US3465786A (en) Vacuum check valve
US4615353A (en) Pneumatic control valves with diaphragm actuators and modular body structure
CA1326794C (en) Flow control system
US20140346380A1 (en) Electrically Operated Valve Assembly
US5094212A (en) Throttle body assembly
US5362266A (en) Flushmaster fresh water flushing system
JP4107074B2 (en) Flow control valve
US20070107787A1 (en) Rotary shift valve for automatic transmission systems
SE446257B (en) SERVICE CONTROL, SEPARATELY FOR MOTOR VEHICLES
CA1235616A (en) Idle speed control device
US4457727A (en) Marine propulsion device engine cooling system
US4538570A (en) Fluid valve
US5255659A (en) Pressure balanced exhaust gas recirculation valve
JP2621120B2 (en) Fuel supply device for internal combustion engine
US5474145A (en) Hydraulic power steering apparatus
US4125102A (en) Fuel control system for internal combustion engine
US3700209A (en) Balanced pintle valve
SE450721B (en) VALVE DEVICE FOR DISTRIBUTION OF PREHEATED RESPECTIVE NON-PREHEATED INTAKE AIR TO AN COMBUSTION ENGINE
CN109625221B (en) A kind of trim angle regulating system of submersible
US3423937A (en) Hydraulic control system
US3975907A (en) Hydrostatic servomechanism with artificial feedback
US3958598A (en) High pressure, 4-position, 5-way, pilot operated valve for corrosive media
JPS6145599B2 (en)
US2989065A (en) Fuel control unit for internal combustion engines

Legal Events

Date Code Title Description
AS Assignment

Owner name: R.D.K. CORPORATION, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KELLER, RUSSELL D.;REEL/FRAME:008778/0384

Effective date: 19971001

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20071005