US6118705A - Page mode erase in a flash memory array - Google Patents

Page mode erase in a flash memory array Download PDF

Info

Publication number
US6118705A
US6118705A US09/042,244 US4224498A US6118705A US 6118705 A US6118705 A US 6118705A US 4224498 A US4224498 A US 4224498A US 6118705 A US6118705 A US 6118705A
Authority
US
United States
Prior art keywords
rows
volts
flash memory
sector
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/042,244
Inventor
Anil Gupta
Steven J. Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atmel Corp
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Priority to US09/042,244 priority Critical patent/US6118705A/en
Assigned to ATMEL CORPORATION reassignment ATMEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUPTA, ANIL, SCHUMANN, STEVE
Priority to AU30835/99A priority patent/AU3083599A/en
Priority to RU2000125741/09A priority patent/RU2222058C2/en
Priority to PCT/US1999/005435 priority patent/WO1999046777A1/en
Priority to JP2000536077A priority patent/JP2002507041A/en
Priority to CA002317576A priority patent/CA2317576A1/en
Priority to DE69908340T priority patent/DE69908340T2/en
Priority to EP99912465A priority patent/EP1070323B1/en
Priority to CNB998039055A priority patent/CN1153223C/en
Priority to KR1020007010064A priority patent/KR100626787B1/en
Priority to US09/542,434 priority patent/US6359810B1/en
Priority to NO20004307A priority patent/NO321316B1/en
Publication of US6118705A publication Critical patent/US6118705A/en
Application granted granted Critical
Priority to HK01107257A priority patent/HK1036517A1/en
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. AS ADMINISTRATIVE AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC. AS ADMINISTRATIVE AGENT PATENT SECURITY AGREEMENT Assignors: ATMEL CORPORATION
Assigned to ATMEL CORPORATION reassignment ATMEL CORPORATION TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATMEL CORPORATION
Anticipated expiration legal-status Critical
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATMEL CORPORATION, MICROCHIP TECHNOLOGY INCORPORATED, MICROSEMI CORPORATION, MICROSEMI STORAGE SOLUTIONS, INC., SILICON STORAGE TECHNOLOGY, INC.
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATMEL CORPORATION, MICROCHIP TECHNOLOGY INCORPORATED, MICROSEMI CORPORATION, MICROSEMI STORAGE SOLUTIONS, INC., SILICON STORAGE TECHNOLOGY, INC.
Assigned to MICROSEMI CORPORATION, MICROSEMI STORAGE SOLUTIONS, INC., MICROCHIP TECHNOLOGY INCORPORATED, SILICON STORAGE TECHNOLOGY, INC., ATMEL CORPORATION reassignment MICROSEMI CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Assigned to ATMEL CORPORATION reassignment ATMEL CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Assigned to MICROSEMI CORPORATION, SILICON STORAGE TECHNOLOGY, INC., ATMEL CORPORATION, MICROSEMI STORAGE SOLUTIONS, INC., MICROCHIP TECHNOLOGY INCORPORATED reassignment MICROSEMI CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups

Definitions

  • the present invention relates to the erase mode in a flash memory array. More particularly, the present invention relates to a page erase mode and multiple page erase mode in a flash memory array.
  • the flash memory array is typically arranged as a matrix of wordlines and bitlines to form intersections with flash memory elements disposed at the intersections in a manner well known to those of ordinary skill in the art.
  • the operations that may be performed on the memory cells in the flash memory array are READ, PROGRAM and ERASE.
  • the PROGRAM operation is often performed by driving selected bitlines connected to the drain region in the flash memory cells to a first voltage and driving the control gates of the flash memory cells connected to selected wordlines to a higher voltage to perform hot electron injection in a manner well known to those of ordinary skill in the art.
  • the ERASE operation is performed by driving the control gate of the flash memory cell to a voltage that is substantially less than a voltage placed on the bitline. In doing so, electrons are tunneled off of the floating gate of the flash memory cells in a manner well known to those of ordinary skill in the art.
  • BULK ERASE a sector in the flash memory array may be erased at one time
  • SECTOR ERASE An example of a BULK ERASE of a flash memory array is found in the paper "A 90 ns 100 K Erase-Program Cycle Megabit Flash Memory", 1989, IEEE International Solid State Circuits Conference, pages 140 and 141, February 1989.
  • An example of a SECTOR ERASE is found in the paper entitled,”A 55 ns 0.35 ⁇ m 5V Only 16 M Flash Memory with Deep-Power-Down", 1996, IEEE International Solid-State Circuits Conference, pages 44 and 45, February 1996.
  • Constraining the ERASE operation to either a SECTOR or BULK ERASE is done in consideration of the fact that when individual row lines are selected to be erased, there is the possibility the value stored on the floating gate of flash memory cells for unselected rows will be affected due to the occurrence of unintended tunneling. Accordingly, it is an object of the present invention to provide an erase mode wherein only a single row in a sector or multiple rows in a sector may be erased while reducing the disturb phenomenon for flash memory cells in the sector that are not selected.
  • a PAGE ERASE mode of operation is provided for a sector in a flash memory array.
  • a preferred tunneling potential of approximately -10 Volts is applied to the control gates of the flash memory cells on the row being selected for PAGE ERASE, and the bitlines connected to the drains of the flash memory cells are driven to a preferred voltage of approximately 6.5 Volts.
  • a preferred bias voltage of approximately 1 to 2 Volts is applied to the control gates of all the flash memory cells in the rows other than the selected row.
  • a MULTIPLE PAGE ERASE mode is provided.
  • the rows in a sector are partitioned into groups, and more than one row in the group is selected to be erased or corresponding rows in different groups are selected to be erased.
  • a preferred tunneling voltage of approximately -10 Volts to the control gates of the flash memory cells in the rows selected for erasure, and the bitlines connected to the drains of the flash memory cells are driven to a preferred voltage of approximately 6.5 Volts.
  • a preferred bias voltage of approximately 1 to 2 Volts is applied to the control gates of the flash memory cells in rows that have not been selected for erasure.
  • FIG. 1 illustrates a block diagram of flash memory array according to the present invention.
  • FIG. 2 illustrates a schematic diagram of a portion of a sector in the in the flash memory array of FIG. 1 according to the present invention.
  • FIG. 3 illustrates a table of signals applied to elements in the sector illustrated in FIG. 2 for the READ, PROGRAM AND PAGE ERASE modes of a flash memory array according to the present invention.
  • FIG. 4 illustrates a schematic diagram of variable reference generator circuit suitable for use according to the present invention.
  • a flash memory array 10 according to the present invention is illustrated.
  • the flash memory array 10 has M rows, wherein each row has N bytes.
  • Each of the M rows in the flash memory array 10 is typically referred to as a page of memory.
  • the M rows are grouped into sectors or blocks in a manner well known to those of ordinary skill in the art. It will be appreciated that the number of rows included in a sector of the flash memory array 10 is typically a matter of design choice, and further that the entire flash memory array 10 may be considered as one sector.
  • 2,048 rows (or pages) of 264 bytes each are grouped into 4 sectors containing 512 rows apiece.
  • an erase of the entire flash memory array at once known as a BULK ERASE
  • SECTOR ERASE an erase of an entire sector
  • an erase may be performed on a single row in a sector, known as PAGE ERASE, or on multiple pages in a sector known as MULTIPLE PAGE ERASE.
  • FIG. 2 a portion 14 of a sector 12 according to the present invention is illustrated.
  • the rows 20 are separated into K groups, wherein each of the K groups has J rows.
  • the 512 rows in the sector are divided into 64 groups, wherein each of the 64 groups includes 8 rows.
  • a first group of rows 20-1 through 20-J is shown as Group 1
  • a last group of rows 20-1 through 20-J is shown as Group K.
  • Each of the rows 20-1 through 20-J in the flash memory array 10 is a wordline as is well understood by those of ordinary skill in the art.
  • Each of the word lines of rows 20-1 through 20-J form intersections with bit lines.
  • the number of bitlines in the flash memory array is equal to the number of words in the row 20 multiplied by the number of bits in each word.
  • a single bit line 22 is depicted for illustrative purposes.
  • flash memory cells 24 Disposed at the intersections between the word lines 20 and the bit lines 22 are flash memory cells 24.
  • a specific embodiment of a flash memory cell will not be described herein to avoid overcomplicating the disclosure, and thereby obscuring the present invention.
  • a flash memory cell suitable for use according to the present invention is described in U.S. Pat. No. 4,783,766, filed May 30, 1986, assigned to the same assignee as the present invention, and incorporated herein by reference.
  • each wordline 20 Connected to one end of each wordline 20 is a pair of N-channel MOS transistors 26-1 and 26-2.
  • the drain of the first N-channel MOS transistor 26-1 is connected to a row selection potential, Xd
  • the source of the second N-channel MOS transistor 26-2 is connected to a gate bias potential Vwg
  • the source and drain of first N-channel MOS transistor 26-1 and second N-channel MOS transistor 26-2, respectively, are connected to the word lines 20.
  • each N-channel MOS transistor 26-1 is connected to a group selection signal, Xs
  • the control gate of each N-channel MOS transistor 26-2 is connected to the compliment, Xs, of the group selection signal, Xs, provided by inverter 28.
  • the inverter 28 provides a voltage potential on Xs that is either higher or lower than the voltage on Xs by a desired amount.
  • the group select signal, Xs, and its compliment, Xs, are provided by a decoder, the implementation of which is well within the purview of those of ordinary skill in the art, and which will not be disclosed herein to avoid over complicating the disclosure and thereby obscuring the present invention.
  • the drain of the flash memory element is connected to the bit line 22
  • the source of the flash memory element 24 is connected to an array source voltage by an array source line 30, and the control gate of the flash memory element 24 is connected to the word line 20.
  • a P-channel MOS isolation pass transistor 32 is connected in series between each pair of N-channel MOS transistors 26-1 and 26-2 and the first flash memory element 24 disposed at the intersection of the wordline 20 and a bit line 22.
  • a word line pump 34 Connected to the portion of each word line 20 disposed between P-channel MOS isolation pass transistor 32 and the control gate of the first flash memory element 24 disposed at the intersection of the wordline 20 and a bit line 22 is a word line pump 34 connected to a source of negative voltage of about -15 volts to about -4 volts, and preferably -10 volts, by word line pump line 36.
  • FIG. 3 a table indicating the signals applied to various elements in the circuit illustrated in FIG. 2 to implement the READ, PROGRAMMING and ERASE modes of the flash memory array according to the present invention are depicted. According to the present invention, only the application of the signals made during the ERASE operation will be described herein.
  • a Vcc voltage is applied on the group select signal line, Xs, to the control gates of the N-channel MOS transistors 26-1 in the group containing the row 20-1 through 20-j being selected for PAGE ERASE, and a ground voltage (0 volts) is applied on the complement of the group select signal line, Xs, to the control gates of the N-channel MOS transistors 26-2 in the group containing the row 20-1 through 20-j being selected for PAGE ERASE.
  • a ground voltage (0 volts) is applied on the group select signal line, Xs, to the gates of the N-channel MOS transistors 26-1, and Vcc voltage is applied on the to complement of the group select signal line, Xs, to the control gates of the N-channel MOS transistors 26-2.
  • a ground voltage (0 volts) will be applied to the drain of the N-channel MOS transistor 26-1 of the row 20-1 through 20-J that is being selected for PAGE ERASE, and a bias voltage in the range of about 1 volt to about 5 volts and preferably of about 1 volt to about 2 volts will be applied to the drains of the rows 20-1 through 20-j that are not being selected for PAGE ERASE by the row select signal, Xd, and which are in the same group as row 20-1 through 20-j being selected for PAGE ERASE.
  • the ground voltage (0 volts) will also be applied to the drains of the N-channel MOS transistors 26-1 of the row 20-1 through 20-j in non-selected groups that correspond to the selected row 20-1 through 20-j, and that the bias voltage in the range of about 1 volt to about 5 volts and preferably of about 1 volt to about 2 volts will also be applied to the drains of the N-channel MOS transistors 26-1 for the rows 20-1 through 20-j in non-selected groups that correspond to the non-selected rows 20-1 through 20-j in the selected group.
  • a ground voltage (0 volts) will be applied to the drain of the N-channel MOS transistor 26-1 of row 20-2, and also to the drains of the N-channel MOS transistors 26-1 of row 20-2 in groups 2 through K.
  • the bias voltage will be applied to the drains of the N-channel MOS transistors 26-1 of all rows 20-1, and 20-3 through 20-J in Group 1, and also to the drains of the N-channel MOS transistors 26-1 of all rows 20-1, and 20-3 through 20-J in Groups 2 through K.
  • a bias voltage in the range of about 1 volt to about 5 volts and preferably of about 1 volt to about 2 volts is applied to the sources of N-channel MOS transistors 26-2 on the signal line Vwg.
  • the ground voltage (0 volts) will be placed at the control gates of the flash memory elements 24 in the selected row 20-1 through 20-J, and the bias voltage will be applied to the flash memory elements in all other rows 20-1 through 20-J.
  • the bias voltage applied to the control gates of the flash memory elements 24 in the non-selected rows 20-1 through 20-J in the selected Group is supplied on the Xd signal line connected to the drains of the N-channel MOS transistors 26-1, and that for all other rows 20-1 through 20-J in the non-selected Groups 1 through K, the bias voltage applied to the control gates of the flash memory elements 24 is supplied by the voltage applied on the Vwg signal line to the sources of the N-channel MOS transistors 26-2.
  • a negative voltage in the range of about -15 volts to about -4 volts and preferably of about -10 volts is applied to the selected row 20-1 through 20-J in the selected Group 1 through K by a word line pump 34 connected to the selected row 20-1 through 20-J.
  • the negative voltage applied to the control gates of the flash memory cells 24 in the selected row 20-1 through 20-J will not expose the N-channel MOS transistor pair 26-1 and 26-2 to negative voltage. Further, by first applying a ground voltage to the control gates of the flash memory cells 24 in the selected row 20-1 through 20-J, rather than a bias voltage, less energy and time is expended by the word line pump 34 in supplying the negative voltage to the control gates of the flash memory cells 24 in the selected row 20-1 through 20-J.
  • the bit lines 22 are all driven to a positive voltage of about 5 volts to about 10 volts and preferably of about 6.5 volts.
  • tunneling will occur between the floating gate and the drain of the flash memory cells 24 on the selected row 20-1 through 20-J in a manner well understood by those of ordinary skill in the art to ERASE the flash memory cells 24 on the selected row 20-1 through 20-J because a potential difference of about 12 to about 20 volts, and preferably about 16.5 volts has been placed between the drain and the floating gate the flash memory cells 24 on the selected row 20-1 through 20-J .
  • the flash memory cells 24 on all of the non-selected rows 20-1 through 20-J will be less susceptible to tunneling because the bias voltage of about 1 volt to about 5 volts, and preferably about 1 volt to about 2 volts has been applied to the control gates of the flash memory cells 24 on all of the non-selected rows 20-1 through 20-J.
  • a MULTIPLE PAGE ERASE may be performed on multiple pages in a selected Group by applying a ground voltage (0 volts) to the drains of each of the N-channels MOS transistors 26-1 of each of the multiple selected rows 20-1 through 20-J to place the ground voltage (0 volts) at the control gates the flash memory cells 24 on all of the multiple selected rows 20-1 through 20-J.
  • the word line pumps 34 connected to the multiple selected rows 20-1 through 26-J are then selected to place the negative voltage of about -15 volts to about -4 volts and preferably of about -10 volts at the control gates the flash memory cells 24 on all of the multiple selected rows 20-1 through 20-J.
  • variable reference generator circuit 40 for providing the row select reference voltage, Xd, for the READ, PROGRAM AND ERASE modes is illustrated.
  • a NAND gate 42 has a plurality of inputs which decode whether a particular row 20-1 through 20-J in a group will be selected.
  • the output of NAND gate 42 is connected to a first input of NOR gate 44, a first input of NOR gate 46 through inverter 48, and a first input of NOR gate 50.
  • a second input of NOR gate 44 is connected to a bias enable line that goes HIGH when the flash memory array is in an ERASE mode.
  • the second inputs of NOR gates 46 and 50 are connected to the compliment of the bias enable signal.
  • the output of NOR gate 44 is connected to a first input of a NOR gate 52, and a second input of NOR gate 52 is connected to the bias enable signal.
  • the output of NOR gate 44 is also connected to the source of N-channel MOS pass transistor 54 and to the gate of N-channel pull-down transistor 56.
  • the gate of N-channel MOS isolation pass transistor 54 is connected to an isolation control signal, that is preferably Vcc.
  • a variable voltage reference potential, Vmp is connected to the sources of P-channel MOS transistors 58, 60, and 62.
  • the source of N-channel MOS transistor 56 is connected to ground.
  • the gates of P-channel MOS transistors 58 and 62 are connected to the drain of N-channel MOS transistor 56, and the control gate of P-channel MOS transistor 60 is connected to the drain of N-channel MOS isolation pass transistor 54 along with the drain of P-channel MOS transistor 58.
  • the drain of P-channel MOS transistor 60 is also connected to the drain of N-channel MOS transistor 56.
  • An N-channel MOS transistor 64 has its gate connected to the output of NOR gate 52, a source connected to ground and a drain connected to the drain of P-channel MOS transistor 62 to form the output, Xd, of reference potential generator circuit 40.
  • the outputs of NOR gates 46 and 50 are connected to the control gates of N-channel to MOS transistors 66 and 68.
  • the drain of N-channel MOS transistor 66 is connected to a BIAS potential, and the source of N-channel MOS transistor 68 is connected to ground.
  • the source of N-channel MOS transistor 66 is connected to the drain of N-channel MOS transistor 68 to form a node that is connected to the output, Xd, of the reference potential generator circuit 40.
  • variable reference generator circuit 40 when the PAGE ERASE mode is being performed the bias enable signal is brought HIGH so that the output of NOR gates 44 and 52 will be LOW.
  • the LOW signal passed by N-channel MOS transistor 54 to the control gate of P-channel MOS transistor 60 will place the variable voltage Vmp on the control gate of P-channel MOS transistor 62.
  • the voltages of Vmp in the READ, PROGRAM, and PAGE ERASE modes are preferably Vcc, 10 volts, and Vcc, respectively.
  • the P-channel MOS transistor 62 will be turned off.
  • the LOW signal provided by the NOR gate 52 to the control gate of N-channel MOS transistor 64 will also turn off N-channel MOS transistor 64.
  • the complement of the bias enable signal connected to the NOR gates 46 and 50 is LOW. Also connected to the NOR gates 46 and 50 is the inverted output of NAND gate 42 and the output of NAND gate 42, respectively. A LOW output from NAND gate 42 indicates that this particular row 20-1 through 20-J is being selected.
  • the bias enable signal will be LOW, and a LOW signal from NAND gate 42 will make the output of NOR gate 44 HIGH, and a HIGH signal from NAND gate 42 will make the output of NOR gate 44 LOW.
  • the Vmp voltage will be placed at the output, Xd, through P-channel MOS transistor 62 that has been turned on when its gate is pulled to ground by the N-channel MOS transistor 56 that has been turned on by the HIGH signal from NOR gate 44.
  • the output of NOR gate 44 is LOW, the ground voltage will be placed at the output, Xd, through N-channel MOS transistor 64 that has been turned on by the HIGH signal from NOR gate 52.

Abstract

In a sector in a flash memory array PAGE ERASE and MULTIPLE PAGE ERASE modes of operation are provided. In the PAGE ERASE and MULTIPLE PAGE ERASE modes of operation, a preferred tunneling potential of approximately -10 Volts is applied to the gates of the flash memory cells on the row or rows being selected for erasure, and the bitlines connected to the drains of the flash memory cells are driven to a preferred voltage of approximately 6.5 Volts. To reduce the unintended erasure of memory cells in rows other than the selected row or rows, a preferred bias voltage of approximately 1 to 2 Volts is applied to the gates of all the flash memory cells in the rows other than the selected row or rows.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the erase mode in a flash memory array. More particularly, the present invention relates to a page erase mode and multiple page erase mode in a flash memory array.
2. The Prior Art
In a conventional flash memory array, the flash memory array is typically arranged as a matrix of wordlines and bitlines to form intersections with flash memory elements disposed at the intersections in a manner well known to those of ordinary skill in the art. The operations that may be performed on the memory cells in the flash memory array are READ, PROGRAM and ERASE.
The PROGRAM operation is often performed by driving selected bitlines connected to the drain region in the flash memory cells to a first voltage and driving the control gates of the flash memory cells connected to selected wordlines to a higher voltage to perform hot electron injection in a manner well known to those of ordinary skill in the art.
The ERASE operation is performed by driving the control gate of the flash memory cell to a voltage that is substantially less than a voltage placed on the bitline. In doing so, electrons are tunneled off of the floating gate of the flash memory cells in a manner well known to those of ordinary skill in the art. For conventional flash memory arrays, it is known that either the entire flash memory array may be erased at one time, known as BULK ERASE, or that a sector in the flash memory array may be erased at one time, known as SECTOR ERASE. An example of a BULK ERASE of a flash memory array is found in the paper "A 90 ns 100 K Erase-Program Cycle Megabit Flash Memory", 1989, IEEE International Solid State Circuits Conference, pages 140 and 141, February 1989. An example of a SECTOR ERASE is found in the paper entitled,"A 55 ns 0.35 μm 5V Only 16 M Flash Memory with Deep-Power-Down", 1996, IEEE International Solid-State Circuits Conference, pages 44 and 45, February 1996.
Constraining the ERASE operation to either a SECTOR or BULK ERASE is done in consideration of the fact that when individual row lines are selected to be erased, there is the possibility the value stored on the floating gate of flash memory cells for unselected rows will be affected due to the occurrence of unintended tunneling. Accordingly, it is an object of the present invention to provide an erase mode wherein only a single row in a sector or multiple rows in a sector may be erased while reducing the disturb phenomenon for flash memory cells in the sector that are not selected.
BRIEF DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, a PAGE ERASE mode of operation is provided for a sector in a flash memory array. In the PAGE ERASE mode of operation, a preferred tunneling potential of approximately -10 Volts is applied to the control gates of the flash memory cells on the row being selected for PAGE ERASE, and the bitlines connected to the drains of the flash memory cells are driven to a preferred voltage of approximately 6.5 Volts. To reduce the unintended erasure of memory cells in rows other than the selected row, a preferred bias voltage of approximately 1 to 2 Volts is applied to the control gates of all the flash memory cells in the rows other than the selected row.
According to a second aspect of the present invention, a MULTIPLE PAGE ERASE mode is provided. In the MULTIPLE PAGE ERASE mode, the rows in a sector are partitioned into groups, and more than one row in the group is selected to be erased or corresponding rows in different groups are selected to be erased. In MULTIPLE PAGE ERASE mode a preferred tunneling voltage of approximately -10 Volts to the control gates of the flash memory cells in the rows selected for erasure, and the bitlines connected to the drains of the flash memory cells are driven to a preferred voltage of approximately 6.5 Volts. To reduce the occurrence of unintended erasure of flash memory cells on rows that are not selected, a preferred bias voltage of approximately 1 to 2 Volts is applied to the control gates of the flash memory cells in rows that have not been selected for erasure.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a block diagram of flash memory array according to the present invention.
FIG. 2 illustrates a schematic diagram of a portion of a sector in the in the flash memory array of FIG. 1 according to the present invention.
FIG. 3 illustrates a table of signals applied to elements in the sector illustrated in FIG. 2 for the READ, PROGRAM AND PAGE ERASE modes of a flash memory array according to the present invention.
FIG. 4 illustrates a schematic diagram of variable reference generator circuit suitable for use according to the present invention.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Those of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons.
In FIG. 1, a flash memory array 10 according to the present invention is illustrated. The flash memory array 10 has M rows, wherein each row has N bytes. Each of the M rows in the flash memory array 10 is typically referred to as a page of memory. In the data flash memory array 10, the M rows are grouped into sectors or blocks in a manner well known to those of ordinary skill in the art. It will be appreciated that the number of rows included in a sector of the flash memory array 10 is typically a matter of design choice, and further that the entire flash memory array 10 may be considered as one sector. In a preferred embodiment of a 4 megabyte flash memory array, 2,048 rows (or pages) of 264 bytes each are grouped into 4 sectors containing 512 rows apiece.
As discussed above, there are typically three operations that can be performed on the memory cells in a flash memory array. These three operations are READ, PROGRAM, and ERASE. It has been known in the art to perform an erase of the entire flash memory array at once, known as a BULK ERASE, and to perform an erase of an entire sector, known as SECTOR ERASE. According to the present invention, an erase may be performed on a single row in a sector, known as PAGE ERASE, or on multiple pages in a sector known as MULTIPLE PAGE ERASE.
Turning now to FIG. 2, a portion 14 of a sector 12 according to the present invention is illustrated. In the portion 14 of sector 12, the rows 20 are separated into K groups, wherein each of the K groups has J rows. In the preferred embodiment of the 4 megabyte flash memory array described above, the 512 rows in the sector are divided into 64 groups, wherein each of the 64 groups includes 8 rows. In the portion 14 of sector 12, a first group of rows 20-1 through 20-J is shown as Group 1, and a last group of rows 20-1 through 20-J is shown as Group K.
Each of the rows 20-1 through 20-J in the flash memory array 10 is a wordline as is well understood by those of ordinary skill in the art. Each of the word lines of rows 20-1 through 20-J form intersections with bit lines. Typically, the number of bitlines in the flash memory array is equal to the number of words in the row 20 multiplied by the number of bits in each word. For example, in the preferred embodiment of the 4 M flash memory array described above, there are 264 words in each row and 8 bits in each word. As a result, there will be 2112 bit lines in the flash memory array. In the portion 14 of sector 12, a single bit line 22 is depicted for illustrative purposes.
Disposed at the intersections between the word lines 20 and the bit lines 22 are flash memory cells 24. A specific embodiment of a flash memory cell will not be described herein to avoid overcomplicating the disclosure, and thereby obscuring the present invention. A flash memory cell suitable for use according to the present invention is described in U.S. Pat. No. 4,783,766, filed May 30, 1986, assigned to the same assignee as the present invention, and incorporated herein by reference.
Connected to one end of each wordline 20 is a pair of N-channel MOS transistors 26-1 and 26-2. In each pair of N-channel MOS transistors 26-1 and 26-2, the drain of the first N-channel MOS transistor 26-1 is connected to a row selection potential, Xd, the source of the second N-channel MOS transistor 26-2 is connected to a gate bias potential Vwg, and the source and drain of first N-channel MOS transistor 26-1 and second N-channel MOS transistor 26-2, respectively, are connected to the word lines 20.
The gate of each N-channel MOS transistor 26-1 is connected to a group selection signal, Xs, and the control gate of each N-channel MOS transistor 26-2 is connected to the compliment, Xs, of the group selection signal, Xs, provided by inverter 28. It should be appreciated that the inverter 28 provides a voltage potential on Xs that is either higher or lower than the voltage on Xs by a desired amount. The group select signal, Xs, and its compliment, Xs, are provided by a decoder, the implementation of which is well within the purview of those of ordinary skill in the art, and which will not be disclosed herein to avoid over complicating the disclosure and thereby obscuring the present invention.
For each of the flash memory elements disposed at the intersection of a wordline 20 and a bit line 22, the drain of the flash memory element is connected to the bit line 22, the source of the flash memory element 24 is connected to an array source voltage by an array source line 30, and the control gate of the flash memory element 24 is connected to the word line 20. For each of the word lines 20, a P-channel MOS isolation pass transistor 32 is connected in series between each pair of N-channel MOS transistors 26-1 and 26-2 and the first flash memory element 24 disposed at the intersection of the wordline 20 and a bit line 22. Connected to the portion of each word line 20 disposed between P-channel MOS isolation pass transistor 32 and the control gate of the first flash memory element 24 disposed at the intersection of the wordline 20 and a bit line 22 is a word line pump 34 connected to a source of negative voltage of about -15 volts to about -4 volts, and preferably -10 volts, by word line pump line 36.
Turning now to FIG. 3, a table indicating the signals applied to various elements in the circuit illustrated in FIG. 2 to implement the READ, PROGRAMMING and ERASE modes of the flash memory array according to the present invention are depicted. According to the present invention, only the application of the signals made during the ERASE operation will be described herein.
To select a particular row for PAGE ERASE, a Vcc voltage is applied on the group select signal line, Xs, to the control gates of the N-channel MOS transistors 26-1 in the group containing the row 20-1 through 20-j being selected for PAGE ERASE, and a ground voltage (0 volts) is applied on the complement of the group select signal line, Xs, to the control gates of the N-channel MOS transistors 26-2 in the group containing the row 20-1 through 20-j being selected for PAGE ERASE. For the rows 20-1 through 20-j in groups other than the group having a row 20-1 through 20-j being selected for PAGE ERASE, a ground voltage (0 volts) is applied on the group select signal line, Xs, to the gates of the N-channel MOS transistors 26-1, and Vcc voltage is applied on the to complement of the group select signal line, Xs, to the control gates of the N-channel MOS transistors 26-2.
As the voltages on the Xs and Xs group select signal lines are being applied, a ground voltage (0 volts) will be applied to the drain of the N-channel MOS transistor 26-1 of the row 20-1 through 20-J that is being selected for PAGE ERASE, and a bias voltage in the range of about 1 volt to about 5 volts and preferably of about 1 volt to about 2 volts will be applied to the drains of the rows 20-1 through 20-j that are not being selected for PAGE ERASE by the row select signal, Xd, and which are in the same group as row 20-1 through 20-j being selected for PAGE ERASE.
The ground voltage (0 volts) will also be applied to the drains of the N-channel MOS transistors 26-1 of the row 20-1 through 20-j in non-selected groups that correspond to the selected row 20-1 through 20-j, and that the bias voltage in the range of about 1 volt to about 5 volts and preferably of about 1 volt to about 2 volts will also be applied to the drains of the N-channel MOS transistors 26-1 for the rows 20-1 through 20-j in non-selected groups that correspond to the non-selected rows 20-1 through 20-j in the selected group.
For example, when the row 20-1 through 20-J being selected is row 20-2 in Group 1, then a ground voltage (0 volts) will be applied to the drain of the N-channel MOS transistor 26-1 of row 20-2, and also to the drains of the N-channel MOS transistors 26-1 of row 20-2 in groups 2 through K. Further, the bias voltage will be applied to the drains of the N-channel MOS transistors 26-1 of all rows 20-1, and 20-3 through 20-J in Group 1, and also to the drains of the N-channel MOS transistors 26-1 of all rows 20-1, and 20-3 through 20-J in Groups 2 through K.
In addition to the application of signals to the drains of the N-channel MOS transistors 26-1, when the voltages on the Xs and Xs, group select signal lines are being applied, a bias voltage in the range of about 1 volt to about 5 volts and preferably of about 1 volt to about 2 volts is applied to the sources of N-channel MOS transistors 26-2 on the signal line Vwg.
When these voltages are being applied to the control gates of N-channel MOS transistors 26-1 and 26-2, the drain of N-channel MOS transistor 26-1, and the source of N-channel MOS transistor 26-2, the P-channel MOS isolation pass transistors 32-1 through 32-j are turned on.
As a result, the ground voltage (0 volts) will be placed at the control gates of the flash memory elements 24 in the selected row 20-1 through 20-J, and the bias voltage will be applied to the flash memory elements in all other rows 20-1 through 20-J. It should be appreciated from the above discussion that for the selected Group 1 through K containing the selected row 20-1 through 20-J, the bias voltage applied to the control gates of the flash memory elements 24 in the non-selected rows 20-1 through 20-J in the selected Group is supplied on the Xd signal line connected to the drains of the N-channel MOS transistors 26-1, and that for all other rows 20-1 through 20-J in the non-selected Groups 1 through K, the bias voltage applied to the control gates of the flash memory elements 24 is supplied by the voltage applied on the Vwg signal line to the sources of the N-channel MOS transistors 26-2.
Once the ground voltage (0 volts) has been applied to the control gates of the flash memory cells 24 in the selected row 20-1 through 20-J and the bias voltage in the range of about 1 volt to about 5 volts and preferably of about 1 volt to about 2 volts has been applied to the control gates of all other flash memory cells 24, a voltage to is applied to the control gates of the P-channel MOS isolation pass transistors 32-1 through 32-J such that the P-channel MOS isolation pass transistor 32-1 through 32-J connected to the selected row 20-1 through 20-J is turned off due to the control gate-to-source voltage. A negative voltage in the range of about -15 volts to about -4 volts and preferably of about -10 volts is applied to the selected row 20-1 through 20-J in the selected Group 1 through K by a word line pump 34 connected to the selected row 20-1 through 20-J.
To avoid overcomplicating the disclosure and thereby obscuring the present invention, an implementation of the word line pump 34 or other means for supplying the negative voltage to the selected row line 20-1 through 20-J well known to those of ordinary skill in the art will not be described herein. An implementation of a word line pump 34 suitable for use according to the present invention is described in U.S. Pat. Nos. 4,511,811, filed Feb. 8, 1982 and 4,673,829, filed Feb. 8, 1985, assigned to the same assignee as the present invention, and incorporated herein by reference.
Since the P-channel MOS isolation pass transistor 32-1 through 32-J connected to the selected row 20-1 through 20-J has been turned off, the negative voltage applied to the control gates of the flash memory cells 24 in the selected row 20-1 through 20-J will not expose the N-channel MOS transistor pair 26-1 and 26-2 to negative voltage. Further, by first applying a ground voltage to the control gates of the flash memory cells 24 in the selected row 20-1 through 20-J, rather than a bias voltage, less energy and time is expended by the word line pump 34 in supplying the negative voltage to the control gates of the flash memory cells 24 in the selected row 20-1 through 20-J.
To complete the performance of the PAGE ERASE operation, the bit lines 22 are all driven to a positive voltage of about 5 volts to about 10 volts and preferably of about 6.5 volts. As a consequence, tunneling will occur between the floating gate and the drain of the flash memory cells 24 on the selected row 20-1 through 20-J in a manner well understood by those of ordinary skill in the art to ERASE the flash memory cells 24 on the selected row 20-1 through 20-J because a potential difference of about 12 to about 20 volts, and preferably about 16.5 volts has been placed between the drain and the floating gate the flash memory cells 24 on the selected row 20-1 through 20-J .
According to the present invention, when the positive voltage of about 5 volts to about 10 volts and preferably of about 6.5 volts is applied to the bit lines 22, the flash memory cells 24 on all of the non-selected rows 20-1 through 20-J will be less susceptible to tunneling because the bias voltage of about 1 volt to about 5 volts, and preferably about 1 volt to about 2 volts has been applied to the control gates of the flash memory cells 24 on all of the non-selected rows 20-1 through 20-J.
It should be appreciated from the above discussion that a MULTIPLE PAGE ERASE may be performed on multiple pages in a selected Group by applying a ground voltage (0 volts) to the drains of each of the N-channels MOS transistors 26-1 of each of the multiple selected rows 20-1 through 20-J to place the ground voltage (0 volts) at the control gates the flash memory cells 24 on all of the multiple selected rows 20-1 through 20-J. The word line pumps 34 connected to the multiple selected rows 20-1 through 26-J are then selected to place the negative voltage of about -15 volts to about -4 volts and preferably of about -10 volts at the control gates the flash memory cells 24 on all of the multiple selected rows 20-1 through 20-J.
When the positive voltage of about 5 volts to about 10 volts and preferably of about 6.5 volts is applied to the bit lines 22 so that tunneling will occur between the floating gates and the drains of the flash memory cells 24 on the multiple selected rows 20-1 through 20-J in a manner well understood by those of ordinary skill in the art to ERASE the flash memory cells 24 on the multiple selected rows 20-1 through 20-J because a potential difference of about 12 to about 20 volts, and preferably about 16.5 volts has been placed between the drain and the floating gate the flash memory cells 24 on the multiple selected rows 20-1 through 20-J.
Turning now to FIG. 4, a variable reference generator circuit 40 for providing the row select reference voltage, Xd, for the READ, PROGRAM AND ERASE modes is illustrated. In variable reference potential generator circuit 40, a NAND gate 42 has a plurality of inputs which decode whether a particular row 20-1 through 20-J in a group will be selected. The output of NAND gate 42 is connected to a first input of NOR gate 44, a first input of NOR gate 46 through inverter 48, and a first input of NOR gate 50.
A second input of NOR gate 44 is connected to a bias enable line that goes HIGH when the flash memory array is in an ERASE mode. The second inputs of NOR gates 46 and 50 are connected to the compliment of the bias enable signal. The output of NOR gate 44 is connected to a first input of a NOR gate 52, and a second input of NOR gate 52 is connected to the bias enable signal. The output of NOR gate 44 is also connected to the source of N-channel MOS pass transistor 54 and to the gate of N-channel pull-down transistor 56.
The gate of N-channel MOS isolation pass transistor 54 is connected to an isolation control signal, that is preferably Vcc. A variable voltage reference potential, Vmp, is connected to the sources of P- channel MOS transistors 58, 60, and 62. The source of N-channel MOS transistor 56 is connected to ground. The gates of P- channel MOS transistors 58 and 62 are connected to the drain of N-channel MOS transistor 56, and the control gate of P-channel MOS transistor 60 is connected to the drain of N-channel MOS isolation pass transistor 54 along with the drain of P-channel MOS transistor 58. The drain of P-channel MOS transistor 60 is also connected to the drain of N-channel MOS transistor 56. An N-channel MOS transistor 64 has its gate connected to the output of NOR gate 52, a source connected to ground and a drain connected to the drain of P-channel MOS transistor 62 to form the output, Xd, of reference potential generator circuit 40.
The outputs of NOR gates 46 and 50 are connected to the control gates of N-channel to MOS transistors 66 and 68. The drain of N-channel MOS transistor 66 is connected to a BIAS potential, and the source of N-channel MOS transistor 68 is connected to ground. The source of N-channel MOS transistor 66 is connected to the drain of N-channel MOS transistor 68 to form a node that is connected to the output, Xd, of the reference potential generator circuit 40.
In the operation of the variable reference generator circuit 40, when the PAGE ERASE mode is being performed the bias enable signal is brought HIGH so that the output of NOR gates 44 and 52 will be LOW. The LOW signal passed by N-channel MOS transistor 54 to the control gate of P-channel MOS transistor 60 will place the variable voltage Vmp on the control gate of P-channel MOS transistor 62. The voltages of Vmp in the READ, PROGRAM, and PAGE ERASE modes are preferably Vcc, 10 volts, and Vcc, respectively. As such, the P-channel MOS transistor 62 will be turned off. The LOW signal provided by the NOR gate 52 to the control gate of N-channel MOS transistor 64 will also turn off N-channel MOS transistor 64.
In the PAGE ERASE mode when the bias enable signal is brought HIGH, the complement of the bias enable signal connected to the NOR gates 46 and 50 is LOW. Also connected to the NOR gates 46 and 50 is the inverted output of NAND gate 42 and the output of NAND gate 42, respectively. A LOW output from NAND gate 42 indicates that this particular row 20-1 through 20-J is being selected. Accordingly, when a LOW output of NAND gate 42 is applied to NOR gate 50, the output, Xd, will be pulled to ground by N-channel MOS transistor 68 that is turned on by the output of NOR gate 50, and when a HIGH output of NAND gate 42 is applied as a LOW signal to to NOR gate 46 by inverter 48, the output, Xd, will be pulled to the bias voltage by N-channel MOS transistor 66 that is turned on by the output of NOR gate 46.
During either the READ or PROGRAM modes, the bias enable signal will be LOW, and a LOW signal from NAND gate 42 will make the output of NOR gate 44 HIGH, and a HIGH signal from NAND gate 42 will make the output of NOR gate 44 LOW. When the output of NOR gate 44 is HIGH, the Vmp voltage will be placed at the output, Xd, through P-channel MOS transistor 62 that has been turned on when its gate is pulled to ground by the N-channel MOS transistor 56 that has been turned on by the HIGH signal from NOR gate 44. When the output of NOR gate 44 is LOW, the ground voltage will be placed at the output, Xd, through N-channel MOS transistor 64 that has been turned on by the HIGH signal from NOR gate 52.
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.

Claims (15)

What is claimed is:
1. A method for performing an erase operation on memory elements within one row in a sector of a flash memory array comprising the steps of:
applying a first bias voltage to a control gate of each memory element in the one row in the sector;
applying a second bias voltage to a control gate of each memory element in all rows in said sector other than said one row; and
applying to each bitline in said sector of said flash memory array a bitline potential having a magnitude such that tunneling from floating gates in said memory elements in said one row will occur and tunneling from floating gates in memory elements in all rows in said sector other than said one row will not occur.
2. A method for performing an erase operation as in claim 1, wherein said bitline potential is greater than said first bias voltage by about 12 volts to about 20 volts.
3. A method for performing an erase operation as in claim 1, wherein said first bias voltage is about -15 volts to about -4 volts, said bitline potential is about 5 volts to about 10 volts and said second bias potential is about 1 volt to about 5 volts.
4. A method for performing an erase operation as in claim 1, further including the step of:
applying a ground potential to said control gate of of each of said memory elements in said one row in said sector prior to the step of applying said first bias voltage.
5. A method for performing an erase operation as in claim 1, wherein said first bias voltage is provided from first reference source and said second bias voltage is provided from a second reference source.
6. A method for performing an erase operation on a plurality of rows of memory elements in a sector of a flash memory comprising the steps of:
applying a first bias voltage to a control gate of each memory element in the plurality of rows in said sector;
applying a second bias voltage to a control gate of each memory element in all rows in said sector other than said plurality of rows; and
applying to each bitline in said sector of said flash memory array a bitline potential having a magnitude such that tunneling from floating gates in said memory elements in said plurality of rows will occur and tunneling from floating gates in memory elements in all rows in said sector other than said plurality of rows will not occur.
7. A method for performing an erase operation as in claim 6, wherein said bitline potential is greater than said first bias voltage by about 12 volts to about 20 volts.
8. A method for performing an erase operation as in claim 6, wherein said first bias voltage is about -15 volts to about -4 volts, said bitline potential is about 5 volts to about 10 volts and said second bias potential is about 1 volt to about 5 volts.
9. A method for performing an erase operation as in claim 6, further including the step of:
applying a ground potential to said control gate of of each of said memory elements in said one row in said sector prior to the step of applying said first bias voltage.
10. A method for performing an erase operation on a plurality of rows of memory elements in a group in a sector of a flash memory array comprising the steps of:
applying a first bias voltage to a control gate of each memory element in the plurality of rows in the group in the sector;
applying a second bias voltage to a control gate of each memory element in rows other than said plurality of rows in said sector; and
applying to said bitlines in said sector a bitline potential having a magnitude such that tunneling from floating gates in said memory elements in said plurality of rows in said group will occur and tunneling from floating gates in memory elements in all rows in said sector other than said plurality of rows will not occur.
11. A method for performing an erase operation as in claim 10, wherein said first bias voltage is provided from first reference source and said second bias voltage is provided from a second reference source.
12. A method for performing an erase operation as in claim 10, wherein said bitline potential is greater than said first bias voltage tunneling potential by about 12 volts to about 20 volts.
13. A method for performing an erase operation as in claim 10, wherein said first bias voltage is about -15 volts to about -4 volts, said bitline potential is about 5 volts to about 10 volts, and said second bias potential is about 1 volt to about 5 volts.
14. A method for performing an erase operation as in claim 10, further including the step of:
applying a ground potential to said control gate of each of said memory elements in said plurality of said rows in said group in said sector prior to the step of applying said first bias voltage.
15. A sector in a flash memory array comprising:
a plurality of rows, said plurality of rows partitioned into groups of rows;
a plurality of bitlines, said bitlines arranged to form intersections with said plurality of rows;
flash memory elements disposed at said intersections, each of said flash memory cells having a control gate connected to one of said plurality of rows, a drain connected to one of said bitlines, a source connected to an array source line, and a floating gate;
means for selecting one of a group of said rows;
means for providing a first tunneling potential to said gates of said flash memory cells; and
means for applying a bias potential to said gates of said flash memory cells.
US09/042,244 1998-03-13 1998-03-13 Page mode erase in a flash memory array Expired - Lifetime US6118705A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US09/042,244 US6118705A (en) 1998-03-13 1998-03-13 Page mode erase in a flash memory array
AU30835/99A AU3083599A (en) 1998-03-13 1999-03-12 Page mode erase in a flash memory array
RU2000125741/09A RU2222058C2 (en) 1998-03-13 1999-03-12 Page erasing mode in flash-memory array
PCT/US1999/005435 WO1999046777A1 (en) 1998-03-13 1999-03-12 Page mode erase in a flash memory array
JP2000536077A JP2002507041A (en) 1998-03-13 1999-03-12 Page mode erase in flash memory array
CA002317576A CA2317576A1 (en) 1998-03-13 1999-03-12 Page mode erase in a flash memory array
DE69908340T DE69908340T2 (en) 1998-03-13 1999-03-12 SIDE MODE ERASE PROCEDURE IN FLASH MEMORY
EP99912465A EP1070323B1 (en) 1998-03-13 1999-03-12 Page mode erase in a flash memory array
CNB998039055A CN1153223C (en) 1998-03-13 1999-03-12 Page mode erase in flash memory array
KR1020007010064A KR100626787B1 (en) 1998-03-13 1999-03-12 Page mode erase in a flash memory array
US09/542,434 US6359810B1 (en) 1998-03-13 2000-04-04 Page mode erase in a flash memory array
NO20004307A NO321316B1 (en) 1998-03-13 2000-08-29 Page mode deletion by a flash storage group
HK01107257A HK1036517A1 (en) 1998-03-13 2001-10-17 Page mode erase in a flash memory array.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/042,244 US6118705A (en) 1998-03-13 1998-03-13 Page mode erase in a flash memory array

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/542,434 Division US6359810B1 (en) 1998-03-13 2000-04-04 Page mode erase in a flash memory array

Publications (1)

Publication Number Publication Date
US6118705A true US6118705A (en) 2000-09-12

Family

ID=21920839

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/042,244 Expired - Lifetime US6118705A (en) 1998-03-13 1998-03-13 Page mode erase in a flash memory array

Country Status (12)

Country Link
US (1) US6118705A (en)
EP (1) EP1070323B1 (en)
JP (1) JP2002507041A (en)
KR (1) KR100626787B1 (en)
CN (1) CN1153223C (en)
AU (1) AU3083599A (en)
CA (1) CA2317576A1 (en)
DE (1) DE69908340T2 (en)
HK (1) HK1036517A1 (en)
NO (1) NO321316B1 (en)
RU (1) RU2222058C2 (en)
WO (1) WO1999046777A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198664B1 (en) * 1999-12-01 2001-03-06 Advanced Micro Devices, Inc. APDE scheme for flash memory application
US6259625B1 (en) * 1999-03-01 2001-07-10 Integrated Memory Technologies, Inc. Method and apparatus for reducing high current chip erase in flash memories
US6359810B1 (en) * 1998-03-13 2002-03-19 Atmel Corporation Page mode erase in a flash memory array
US6728140B2 (en) 2001-12-05 2004-04-27 Nexflash Technologies, Inc. Threshold voltage convergence
US20040100823A1 (en) * 2002-11-21 2004-05-27 Micron Technology, Inc. Mode selection in a flash memory device
US20040233730A1 (en) * 2002-11-28 2004-11-25 Emilio Camerlenghi Single cell erasing method for recovering memory cells under programming disturbs in non volatile semiconductor memory devices
US20050078528A1 (en) * 2003-10-14 2005-04-14 Tsang Sai K. Group erasing system for flash array with multiple sectors
US20060050594A1 (en) * 2004-09-03 2006-03-09 Park Jin S Flash memory device and method of erasing flash memory cell thereof
CN1324695C (en) * 2002-05-24 2007-07-04 海力士半导体有限公司 Flash storage unit erase program utilizing source region and channel region
US20080010326A1 (en) * 2006-06-15 2008-01-10 Carpenter Troy A Method and system for securely deleting files from a computer storage device
US20080062760A1 (en) * 2006-09-13 2008-03-13 Mosaid Technologies Incorporated Flash multi-level threshold distribution scheme
US20080198651A1 (en) * 2007-02-16 2008-08-21 Mosaid Technologies Incorporated Non-volatile memory with dynamic multi-mode operation
US20080201588A1 (en) * 2007-02-16 2008-08-21 Mosaid Technologies Incorporated Semiconductor device and method for reducing power consumption in a system having interconnected devices
US20080205164A1 (en) * 2007-02-27 2008-08-28 Hong Beom Pyeon Decoding control with address transition detection in page erase function
US20080219053A1 (en) * 2007-03-07 2008-09-11 Mosaid Technologies Incorporated Partial block erase architecture for flash memory
US20080273386A1 (en) * 2007-05-04 2008-11-06 Mosaid Technologies Incorporated Multi-level cell access buffer with dual function
US9588883B2 (en) 2011-09-23 2017-03-07 Conversant Intellectual Property Management Inc. Flash memory system
US9754102B2 (en) 2006-08-07 2017-09-05 Webroot Inc. Malware management through kernel detection during a boot sequence
US11489857B2 (en) 2009-04-21 2022-11-01 Webroot Inc. System and method for developing a risk profile for an internet resource

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495308B1 (en) * 2002-07-18 2005-06-14 주식회사 하이닉스반도체 Row decoder in a flash memory device
KR20150091687A (en) * 2014-02-03 2015-08-12 에스케이하이닉스 주식회사 Semiconductor apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270980A (en) * 1991-10-28 1993-12-14 Eastman Kodak Company Sector erasable flash EEPROM
US5406521A (en) * 1992-10-30 1995-04-11 Nec Corporation Semiconductor memory device and data erase method for it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099297A (en) * 1988-02-05 1992-03-24 Emanuel Hazani EEPROM cell structure and architecture with programming and erase terminals shared between several cells
US5365484A (en) * 1993-08-23 1994-11-15 Advanced Micro Devices, Inc. Independent array grounds for flash EEPROM array with paged erase architechture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270980A (en) * 1991-10-28 1993-12-14 Eastman Kodak Company Sector erasable flash EEPROM
US5406521A (en) * 1992-10-30 1995-04-11 Nec Corporation Semiconductor memory device and data erase method for it

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Kynett, et al., "A 90ns 100K Erase/Program Cycle Megabit Flash Memory", Session 10., Nonvolatile Memories, IEEE Internaional Solid-State Circuits Conferences, Feb. 16, 1989, pp. 140-141.
Kynett, et al., A 90ns 100K Erase/Program Cycle Megabit Flash Memory , Session 10., Nonvolatile Memories, IEEE Internaional Solid State Circuits Conferences, Feb. 16, 1989, pp. 140 141. *
Venkatesh, et al., "TP 2.7: A 55ns 0.35pm 5V-only 16M Flash Memory with Deep-Power-Down", ISSCC96/Session 2/Flash Memory/Paper TP 2.7, 1996 IEEE Internaitonal Solid-State Circuits Conference, pp. 44-45.
Venkatesh, et al., TP 2.7: A 55ns 0.35pm 5V only 16M Flash Memory with Deep Power Down , ISSCC96/Session 2/Flash Memory/Paper TP 2.7, 1996 IEEE Internaitonal Solid State Circuits Conference, pp. 44 45. *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359810B1 (en) * 1998-03-13 2002-03-19 Atmel Corporation Page mode erase in a flash memory array
US6259625B1 (en) * 1999-03-01 2001-07-10 Integrated Memory Technologies, Inc. Method and apparatus for reducing high current chip erase in flash memories
US6198664B1 (en) * 1999-12-01 2001-03-06 Advanced Micro Devices, Inc. APDE scheme for flash memory application
US6728140B2 (en) 2001-12-05 2004-04-27 Nexflash Technologies, Inc. Threshold voltage convergence
CN1324695C (en) * 2002-05-24 2007-07-04 海力士半导体有限公司 Flash storage unit erase program utilizing source region and channel region
US6836434B2 (en) * 2002-11-21 2004-12-28 Micron Technology, Inc. Mode selection in a flash memory device
US20070206420A1 (en) * 2002-11-21 2007-09-06 Micron Technology, Inc. Mode selection in a flash memory device
US20050068844A1 (en) * 2002-11-21 2005-03-31 Micron Technology, Inc. Mode selection in a flash memory device
US7573738B2 (en) 2002-11-21 2009-08-11 Micron Technology, Inc. Mode selection in a flash memory device
US7227777B2 (en) 2002-11-21 2007-06-05 Micron Technology, Inc. Mode selection in a flash memory device
US20040100823A1 (en) * 2002-11-21 2004-05-27 Micron Technology, Inc. Mode selection in a flash memory device
US6944061B2 (en) * 2002-11-28 2005-09-13 Stmicroelectronics, S.R.L. Single cell erasing method for recovering memory cells under programming disturbs in non volatile semiconductor memory devices
US20040233730A1 (en) * 2002-11-28 2004-11-25 Emilio Camerlenghi Single cell erasing method for recovering memory cells under programming disturbs in non volatile semiconductor memory devices
US20050078528A1 (en) * 2003-10-14 2005-04-14 Tsang Sai K. Group erasing system for flash array with multiple sectors
US6940759B2 (en) * 2003-10-14 2005-09-06 Atmel Corporation Group erasing system for flash array with multiple sectors
US7161842B2 (en) * 2004-09-03 2007-01-09 Hynix Semiconductor Inc. Flash memory device and method of erasing flash memory cell thereof
US20060050594A1 (en) * 2004-09-03 2006-03-09 Park Jin S Flash memory device and method of erasing flash memory cell thereof
US20080010326A1 (en) * 2006-06-15 2008-01-10 Carpenter Troy A Method and system for securely deleting files from a computer storage device
US9754102B2 (en) 2006-08-07 2017-09-05 Webroot Inc. Malware management through kernel detection during a boot sequence
US20080062760A1 (en) * 2006-09-13 2008-03-13 Mosaid Technologies Incorporated Flash multi-level threshold distribution scheme
US8711621B2 (en) 2006-09-13 2014-04-29 Mosaid Technologies Incorporated Flash multi-level threshold distribution scheme
US8462551B2 (en) 2006-09-13 2013-06-11 Mosaid Technologies Incorporated Flash multi-level threshold distribution scheme
US8102708B2 (en) 2006-09-13 2012-01-24 Mosaid Technologies Incorporated Flash multi-level threshold distribution scheme
US20090225595A1 (en) * 2006-09-13 2009-09-10 Mosaid Technologies Incorporated Flash multi-level threshold distribution scheme
US20110007564A1 (en) * 2006-09-13 2011-01-13 Mosaid Technologies Incorporated Flash multi-level threshold distribution scheme
US7821827B2 (en) 2006-09-13 2010-10-26 Mosaid Technologies Incorporated Flash multi-level threshold distribution scheme
US7593259B2 (en) 2006-09-13 2009-09-22 Mosaid Technologies Incorporated Flash multi-level threshold distribution scheme
US8045377B2 (en) 2007-02-16 2011-10-25 Mosaid Technologies Incorporated Non-volatile memory with dynamic multi-mode operation
US8391064B2 (en) 2007-02-16 2013-03-05 Mosaid Technologies Incorporated Non-volatile memory with dynamic multi-mode operation
US20080198651A1 (en) * 2007-02-16 2008-08-21 Mosaid Technologies Incorporated Non-volatile memory with dynamic multi-mode operation
US7646636B2 (en) 2007-02-16 2010-01-12 Mosaid Technologies Incorporated Non-volatile memory with dynamic multi-mode operation
US20100174854A1 (en) * 2007-02-16 2010-07-08 Mosaid Technologies Incorporated Non-volatile memory with dynamic multi-mode operation
US8767461B2 (en) 2007-02-16 2014-07-01 Conversant Intellectual Property Management Inc. Non-volatile memory with dynamic multi-mode operation
US20080201588A1 (en) * 2007-02-16 2008-08-21 Mosaid Technologies Incorporated Semiconductor device and method for reducing power consumption in a system having interconnected devices
US8553457B2 (en) 2007-02-16 2013-10-08 Mosaid Technologies Incorporated Non-volatile memory with dynamic multi-mode operation
US7778107B2 (en) 2007-02-27 2010-08-17 Mosaid Technologies Incorporated Decoding control with address transition detection in page erase function
US7577059B2 (en) 2007-02-27 2009-08-18 Mosaid Technologies Incorporated Decoding control with address transition detection in page erase function
US20090185424A1 (en) * 2007-02-27 2009-07-23 Mosaid Technologies Incorporated Decoding control with address transition detection in page erase function
US20080205164A1 (en) * 2007-02-27 2008-08-28 Hong Beom Pyeon Decoding control with address transition detection in page erase function
US7804718B2 (en) 2007-03-07 2010-09-28 Mosaid Technologies Incorporated Partial block erase architecture for flash memory
US20080219053A1 (en) * 2007-03-07 2008-09-11 Mosaid Technologies Incorporated Partial block erase architecture for flash memory
US8842472B2 (en) 2007-03-07 2014-09-23 Conversant Intellectual Property Management Inc. Partial block erase architecture for flash memory
US20100226183A1 (en) * 2007-03-07 2010-09-09 Mosaid Technologies Incorporated Partial block erase architecture for flash memory
US7577029B2 (en) 2007-05-04 2009-08-18 Mosaid Technologies Incorporated Multi-level cell access buffer with dual function
US7965550B2 (en) 2007-05-04 2011-06-21 Mosaid Technologies Incorporated Multi-level cell access buffer with dual function
US8565026B2 (en) 2007-05-04 2013-10-22 Mosaid Technologies Incorporated Multi-level cell access buffer with dual function
US20110222350A1 (en) * 2007-05-04 2011-09-15 Mosaid Technologies Incorporated Multi-level cell access buffer with dual function
US20080273386A1 (en) * 2007-05-04 2008-11-06 Mosaid Technologies Incorporated Multi-level cell access buffer with dual function
US8274825B2 (en) 2007-05-04 2012-09-25 Mosaid Technologies Incorporated Multi-level cell access buffer with dual function
US20090273973A1 (en) * 2007-05-04 2009-11-05 Mosaid Technologies Incorporated Multi-level cell access buffer with dual function
US11489857B2 (en) 2009-04-21 2022-11-01 Webroot Inc. System and method for developing a risk profile for an internet resource
US9588883B2 (en) 2011-09-23 2017-03-07 Conversant Intellectual Property Management Inc. Flash memory system
US10705736B2 (en) 2011-09-23 2020-07-07 Conversant Intellectual Property Management Inc. Flash memory system

Also Published As

Publication number Publication date
DE69908340T2 (en) 2003-11-27
NO20004307D0 (en) 2000-08-29
DE69908340D1 (en) 2003-07-03
NO321316B1 (en) 2006-04-24
KR100626787B1 (en) 2006-09-22
KR20010074443A (en) 2001-08-04
EP1070323A1 (en) 2001-01-24
NO20004307L (en) 2000-08-29
JP2002507041A (en) 2002-03-05
EP1070323B1 (en) 2003-05-28
CA2317576A1 (en) 1999-09-16
AU3083599A (en) 1999-09-27
CN1153223C (en) 2004-06-09
HK1036517A1 (en) 2002-01-04
RU2222058C2 (en) 2004-01-20
CN1292924A (en) 2001-04-25
WO1999046777A1 (en) 1999-09-16

Similar Documents

Publication Publication Date Title
US6118705A (en) Page mode erase in a flash memory array
US6359810B1 (en) Page mode erase in a flash memory array
US5365484A (en) Independent array grounds for flash EEPROM array with paged erase architechture
US6587375B2 (en) Row decoder for a nonvolatile memory device
KR100454116B1 (en) Bit line setup and discharge circuit for programming non-volatile memory
KR100290283B1 (en) Nonvolatile semiconductor memory device and word line driving method thereof
KR100308480B1 (en) Flash memory device with row decoding structure which is appropriate for high desitty
US6166959A (en) Flash memory array with internal refresh
US5790456A (en) Multiple bits-per-cell flash EEPROM memory cells with wide program and erase Vt window
JPH09106686A (en) Programming method for nonvolatile semiconductor memory
US5805499A (en) Channel hot-carrier page write for NAND applications
EP0495493B1 (en) Non-volatile electrically erasable semiconductor memory devices
US5966331A (en) Block decoded wordline driver with positive and negative voltage modes using four terminal MOS transistors
US9275708B2 (en) Row address decoding block for non-volatile memories and methods for decoding pre-decoded address information
KR20040051197A (en) Flash memory device having column pre-decoder capable of selecting all column selection transistors and stress test method thereof
US6021083A (en) Block decoded wordline driver with positive and negative voltage modes
JPH11273377A (en) Row decoder of flash memory device
EP1214715B1 (en) 1 transistor cell for eeprom application
US5684747A (en) Method for erasing nonvolatile semiconductor memory device incorporating redundancy memory cells
JPH04255996A (en) Nonvolatile semiconductor storage device
JPH065085A (en) Nonvolatile semiconductor memory device
US6768671B1 (en) Nonvolatile memory and method of operation thereof to control erase disturb
JPH09213090A (en) Non-volatile semiconductor memory
JP2000276889A (en) Non-volatile semiconductor memory

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATMEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUPTA, ANIL;SCHUMANN, STEVE;REEL/FRAME:009261/0680

Effective date: 19980417

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC. AS ADMINISTRAT

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ATMEL CORPORATION;REEL/FRAME:031912/0173

Effective date: 20131206

Owner name: MORGAN STANLEY SENIOR FUNDING, INC. AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ATMEL CORPORATION;REEL/FRAME:031912/0173

Effective date: 20131206

AS Assignment

Owner name: ATMEL CORPORATION, CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:038376/0001

Effective date: 20160404

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:ATMEL CORPORATION;REEL/FRAME:041715/0747

Effective date: 20170208

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:ATMEL CORPORATION;REEL/FRAME:041715/0747

Effective date: 20170208

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:046426/0001

Effective date: 20180529

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:046426/0001

Effective date: 20180529

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:047103/0206

Effective date: 20180914

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES C

Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:047103/0206

Effective date: 20180914

AS Assignment

Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222

Effective date: 20220218

Owner name: MICROSEMI CORPORATION, ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222

Effective date: 20220218

Owner name: ATMEL CORPORATION, ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222

Effective date: 20220218

Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222

Effective date: 20220218

Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222

Effective date: 20220218

AS Assignment

Owner name: ATMEL CORPORATION, ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059262/0105

Effective date: 20220218

AS Assignment

Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001

Effective date: 20220228

Owner name: MICROSEMI CORPORATION, ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001

Effective date: 20220228

Owner name: ATMEL CORPORATION, ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001

Effective date: 20220228

Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001

Effective date: 20220228

Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001

Effective date: 20220228