Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS6090078 A
Type de publicationOctroi
Numéro de demandeUS 08/941,450
Date de publication18 juil. 2000
Date de dépôt30 sept. 1997
Date de priorité30 sept. 1997
État de paiement des fraisPayé
Autre référence de publicationWO1999016488A1
Numéro de publication08941450, 941450, US 6090078 A, US 6090078A, US-A-6090078, US6090078 A, US6090078A
InventeursTimothy J. Erskine
Cessionnaire d'origineBecton, Dickinson And Company
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Dampening devices and methods for needle retracting safety vascular access devices
US 6090078 A
Résumé
Devices and methods for slowing down or dampening the retraction velocity of an introducer needle used in connection with needle retracting safety vascular access devices. The devices and methods prevent splattering or dripping of blood caused by an introducer needle that retracts too quickly. The dampening devices can be easily modified to regulate the amount of dampening desired and can be retrofitted to existing vascular access devices designs.
Images(10)
Previous page
Next page
Revendications(3)
What is claimed and desired to be secured by United States Letters Patent is:
1. A vascular access device comprising:
a. a hollow housing having a distal end, a proximal end, and a cavity with a length;
b. an introducer needle having a proximal end and a distal end;
c. a hub in communication with the needle sized to travel the length of the housing cavity;
d. a resilient member engaged with the hub, which applies a force and urges the needle in a distal direction;
e. a locking member for releasably locking the needle in an extended position against the force of the resilient member;
f. a dampening device located in the distal end of the cavity which generates air pressure during distal movement, the dampening device comprising an air vent for expelling pressurized air from the cavity and a piston disposed within the cavity, the piston including a circumferential groove and a viscous material disposed within the circumferential groove and in contact with the housing,
wherein when the locking member is released, the force on the needle causes the needle to retract distally at a velocity, distal movement of the dampening device expels air from the vent and the velocity of the needle is dampened by distal movement of the dampening device and distal movement of the piston causes friction of the viscous material against the housing to dampen velocity of the needle.
2. The vascular access device of claim 1, wherein the piston further comprises at least one o-ring positioned on said piston to prevent the viscous material from leaking during needle retraction.
3. The vascular access device of claim 2, wherein the resilient member device is a spring.
Description
1. THE FIELD OF THE INVENTION

The present invention relates to needle retracting safety vascular access devices. More particularly, the present invention relates to devices that dampen the retraction velocity of needles used in connection with needle retracting safety vascular access devices, thus preventing blood splattering or dripping as the needle retracts into the housing.

2. BACKGROUND

During medical treatment, patients often require medication, blood, or fluids. The most efficient way of administering these substances is by depositing them directly into the patient's blood stream where the circulatory system quickly directs the substance to the target tissue or organ. Administering a substance directly into a patient's blood stream is most commonly accomplished by injection with a conventional needle and syringe. During the course of treatment, however, a patient will often require repeated or continuous doses of medications. It will be appreciated that repeated injections with conventional syringes can damage blood vessels and cause significant discomfort to the patient.

Therefore, when a patient requires repeated doses of medication or other substances, catheters are commonly used in the health care profession. In one common configuration, a catheter comprises a catheter adaptor and a hollow tubular cannula. The catheter adaptor and the catheter cannula are attached end-to-end. The catheter adaptor and cannula are usually constructed from a single mold such that a continuous fluid flow opening extends from the catheter adaptor to the catheter cannula. When the catheter is in use, the hollow tubular cannula is partially inserted into the patient's blood vessel, while the catheter adaptor remains outside where it can be accessed by medical personnel. A medication container is securely attached to the catheter adaptor. The medication flows through the catheter adaptor and cannula via the continuous fluid flow opening and directly into the patient's blood vessel. As such, the patient receives a continuous supply of medication without repeated injections with conventional needles and syringes.

Typically, a vascular access device is used to insert a catheter within a patient's blood vessel. A vascular access device generally comprises a housing, an introducer needle, and a catheter. The housing is used to grip the vascular access device during catheter insertion. The introducer needle is attached to the end of the housing and used to pierce the patient's skin and access the blood vessel. The catheter fits concentrically over the introducer needle and is held in place by friction engagement between a catheter adaptor and the housing. The relative lengths of the introducer needle and the catheter cannula are such that the tip of the introducer needle extends beyond the end of the catheter cannula when the catheter adaptor is attached to the housing.

In use, a clinician pierces the patient's skin with the introducer needle and locates the patient's blood vessel. Once the introducer needle is inserted into the patient's blood vessel, the patient's blood pressure causes blood to flow into the introducer needle. This "flashback" blood is allowed to exit into a chamber positioned within the housing. The chamber and housing are usually made of a clear or opaque material so that the clinician can see the flashback blood entering the chamber. Flashback blood in the chamber alerts the clinician that the blood vessel has been successfully punctured. With the introducer needle in the patient's blood vessel, the clinician detaches the catheter adaptor from the housing. The catheter cannula is then inserted into the patient's blood vessel by sliding the catheter cannula along the introducer needle until the desired length of the cannula is within the blood vessel. While holding the catheter in place, the introducer needle is removed by slowing pulling back on the housing leaving the catheter cannula within the patient's blood vessel.

It will be appreciated that the introducer needle is contaminated with the patient's blood and any blood borne diseases, such as HIV and hepatitis, the patient may carry. Exposed introducer needles, therefore, pose a health hazard to clinicians and other patients. To lessen the risk of accidental needle punctures or blood exposure, some vascular access devises are designed with spring retracting needles. Once the cannula is positioned within the patient's blood vessel, the clinician disengages a locking mechanism thus allowing the spring to propel the needle into the housing of the vascular access device. The housing completely encloses the needle, protecting the clinician from accidental needle punctures.

While spring retracted needle designs significantly cut down on accidental needle punctures, some improvements to the designs could be made. It will be appreciated that as the needle retracts, some blood will adhere to the needle through normal surface tension. Usually, this small amount of blood does not pose a threat to clinicians because it becomes enclosed by the housing. If the needle retracts too fast, however, blood on the needle may break the surface tension and splatter or drip on the patient or clinician. The potentially contaminated blood posses a serious health threat to the clinician and other medical personnel.

From the foregoing, it will be appreciated that it would be an advancement in the art to provide devices for slowing down or dampening the velocity of the needle as it retracts into the housing of the vascular access device.

It would also be an advancement if the dampening devices prevented blood from splattering or dripping during needle retraction.

It would be yet another advancement in the art if the dampening devices could be regulated to provide different degrees of dampening.

It would be a further advancement in the art if existing vascular access devices could be retrofit with the dampening devices.

Such dampening devices and methods are disclosed and claimed herein.

3. BRIEF SUMMARY AND OBJECTS OF THE INVENTION

The present invention relates to dampening devices and methods that dampen the retraction velocity of needles used in connection with semi-automatic needle retracting vascular access devices. These devices prevent splattering or dripping of blood during needle retraction. In addition, the dampening devices of the present invention can be modified to regulate the amount of dampening and can be retrofit to existing vascular access devices.

In one embodiment, a needle retracting safety vascular access device comprises a housing having a housing cavity. An introducer needle is positioned with its proximal end residing outside the housing and its distal end disposed within the housing cavity. As used herein, the term proximal means the end of the device furthest from the practitioner, and the term distal means the portion of the device closest to the practitioner. The introducer needle is placed in communication with a hub which holds the needle in place during insertion and retraction. The hub, in turn, is in communication with a spring retraction mechanism. A dampening device comprising a collapsible bladder is disposed within the housing cavity and positioned at the distal end of the needle. The distal end of the bladder has a bladder vent which allows ambient air in the bladder to exit. As the needle begins to retract into the housing cavity, the needle contacts the bladder which is filled with ambient air. The ambient air filled bladder dampens the velocity of the needle. Air is expelled through the bladder vent in a controlled manner by the pressure of the spring, thus allowing the needle to likewise retract in a controlled fashion.

In a second embodiment, a needle retracting safety vascular access device comprises a housing having a housing cavity. An introducer needle is positioned with its proximal end residing outside the housing and its distal end disposed within the housing cavity. The introducer needle is placed in communication with a hub which holds the needle in place during insertion and retraction. The hub, in turn, is in communication with a spring retraction mechanism. A dampening device comprising a piston is disposed within the housing cavity near the distal end of the needle. The piston is in communication with the needle so that it retracts concurrently with the needle during retraction. The piston has at least one wiping flange configured around the piston. The wiping flange creates a seal between the piston and the housing cavity. The housing additionally has at least one longitudinal vent groove carved into the housing cavity. As the needle and the piston move distally through the housing cavity during retraction, ambient air in the housing cavity is compressed by the piston thereby dampening the velocity of the needle. Air is expelled in a controlled manner through the longitudinal vent groove by the pressure of the spring, thus allowing the needle to likewise retract in a controlled fashion.

In a third embodiment, once again a needle retracting safety vascular access device comprises a housing having a housing cavity. The distal end of the housing also has a housing vent. An introducer needle is positioned with its proximal end residing outside the housing and its distal end disposed within the housing cavity. The introducer needle is placed in communication with a hub which holds the needle in place during insertion and retraction. The hub, in turn, is in communication with a spring retraction mechanism. A dampening device comprising a piston is disposed within the housing cavity and positioned at the distal end of the needle. The piston is in communication with the needle so that it retracts concurrently with the needle during needle retraction. The piston comprises a circumferential groove. The circumferential groove is completely filled with a viscous material so that it is in contact with the housing. As the needle and piston move distally during retraction, the resistance of the viscous material against the housing dampens the velocity of the needle, thus allowing the needle to retract in a slow and controlled fashion. Ambient air compressed during retraction is expelled out of the housing vent.

In a fourth embodiment, a needle retracting safety vascular access device comprises a housing having a housing cavity. An introducer needle is positioned with its proximal end residing outside the housing and its distal end disposed within the housing cavity. The distal end of the introducer needle has at least one needle flange. The introducer needle is placed in communication with a hub which holds the needle in place during insertion and retraction. The hub, in turn, is in communication with a spring retraction mechanism. A dampening member is disposed within the housing cavity and positioned at the distal end of the needle. The dampening member comprises at least one track. Disposed within the track is a viscous material, such as silicone. As the needle move distally during retraction, the flange slides down the track of the dampening member. The resistance of the flange against the viscous material disposed within the track dampens the velocity of the needle, thus allowing the needle to retract in a slow and controlled fashion.

In fifth embodiment, a needle retracting safety vascular access device comprises a housing having a housing cavity. An introducer needle is positioned with its proximal end residing outside the housing and its distal end disposed within the housing cavity. The introducer needle is placed in communication with a hub which holds the needle in place during insertion and retraction. The hub, in turn, is in communication with a coiled spring retraction mechanism. Disposed within the housing cavity is at least one spring compression node positioned distally of the spring. The node reduces the effective diameter of housing cavity. The spring compression node dampens the velocity of the needle by requiring that each individual coil radially contract before it can advance past the spring compression node and continue through the housing cavity. As each coil of the spring advances past the spring compression node, the hub, and hence introducer needle, is slowly urged distally until the introducer needle is completely within the housing cavity

These and other objects and advantages of the present invention will become more fully apparent by examination of the following description of the preferred embodiments and the accompanying drawings.

4. BRIEF DESCRIPTION OF THE DRAWINGS

The appended drawings will provide a better description of the invention briefly described above. These drawings only provide information concerning typical embodiments of the invention and are not limiting in scope.

FIG. 1 is a longitudinal cross sectional view of the collapsible bladder dampening device embodiment of the present invention showing the introducer needle prior to retraction and the collapsible bladder fully expanded.

FIG. 2 is a longitudinal cross sectional view of the collapsible bladder dampening device embodiment of the present invention showing the introducer needle after retraction and the collapsible bladder fully compressed.

FIG. 3 is a cross sectional view of the introducer needle locking mechanism of the present invention shown in a locked position.

FIG. 4 is a cross sectional view of the introducer needle locking mechanism of the present invention shown in an unlocked position.

FIG. 5 is a rear view of the housing of the collapsible bladder dampening device embodiment of the present invention showing the housing vent and bladder vent.

FIG. 6 is a longitudinal cross sectional view of the piston air dampening device embodiment of the present invention showing the introducer needle prior to retraction. FIG. 6a is a longitudinal cross sectional view of the piston air dampening device embodiment of the present invention showing the wiping flanges. FIG. 6b is a cross sectional view of the housing illustrating the longitudinal housing vent grooves.

FIG. 7 is a longitudinal cross sectional view of the piston air dampening device embodiment of the present invention showing the introducer needle after retraction.

FIG. 8 is a longitudinal cross sectional view of the viscous material-filled piston dampening device embodiment of the present invention showing the introducer needle prior to retraction. FIG. 8a is a longitudinal cross sectional view of the viscous material-filled piston.

FIG. 9 is a longitudinal cross sectional view of the viscous material-filled piston dampening device embodiment of the present invention showing the introducer needle after retraction.

FIG. 10 is a longitudinal cross sectional view of the needle flange dampening device embodiment of the present invention showing the introducer needle prior to retraction. FIG. 10a is a cross sectional view of the dampening member showing the dampening tracks and the needle flanges.

FIG. 11 is a longitudinal cross sectional view of the needle flange dampening device embodiment of the present invention showing the introducer needle after retraction.

FIG. 12 is a longitudinal cross sectional view of the spring compression node dampening device embodiment of the present invention showing the introducer needle prior to retraction.

FIG. 13 is a cross sectional view taken along line 13--13 in FIG. 12.

5. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference is now made to the figures wherein like parts are referred to by like numerals throughout. With particular reference to FIG. 1, the present invention is a vascular access device 10 shown prior to needle retraction. Vascular access device 10 generally comprises a housing 20 having a cylindrical interior housing cavity 22, a catheter 80, a hollow introducer needle 60, means for retracting introducer needle 60 into housing cavity 22 after use, and means for dampening the velocity and force at which the needle is retracted in housing cavity 22.

Housing 20 is cylindrically shaped and generally used to grip vascular access device 10. Housing 20 has a proximal housing 24 near introducer needle 60 and a distal housing 26. Proximal housing 24 has a generally cylindrical grease port 29. Housing 20 is typically made of a rigid plastic material. For reasons discussed in detail below, housing 20 is preferably made of a clear or opaque material so that the clinician can observe flashback blood entering housing 20 and a flashback chamber 66. Distal housing 26 is likewise constructed of a rigid material and has a housing vent 23. Distal housing 26 may be made from a unitary mold with proximal housing 24 or, as illustrated in FIG. 1, molded separately and secured to proximal housing 24 by, for example, adhesive means or other means well known in the art.

Housing 20 has a trigger grip 25 and a ramp grip 27. Additionally, proximate housing 24 is tapered near trigger grip 25. Together trigger grip 25, ramp grip 27, and tapered proximal end 24 allow the clinician to tightly and securely grip vascular access device 10. As best illustrated in FIG. 2, proximal housing 24 has a proximal housing aperture 28 which allows introducer needle 60 to enter housing cavity 22 during retraction. As best illustrated in FIGS. 3 and 4, a pair of opposing slots 30 and 31 run transversely and perpendicularly through proximal housing 24. A locking member 32 having a trigger 34 and a perpendicularly attached lock plate 36 is positioned near the proximal housing 24. More specifically, lock plate 36 is slidably received through opposed slots 31 and 32. A trigger recess 38 accommodates trigger 34 when it is depressed to initiate retraction of introducer needle 60. As best illustrated in FIG. 3, lock plate 36 has a keyhole-shaped lock aperture 40. Lock aperture 40, in turn, has a circular aperture portion 41 and a rectangular aperture portion 42.

As illustrated in FIGS. 1 and 2, disposed within housing cavity 22 is a generally cylindrical hollow hub 62. The interior cavity of hub 62 defines flashback chamber 66. Like housing 20, hub 62 is preferably made of a clear or opaque material so that clinicians can observe flashback blood enter hub 62 and flashback chamber 66. As illustrated by FIGS. 1 and 2, hub 62 is sized such that it can travel the entire length of housing cavity 22, from proximal housing 24 to distal housing 26. Hub 62 additionally comprises a proximal hub 63 and a distal hub 64. Proximate hub 63 has a reduced diameter relative to distal hub 64. As best illustrated in FIG. 2, the disparity in relative diameters defines a hub shoulder 68. As shown in FIG. 1, prior to needle retraction, hub shoulder 68 is positioned near proximal housing 24.

The distal end of introducer needle 60 extends through a proximal hub opening 65. Introducer needle 60 is in fluid communication with flashback chamber 66. The outer diameter of introducer needle 60 and the inner diameter of proximal hub opening 65 are dimensioned so that introducer needle 60 is sealingly secured to hub 62. The remainder of introducer needle 60 extends proximally from hub 62 and out housing 20 through needle passage aperture 28. The proximal end of introducer needle 60 has a beveled tip 61.

A coil spring 69, or other resilient member, concentrically fits over introducer needle 60 and proximal hub 63. The diameter of spring 69 is greater than the diameter of proximal hub 63 and circular aperture 41 of lock aperture 40, but smaller than the diameter of distal hub 64. Prior to retraction, spring 69 is compressed between lock plate 36 and hub shoulder 68 of hub 62. It will be appreciated by one skilled in the art that the resilience of the spring or the length of proximal hub 63 may be varied to control the velocity and force with which introducer needle 60 is retracted.

As best illustrated in FIG. 2, securely attached to the distal end of introducer needle 60, but proximal of hub 62, is a generally cylindrical catheter adaptor 72. Catheter adaptor 72 comprises a larger diameter proximal catheter adaptor 74 and a smaller diameter distal catheter adaptor 76. A gap between hub 62 and distal catheter adaptor 76 defines a circumferential groove 78. The width of circumferential groove 78 is approximately equal to or slightly greater than the width of lock plate 36. Distal catheter adaptor 76 is securely fastened to, or molded around, introducer needle 60.

As best illustrated in FIG. 2 and 3, prior to retraction, introducer needle 60 and catheter adaptor 72 extend through circular portion 41 of lock aperture 40 and beyond proximal housing aperture 28. Introducer needle 60 and catheter adaptor 72 are urged to this forward position with locking member 32 initially in a disengaged position. In a disengaged position, lock plate 36 is completely recessed within opposing slots 30 and 31 thereby aligning circular portion 41 of lock aperture 40 with introducer needle 60 and catheter adaptor 72. Introducer needle 60 and catheter adaptor 72 can then be passed through circular portion 41 of lock aperture 40, aligning lock plate 36 with circumferential groove 78. With lock plate 36 and circumferential groove 78 aligned, lock member 32 is raised so that the rectangular portion 42 of lock aperture 40 is positioned within in circumferential groove 78. Because the width of rectangular portion 42 is narrower than the diameter of distal catheter adaptor 76, introducer needle 60 and catheter adaptor 72 are held in a forward position against the force of spring 69.

Catheter 80 is concentrically positioned over introducer needle 60 and proximal catheter adaptor 74. Catheter 80 generally comprises a catheter housing 82 and a hollow tubular cannula 84. Catheter housing 82 and hollow tubular cannula 84 are sealingly coupled and in fluid communication. Catheter housing 82 has a interior circumferential cavity 86. Catheter housing cavity 86 concentrically fits over, and attaches via friction engagement with, proximal catheter adaptor 74. The friction engagement of proximal catheter adaptor 74 against catheter housing cavity 86 securely holds introducer needle 60 during catheter insertion.

Hollow tubular cannula 84 concentrically fits over introducer needle 60. The length of hollow tubular cannula 84 is shorter that the length of introducer needle 60 such that beveled tip 61 extends beyond the proximal end of hollow tubular cannula 84. Thus, during catheter insertion, beveled tip 61 is exposed and available to pierce the patient's skin and blood vessel. If an introducer needle with a mid-needle blood outlet is used, catheter cannula 84 is preferably constructed of a clear or opaque material which permits the clinician to see the flashback blood exiting the mid-needle blood outlet during catheter insertion.

In one embodiment shown in FIGS. 1 and 2, the vascular access device 10 of the present invention has a dampening adaptor 90. Dampening adaptor 90 has cylindrical interior bore 92, a proximal dampening adaptor 93, and a distal dampening adaptor 94. The outer diameter of proximal dampening adaptor 93 is smaller and is sealingly received by the larger inner diameter of a distal hub opening 67. Proximal dampening adaptor 93 is coupled to distal hub opening 67 by friction, adhesive or other engagement well known in the art. The proximal opening of interior bore 92 has an air permeable, but liquid impermeable, plug 70 which allows air displaced in flashback chamber 66 by flashback blood to pass into interior bore 92.

Distal dampening adaptor 94 has a circumferential guide ring 95 with a diameter slightly smaller than the diameter of housing cavity 22 of housing 20. Guide ring 95 keeps dampening adaptor 90 from moving laterally and uncoupling from distal hub opening 67 as introducer needle 60 and hub 62 retract into housing 20. Distal dampening adaptor 94 also has a bladder port 97.

A collapsible thin-walled bladder 96 is positioned distally of dampening adaptor 90. When expanded prior to needle retraction as shown in FIG. 1, is filled with ambient air and extends from the dampening adaptor 90 to distal housing 26. As best illustrated in FIG. 5, collapsible bladder 96 is air tight except for a bladder vent 99 at its distal end. The size of bladder vent 99 regulates the amount of dampening collapsible bladder 96 will provide during needle retraction. When properly positioned within the housing cavity 22, bladder vent 99 is aligned with housing vent 23. Bladder 96 is made of a material that allows bladder 96 to retain its fully expanded form without requiring bladder 96 to be connected to dampening adaptor 90. Bladder 96 may, however, be connected to dampening adaptor 90 via bladder port 97. As illustrated in FIG. 2, subsequent to retraction, collapsible bladder 96 is completely compressed in distal housing 26 near housing vent 23.

The force of spring 69 can additionally be dampened using grease port 29 which is in communication with housing cavity 22 and spring 69. High viscous silicone, for example, can be injected through grease port 29 to coat spring 69. The friction of the viscous silicone with housing cavity 22 will slow the velocity and force with which spring 69 retracts introducer needle 60 into housing cavity 22.

In practice, the clinician first punctures the skin with introducer needle 60 and locates the patient's blood vessel. Once introducer needle 60 punctures the blood vessel, blood travels distally through introducer needle 60 displacing air through plug 70 and bore 92. Once passed dampening adaptor 90, air can escape, for example, through the annular spaces between guide ring 95 and housing cavity 22, and out proximal housing aperture 28. The blood will eventually reach flashback chamber 66 alerting the clinician that the blood vessel has been successfully punctured and that introducer needle 60 should not be advanced further. Catheter housing 82 is then uncoupled from catheter adaptor 72 and catheter cannula 84 is advanced into the patient's blood vessel by sliding it along introducer needle 60.

While holding catheter 80 in place, the clinician depresses trigger 34 urging lock plate 36 downwardly and forcing rectangular portion 42 of lock aperture 40 out of circumferential groove 78 until circular portion 41 aligns with catheter adaptor 72. The diameter of catheter adaptor 72 being smaller than the diameter of circular portion 41 no longer opposes the force of spring 69 against lock plate 36 and shoulder 68 of hub 62. Consequently, spring 69 urges hub 62, and hence introducer needle 60, distally into housing cavity 22. Bladder 96 which is filled with ambient air dampens the force of spring 69 and slows down the velocity with which introducer needle 60 is retracted. The force of spring 69 being greater than the opposing force of bladder 96, causes the air to be expelled from bladder vent 99 of bladder 96 and out housing vent 23. Once the air is out of bladder 96, bladder 96 is completely compressed at the rear of distal housing 26 and introducer needle 60 is completely within housing cavity 22. With introducer needle 60 fully retracted, the clinician secures catheter 80 to the patient and connects medication to catheter housing 82 where it is deposited directly into the patient's blood stream.

In a second embodiment the vascular access device operates in the same manner as described above except that a different dampening mechanism is used. Like parts are referred to by like numerals except that in this embodiment they begin with the number "1," indicating the part belongs to the second embodiment. As illustrated in FIGS. 6-7, the vascular access device 110 of the present invention has a dampening adaptor 190. Dampening adaptor 190 has cylindrical interior bore 192, and a proximal dampening adaptor 193. The outer diameter of proximal dampening adaptor 193 is smaller than, and is sealingly received by, the larger inner diameter of distal hub opening 167, placing flashback chamber 166 and dampening adaptor 190 in fluid communication. Proximal dampening adaptor 193 is coupled to distal hub opening 167 by friction, adhesive or other engagement well known in the art.

The distal end of dampening adaptor 190 has a partially hollowed piston 194. Preferably, dampening adaptor 190 and piston 194 are formed from a single mold, although they may be molded separately and connected by, for example, adhesive or sonic engagement. Sealingly fitted within the distal end of bore 192 and up against piston 194 is an air permeable, but liquid impermeable, plug 198 constructed of a low density polyethylene or similar material well known by those in the art. Carved out of dampening adaptor 190 adjacent to piston 194 are radial air vents 197 which permit air displaced from flashback chamber 166 during catheter insertion to exit dampening adaptor 190. As best illustrated in FIG. 6A, piston 194 has a plurality of circumferential wiper flanges 196. Wiper flanges 196 extend radially from piston 194 and contact housing cavity 122. Wiping flanges 196 create a sliding air seal against housing cavity 122 as piston 194 moves distally during needle retraction. As best illustrated in 6B, carved into housing cavity 122 are a plurality of longitudinal vent grooves 191. It will be appreciated by one skilled in the art that other designs which incorporate the general dampening theory may be designed. For example, rather than having longitudinal vent grooved 191 carved into housing cavity 122, similar units could be incorporated into piston 194.

In practice, the clinician first punctures the skin with introducer needle 160 and locates the patient's blood vessel. Once introducer needle 160 punctures the blood vessel, blood travels distally through introducer needle 160 displacing air through plug 198 and out radial vents 197. Once passed radial vents 197, air can exit housing 120 through the annular spaces between hub 162 and housing cavity 122, and out proximal housing aperture 128. The blood will eventually reach flashback chamber 166 alerting the clinician that the blood vessel has been successfully punctured and that introducer needle 160 should not be advanced further. Catheter housing 182 is then uncoupled from catheter adaptor 172 and catheter cannula 184 is advanced into the patient's blood vessel by sliding it along introducer needle 160.

While holding catheter 180 in place, the clinician depresses trigger 134, urging lock plate 136 downwardly and disengaging locking member 132. Consequently, spring 169 urges hub 162, and hence introducer needle 160, distally into housing cavity 122. As damping adaptor 190 moves distally from the force of spring 169, wiper flanges 196 create an air tight seal around piston 194. Ambient air in housing cavity 122 is compressed by piston 194 thereby dampening the velocity of introducer needle 160. Air is slowly expelled through longitudinal vent grooves 191, thus allowing introducer needle 160 to retract. As shown in FIG. 7, once introducer needle 160 is completely within housing cavity 122, the clinician secures catheter 180 to the patient and connects medication to catheter housing 182 where it is deposited directly into the patient's blood stream.

In a third embodiment the vascular access device operates in the same manner as described above except that a different dampening mechanism is used. Like parts are referred to by like numerals except that in this embodiment they begin with the number "2," indicating the part belongs to the third embodiment. As illustrated in FIGS. 8-9, the vascular access device 210 of the present invention has a dampening adaptor 290. Dampening adaptor 290 has a cylindrical interior bore 292, and a proximal dampening adaptor 293. The outer diameter of proximal dampening adaptor 293 is smaller than, and is sealingly received by, the larger inner diameter of distal hub opening 267, placing flashback chamber 266 and dampening adaptor 290 in fluid communication. Proximal dampening adaptor 293 is coupled to distal hub opening 267 by friction, adhesive or other engagement well known in the art.

The distal end of dampening adaptor 290 has a piston 294. Preferably, dampening adaptor 290 and piston 294 are formed from a single mold, although they may be molded separately and connected by, for example, adhesive engagement. Piston 294 has a circumferential groove 295. As best illustrated in FIG. 8A, piston 294 and circumferential groove 295 together define a piston hub 289. In turn, hub 289 has a center silicone port 288 and a plurality of radial silicone channels 287. After dampening adaptor 290 has been positioned within housing cavity 222, a high density silicone-based composition 291, or other viscous material, is injected into silicone port 288. Silicone 291 travels through radial silicone channels 287 until circumferential groove 295 is completely filled. The air displaced from circumferential groove 295 exits distally through an annular space between housing cavity 222 and the distal end of piston.

Proximately of circumferential groove 295, piston 294 has an o-ring 296 which creates a seal with inner housing cavity 222. 0-ring 296 ensures that silicone 291 does not leak from circumferential groove 295 as piston 294 travels distally through housing cavity 222. A second o-ring at the proximal end of piston 294 is generally not required because the force of piston 294 moving distally tends to keep silicone 288 within circumferential groove 295. However, depending on the assembly process or operation, a second o-ring may be placed distally of circumferential groove 295 so that silicone 291 does not leak out for whatever reason piston 294 is moved proximally. The friction caused by the additional o-ring against housing cavity 222 will also provide extra dampening. It will be appreciated that if a second o-ring is included, provisions, such as a pinhole, may be required to allow air in circumferential groove 295 to be displaced when silicone 291 is injected into silicone part 288.

Sealingly fitted in bore 292 and up against piston 294 is an air permeable, but liquid impermeable, plug 298 constructed of a low density polyethylene or similar material well known by those in the art. Carved out of dampening adaptor 290 and adjacent to piston 294 are radial air vents 297 which permit air displaced from flashback chamber 266 during catheter insertion to exit dampening adaptor 290.

In practice, the clinician first punctures the skin with introducer needle 260 and locates the patient's blood vessel. Once introducer needle 260 punctures the blood vessel, blood travels distally through introducer needle 260 displacing air through plug 298 and out radial vents 297. The blood will eventually reach flashback chamber 266 alerting the clinician that the blood vessel has been successfully punctured and that introducer needle 260 should not be advanced further. Catheter housing 282 is then uncoupled from catheter adaptor 272 and catheter cannula 284 is advanced into the patient's blood vessel by sliding it along introducer needle 260.

While holding catheter 280 in place, the clinician depresses trigger 234, urging lock plate 236 downwardly and disengaging locking member 232. Consequently, spring 269 urges hub 262, and hence introducer needle 260, distally into housing cavity 222. As damping adaptor 290 moves distally from the force of spring 269, the friction of silicone 291 and o-ring 296 against housing cavity 222 dampens the velocity and force with which introducer needle 260 is retracted. Depending on the size of housing vent 223, ambient air in housing cavity 222 is compressed providing additional dampening. As shown in FIG. 9, once introducer needle 260 is completely within housing cavity 222, the clinician secures catheter 280 to the patient and connects medication to catheter housing 282 where it is deposited directly into the patient's blood stream.

In a fourth embodiment the vascular access device operates in the same manner as described above except that a different dampening mechanism is used. Like parts are referred to by like numerals except that in this embodiment they begin with the number "3." As illustrated in FIGS. 10-11, the vascular access device 310 has a generally hollow cylindrical dampening member 390 having an interior cavity 391. Dampening member 390 is positioned in distal housing 326. As best illustrated in FIG. 10A, running the entire length of interior cavity 391 are opposing tracks 392 and 393 which are at least partially filled with a high viscosity silicone 394 or other viscous material. With continued reference to FIG. 10A, the distal end of introducer needle 360 has a pair of opposing flanges 395 and 396 which are sized to fit within opposing tracks 392 and 393 of dampening member 390. Prior to needle retraction, the distal end of introducer needle 360 is partially recessed within dampening member 390.

In practice, the clinician first punctures the skin with introducer needle 360 and locates the patient's blood vessel. Once introducer needle 360 punctures the blood vessel, catheter housing 382 is then uncoupled from catheter adaptor 372 and catheter cannula 384 is advanced into the patient's blood vessel by sliding it along introducer needle 360. While holding catheter 380 in place, the clinician depresses trigger 334, urging lock plate 336 downwardly and disengaging locking member 332. Consequently, spring 369 urges hub 362, and hence introducer needle 360, distally into housing cavity 322. The velocity of introducer needle 360 is dampened by the friction of silicone 394 in tracks 392 and 393 with flanges 395 and 396. As shown in FIG. 11, once introducer needle 360 is completely within housing cavity 322, the clinician secures catheter 380 to the patient and connects medication to catheter housing 382 where it is deposited directly into the patient's blood stream.

In a fifth embodiment, the vascular access device operates in the same manner as described above except that a different dampening mechanism is used. Like parts are referred to by like numerals except that in this embodiment they begin with the number "4." As illustrated in FIGS. 12, the vascular access device 410 has a generally cylindrical housing 420 having an interior cavity 422. Disposed within housing cavity 422 is a generally cylindrical hollow hub 462. The interior cavity of hub 462 partially defines a flashback chamber 466. Hub 462 is sized such that it can travel the entire length of housing cavity 422. Prior to needle retraction, the proximal face of hub 462 is positioned near a proximal housing 424 and against a lock plate 436. Hub 462 additionally comprises a proximal hub 463 and a distal hub 464. Proximal hub 463 has a reduced diameter relative to distal hub 464. The disparity in relative diameters defines a hub shoulder 468. As best illustrated by FIG. 12, hub 462 also has a pair of longitudinal channels 494 running through distal hub 464. A damping adaptor 490, and more particularly guide ring 495, has a similar pair of longitudinal channels (not shown).

A coil spring 469, or similar resilient member, concentrically fits over introducer needle 460 and proximal hub 463. The diameter of spring 469 is greater than the diameter of proximal hub 463, but smaller than the diameter of distal hub 464. Prior to retraction, spring 469 is compressed between lock plate 436 and hub shoulder 468 of hub 462. Disposed within, or molded as part of, housing cavity 422, are a plurality of spring compression node 491. Spring compression nodes 491 are located distally of spring 469. As shown in FIG. 12, prior to needle retraction, some of the spring compression nodes 491 may reside within longitudinal channels 494 of distal hub 464. It will be appreciated by those skilled in the art that the number, position and size of compression nodes 491 may vary depending on the amount of dampening desired.

In practice, the clinician first punctures the skin with introducer needle 460 and locates the patient's blood vessel. Once introducer needle 460 punctures the blood vessel, blood travels distally through introducer needle 460 displacing air through plug 470. The blood will eventually reach the distal end of introducer needle 460 and exit into flashback chamber 466, alerting the clinician that the blood vessel has been successfully punctured and that introducer needle 460 should not be advanced further. Catheter housing 482 is then uncoupled from catheter adaptor 472 and catheter cannula 484 is advanced into the patient's blood vessel by sliding it along introducer needle 460.

While holding catheter 480 in place, the clinician depresses trigger 434 urging lock plate 436 downwardly and disengaging locking member 432. Consequently, spring 469 begins to elongate. The velocity of introducer needle 460 is dampened by spring compression nodes 491 which require that each individual coil of spring 469 radially contract before it can advance passed spring compression nodes 491 and continue through housing cavity 422. As each coil of spring 469 advances past spring compression node 491, hub 462, and hence introducer needle 460, is urged distally into housing cavity 422. Once introducer needle 460 is completely within housing cavity 422, the clinician secures catheter 480 to the patient and connects medication to catheter housing 482 where it is deposited directly into the patient's blood stream.

6. SUMMARY

After use, introducer needles are contaminated with the patient's blood and any blood borne diseases, such as HIV and hepatitis, the patient may carry. Exposed introducer needles, therefore, pose a health hazard to clinicians and other patients. To lessen the risk of accidental needle punctures or blood exposure, some vascular access devises are designed with spring retracting needles where the housing completely encloses the needle, protecting the clinician from accidental needle punctures.

While spring retracted needle designs significantly cut down on accidental needle punctures, some improvements to the designs could be made. For example, some blood will adhere to the needle through normal surface tension. Usually, this small amount of blood does not pose a threat to clinicians because it becomes enclosed by the housing. If the needle retracts too fast, however, blood on the needle may break the surface tension and splatter or drip on the patient or clinician. The potentially contaminated blood posses a serious health threat to the clinician and other medical personnel.

The present invention relates to dampening devices and methods that dampen the retraction velocity of needles used in connection with semi-automatic needle retracting vascular access devices. These devices prevent splattering or dripping of blood during needle retraction. In addition, the dampening devices of the present invention can be modified to regulate the amount of dampening and can be retrofit to existing vascular access devices.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US2629376 *15 juil. 194924 févr. 1953SedatInjection syringe
US2756748 *5 janv. 195231 juil. 1956Becton Dickinson CoSyringe
US3581956 *26 sept. 19681 juin 1971Hamilton CoSyringe plunger head
US4813937 *29 févr. 198821 mars 1989Vaillancourt Vincent LAmbulatory disposable infusion delivery system
US4863072 *18 août 19875 sept. 1989Robert PerlerSingle hand operable dental composite package
US4955869 *3 févr. 198911 sept. 1990Vabin International S.R.L.Disposable safety syringe with a hypodermic needle
US5047016 *5 déc. 198910 sept. 1991Stuart M. DolginFluid passing apparatus with means for covering the same
US5064419 *8 juil. 198812 nov. 1991Gaarde Knud WDisposable hypodermic syringe
US5090961 *4 oct. 198925 févr. 1992Poltavsky Meditsinsky Stomatologyichesky InstitutSingle use syringe
US5171300 *16 avr. 199215 déc. 1992Medtech Group, Inc.Disposable hypodermic syringe
US5215533 *17 sept. 19901 juin 1993Robb Pascal Patent Pty. Ltd.Safety syringe incorporating vacuum retraction of the needle
US5263933 *8 juil. 199223 nov. 1993Patco Ventures Ltd.Safety syringe needle device with interchangeable and retractable needle platform
US5330430 *6 déc. 199319 juil. 1994Sullivan Robert JRetractable syringe applicator
US5405327 *29 juil. 199411 avr. 1995Chen; Long-HsiungSimplified safety syringe with retractable self-biased needle and minimized plunger
US5407436 *10 avr. 199218 avr. 1995Safe-T-Limited Of Laurel HouseSyringe with retractable needle
US5501675 *27 déc. 199426 mars 1996Becton, Dickinson And CompanySafety catheter assembly having safety stop push button
US5562629 *23 déc. 19948 oct. 1996Haughton; Victor M.Catheter placement system utilizing a handle, a sharp, and a releasable retainer mechanism providing retraction of the sharp upon disengagement of the catheter from the handle
US5575777 *10 avr. 199519 nov. 1996Becton Dickinson And CompanyRetractable needle cannula insertion set with refinements to better control leakage, retraction speed and reuse
US5702367 *29 juil. 199630 déc. 1997Becton Dickinson And CompanyRetractable-needle cannula insertion set with refinements to better control leakage, retraction speed, and reuse
US5785687 *11 mars 199728 juil. 1998Saito; YoshikuniSyringe assembly
US5797880 *5 sept. 199625 août 1998Becton And Dickinson And CompanyCatheter and placement needle assembly with retractable needle
US5817058 *23 déc. 19966 oct. 1998Shaw; Thomas J.Retractable catheter introducer structure
US5827221 *6 mai 199627 oct. 1998Phelps; David Y.Needle device
US5843034 *28 oct. 19941 déc. 1998Lok-Tek International Ltd.Hypodermic syringe with retractable needle mount
US5865803 *19 mai 19972 févr. 1999Major; MiklosSyringe device having a vented piston
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US6835190 *17 avr. 200228 déc. 2004Smiths Medical Asd, Inc.Retractable safety infusion needle
US687219326 oct. 200129 mars 2005Retractable Technologies, Inc.IV catheter introducer with retractable needle
US698196531 oct. 20013 janv. 2006Luther Research Partners LlcUniversal passive protector for an IV catheter
US699421328 août 20027 févr. 2006Becton, Dickinson And CompanyPackaging for push button blood collection set
US7025774 *19 avr. 200211 avr. 2006Pelikan Technologies, Inc.Tissue penetration device
US703729227 juin 20032 mai 2006Sherwood Services AgSafety needle shield apparatus
US761148622 sept. 20063 nov. 2009Tyco Healthcare Group LpNeedle retraction structure
US764846831 déc. 200219 janv. 2010Pelikon Technologies, Inc.Method and apparatus for penetrating tissue
US76547356 oct. 20062 févr. 2010Covidien AgElectronic thermometer
US766614928 oct. 200223 févr. 2010Peliken Technologies, Inc.Cassette of lancet cartridges for sampling blood
US766615029 avr. 200423 févr. 2010Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US767423231 déc. 20029 mars 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US768231812 juin 200223 mars 2010Pelikan Technologies, Inc.Blood sampling apparatus and method
US769979112 juin 200220 avr. 2010Pelikan Technologies, Inc.Method and apparatus for improving success rate of blood yield from a fingerstick
US770870118 déc. 20024 mai 2010Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device
US771321418 déc. 200211 mai 2010Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US771786331 déc. 200218 mai 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US772716819 juin 20071 juin 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US773166816 juil. 20078 juin 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US773169211 juil. 20058 juin 2010Covidien AgDevice for shielding a sharp tip of a cannula and method of using the same
US773172913 févr. 20078 juin 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US773634230 mai 200715 juin 2010Smiths Medical Asd, Inc.Enclosed needle cannula device with proximal end cap
US774061518 avr. 200822 juin 2010Retractable Technologies, Inc.IV catheter introducer with retractable needle—continuation
US774917412 juin 20026 juil. 2010Pelikan Technologies, Inc.Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US775387822 sept. 200613 juil. 2010Tyco Healthcare Group LpSafety needle with lockout mechanism
US778527218 nov. 200531 août 2010Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US778529227 mai 200531 août 2010Ethicon Endo-Surgery, Inc.Injection device
US780312330 avr. 200428 sept. 2010Roche Diagnostics Operations, Inc.Lancet device having capillary action
US780686010 mars 20065 oct. 2010Global Medisafe Holdings LimitedSafety syringe with plunger locking means
US78224543 janv. 200526 oct. 2010Pelikan Technologies, Inc.Fluid sampling device with improved analyte detecting member configuration
US782437822 sept. 20062 nov. 2010Tyco Healthcare Group LpNon-axial return spring for safety needle
US782874922 nov. 20069 nov. 2010Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US782877311 juil. 20059 nov. 2010Covidien AgSafety reset key and needle assembly
US783317113 févr. 200716 nov. 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US78506217 juin 200414 déc. 2010Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US785062222 déc. 200514 déc. 2010Pelikan Technologies, Inc.Tissue penetration device
US785065011 juil. 200514 déc. 2010Covidien AgNeedle safety shield with reset
US786252020 juin 20084 janv. 2011Pelikan Technologies, Inc.Body fluid sampling module with a continuous compression tissue interface surface
US787499416 oct. 200625 janv. 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US787504725 janv. 200725 janv. 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US78921833 juil. 200322 févr. 2011Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US789218530 sept. 200822 févr. 2011Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US790136231 déc. 20028 mars 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US79013638 janv. 20048 mars 2011Roche Diagnostics Operations, Inc.Body fluid sampling device and methods of use
US790136521 mars 20078 mars 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US790137727 mai 20058 mars 2011Cilag Gmbh InternationalInjection device
US790585711 juil. 200515 mars 2011Covidien AgNeedle assembly including obturator with safety reset
US790977526 juin 200722 mars 2011Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US790977729 sept. 200622 mars 2011Pelikan Technologies, IncMethod and apparatus for penetrating tissue
US790977820 avr. 200722 mars 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US79144658 févr. 200729 mars 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US793878729 sept. 200610 mai 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US797647616 mars 200712 juil. 2011Pelikan Technologies, Inc.Device and method for variable speed lancet
US797649827 avr. 200712 juil. 2011Tyco Healthcare Group LpNeedle assembly including obturator with safety reset
US798105522 déc. 200519 juil. 2011Pelikan Technologies, Inc.Tissue penetration device
US798105618 juin 200719 juil. 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US798521615 mars 200526 juil. 2011Dali Medical Devices Ltd.Medicinal container engagement and automatic needle device
US798864421 mars 20072 août 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US79886453 mai 20072 août 2011Pelikan Technologies, Inc.Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US800744619 oct. 200630 août 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US801677422 déc. 200513 sept. 2011Pelikan Technologies, Inc.Tissue penetration device
US802163120 juil. 200920 sept. 2011Roche Diagnostics Operations, Inc.Body fluid testing device
US804331730 oct. 200125 oct. 2011Roche Diagnostics Operations, Inc.System for withdrawing blood
US804803112 mai 20091 nov. 2011Retractable Technologies, Inc.IV catheter introducer
US804809813 juil. 20061 nov. 2011Bayer Healthcare LlcLancing device for one skin puncture
US806223111 oct. 200622 nov. 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US807996010 oct. 200620 déc. 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US811405011 mai 200614 févr. 2012Unitract Syringe Pty LtdControlled retraction syringe and plunger therefor
US812370026 juin 200728 févr. 2012Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US812370113 mai 201028 févr. 2012Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US814273319 oct. 200527 mars 2012Bayer Healthcare LlcSensor-dispensing device and mechanism for extracting sensor
US815774810 janv. 200817 avr. 2012Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US816288929 sept. 201024 avr. 2012Covidien AgSafety reset key and needle assembly
US816783718 avr. 20061 mai 2012Unitract Syringe Pty Ltd.Controlled retraction syringe and plunger therefor
US819237221 juil. 20105 juin 2012Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US819742116 juil. 200712 juin 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US819742314 déc. 201012 juin 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US820223123 avr. 200719 juin 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US820631722 déc. 200526 juin 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US820631926 août 201026 juin 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US821103722 déc. 20053 juil. 2012Pelikan Technologies, Inc.Tissue penetration device
US821615423 déc. 200510 juil. 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US822133422 déc. 201017 juil. 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US823154913 mai 201031 juil. 2012Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US823591518 déc. 20087 août 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US824046821 avr. 200614 août 2012Becton, Dickinson And CompanyPrepackaged medical device and packaging tray
US825192110 juin 201028 août 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US825727618 févr. 20104 sept. 2012Roche Diagnostics Operations, Inc.Lancet device having capillary action
US82572772 août 20104 sept. 2012Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US82626141 juin 200411 sept. 2012Pelikan Technologies, Inc.Method and apparatus for fluid injection
US826787030 mai 200318 sept. 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling with hybrid actuation
US827741427 mai 20052 oct. 2012Cilag Gmbh InternationalInjection device
US828257629 sept. 20049 oct. 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
US828257715 juin 20079 oct. 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US829691823 août 201030 oct. 2012Sanofi-Aventis Deutschland GmbhMethod of manufacturing a fluid sampling device with improved analyte detecting member configuration
US830361512 mars 20076 nov. 2012Bayer Healthcare LlcLancet-eject mechanism
US831346327 mai 200520 nov. 2012Cilag Gmbh InternationalInjection device
US831346427 mai 200520 nov. 2012Cilag Gmbh InternationalInjection device
US831346527 mai 200520 nov. 2012Cilag Gmbh InternationalInjection device
US831775121 mars 200627 nov. 2012Cilag Gmbh InternationalInjection device
US833378222 sept. 201118 déc. 2012Bayer Healthcare LlcLancing device for one skin puncture
US833742116 déc. 200825 déc. 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US834311027 mai 20051 janv. 2013Cilag Gmbh InternationalInjection device
US834889420 juin 20118 janv. 2013Covidien LpNeedle assembly including obturator with safety reset
US83538123 juin 200915 janv. 2013Neovista, Inc.Handheld radiation delivery system
US83571041 nov. 200722 janv. 2013Coviden LpActive stylet safety shield
US836099123 déc. 200529 janv. 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US836099225 nov. 200829 janv. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US83666373 déc. 20085 févr. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US836666921 mars 20065 févr. 2013Cilag Gmbh InternationalInjection device
US837201630 sept. 200812 févr. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US837699815 sept. 200419 févr. 2013Elcam Medical Agricultural Cooperative Association Ltd.Automatic injection device
US83826826 févr. 200726 févr. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US83826837 mars 201226 févr. 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US83830417 sept. 201126 févr. 2013Roche Diagnostics Operations, Inc.Body fluid testing device
US838855127 mai 20085 mars 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for multi-use body fluid sampling device with sterility barrier release
US84038641 mai 200626 mars 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US841450316 mars 20079 avr. 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US841968729 avr. 201016 avr. 2013Covidien AgDevice for shielding a sharp tip of a cannula and method of using the same
US843082826 janv. 200730 avr. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for a multi-use body fluid sampling device with sterility barrier release
US843519019 janv. 20077 mai 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US843987226 avr. 201014 mai 2013Sanofi-Aventis Deutschland GmbhApparatus and method for penetration with shaft having a sensor for sensing penetration depth
US848601530 janv. 200616 juil. 2013Covidien AgSafety needle shield apparatus
US849150016 avr. 200723 juil. 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US849660116 avr. 200730 juil. 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US851229519 août 201020 août 2013West Pharmaceutical Services, Inc.Rigid needle shield
US852378430 avr. 20043 sept. 2013Roche Diagnostics Operations, Inc.Analytical device with lancet and test element
US852380929 avr. 20103 sept. 2013Covidien AgDevice for shielding a sharp tip of a cannula and method of using the same
US8551054 *5 mai 20098 oct. 2013Shl Group AbDevice for a medicament delivery device
US855682927 janv. 200915 oct. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US856254516 déc. 200822 oct. 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US857449617 janv. 20135 nov. 2013Roche Diagnostics Operations, Inc.Body fluid testing device
US857489530 déc. 20035 nov. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US85798316 oct. 200612 nov. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US859147322 sept. 200626 nov. 2013Covidien LpManually retracted safety needle with rigid wing structure
US86171953 août 200631 déc. 2013Bayer Healthcare LlcLancing device
US862293018 juil. 20117 janv. 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US86229581 juin 20107 janv. 2014Covidien LpSafety needle with lockout mechanism
US86366731 déc. 200828 janv. 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US863675811 oct. 201128 janv. 2014Roche Diagnostics Operations, Inc.System for withdrawing blood
US864164327 avr. 20064 févr. 2014Sanofi-Aventis Deutschland GmbhSampling module device and method
US864164423 avr. 20084 févr. 2014Sanofi-Aventis Deutschland GmbhBlood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US865283126 mars 200818 févr. 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte measurement test time
US866865631 déc. 200411 mars 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for improving fluidic flow and sample capture
US867903316 juin 201125 mars 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US869079629 sept. 20068 avr. 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US86907983 mai 20128 avr. 2014Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US869659622 déc. 200915 avr. 2014Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US870262429 janv. 201022 avr. 2014Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US87216716 juil. 200513 mai 2014Sanofi-Aventis Deutschland GmbhElectric lancet actuator
US874081330 juil. 20123 juin 2014Roche Diagnostics Operations, Inc.Methods and apparatus for expressing body fluid from an incision
US878433525 juil. 200822 juil. 2014Sanofi-Aventis Deutschland GmbhBody fluid sampling device with a capacitive sensor
US87844443 mars 200622 juil. 2014Bayer Healthcare LlcLancet release mechanism
US880820115 janv. 200819 août 2014Sanofi-Aventis Deutschland GmbhMethods and apparatus for penetrating tissue
US882820320 mai 20059 sept. 2014Sanofi-Aventis Deutschland GmbhPrintable hydrogels for biosensors
US883441715 juil. 201016 sept. 2014Covidien AgNeedle assembly with removable depth stop
US883441910 juin 200916 sept. 2014Cilag Gmbh InternationalReusable auto-injector
US88455492 déc. 200830 sept. 2014Sanofi-Aventis Deutschland GmbhMethod for penetrating tissue
US88455503 déc. 201230 sept. 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US884559410 juin 200930 sept. 2014Cilag Gmbh InternationalAuto-injector with filling means
US886478317 déc. 201321 oct. 2014Bayer Healthcare LlcLancing device
US890594529 mars 20129 déc. 2014Dominique M. FreemanMethod and apparatus for penetrating tissue
US893995810 juin 200927 janv. 2015Cilag Gmbh InternationalFluid transfer assembly for a syringe
US894591019 juin 20123 févr. 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
US8951228 *11 mars 201010 févr. 2015Stat Medical Devices, Inc.IV infusion system device having retractable needle and method of making and using the same
US895632818 juil. 201317 févr. 2015Luther Needlesafe Products, Inc.Low profile passive protector for an I.V. catheter
US896547618 avr. 201124 févr. 2015Sanofi-Aventis Deutschland GmbhTissue penetration device
US896823621 mars 20063 mars 2015Cilag Gmbh InternationalInjection device
US89862238 mai 201224 mars 2015Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US900516721 sept. 201014 avr. 2015Covidien LpNon-axial return spring for safety needle
US902845129 mai 200712 mai 2015Cilag Gmbh InternationalInjection device
US902845310 juin 200912 mai 2015Cilag Gmbh InternationalReusable auto-injector
US903463926 juin 201219 mai 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US90445527 avr. 20102 juin 2015Stat Medical Devices, Inc.Needle safety system and method
US90558983 mars 200616 juin 2015Bayer Healthcare LlcLancet release mechanism
US907283329 mai 20077 juil. 2015Cilag Gmbh InternationalInjection device
US907284231 juil. 20137 juil. 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US908485427 juin 201321 juil. 2015West Pharmaceutical Services, Inc.Rigid needle shield
US908929416 janv. 201428 juil. 2015Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US908967821 mai 201228 juil. 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US914440112 déc. 200529 sept. 2015Sanofi-Aventis Deutschland GmbhLow pain penetrating member
US918646814 janv. 201417 nov. 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US92159933 mai 201322 déc. 2015Roche Diagnostics Operations, Inc.Analytical device with lancet and test element
US92266999 nov. 20105 janv. 2016Sanofi-Aventis Deutschland GmbhBody fluid sampling module with a continuous compression tissue interface surface
US924826718 juil. 20132 févr. 2016Sanofi-Aventis Deustchland GmbhTissue penetration device
US925953323 mars 200916 févr. 2016Covidien LpSafety needle with spring biased retraction mechanism
US92614761 avr. 201416 févr. 2016Sanofi SaPrintable hydrogel for biosensors
US931419411 janv. 200719 avr. 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US933961216 déc. 200817 mai 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US935168014 oct. 200431 mai 2016Sanofi-Aventis Deutschland GmbhMethod and apparatus for a variable user interface
US935834631 août 20127 juin 2016Cilag Gmbh InternationalNeedle assembly for a prefilled syringe system
US937516929 janv. 201028 juin 2016Sanofi-Aventis Deutschland GmbhCam drive for managing disposable penetrating member actions with a single motor and motor and control system
US937517514 nov. 201328 juin 2016Ascensia Diabetes Care Holdings AgLancing device
US938694410 avr. 200912 juil. 2016Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte detecting device
US942753229 sept. 201430 août 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US94337588 juil. 20146 sept. 2016Sean S. FarleyIntravascular catheter insertion device
US949816029 sept. 201422 nov. 2016Sanofi-Aventis Deutschland GmbhMethod for penetrating tissue
US95047861 juil. 201329 nov. 2016Covidien AgSafety needle shield apparatus
US956099320 déc. 20137 févr. 2017Sanofi-Aventis Deutschland GmbhBlood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US956100010 déc. 20137 févr. 2017Sanofi-Aventis Deutschland GmbhMethod and apparatus for improving fluidic flow and sample capture
US9586027 *7 mai 20137 mars 2017Medline Industries, Inc.Retractable needle catheter insertion device
US962268820 juin 201418 avr. 2017Ascensia Diabetes Care Holdings AgLancet-release mechanism
US964944121 mars 200616 mai 2017Cilag Gmbh InternationalInjection device (bayonet cap removal)
US967575727 mai 200513 juin 2017Cilag Gmbh InternationalInjection device
US967575827 mai 200513 juin 2017Cilag Gmbh InternationalInjection device
US968219410 juin 200920 juin 2017Cilag Gmbh InternationalRe-useable auto-injector with filling means
US96941443 déc. 20134 juil. 2017Sanofi-Aventis Deutschland GmbhSampling module device and method
US97240218 déc. 20148 août 2017Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US97310803 avr. 200615 août 2017Cilag Gmbh InternationalInjection device
US975752030 mai 200712 sept. 2017Cilag Gmbh InternationalInjection device
US977055827 sept. 200526 sept. 2017Cilag Gmbh InternationalAuto-injection device with needle protecting cap having outer and inner sleeves
US97755531 oct. 20083 oct. 2017Sanofi-Aventis Deutschland GmbhMethod and apparatus for a fluid sampling device
US97953349 juil. 200724 oct. 2017Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US97957472 juin 201124 oct. 2017Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US980200718 nov. 201331 oct. 2017Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US20030062281 *28 août 20023 avr. 2003Giard John A.Packaging for push button blood collection set
US20030078540 *23 oct. 200224 avr. 2003Becton, Dickinson And CompanyRetractable needle assembly
US20030153939 *28 févr. 200114 août 2003Michael FritzBlood lancet with hygienic tip protection
US20030187360 *4 avr. 20032 oct. 2003Milton WanerInfrared assisted monitoring of a catheter
US20030199830 *17 avr. 200223 oct. 2003Nguyen Steven HuuRetractable safety infusion needle
US20030199895 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20040019280 *27 mai 200329 janv. 2004Milton WanerInfrared assisted monitoring of a catheter
US20040181192 *10 mars 200416 sept. 2004Cuppy Michael JohnVascular access device and method of using same
US20040267200 *27 juin 200330 déc. 2004Carlyon James L.Safety needle shield apparatus
US20050004494 *30 avr. 20046 janv. 2005Perez Edward P.Lancet device having capillary action
US20050131350 *25 janv. 200516 juin 2005Shaw Thomas J.IV catheter introducer with retractable needle
US20050232815 *23 juin 200520 oct. 2005Werner RuhlBody fluid testing device
US20060189936 *30 janv. 200624 août 2006Carlyon James LSafety needle shield apparatus
US20070066937 *22 sept. 200622 mars 2007Tyco Healthcare Group LpSafety needle with lockout mechanism
US20070066960 *22 sept. 200622 mars 2007Tyco Healthcare Group LpNeedle retraction structure
US20070219573 *20 avr. 200720 sept. 2007Dominique FreemanMethod and apparatus for penetrating tissue
US20080021296 *19 oct. 200524 janv. 2008Creaven John PSensor-Dispensing Device And Mechanism For Extracting Sensor
US20080097307 *7 juin 200524 avr. 2008Global Medisafe Holdings Pty LimitedRetractable Needle for a Syringe
US20080097503 *8 sept. 200524 avr. 2008Creaven John PDamping System for a Lancet Using Compressed Air
US20080208119 *10 mars 200628 août 2008Global Medisafe Holdings LimitedSafety Syringe With Retractable Needle Utilising Spring Clip On Plunger
US20080208122 *8 avr. 200628 août 2008Global Medisafe Holdings LimitedControlling the Retraction of a Needle in an Auto Retractable Syringe
US20080215009 *18 avr. 20084 sept. 2008Retractable Technologies, Inc.IV Catheter introducer with retractable needle - continuation
US20080281266 *10 mars 200613 nov. 2008Global Medisafe Holdings LimitedSafety Syringe With Plunger Locking Means
US20080300543 *30 mai 20074 déc. 2008Smiths Medical Asd, Inc.Enclosed needle cannula device with proximal end cap
US20090018503 *20 mars 200615 janv. 2009Global Medisafe Holdings LimitedSingle use safety syringe having a retractable needle
US20090043326 *3 mars 200612 févr. 2009Bayer Healthcare LlcLancet Release Mechanism
US20090054838 *27 mai 200526 févr. 2009Cilag Ag InternationalInjection device
US20090082798 *13 juil. 200626 mars 2009Bayer Healthcare LlcLancing Device for One Skin Puncture
US20090093759 *18 avr. 20069 avr. 2009Unitract Syringe Pty LtdControlled retraction syringe and plunger therefor
US20090118677 *4 avr. 20057 mai 2009Global Medisafe Holdings Pty LimitedExchange needle retractable safety syringe
US20090131872 *26 déc. 200521 mai 2009Sergey PopovCatheter placement device
US20090131966 *29 juin 200621 mai 2009Mohammad KheiriSingle-puncture lancing system
US20090171287 *6 sept. 20052 juil. 2009Global Medisafe Holdings LimitedSingle use safety syringe having a retractable needle
US20090221962 *11 mai 20063 sept. 2009Unitract Syringe Pty Ltd.controlled retraction syringe and plunger therefor
US20090240210 *6 janv. 200624 sept. 2009Global Medisafe Holdings LimitedAuto retractable syringe
US20090247952 *23 mars 20091 oct. 2009Tyco Healthcare Group LpSafety Needle with Spring Based Retraction Mechanism
US20090281491 *1 juin 200612 nov. 2009Medsafe AsaInjection syringe with automatically retractable needle
US20090299285 *8 avr. 20053 déc. 2009Global Medisafe Holdings Pty LimitedExtendable auto retractable medical syringe
US20100168674 *12 mai 20091 juil. 2010Shaw Thomas JIV Catheter Introducer
US20100178703 *12 mars 200715 juil. 2010Bayer Healthcare LlcSingle-sensor meter system with no sensor handling and method of using the same
US20100179579 *12 mars 200715 juil. 2010Bayer Healthcare LlcLancet-eject mechanism
US20100241072 *1 juin 201023 sept. 2010Tyco Healthcare Group LpSafety Needle with Lockout Mechanism
US20100286611 *7 avr. 201011 nov. 2010Stat Medical Devices, Inc.Needle safety system and method
US20110009873 *11 mars 201013 janv. 2011Stat Medical Devices, Inc.Iv infusion system device having retractable needle and method of making and using the same
US20110071477 *5 mai 200924 mars 2011Shl Group AbDevice for a Medicament Delivery Device
US20110118771 *3 août 200619 mai 2011Tieming RuanLancing Device
US20110125097 *24 nov. 200926 mai 2011Shaw Thomas JCatheter Introducer with Hub Seal and Removal Tab
US20110306933 *11 juin 201015 déc. 2011Ilija DjordjevicSafety cannula with automatic retractable needle
US20140336582 *7 mai 201313 nov. 2014Medline Industries, Inc.Retractable needle catheter insertion device
CN100446824C27 nov. 200231 déc. 2008回缩技术股份有限公司IV catheter introducer with retractable needle
CN101203258B11 mai 200619 janv. 2011尤尼特拉克特注射器公司Improved controlled retraction syringe and plunger therefor
EP1362612A1 *16 mai 200219 nov. 2003Sergio RestelliSafety device for catheter guide needle
EP1518576A2 *23 oct. 200230 mars 2005Becton, Dickinson and CompanyRetractable safety needle
EP1518576A3 *23 oct. 200213 avr. 2005Becton, Dickinson and CompanyRetractable safety needle
EP1518577A2 *23 oct. 200230 mars 2005Becton, Dickinson and CompanyRetractable safety needle
EP1518577A3 *23 oct. 200213 avr. 2005Becton, Dickinson and CompanyRetractable safety needle
EP1518578A2 *23 oct. 200230 mars 2005Becton, Dickinson and CompanyRetractable safety needle
EP1518578A3 *23 oct. 200213 avr. 2005Becton, Dickinson and CompanyRetractable safety needle
EP1520598A2 *23 oct. 20026 avr. 2005Becton, Dickinson and CompanyRetractable safety needle
EP1520598A3 *23 oct. 200220 avr. 2005Becton, Dickinson and CompanyRetractable safety needle
EP1863551A1 *8 avr. 200512 déc. 2007Graeme Francis WaltonExtendable auto retractable medical syringe
EP1863551A4 *8 avr. 200517 sept. 2008Global Medisafe Holdings LtdExtendable auto retractable medical syringe
EP2650033A215 sept. 200416 oct. 2013Elcam Medical Agricultural Cooperative Association Ltd.Automatic injection device
EP2994186A4 *18 avr. 201425 janv. 2017Medline Ind IncRetractable needle catheter insertion device
WO2002064188A2 *3 janv. 200222 août 2002Board Of Trustees Of The University Of ArkansasInfrared assisted monitoring of a catheter
WO2002064188A3 *3 janv. 200214 nov. 2002Univ ArkansasInfrared assisted monitoring of a catheter
WO2003097150A2 *14 mai 200327 nov. 2003Sergio RestelliSafety device for catheter guide needle
WO2003097150A3 *14 mai 20039 déc. 2004Sergio RestelliSafety device for catheter guide needle
WO2004050138A2 *27 nov. 200217 juin 2004Retractable Technologies, Inc.Iv catheter introducer with retractable needle
WO2004050138A3 *27 nov. 20029 déc. 2004Retractable Technologies IncIv catheter introducer with retractable needle
WO2006029320A1 *8 sept. 200516 mars 2006Bayer Healthcare LlcDamping system for a lancet using compressed air
WO2006070358A2 *26 déc. 20056 juil. 2006Sergey PopovCatheter placement device
WO2006070358A3 *26 déc. 20051 mars 2007Sergey PopovCatheter placement device
WO2006105601A1 *8 avr. 200612 oct. 2006Global Medisafe Holdings LimitedControlling the retraction of a needle in an auto retractable syringe
WO2006108243A3 *18 avr. 200617 janv. 2008Unitract Syringe Pty LtdControlled retraction syringe and plunger therefor
WO2006119570A1 *11 mai 200616 nov. 2006Unitract Syringe Pty LtdImproved controlled retraction syringe and plunger therefor
WO2006129289A1 *1 juin 20067 déc. 2006Medsafe AsaInjection syringe with automatically retractable needle
WO2010132196A127 avr. 201018 nov. 2010Retractable Technologies, IncIv catheter introducer
Classifications
Classification aux États-Unis604/198, 604/230, 128/919
Classification internationaleA61M5/32, A61M25/06
Classification coopérativeY10S128/919, A61M5/3232, A61M25/0631, A61M2005/3143, A61M25/0693
Classification européenneA61M25/06D2
Événements juridiques
DateCodeÉvénementDescription
28 août 1998ASAssignment
Owner name: BECTON DICKINSON AND COMPANY, NEW JERSEY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ERSKINE, TIMOTHY J.;REEL/FRAME:009422/0004
Effective date: 19980820
3 oct. 2003FPAYFee payment
Year of fee payment: 4
1 oct. 2007FPAYFee payment
Year of fee payment: 8
18 janv. 2012FPAYFee payment
Year of fee payment: 12