US5989483A - Method for manufacturing powder metallurgical tooling - Google Patents

Method for manufacturing powder metallurgical tooling Download PDF

Info

Publication number
US5989483A
US5989483A US09/005,304 US530498A US5989483A US 5989483 A US5989483 A US 5989483A US 530498 A US530498 A US 530498A US 5989483 A US5989483 A US 5989483A
Authority
US
United States
Prior art keywords
slurry
mold
liquid medium
refractory die
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/005,304
Inventor
Paul D. Vawter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/558,731 external-priority patent/US5623727A/en
Application filed by Individual filed Critical Individual
Priority to US09/005,304 priority Critical patent/US5989483A/en
Application granted granted Critical
Publication of US5989483A publication Critical patent/US5989483A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • B22F3/1283Container formed as an undeformable model eliminated after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/346Manufacture of moulds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method of forming a refractory die, and a method of manufacturing an article by powder metallurgy utilizing a refractory die, wherein the article is comprised of a shaped consolidated particulate material.
  • U.S. Pat. No. 4,747,999 to Hasselstrom describes a method of producing a consolidated powder metallurgical article using a particulate pressure medium which is preheated in a special container, in a "fluidized” bed. The bed is then heated to a forging temperature and transferred to an outer mold. Pressure is then applied to the pressure medium by means of a pressure tool.
  • This method disadvantageously requires a pressure medium, a fluidized bed, and complex equipment to preheat the pressure medium and to transfer its contents to an outer mold.
  • the method of the '999 patent does not provide a means to control shrinkage or physical dimensions in the ceramic mold and/or consolidated article, but rather, requires a shrinkage compensated model.
  • This process does not allow existing parts, dies, molds and patterns with finished dimensions to be candidates for the original model, but rather, requires an oversized model, which increases the number of steps required and labor costs.
  • the method of the '999 patent suffers from interparticle friction of the pressure medium.
  • Interparticle friction is described in UK Patent 2140825A, in which a method is described to reduce such friction and provide uniform pressure.
  • Interparticle friction requires increased pressure or heat to consolidate the powder metal article, requiring large equipment and energy costs.
  • the method of the '999 patent requires crushing of the ceramic mold to remove finished articles, and does not allow the ceramic mold material to be removed from internal passageways or cavities, thereby severely limiting part configuration possibilities.
  • Such prior art techniques require numerous steps and equipment to produce a powder metal article having complex shape, high density and dimensional accuracy.
  • Cold compaction pressures of 20,000-100,000 psi, followed by sintering requires expensive powder compacting equipment, metal tooling and a sintering furnace to produce a pre-consolidated metal part.
  • the additional steps of placing a pressure medium in a forging die, positioning the metal article upon this medium, covering the metal article with additional medium, and heating the pressure medium and metal article to a forging temperature to densify the metal article increases labor, material and energy costs.
  • U.S. Pat. No. 4,041,123 discloses a method of producing a powder article which requires producing a pre-consolidated article by mixing a ceramic powder and water to form a slurry which is casted into a porous mold.
  • This pre-formed body has a void content of 30-60%.
  • a pressure medium, heat and applied pressure are used to consolidate further the article to higher density.
  • This method has several disadvantages. Slip casting requires a porous mold to be fabricated from an original article or rubber mold and requires a water content of 40-70% (leaving a particulate density of only 30-60% by weight). Due to the high water content, tremendous shrinkage results both when drying and in final consolidation.
  • the density of a slip cast part varies, caused by larger, heavier powder particles settling at the bottom of the mold causing density gradients and resulting in non-uniform shrinkage.
  • This distortion is further increased by the use of a particulate pressure medium. Interparticle friction of a pressure medium causes non-uniform pressure on the ceramic article being consolidated, resulting in distortion or loss of dimensional accuracy as noted in U.S. Pat. Nos. 4,501,718 and 4,539,175.
  • This distortion or loss of dimensional accuracy increases the need for machining the article to its final dimensions and increases costs.
  • the pressure medium increases the surface area or volume, thereby requiring higher pressure and/or heat for consolidation. Larger dies are necessary to accommodate the pressure medium resulting in increased machine size, labor and energy costs.
  • This method of manufacturing requires a pressure medium that collapses, deforms or becomes viscous under heat and/or pressure to consolidate a powder metal.
  • the nature of a pressure medium which becomes viscous or deforms under heat and/or pressure would transfer this deformation to the loose powder metal during consolidation, causing distortion and loss of dimensional accuracy, thus requiring machining of the article to its final dimensions which increases costs. Additional steps of manufacturing a cylindrical container and then requiring a glass material to be casted around this container also increases costs.
  • the use of the pressure medium step has the additional disadvantage of requiring a larger forging die to contain this medium, and, in turn, increases surface area or volume which requires higher heat and/or pressure to consolidate the metal powder. It also increases machine size, energy and labor costs.
  • This prior art mentions the use of the elastomer tooling to apply pressure to the powder metal.
  • the method has the disadvantage of deforming the loose metal powder at room temperature and would require additional steps to place the article in a pressure medium using heat and applied pressure for further consolidation to produce a high density article. The article experiences further deformation by this additional consolidation step requiring secondary machining to its final dimensions which would increase costs.
  • This method requires two "cans" and two different pressure mediums, such as glass and talc.
  • This method cannot produce a complex shaped article in situ but requires multiple manufacturing steps of producing metal cans to contain either a pressure medium or metal powder.
  • the pressure medium that deforms or becomes viscous transfers that shape or deformity to the loose metal powder being consolidated.
  • the additional outer pressure medium suffers from interparticle friction which causes uneven pressure and causes additional distortion which is disclosed in U.S. Pat. Nos. 4,501,718 and 4,539,175.
  • the distortion causes loss of dimensional accuracy and requires machining of the article to its final dimensions which increases the steps and costs.
  • These two pressure mediums increase volume and surface area which require larger dies, higher heat and/or pressure resulting in larger machinery requirements and higher energy and labor costs.
  • the present invention has been developed to overcome the drawbacks associated with the prior art methods described above.
  • a method for forming a refractory die which is used to form a consolidated powder metallurgical body.
  • the method calls for forming a slurry comprising ceramic particles in a liquid medium, casting the slurry onto a mold having a molding surface containing surface details, the slurry having a liquid medium content sufficient to permit flow of ceramic particles into the surface details of the mold, simultaneously vibrating the mold and removing excess liquid medium from the slurry, wherein the ceramic particles continue to flow into the surface details of the mold, drying the slurry to form a dried green body, and firing the dried green body.
  • a refractory die is provided with very low shrinkage and which accurately replicates the details of the mold.
  • the refractory die may include a material such as kyanite which is effective to produce a refractory mold that maintains its original size even after firing.
  • Kyanite has a unique property in which kyanite particles permanently expand upon heating past a minimum firing temperature.
  • a method of forming a metallic article wherein a particulate material, including powdered metal, is placed in a forging die containing a refractory die, the refractory die having surface details, heating the forging die and the particulate materials therein at a consolidation temperature, pressing the particulate materials in the forging die to form a dense body having a surface portion that replicates the surface details of the refractory die, and differentially cooling the dense body.
  • a first portion of the dense body that contacts the refractory die is cooled more quickly than a second portion of the refractory die that is remote from the first portion, whereby hot tears are prevented in the first portion.
  • the refractory die is removed therefrom.
  • a first portion a relatively low mass portion
  • the second portion the remaining relatively high mass portion of the dense body.
  • the high mass second portion continues to feed material to the low mass second portion as it cools, thereby preventing hot tears in the dense body.
  • first and second opposing rams are utilized to press the particulate materials, the refractory die being placed on one of the two rams. Cooling of the dense body after pressing may be executed by utilizing water-cooled rams. Pressure may be applied during both heating and cooling cycles. Additionally, insulative spacers may be placed between the ram opposing the second portion of the dense body, so as to prevent partial heat flow from the second portion of the dense body to the ram, thereby providing differential cooling.
  • the metal powder of the consolidated dense body may include metal alloys as well as unalloyed metals. Further, non-metallic materials, such as plastic, ceramic, carbides and other hard agents may be incorporated into the metal powder. Further, mixtures of pure metal and/or alloy powders and/or non-metallic powders may be utilized. In addition, the particulate materials may take the form of fibers, such as metal fibers, ceramic fibers or carbon fibers.
  • FIG. 1 schematically illustrates the manufacturing process and equipment according to the present invention
  • FIG. 2 shows a consolidated article which has been produced according to the invention
  • FIG. 3 is a cross-sectional view of the particulate materials cooling and solidifying around a core of a refractory die
  • FIG. 4 is a cross-sectional view of a slurry of a refractory die mixture cast into layers.
  • a refractory die 1 is designated with the numeral 1. It is manufactured by means of replicating an original model using coarse and fine ceramic refractory powders, liquids and binders to produce an article by casting or other methods.
  • the refractory die 1 is positioned in a forging die 3 and is covered with the particulate materials 2.
  • the particulate materials comprise metal powder, such as H13 tool steel powder.
  • a movable upper ram 5 provides at least one source of axial pressure upward and downward in the forging die 3.
  • the movable upper ram 5 passes through a sealed inlet 6 of a furnace 7.
  • the interior of the furnace 12 can be heated by means of interior heating elements 4.
  • the interior of the furnace 12 can also be subjected to a gas flow through connections 8, 9.
  • the connections 8, 9 are utilized for evacuating the air of the interior furnace 12 with a protective gas such as nitrogen and/or hydrogen, before the particulate materials are consolidated.
  • a protective gas such as nitrogen and/or hydrogen
  • the movable upper ram 5 is pressed downward to provide axial pressure on the particulate materials, whereby the particulate materials are compressed to a desired density and to replicate the surface of the refractory die 1.
  • the temperature of the furnace 7 is lowered and the refractory die 1 and the consolidated article 11 are removed.
  • the refractory die 1 is removed by mechanical methods (e.g. quenching, hammering) or chemical leaching (e.g., via an alkali metal) to recover the consolidated article 11 as shown in FIG. 2.
  • a 60/40 mix of molten potassium hydroxide/sodium hydroxide has been found to be an effective leaching agent.
  • the refractory die may be attached to the upper ram or movable ram.
  • the refractory die may be plunged into the particulate materials and extracted before the particulate materials cools, eliminating the steps of removing the refractory die by mechanical or chemical leaching.
  • the particulate materials 2 solidify and shrink tight around the refractory core 13 as shown in FIG. 3.
  • the consolidated material is differentially cooled while pressing.
  • the cooling of the fine, low mass portion of the consolidated material along the die is executed more quickly than the remaining high mass portion.
  • water cooled upper and lower rams may be used, wherein the ram carrying the refractory die (here, the lower ram) is cooled to a temperature lower than the upper ram.
  • each ram may be cooled using the same temperature water, but insulative disks or insulative powder may be placed between the upper ram and the consolidated body to permit relatively less heat flow to the upper ram.
  • the particulate materials 2 around the refractory die cool first, while the large mass of powder above remains hot and supplies feed material to the low mass portion. This method reduces shrinkage in critical dimensionally sensitive areas around the refractory die.
  • the refractory die may further contain thermally conductive materials such as silicon carbide or aluminum nitride to facilitate the heat transfer to the water-cooled lower ram.
  • the upper and lower rams can be made to move independently of one another, allowing added control when consolidating the particulate material to improve part density and dimensional accuracy in the finished product.
  • the forging die 3 may be made of graphite or other suitable material to withstand the heat and/or pressure necessary to consolidate the particulate materials.
  • the refractory die is formulated to give multiple physical and chemical properties and improvements with respect to particle packing density, dimensional expansion and control, and infiltration, to improve strength and chemical compatibility between refractory die materials, powder metal and chemical leachants.
  • the refractory die is made of coarse and fine ceramic particles. Particle sizes are graduated from 6 mesh through -325 mesh in specific portions to obtain a particle packing density of, for example, over 90 percent. Liquids, rheology agents, and binders are added to the ceramic powders, and vibration (discussed below) is utilized to produce a castable mix that replicates the original article. This method of producing a refractory die is superior to other casting or forming methods in regard to particle packing density, strength, dimensional accuracy and economy.
  • a refractory die was made by mixing, in weight %, 43% SiC 16-35 mesh, 25% Si 35-80 mesh, 5% Si 80-325 mesh, 10% Si -325 mesh, 10% hydraulic setting alumina binder, 5% SiC -325 mesh, and 2% SiC fibers to form a mixture. Then, 0.1-0.2% defloculent/dispersant, 0.2-0.5% lignosulfonate, and 14-15% water are added to the mixture.
  • the refractory die materials are selected to be chemically compatible with the particular powder metal and consolidation temperatures used during the hot pressing process, as well as any chemical leachants used to extract the refractory die after hot pressing.
  • FIG. 4 illustrates a particularly unique process for forming the refractory die according to the present invention.
  • layers of the slurry 14 (refractory die mixture) described above are cast onto a mold in 1/8 inch thick layers, for example.
  • the slurry has a fairly high water content, such as 14-15%, so that the slurry has good flow properties, whereby ceramic particles may easily flow into fine detailed portions of the mold.
  • the mold is vibrated to enhance particle flow, while simultaneously removing excess water, such as by using an absorptive swab.
  • other water removal techniques may be utilized, such as hot air drying.
  • This additional step of infiltration has the added advantage to further densify the refractory die without the shrinkage and/or deformation that normally occurs when sintering or firing a refractory die to high density. These improvements translate into improved dimensional accuracy and surface finish of the finished article.
  • molten silicon may be used to infiltrate a porous SiC body.

Abstract

A method of forming a refractory die, and a method for forming a metal article using a refractory die. The refractory die is formed of a ceramic material by casting a slurry containing particles of the ceramic material onto a mold. Then the mold is vibrated while excess liquid medium from the slurry is simultaneously removed, whereby ceramic particles continue to flow into surface details of the mold. The present method of forming a refractory die minimizes drying and firing shrinkage, and even adjusts for drying and firing shrinkage by inclusion of kyanite in the refractory die. According to the method of forming a metal article, a particulate material containing powdered metal is compressed on a refractory die at an elevated temperature and pressure. The consolidated particulate material is differentially cooled, wherein a first, low mass portion contacting the refractory die is cooled more quickly than an opposing, high mass portion of the consolidated body. According to this method, hot tears are prevented.

Description

RELATED APPLICATIONS
This is a division of application Ser. No. 08/829,806 filed Apr. 21, 1997, which in turn is a continuing application of Ser. No. 08/558,731 Nov. 16, 1995, now U.S. Pat. No. 5,623,727. Both prior applications are hereby incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to a method of forming a refractory die, and a method of manufacturing an article by powder metallurgy utilizing a refractory die, wherein the article is comprised of a shaped consolidated particulate material.
BACKGROUND OF THE INVENTION
Processes for producing consolidated metallurgical articles from metal powders are well known. For example, U.S. Pat. No. 4,747,999 to Hasselstrom describes a method of producing a consolidated powder metallurgical article using a particulate pressure medium which is preheated in a special container, in a "fluidized" bed. The bed is then heated to a forging temperature and transferred to an outer mold. Pressure is then applied to the pressure medium by means of a pressure tool. This method disadvantageously requires a pressure medium, a fluidized bed, and complex equipment to preheat the pressure medium and to transfer its contents to an outer mold.
Further, the method of the '999 patent does not provide a means to control shrinkage or physical dimensions in the ceramic mold and/or consolidated article, but rather, requires a shrinkage compensated model. This process does not allow existing parts, dies, molds and patterns with finished dimensions to be candidates for the original model, but rather, requires an oversized model, which increases the number of steps required and labor costs.
Further, the method of the '999 patent suffers from interparticle friction of the pressure medium. Interparticle friction is described in UK Patent 2140825A, in which a method is described to reduce such friction and provide uniform pressure. Interparticle friction requires increased pressure or heat to consolidate the powder metal article, requiring large equipment and energy costs. Further, the method of the '999 patent requires crushing of the ceramic mold to remove finished articles, and does not allow the ceramic mold material to be removed from internal passageways or cavities, thereby severely limiting part configuration possibilities.
Other prior art techniques use heat and pressure to increase further the density of a pre-consolidated powder metal article, requiring metal dies machined to desired part geometry. Such a die is loaded with metal powder and compressed in the range of 20,000-100,000 psi at room temperature. The article is then ejected from the die and transferred to a furnace and sintered to increase density and particle bonding. The article is then transferred to a forging die and is surrounded by a particulate pressure medium, wherein heat and applied pressure transferred through the medium further consolidates the metal article to high density.
Such prior art techniques require numerous steps and equipment to produce a powder metal article having complex shape, high density and dimensional accuracy. Cold compaction pressures of 20,000-100,000 psi, followed by sintering requires expensive powder compacting equipment, metal tooling and a sintering furnace to produce a pre-consolidated metal part. The additional steps of placing a pressure medium in a forging die, positioning the metal article upon this medium, covering the metal article with additional medium, and heating the pressure medium and metal article to a forging temperature to densify the metal article increases labor, material and energy costs.
An additional drawback of requiring a pressure medium is interparticle friction, as noted above, which can additionally cause distortion and loss of dimensional accuracy. See U.S. Pat. Nos. 4,539,175 and 4,501,718. The loss of dimensional accuracy requires secondary machining of the article to its final dimensions which increases costs. Further, the pressure medium has additional disadvantages of increasing surface area and volume, requiring larger forging dies, and requiring additional pressure and/or heat. Accordingly, use of a pressure medium requires larger equipment to consolidate a metal article, resulting in an increase in equipment, energy and labor costs.
U.S. Pat. No. 4,041,123 discloses a method of producing a powder article which requires producing a pre-consolidated article by mixing a ceramic powder and water to form a slurry which is casted into a porous mold. This pre-formed body has a void content of 30-60%. A pressure medium, heat and applied pressure are used to consolidate further the article to higher density. This method has several disadvantages. Slip casting requires a porous mold to be fabricated from an original article or rubber mold and requires a water content of 40-70% (leaving a particulate density of only 30-60% by weight). Due to the high water content, tremendous shrinkage results both when drying and in final consolidation. In addition, the density of a slip cast part varies, caused by larger, heavier powder particles settling at the bottom of the mold causing density gradients and resulting in non-uniform shrinkage. This distortion is further increased by the use of a particulate pressure medium. Interparticle friction of a pressure medium causes non-uniform pressure on the ceramic article being consolidated, resulting in distortion or loss of dimensional accuracy as noted in U.S. Pat. Nos. 4,501,718 and 4,539,175. This distortion or loss of dimensional accuracy increases the need for machining the article to its final dimensions and increases costs. The pressure medium increases the surface area or volume, thereby requiring higher pressure and/or heat for consolidation. Larger dies are necessary to accommodate the pressure medium resulting in increased machine size, labor and energy costs.
Other prior art techniques are shown in U.S. Pat. No. 4,041,123, which teaches a casted ceramic article that is made more dense by a pressure medium that requires heat and applied pressure to further increase density to the casted ceramic article. This technique can not produce a complex metal article in situ, but uses the heat and pressure operation only to make a further dense article.
The prior art method shown in U.S. Pat. No. 4,547,337 discloses a method to consolidate a powder in which the powder to be consolidated is placed in a hermetically sealed cylindrical container which is evacuated. The container is embedded in a glass material that becomes viscous at a desired temperature. Applied pressure deforms the glass pressure medium in turn applying pressure to the inner cylindrical container containing a powder which is then consolidated. It is mentioned that if a more intricately shaped article is required, the cylindrical inner container may be eliminated, and other materials such as elastomers could be used to produce an intricately shaped rubber mold to encapsulate the powder metal. The mold transfers its shape to the powder metal under pressure to produce an intricately shaped article. This method of manufacturing requires a pressure medium that collapses, deforms or becomes viscous under heat and/or pressure to consolidate a powder metal. The nature of a pressure medium which becomes viscous or deforms under heat and/or pressure would transfer this deformation to the loose powder metal during consolidation, causing distortion and loss of dimensional accuracy, thus requiring machining of the article to its final dimensions which increases costs. Additional steps of manufacturing a cylindrical container and then requiring a glass material to be casted around this container also increases costs.
The use of the pressure medium step has the additional disadvantage of requiring a larger forging die to contain this medium, and, in turn, increases surface area or volume which requires higher heat and/or pressure to consolidate the metal powder. It also increases machine size, energy and labor costs. This prior art mentions the use of the elastomer tooling to apply pressure to the powder metal. The method has the disadvantage of deforming the loose metal powder at room temperature and would require additional steps to place the article in a pressure medium using heat and applied pressure for further consolidation to produce a high density article. The article experiences further deformation by this additional consolidation step requiring secondary machining to its final dimensions which would increase costs.
A further process is shown in U.S. Pat. No. 4,389,362 which discloses a process for making a metal billet by encapsulating metal powder in a metal capsule, or as it is more commonly known a "metal can," and placing a pressure transmitting medium that becomes viscous at consolidation temperature between a first can and a second can, which must be fabricated to encapsulate this pressure medium. A second pressure medium is required to compress the second can. Heat and an applied pressure medium makes the second can more dense. The viscous pressure medium in turn makes the first can more dense, which contains the powder metal. This is a method that requires numerous troublesome steps to consolidate a metal powder. First, a metal can for housing the metal powder must be fabricated, which is usually done by sheet metal equipment. This first can requires embedding in an outer pressure medium, requiring another can to be manufactured and another pressure medium. This method requires two "cans" and two different pressure mediums, such as glass and talc. This method cannot produce a complex shaped article in situ but requires multiple manufacturing steps of producing metal cans to contain either a pressure medium or metal powder. The pressure medium that deforms or becomes viscous transfers that shape or deformity to the loose metal powder being consolidated. The additional outer pressure medium suffers from interparticle friction which causes uneven pressure and causes additional distortion which is disclosed in U.S. Pat. Nos. 4,501,718 and 4,539,175. The distortion causes loss of dimensional accuracy and requires machining of the article to its final dimensions which increases the steps and costs. These two pressure mediums increase volume and surface area which require larger dies, higher heat and/or pressure resulting in larger machinery requirements and higher energy and labor costs.
SUMMARY OF INVENTION
The present invention has been developed to overcome the drawbacks associated with the prior art methods described above.
According to a first aspect of the present invention, a method is provided for forming a refractory die which is used to form a consolidated powder metallurgical body. The method calls for forming a slurry comprising ceramic particles in a liquid medium, casting the slurry onto a mold having a molding surface containing surface details, the slurry having a liquid medium content sufficient to permit flow of ceramic particles into the surface details of the mold, simultaneously vibrating the mold and removing excess liquid medium from the slurry, wherein the ceramic particles continue to flow into the surface details of the mold, drying the slurry to form a dried green body, and firing the dried green body.
According to the first aspect of the present invention, a refractory die is provided with very low shrinkage and which accurately replicates the details of the mold. In addition, the refractory die may include a material such as kyanite which is effective to produce a refractory mold that maintains its original size even after firing. Kyanite has a unique property in which kyanite particles permanently expand upon heating past a minimum firing temperature.
According to the second aspect of the present invention, a method of forming a metallic article is provided, wherein a particulate material, including powdered metal, is placed in a forging die containing a refractory die, the refractory die having surface details, heating the forging die and the particulate materials therein at a consolidation temperature, pressing the particulate materials in the forging die to form a dense body having a surface portion that replicates the surface details of the refractory die, and differentially cooling the dense body. Particularly, a first portion of the dense body that contacts the refractory die is cooled more quickly than a second portion of the refractory die that is remote from the first portion, whereby hot tears are prevented in the first portion. After differentially cooling the dense body, the refractory die is removed therefrom.
According to the second aspect of the present invention, a first portion, a relatively low mass portion, is cooled more quickly than the second portion, the remaining relatively high mass portion of the dense body. During differential cooling, the high mass second portion continues to feed material to the low mass second portion as it cools, thereby preventing hot tears in the dense body.
Preferably, first and second opposing rams are utilized to press the particulate materials, the refractory die being placed on one of the two rams. Cooling of the dense body after pressing may be executed by utilizing water-cooled rams. Pressure may be applied during both heating and cooling cycles. Additionally, insulative spacers may be placed between the ram opposing the second portion of the dense body, so as to prevent partial heat flow from the second portion of the dense body to the ram, thereby providing differential cooling.
The metal powder of the consolidated dense body may include metal alloys as well as unalloyed metals. Further, non-metallic materials, such as plastic, ceramic, carbides and other hard agents may be incorporated into the metal powder. Further, mixtures of pure metal and/or alloy powders and/or non-metallic powders may be utilized. In addition, the particulate materials may take the form of fibers, such as metal fibers, ceramic fibers or carbon fibers.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically illustrates the manufacturing process and equipment according to the present invention;
FIG. 2 shows a consolidated article which has been produced according to the invention;
FIG. 3 is a cross-sectional view of the particulate materials cooling and solidifying around a core of a refractory die; and
FIG. 4 is a cross-sectional view of a slurry of a refractory die mixture cast into layers.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In FIG. 1, a refractory die 1 is designated with the numeral 1. It is manufactured by means of replicating an original model using coarse and fine ceramic refractory powders, liquids and binders to produce an article by casting or other methods. The refractory die 1 is positioned in a forging die 3 and is covered with the particulate materials 2. The particulate materials comprise metal powder, such as H13 tool steel powder. A movable upper ram 5 provides at least one source of axial pressure upward and downward in the forging die 3. The movable upper ram 5 passes through a sealed inlet 6 of a furnace 7. The interior of the furnace 12 can be heated by means of interior heating elements 4. The interior of the furnace 12 can also be subjected to a gas flow through connections 8, 9. The connections 8, 9 are utilized for evacuating the air of the interior furnace 12 with a protective gas such as nitrogen and/or hydrogen, before the particulate materials are consolidated. During consolidation, the movable upper ram 5 is pressed downward to provide axial pressure on the particulate materials, whereby the particulate materials are compressed to a desired density and to replicate the surface of the refractory die 1. After the consolidated article 11 is formed, the temperature of the furnace 7 is lowered and the refractory die 1 and the consolidated article 11 are removed. The refractory die 1 is removed by mechanical methods (e.g. quenching, hammering) or chemical leaching (e.g., via an alkali metal) to recover the consolidated article 11 as shown in FIG. 2. A 60/40 mix of molten potassium hydroxide/sodium hydroxide has been found to be an effective leaching agent.
The refractory die may be attached to the upper ram or movable ram. At consolidation conditions (i.e., 2100-2300° F. and 3,000-10,000 psi), the refractory die may be plunged into the particulate materials and extracted before the particulate materials cools, eliminating the steps of removing the refractory die by mechanical or chemical leaching.
During the consolidation step, the particulate materials 2 solidify and shrink tight around the refractory core 13 as shown in FIG. 3. To reduce shrinkage, and, particularly, prevent hot tears in the consolidated particulate material in low mass portions thereof (e.g., finely detailed portions along the refractory die), the consolidated material is differentially cooled while pressing. Particularly, the cooling of the fine, low mass portion of the consolidated material along the die is executed more quickly than the remaining high mass portion. For example, water cooled upper and lower rams may be used, wherein the ram carrying the refractory die (here, the lower ram) is cooled to a temperature lower than the upper ram. Alternatively, each ram may be cooled using the same temperature water, but insulative disks or insulative powder may be placed between the upper ram and the consolidated body to permit relatively less heat flow to the upper ram. In either case, the particulate materials 2 around the refractory die cool first, while the large mass of powder above remains hot and supplies feed material to the low mass portion. This method reduces shrinkage in critical dimensionally sensitive areas around the refractory die. The refractory die may further contain thermally conductive materials such as silicon carbide or aluminum nitride to facilitate the heat transfer to the water-cooled lower ram.
The upper and lower rams can be made to move independently of one another, allowing added control when consolidating the particulate material to improve part density and dimensional accuracy in the finished product.
The forging die 3 may be made of graphite or other suitable material to withstand the heat and/or pressure necessary to consolidate the particulate materials.
The refractory die is formulated to give multiple physical and chemical properties and improvements with respect to particle packing density, dimensional expansion and control, and infiltration, to improve strength and chemical compatibility between refractory die materials, powder metal and chemical leachants.
The refractory die is made of coarse and fine ceramic particles. Particle sizes are graduated from 6 mesh through -325 mesh in specific portions to obtain a particle packing density of, for example, over 90 percent. Liquids, rheology agents, and binders are added to the ceramic powders, and vibration (discussed below) is utilized to produce a castable mix that replicates the original article. This method of producing a refractory die is superior to other casting or forming methods in regard to particle packing density, strength, dimensional accuracy and economy.
For example, a refractory die was made by mixing, in weight %, 43% SiC 16-35 mesh, 25% Si 35-80 mesh, 5% Si 80-325 mesh, 10% Si -325 mesh, 10% hydraulic setting alumina binder, 5% SiC -325 mesh, and 2% SiC fibers to form a mixture. Then, 0.1-0.2% defloculent/dispersant, 0.2-0.5% lignosulfonate, and 14-15% water are added to the mixture.
The refractory die materials are selected to be chemically compatible with the particular powder metal and consolidation temperatures used during the hot pressing process, as well as any chemical leachants used to extract the refractory die after hot pressing.
Materials of the refractory die also include, in whole or in part, titanium diboride, tungsten carbide, chromium carbide, silicon carbide, graphite, silica, silicon, silicon nitride, nitrogen, zirconia, alumina, kyanite, aluminum nitride, yttria and zinc oxide.
FIG. 4 illustrates a particularly unique process for forming the refractory die according to the present invention. Here, layers of the slurry 14 (refractory die mixture) described above are cast onto a mold in 1/8 inch thick layers, for example. The slurry has a fairly high water content, such as 14-15%, so that the slurry has good flow properties, whereby ceramic particles may easily flow into fine detailed portions of the mold. The mold is vibrated to enhance particle flow, while simultaneously removing excess water, such as by using an absorptive swab. However, other water removal techniques may be utilized, such as hot air drying. The resultant cast body has a water content (e.g., 4-8%) that is significantly lower than the original 14-15% water content, whereby, after drying and firing, the refractory die has reduced shrinkage, reduced porosity, increased strength and excellent dimensional accuracy. It is noted that the refractory die need not be fired to fully sinter the ceramic material. For example, the SiC-based body (composition noted above) need only be fired to about 2400-2700° F., while SiC generally needs to be sintered at about 3500° F. for full sintering. Further, the refractory die may be fired with or without the mold on which it was formed. For example, currently available computer generated rapid prototype molds can be made from a resin material that may be burned out.
Unlike prior art techniques, the present technique actively removes excess water during vibration. Accordingly, a relatively high initial water content may be used to get superior detail in the refractory body, without suffering from excess shrinkage due to drying of the high water content body. For example, according to the present invention, it has been found that the refractory body shrinks only abut 1/2% during drying and firing. On the other hand, prior art refractory bodies formed by conventional casting techniques shrink considerably greater, such as 1.0-1.5% or more. Ceramic bodies formed by conventional slip casting may even shrink up to 17% after firing to full density.
Shrinkage of the refractory die may be even further reduced according to the present invention. The composition mixture of the refractory die may further include kyanite. Kyanite is a material that has a unique ability to expand permanently when heated. The refractory die composition with kyanite is heated to the desired expansion dimension giving an advantage of not only compensating for shrinkage that occurs during consolidation, but also shrinkage due to materials used in molds and dies.
Further, it has been found that evaporation of liquid binders and sintering at elevated temperatures to produce physical expansion can leave porosity in the refractory die. This porosity or void content can allow the refractory die to further densify or deform when applying heat and pressure when consolidating metal powders to high density. This shrinkage can result in a powder metal article with poor dimensional accuracy and surface finish. Such problems can be overcome by producing a refractory die by the above method and using an additional step of melt infiltrating the refractory die with molten materials in contact with the refractory die, whereby by capillary action, the molten material will infiltrate the refractory die to fill residual porosity. This additional step of infiltration has the added advantage to further densify the refractory die without the shrinkage and/or deformation that normally occurs when sintering or firing a refractory die to high density. These improvements translate into improved dimensional accuracy and surface finish of the finished article. By way of example, molten silicon may be used to infiltrate a porous SiC body.
While preferred embodiments of the present invention have been described above in detail, it is understood that those of ordinary skill in the art can make modifications to the present invention and still be within the scope of the appended claims.

Claims (18)

I claim:
1. A method of forming a refractory die for forming a consolidated powder metallurgical body, comprising the steps of:
forming a slurry comprising ceramic particles in a liquid medium;
casting said slurry onto a mold having a molding surface containing surface details, said slurry having a liquid medium content sufficient to permit flow of the ceramic particles into the surface details of the mold;
simultaneously vibrating the mold and actively removing excess liquid medium from an exposed surface of the slurry, wherein the ceramic particles continue to flow into the surface details of the mold;
drying the slurry to form a dried green body; and
firing the dried green body to form the refractory die.
2. The method of claim 1, wherein said liquid medium comprises water.
3. The method of claim 1, wherein said ceramic particles comprise SiC.
4. The method of claim 3, wherein said ceramic particles further comprise kyanite.
5. The method of claim 1, wherein said refractory die is fired at a temperature less than the sintering temperature of the ceramic particles required for full density firing.
6. The method of claim 1, wherein said slurry is dried in the mold, and the mold is removed before firing.
7. The method of claim 1, wherein the slurry is dried in the mold, and the mold is fired with the dried green body.
8. The method of claim 1, wherein the excess liquid medium is removed from the exposed surface of the slurry by wicking.
9. The method of claim 1, wherein the excess liquid medium is removed from the exposed surface of the slurry by hot air drying.
10. The method of claim 1, wherein the slurry is cast into the mold through an open end thereof, and the exposed surface of the slurry is defined, at least in part, by the open end of the mold.
11. A method of forming a refractory die for forming a consolidated powder metallurgical body, comprising the steps of:
(a) forming a slurry comprising ceramic particles in a liquid medium;
(b) casting a first layer of said slurry onto a mold having a molding surface containing surface details, said slurry having a liquid medium content sufficient to permit flow of the ceramic particles into the surface details of the mold;
(c) simultaneously vibrating the mold and actively removing excess liquid medium from the first layer of slurry, wherein the ceramic particles continue to flow into the surface details of the mold;
(d) casting an additional layer of said slurry onto said first layer of slurry;
(e) simultaneously vibrating the mold and removing excess liquid medium from the additional layer of slurry;
(f) drying the layers of slurry to form a dried green body; and
(g) firing the dried green body to form the refractory die.
12. The method of claim 11, wherein steps (d) and (e) are repeated to form a plurality of slurry layers.
13. The method of claim 11, wherein the excess liquid medium is actively removed from an exposed surface of the slurry.
14. The method of claim 13, wherein the excess liquid medium is removed from the exposed surface of the slurry by wicking.
15. The method of claim 13, wherein the excess liquid medium is removed from the exposed surface of the slurry by hot air drying.
16. The method of claim 13, wherein the slurry is cast into the mold through an open end thereof, and the exposed surface of the slurry is defined, at least in part, by the open end of the mold.
17. The method of claim 12, wherein said ceramic particles comprise kyanite.
18. The method of claim 12, wherein said refractory die is fired at a temperature less than the sintering temperature of the ceramic particles required for full density firing.
US09/005,304 1995-11-16 1998-01-09 Method for manufacturing powder metallurgical tooling Expired - Fee Related US5989483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/005,304 US5989483A (en) 1995-11-16 1998-01-09 Method for manufacturing powder metallurgical tooling

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/558,731 US5623727A (en) 1995-11-16 1995-11-16 Method for manufacturing powder metallurgical tooling
US08/829,806 US5985207A (en) 1995-11-16 1997-04-21 Method for manufacturing powder metallurgical tooling
US09/005,304 US5989483A (en) 1995-11-16 1998-01-09 Method for manufacturing powder metallurgical tooling

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/829,806 Division US5985207A (en) 1995-11-16 1997-04-21 Method for manufacturing powder metallurgical tooling

Publications (1)

Publication Number Publication Date
US5989483A true US5989483A (en) 1999-11-23

Family

ID=25255614

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/829,806 Expired - Fee Related US5985207A (en) 1995-11-16 1997-04-21 Method for manufacturing powder metallurgical tooling
US09/005,304 Expired - Fee Related US5989483A (en) 1995-11-16 1998-01-09 Method for manufacturing powder metallurgical tooling

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/829,806 Expired - Fee Related US5985207A (en) 1995-11-16 1997-04-21 Method for manufacturing powder metallurgical tooling

Country Status (3)

Country Link
US (2) US5985207A (en)
AU (1) AU6978098A (en)
WO (1) WO1998047833A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894826B2 (en) * 2009-09-24 2014-11-25 Jesse A. Frantz Copper indium gallium selenide (CIGS) thin films with composition controlled by co-sputtering
US9314842B2 (en) * 2011-12-02 2016-04-19 Wildcat Discovery Technologies, Inc. Hot pressing apparatus and method for same
US10603716B2 (en) 2017-08-14 2020-03-31 General Electric Company Systems including vibration systems for filling incomplete components with slurry material

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897572A (en) * 1955-01-28 1959-08-04 Carborundum Co Refractory bodies and method of making the same
US3665151A (en) * 1969-07-24 1972-05-23 Us Navy Apparatus for preventing carbon diffusion in electric discharge sintering
US3853566A (en) * 1972-12-21 1974-12-10 Gen Electric Hot pressed silicon carbide
US4014704A (en) * 1974-10-07 1977-03-29 Johns-Manville Corporation Insulating refractory fiber composition and articles for use in casting ferrous metals
US4041123A (en) * 1971-04-20 1977-08-09 Westinghouse Electric Corporation Method of compacting shaped powdered objects
US4389362A (en) * 1980-04-25 1983-06-21 Asea Aktiebolag Method for manufacturing billets of complicated shape
US4456578A (en) * 1981-09-03 1984-06-26 Lucas Industries Method and apparatus for producing a friction element for a disc brake
GB2140825A (en) * 1983-02-23 1984-12-05 Metal Alloys Inc Method of consolidating a metallic or ceramic body
US4501718A (en) * 1983-02-23 1985-02-26 Metal Alloys, Inc. Method of consolidating a metallic or ceramic body
US4539175A (en) * 1983-09-26 1985-09-03 Metal Alloys Inc. Method of object consolidation employing graphite particulate
US4547337A (en) * 1982-04-28 1985-10-15 Kelsey-Hayes Company Pressure-transmitting medium and method for utilizing same to densify material
US4564601A (en) * 1981-07-28 1986-01-14 Elektroschmelzwerk Kempten Gmbh Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
US4747999A (en) * 1986-03-21 1988-05-31 Uddeholm Tooling Aktiebolag Powder metallurgical method
US4756752A (en) * 1987-11-04 1988-07-12 Star Cutter Company Compacted powder article and method for making same
US5028362A (en) * 1988-06-17 1991-07-02 Martin Marietta Energy Systems, Inc. Method for molding ceramic powders using a water-based gel casting
US5093076A (en) * 1991-05-15 1992-03-03 General Motors Corporation Hot pressed magnets in open air presses
US5134260A (en) * 1990-06-27 1992-07-28 Carnegie-Mellon University Method and apparatus for inductively heating powders or powder compacts for consolidation
US5178691A (en) * 1990-05-29 1993-01-12 Matsushita Electric Industrial Co., Ltd. Process for producing a rare earth element-iron anisotropic magnet
US5227235A (en) * 1990-05-09 1993-07-13 Tdk Corporation Composite soft magnetic material and coated particles therefor
US5246638A (en) * 1988-12-20 1993-09-21 Superior Graphite Co. Process and apparatus for electroconsolidation
US5346667A (en) * 1991-10-01 1994-09-13 Hitachi, Ltd. Method of manufacturing sintered aluminum alloy parts
US5348800A (en) * 1991-08-19 1994-09-20 Tdk Corporation Composite soft magnetic material
US5368086A (en) * 1992-11-02 1994-11-29 Sarcol, Inc. Method for making a ceramic mold
US5380482A (en) * 1991-10-18 1995-01-10 Aspen Research, Inc. Method of manufacturing ingots for use in making objects having high heat, thermal shock, corrosion and wear resistance
US5405570A (en) * 1993-10-08 1995-04-11 Sintokogio, Ltd. Method of preparing a durable air-permeable mold
US5429781A (en) * 1990-08-22 1995-07-04 Advanced Ceramics Corporation Method of cold forming a powdered refractory material to form a shaped dense refractory article
US5521129A (en) * 1994-09-14 1996-05-28 The Carborundum Company Sialon-bonded silicon carbide refractory
US5738819A (en) * 1987-01-28 1998-04-14 Remet Corporation Method for making ceramic shell molds and cores

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB572945A (en) * 1943-10-04 1945-10-30 Frank Calvert Improvements in and relating to the manufacture of abrasive tools
US2835573A (en) * 1957-06-04 1958-05-20 Henry H Hausner Hot pressing with a temperature gradient
GB1425166A (en) * 1972-05-16 1976-02-18 Lucas Industries Ltd Method of producing hot pressed components
GB1582757A (en) * 1977-10-17 1981-01-14 Aluminum Co Of America Method of pressing and forging metal powder
CA1203659A (en) * 1982-03-26 1986-04-29 Karl S. Brosius Ceramic mold and method of production
CA1266159A (en) * 1983-04-09 1990-02-27 Takeo Nakagawa Composite and durable forming model with permeability
US4935178A (en) * 1986-06-24 1990-06-19 General Signal Corporation Method of making refractory fiber products
JPH03173701A (en) * 1989-11-30 1991-07-29 Sumitomo Electric Ind Ltd Production of aluminum alloy rotor
JPH0610080A (en) * 1992-06-25 1994-01-18 Takeshi Masumoto Manufacture of high strength alloy having fine structure
US5623727A (en) * 1995-11-16 1997-04-22 Vawter; Paul Method for manufacturing powder metallurgical tooling

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897572A (en) * 1955-01-28 1959-08-04 Carborundum Co Refractory bodies and method of making the same
US3665151A (en) * 1969-07-24 1972-05-23 Us Navy Apparatus for preventing carbon diffusion in electric discharge sintering
US4041123A (en) * 1971-04-20 1977-08-09 Westinghouse Electric Corporation Method of compacting shaped powdered objects
US3853566A (en) * 1972-12-21 1974-12-10 Gen Electric Hot pressed silicon carbide
US4014704A (en) * 1974-10-07 1977-03-29 Johns-Manville Corporation Insulating refractory fiber composition and articles for use in casting ferrous metals
US4389362A (en) * 1980-04-25 1983-06-21 Asea Aktiebolag Method for manufacturing billets of complicated shape
US4564601A (en) * 1981-07-28 1986-01-14 Elektroschmelzwerk Kempten Gmbh Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
US4456578A (en) * 1981-09-03 1984-06-26 Lucas Industries Method and apparatus for producing a friction element for a disc brake
US4547337A (en) * 1982-04-28 1985-10-15 Kelsey-Hayes Company Pressure-transmitting medium and method for utilizing same to densify material
US4501718A (en) * 1983-02-23 1985-02-26 Metal Alloys, Inc. Method of consolidating a metallic or ceramic body
GB2140825A (en) * 1983-02-23 1984-12-05 Metal Alloys Inc Method of consolidating a metallic or ceramic body
US4539175A (en) * 1983-09-26 1985-09-03 Metal Alloys Inc. Method of object consolidation employing graphite particulate
US4747999A (en) * 1986-03-21 1988-05-31 Uddeholm Tooling Aktiebolag Powder metallurgical method
US5738819A (en) * 1987-01-28 1998-04-14 Remet Corporation Method for making ceramic shell molds and cores
US4756752A (en) * 1987-11-04 1988-07-12 Star Cutter Company Compacted powder article and method for making same
US5028362A (en) * 1988-06-17 1991-07-02 Martin Marietta Energy Systems, Inc. Method for molding ceramic powders using a water-based gel casting
US5246638A (en) * 1988-12-20 1993-09-21 Superior Graphite Co. Process and apparatus for electroconsolidation
US5227235A (en) * 1990-05-09 1993-07-13 Tdk Corporation Composite soft magnetic material and coated particles therefor
US5178691A (en) * 1990-05-29 1993-01-12 Matsushita Electric Industrial Co., Ltd. Process for producing a rare earth element-iron anisotropic magnet
US5134260A (en) * 1990-06-27 1992-07-28 Carnegie-Mellon University Method and apparatus for inductively heating powders or powder compacts for consolidation
US5429781A (en) * 1990-08-22 1995-07-04 Advanced Ceramics Corporation Method of cold forming a powdered refractory material to form a shaped dense refractory article
US5093076A (en) * 1991-05-15 1992-03-03 General Motors Corporation Hot pressed magnets in open air presses
US5348800A (en) * 1991-08-19 1994-09-20 Tdk Corporation Composite soft magnetic material
US5346667A (en) * 1991-10-01 1994-09-13 Hitachi, Ltd. Method of manufacturing sintered aluminum alloy parts
US5380482A (en) * 1991-10-18 1995-01-10 Aspen Research, Inc. Method of manufacturing ingots for use in making objects having high heat, thermal shock, corrosion and wear resistance
US5368086A (en) * 1992-11-02 1994-11-29 Sarcol, Inc. Method for making a ceramic mold
US5405570A (en) * 1993-10-08 1995-04-11 Sintokogio, Ltd. Method of preparing a durable air-permeable mold
US5521129A (en) * 1994-09-14 1996-05-28 The Carborundum Company Sialon-bonded silicon carbide refractory

Also Published As

Publication number Publication date
AU6978098A (en) 1998-11-13
WO1998047833A9 (en) 1999-05-06
WO1998047833A2 (en) 1998-10-29
WO1998047833A3 (en) 1999-03-04
US5985207A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
US5770136A (en) Method for consolidating powdered materials to near net shape and full density
US4499048A (en) Method of consolidating a metallic body
US3689259A (en) Method of consolidating metallic bodies
EP0292552B1 (en) Process for the densification of material preforms
US4640711A (en) Method of object consolidation employing graphite particulate
EP0092992B1 (en) Pressure transmitting medium and method for utilizing same to densify material
US3455682A (en) Isostatic hot pressing of refractory bodies
US4341557A (en) Method of hot consolidating powder with a recyclable container material
KR900002123B1 (en) Self-sealing fluid die
US4539175A (en) Method of object consolidation employing graphite particulate
US4547337A (en) Pressure-transmitting medium and method for utilizing same to densify material
JPH0130882B2 (en)
US6662852B2 (en) Mold assembly and method for pressure casting elevated melting temperature materials
US6592807B2 (en) Method of making a porous tire tread mold
EP0238999B1 (en) Method of manufacturing objects by hot pressing metal powder in a mould
US5989483A (en) Method for manufacturing powder metallurgical tooling
US5623727A (en) Method for manufacturing powder metallurgical tooling
US3717694A (en) Hot pressing a refractory article of complex shape in a mold of simple shape
SE451378B (en) PROCEDURE FOR PREPARING A GRAPHITE-FREE OSINTRAD POLYCristalline DIAMOND BODY
SE460461B (en) PROCEDURE APPLY HOT ISOSTATIC COMPRESSION OF A METALLIC OR CERAMIC BODY IN A BOTTLE OF PRESSURE TRANSFERING PARTICLES
RU2265499C2 (en) Method for making sintered uniform-density articles
US5730921A (en) Co-molding process for producing refractory materials without firing or coking the refractory
WO1990015681A1 (en) Metal infiltration apparatus, methods and composites obtained thereby
RU2071913C1 (en) Method for manufacture of tools
US20110320032A1 (en) Adaptive method for manufacturing of complicated shape parts hot isostatic pressing of power materials with using irrevesibly deformable capsules and inserts

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 20031123

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362