US6242279B1 - High density wire bond BGA - Google Patents

High density wire bond BGA Download PDF

Info

Publication number
US6242279B1
US6242279B1 US09/332,428 US33242899A US6242279B1 US 6242279 B1 US6242279 B1 US 6242279B1 US 33242899 A US33242899 A US 33242899A US 6242279 B1 US6242279 B1 US 6242279B1
Authority
US
United States
Prior art keywords
layer
metal substrate
bga
dielectric
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/332,428
Inventor
Chung W. Ho
Anna Litza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thin Film Module Inc
Original Assignee
Thin Film Module Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thin Film Module Inc filed Critical Thin Film Module Inc
Priority to US09/332,428 priority Critical patent/US6242279B1/en
Assigned to THIN FILM MODULE, INC. reassignment THIN FILM MODULE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HO, CHUNG W., LITZA, ANNA
Assigned to THIN FILM MODULE, INC. reassignment THIN FILM MODULE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THIN FILM MODULE, INC.
Application granted granted Critical
Publication of US6242279B1 publication Critical patent/US6242279B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Definitions

  • the invention relates to the fabrication of integrated circuit devices and more particularly, to a method and structure for making high density packaging substrates for wire bonded chips.
  • MCM multi-chip module
  • layers of a dielectric such as a polyimide separate metal power and ground planes in the substrate.
  • metal conductor lines with vias (holes) providing electrical connections between signal lines or to the metal power and ground planes. Adjacent layers are ordinarily formed so that the primary signal propagation directions are orthogonal to each other.
  • the conductor features are typically narrow in width and thick in a vertical direction (in the range of 5 to 10 microns thick) and must be patterned with microlithography, it is important to produce patterned layers that are substantially flat and smooth (i.e., planar) to serve as the base for the next layer.
  • Quad Flat Packs QFP's
  • QFP's Quad Flat Packs
  • These packages have closely spaced leads for making electrical connections distributed along the four edges of the flat package.
  • These packages have become limited by being confined to the edges of the flat package even though the pin to pin spacing is small.
  • a new package, a Ball Grid Array (BGA) is not so confined because the electrical contact points are distributed over the entire bottom surface of the package. More contact points can thus be located with greater spacing between the contact points than with the QFP's.
  • BGA Ball Grid Array
  • These contacts are solder balls that facilitate flow soldering of the package onto a printed circuit board.
  • a Ball Grid Array is an array of solderable balls placed on a chip carrier. The balls contact a printed circuit board in an array configuration where, after reheat, the balls connect the chip to the printed circuit board.
  • BGA's are known with 40, 50 and 60 mils. spacings in regular and staggered array patterns.
  • Interconnecting lines and vias are planarized by multiple coatings of a dielectric material such as polyimide which are used to achieve an acceptable degree of planarization.
  • a dielectric material such as polyimide which are used to achieve an acceptable degree of planarization.
  • Application of multiple coatings of thick polyimide is time-consuming and creates high stress on the substrate.
  • a method must therefore be found whereby devices can be mounted in very close physical proximity without increasing capacitive coupling while also reducing the RC induced time delay of the circuit.
  • One typical approach is to search for insulating layers that have low dielectric constants, ideally the dielectric constant of a vacuum.
  • Another approach is to use electrical conductors for the interconnect lines that have low electrical resistivity thereby reducing the RC time delay.
  • Another approach is to direct the packaging of semiconductor devices in the direction of wafer-like packages. This approach offers the advantages of being able to use standard semiconductor processing equipment and processes while it can readily be adapted to accommodate die shrinkage and to wafer-level burn-in and testing.
  • the present invention starts with a metal panel, typically made of copper, and takes advantage of a technology known in the art as the Build Up Multilayer (BUM) in combination with thin film deposition techniques to create a substrate for high density packages.
  • BUM Build Up Multilayer
  • Another Prior Art approach is the approach used by Substrate Technology Inc. for the Ultra BGA.
  • the BGA substrate is made by creating the BUM on a metal substrate for the wiring of the printed circuit board.
  • Thin film deposition techniques are however not used in this approach which results in limited line density of the overall package. Line width achieved by using this approach is about 50 u while the spacing between the lines is about 50 u. Fan out for high-density BGA devices can therefore only be achieved by creating multiple layers of metal, which makes the manufacturing of the BGA substrate expensive.
  • U.S. Pat. No. 5,578,869 shows a (1) metal base/panel for a package.
  • U.S. Pat. No. 5,866,942 (Suzuki et al.) discloses (1) a laminate package using polyimide and copper foil patterns.
  • U.S. Pat. No. 5,1660,738 (Hunter, Jr. et al.) and U.S. Pat. No. 5,509,553 (Hunter, Jr et al.) show (3) a metal layer process (DEMR) (see FIG. 5A) that appears to comprise a) sputter plating base b) plating metal (semi-additive plating), see col. 2.
  • DEMR metal layer process
  • U.S. Pat. No. 5,525,834 shows a package having a Cu substrate, thin dielectric layers (1-25 um thick) and thin dielectric layers (12 to 75 um), see col. 7 and 8.
  • a principle objective of the invention is to provide an inexpensive and reliable method for high-density semiconductor device manufacturing.
  • Another objective of the invention is to reduce performance limitations imposed by Prior Art high-density semiconductor device manufacturing techniques.
  • Yet another objective of the invention is to provide for high pin fan-out for semiconductor devices.
  • Yet another objective of the invention is to provide for increased power dissipation for semiconductor devices.
  • Yet another objective of the invention is to provide a method of packaging high density semiconductor devices by using Build Up Material (BUM) technology in combination with thin film deposition techniques.
  • BUM Build Up Material
  • a new method is provided for creating high-density packages for wire bonded chips.
  • the invention uses a combination of BUM technology and thin film deposition techniques to create the required interface between the contact points of the BGA device and the contact balls of the BGA substrate.
  • BUM technology is used in the invention to create power supply layers and ground layers where needed.
  • Thin film interconnecting lines are created using thin film deposition techniques.
  • FIG. 1 shows a cross section of a high density BGA.
  • FIG. 2 shows a cross section of a high density BGA with one layer of patterned metal.
  • FIG. 3 shows a cross section of a multi-chip BGA with three layers of patterned metal.
  • FIG. 4 shows a cross section of a multichip BGA with two layers of patterned metal.
  • FIG. 5 shows the processing steps used during the thin film deposition process.
  • FIG. 6 shows the processing steps used during the BUM process.
  • the metal substrate 14 has two surfaces, a first surface 24 and a second surface 26 .
  • a dielectric layer (not shown) is laminated or deposited on the first surface 24 of the metal substrate 14 , the interconnect substrate 12 contains two patterned metal layers 18 and 20 .
  • Typical dimensions for the metal lines and the dielectric layers of the invention are as follows: the width of the created metal lines and the spacing between the metal lines are between about 12 and 20 um; the thickness of the applied dielectric layers is between about 10 and 40 um.
  • the interconnect substrate 12 is hereby defined as the structure that contains the totality of the sequence of layers that are created within the scope of the invention for making a high density packaging substrate.
  • the metal layer within the interconnect substrate 12 that is closest to the first surface 24 of the metal substrate 14 is referred to as the bottom layer
  • the metal layer within the interconnect substrate 12 that is furthest removed from the first surface 24 of the metal substrate 14 is referred to as the top layer.
  • the metal substrate 14 is, in the cross section as shown in FIG. 1, used as the ground power supply.
  • Layer 20 the bottom layer of the interconnect substrate 12 , serves primarily as the power supply layer but can also be used for some fan-out connections.
  • the top layer 18 of the interconnect substrate is created using state of the art thin film deposition techniques.
  • the thin film deposition technique contains the following steps, see FIG. 5 :
  • FIG. 5 a depositing an interconnect plating base 50 by consecutive sputtering of Cr, Cu and Cr on the surface of a layer of dielectric 51 ;
  • FIG. 5 b depositing a layer 52 of photoresist on the surface of the plating base 50 , masking and patterning (in the reverse pattern of the interconnect lines) the layer 52 of photoresist in preparation for semi-additive plating of the interconnect pattern and wet etching the thin Cr layer to expose the copper layer;
  • FIG. 5 c depositing semi-additive plating 54 of the interconnect pattern by depositing Cu or Cu, Ni and Au;
  • FIG. 5 d removing of the mask 52 (FIG. 5 b ) that was used for the semi-additive plating of the interconnect pattern;
  • FIG. 5 e wet etching to remove the sputtered plating base 56 , FIG. 5 d , from between the interconnect pattern 54 ;
  • FIG. 5 f coating the created interconnect pattern with a layer 58 of dielectric
  • the above dielectric forms a solder mask and vias are created in the dielectric for the solder connections.
  • Layer 20 is created using state of the art BUM fabrication technology. This technology contains the following processing steps, see FIG. 6 :
  • the starting substrate 60 can be a metallized or it can also be a cleaned metal substrate panel without any interconnect layers;
  • FIG. 6 b coating of the substrate 60 with a layer 62 of dielectric
  • FIG. 6 c creating of vias 64 in the dielectric 62 for electrical connections to the substrate 60 ;
  • FIG. 6 d etching and swelling of the dielectric 62 to roughen the surface and thereby promote adhesion for the subsequent electroless copper deposition
  • the thickness of the dielectric that is applied in the above sequence must be considerably less than the thickness of dielectric layers typically used in the BUM process which are between about 50 and 75 um. This objective can also be reached by creating the layer of dielectric by curtain coating or by spinning or a combination of spinning and extrusion steps that are typically used in the flat panel display industry to create thin layers of dielectric.
  • the process of electroless seeding creates a continuous metal film that is used as a plating base for the subsequent panel plating and the wet etch processing steps.
  • the process of electroless seeding contains a series of steps that are used in the Printed Wiring Board (PWB) industry as applied to a dielectric (e.g. epoxy). These steps consist of conditioner, micro-etch, pre-dip, catalyze, accelerate and metalize and are aimed at creating a thin layer of continuous copper film.
  • PWB Printed Wiring Board
  • the BGA contact balls 10 form the contact points between the total package of the high density BGA and the underlying interconnect configuration.
  • the bond wires 22 establish the contact between the IC and the interconnect substrate 12 .
  • the openings that are created to contact the first surface 24 of the interconnect substrate for the patterned metal layer 20 can be created using laser technology. This offsets the expense of conventional (mechanical) drilling of contact holes in this surface by offering increased speed and accuracy.
  • the Integrated Circuit 16 is inserted into an opening that has been etched or milled mechanically for this purpose in the first surface 24 of the metal substrate 14 .
  • the opening into which the IC chip is inserted can be of any dimension and can readily be adapted to either BGA or LGA or PGA devices of any dimension. It is further clear that more than one opening can be created in the first surface 24 of the metal substrate 14 thereby creating device packages that can contain more than one IC chip in the same BGA or LGA or PGA device.
  • FIG. 2 shows a cross section where only one patterned layer 28 is created using the above-indicated thin film deposition techniques. This layer serves as both the signal interconnect layer and the power supply layer, the metal substrate 14 remains the ground power supply layer.
  • the surface of the metal substrate 14 Prior to the deposition of the thin film interconnecting pattern, the surface of the metal substrate 14 is cleaned, coated with a dielectric and vias are opened in the dielectric for connection the metal substrate (which serves as ground power supply).
  • the metal substrate which serves as ground power supply.
  • the thin film deposition process that has been highlighted above is applied to the top surface of the dielectric, the interconnect plating base establishes electrical contact between the layer of interconnecting lines and the metal substrate, while, after the interconnecting line pattern has been formed, the plating base is etched off to isolate the interconnecting lines, the dielectric deposited over the interconnecting lines patterns insulates the pattern.
  • the metal substrate has planar dimensions (typically 18′′ ⁇ 24′′) that allow for a multiplicity of BGA packages to be created within one metal substrate. After this process of creating the BGA packages is complete, the metal substrate is sub-divided (by cutting or scoring) thereby creating individual BGA packages.
  • FIG. 3 shows a cross section of a two chip BGA package with three layers of patterned metal within the interconnect substrate.
  • the interconnect substrate 30 contains layers 32 , 34 and 36 .
  • Layer 32 the bottom layer, serves as the power layer, layers 34 and 36 are created using thin film deposition technology. Also highlighted are the bond wires 38 .
  • Layer 32 is created using the above highlighted BUM technology, layers 34 and 36 have been created using the above highlighted thin film processing techniques.
  • FIG. 3 shows the previously indicated example of two openings that have been etched or milled into the first surface of the metal substrate 14 .
  • the BGA contact ball 11 is connected to the part of the interconnect substrate that resides between the two openings that have been created in the metal substrate 14 and is, as such, a part of the interconnect substrate.
  • FIG. 4 shows a cross section of a multi-chip BGA package where two patterned layer 40 and 42 have been created in the interconnect substrate 46 . Both layers 40 and 42 have been created using thin film deposition techniques. Bond wire 44 is highlighted.
  • the invention is not limited to a fixed number of BUM layers or interconnect layers that can be deposited on the first surface of said metal substrate. Multiple layers of dielectric can be combined with the deposition of multiple BUM layers and/or interconnect layers. Limitations that are imposed on the overall structure are limitations that are imposed due to such electrical design restraints as propagation delay, line resistivity, capacitive coupling, RC-time constant delay, dielectric constants between deposited layers, and others.
  • the invention therefore provides the means of constructing high density BGA/LGA/PGA packages without, due to the nature of the invention, imposing any constraints on these packages. It further follows that the number of cavities that are created in the first surface of the metal substrate or the size of the created cavities can be selected at will and can be dictated by design requirements without being limited in this selection by limitations imposed by the invention.

Abstract

A new method is provided for creating high-density packages for wire bonded chips. The invention uses a combination of BUM technology and thin film deposition techniques to create the required interface between the contact points of the BGA device and the contact balls of the BGA substrate. Cavities are created on the metal panel substrates for IC chip insertion.

Description

This application is related to application Ser. No. 09/332,427, filed on Jun. 14, 1999, assigned to a common assignee.
BACKGROUND OF THE INVENTION
(1) Field of the Invention
The invention relates to the fabrication of integrated circuit devices and more particularly, to a method and structure for making high density packaging substrates for wire bonded chips.
(2) Description of the Prior Art
In the field of high density interconnect technology, it is necessary to fabricate a multilayer structure on the substrate to connect integrated circuits to one another. To achieve a high wiring and packing density, many integrated circuit chips are physically and electrically connected to a single substrate commonly referred to as a multi-chip module (MCM). Typically, layers of a dielectric such as a polyimide separate metal power and ground planes in the substrate. Embedded in other dielectric layers are metal conductor lines with vias (holes) providing electrical connections between signal lines or to the metal power and ground planes. Adjacent layers are ordinarily formed so that the primary signal propagation directions are orthogonal to each other. Since the conductor features are typically narrow in width and thick in a vertical direction (in the range of 5 to 10 microns thick) and must be patterned with microlithography, it is important to produce patterned layers that are substantially flat and smooth (i.e., planar) to serve as the base for the next layer.
Surface mounted, high pin count integrated circuit packages have in the past been configured using Quad Flat Packs (QFP's) with various pin configurations. These packages have closely spaced leads for making electrical connections distributed along the four edges of the flat package. These packages have become limited by being confined to the edges of the flat package even though the pin to pin spacing is small. To address this limitation, a new package, a Ball Grid Array (BGA) is not so confined because the electrical contact points are distributed over the entire bottom surface of the package. More contact points can thus be located with greater spacing between the contact points than with the QFP's. These contacts are solder balls that facilitate flow soldering of the package onto a printed circuit board.
A Ball Grid Array (BGA) is an array of solderable balls placed on a chip carrier. The balls contact a printed circuit board in an array configuration where, after reheat, the balls connect the chip to the printed circuit board. BGA's are known with 40, 50 and 60 mils. spacings in regular and staggered array patterns.
Interconnecting lines and vias are planarized by multiple coatings of a dielectric material such as polyimide which are used to achieve an acceptable degree of planarization. Application of multiple coatings of thick polyimide is time-consuming and creates high stress on the substrate.
In the realm of micron and submicron device features, the conducting interconnections that connect the Integrated Circuit to other circuit or system components become relatively more important and have, with the further miniaturization of the IC, an increasingly negative impact on the circuit performance. Circuit performance parameters such as parasitic capacitance and resistance of the metal interconnections increase, thereby degrading the chip performance significantly. Of most concern in this respect is the voltage drop along the power and ground buses and the RC delay of the critical signal paths. Attempts to reduce the resistance by using wider metal lines result in higher capacitance of these wires.
To solve this problem, the approach has been taken to develop low resistance metal (such as copper) for the wires while low dielectric materials are used in between signal lines.
Recent developments in the creation of semiconductor integrated devices have seen device features being reduced to the micron and sub-micron range. Continued emphasis on improved device performance requires increased device operating speed, which in turn requires that device dimensions are further reduced. This leads to an approach that is applied to Ultra Large Scale Integration (ULSI) devices where multi-levels of metal interconnects are used to electrically interconnect the discrete semiconductor devices on the semiconductor chips. In more conventional approaches, the different levels of interconnect are separated by layers of insulating materials. The various adjacent levels of metal can be interconnected by creating via openings in the interposing insulating layers. Typically, an insulating layer is silicon dioxide. Increased reduction of device size coupled with increased device density requires further reduction in the spacing between the metal interconnect lines in order to accomplish effective interconnects of the integrated circuits. This however is accompanied with an increase in capacitive coupling between adjacent lines, an increase that has a negative impact on device performance and device operating speed. A method must therefore be found whereby devices can be mounted in very close physical proximity without increasing capacitive coupling while also reducing the RC induced time delay of the circuit. One typical approach is to search for insulating layers that have low dielectric constants, ideally the dielectric constant of a vacuum. Another approach is to use electrical conductors for the interconnect lines that have low electrical resistivity thereby reducing the RC time delay. Another approach is to direct the packaging of semiconductor devices in the direction of wafer-like packages. This approach offers the advantages of being able to use standard semiconductor processing equipment and processes while it can readily be adapted to accommodate die shrinkage and to wafer-level burn-in and testing.
The present invention starts with a metal panel, typically made of copper, and takes advantage of a technology known in the art as the Build Up Multilayer (BUM) in combination with thin film deposition techniques to create a substrate for high density packages.
Other Prior Art applications that use metal substrates to package BGA devices consist of Olin's MBGA (U.S. Pat. No. 5,578,869) and MMS's Metal BGA. The MMS approach starts with a 6″ wafer form factor but neither of these approaches use BUM technology or thin film deposition techniques as applied in the manufacturing of large area flat panel displays. The resulting manufacturing cost incurred using this approach is high.
Another Prior Art approach is the approach used by Substrate Technology Inc. for the Ultra BGA. In this approach, the BGA substrate is made by creating the BUM on a metal substrate for the wiring of the printed circuit board. Thin film deposition techniques are however not used in this approach which results in limited line density of the overall package. Line width achieved by using this approach is about 50 u while the spacing between the lines is about 50 u. Fan out for high-density BGA devices can therefore only be achieved by creating multiple layers of metal, which makes the manufacturing of the BGA substrate expensive.
U.S. Pat. No. 5,578,869 (Hoffman et al.) shows a (1) metal base/panel for a package.
U.S. Pat. No. 5,866,942 (Suzuki et al.) discloses (1) a laminate package using polyimide and copper foil patterns.
U.S. Pat. No. 5,1660,738 (Hunter, Jr. et al.) and U.S. Pat. No. 5,509,553 (Hunter, Jr et al.) show (3) a metal layer process (DEMR) (see FIG. 5A) that appears to comprise a) sputter plating base b) plating metal (semi-additive plating), see col. 2.
U.S. Pat. No. 5,660,697 (Kawashima et al.) shows a flat panel process (2) using a sputtered SiN dielectric.
U.S. Pat. No. 5,830,563 (Shimoto et al.) discloses a laminate substrate with thin films deposited thereon.
U.S. Pat. No. 5,837,427 (Hwang et al.) shows a (4) BUM process for a metal base/panel PCB.
U.S. Pat. No. 5,525,834 (Fischer et al.) shows a package having a Cu substrate, thin dielectric layers (1-25 um thick) and thin dielectric layers (12 to 75 um), see col. 7 and 8.
SUMMARY OF THE INVENTION
A principle objective of the invention is to provide an inexpensive and reliable method for high-density semiconductor device manufacturing.
Another objective of the invention is to reduce performance limitations imposed by Prior Art high-density semiconductor device manufacturing techniques.
Yet another objective of the invention is to provide for high pin fan-out for semiconductor devices.
Yet another objective of the invention is to provide for increased power dissipation for semiconductor devices.
Yet another objective of the invention is to provide a method of packaging high density semiconductor devices by using Build Up Material (BUM) technology in combination with thin film deposition techniques.
In accordance with the objectives of the invention a new method is provided for creating high-density packages for wire bonded chips. The invention uses a combination of BUM technology and thin film deposition techniques to create the required interface between the contact points of the BGA device and the contact balls of the BGA substrate.
BUM technology is used in the invention to create power supply layers and ground layers where needed. Thin film interconnecting lines are created using thin film deposition techniques.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a cross section of a high density BGA.
FIG. 2 shows a cross section of a high density BGA with one layer of patterned metal.
FIG. 3 shows a cross section of a multi-chip BGA with three layers of patterned metal.
FIG. 4 shows a cross section of a multichip BGA with two layers of patterned metal.
FIG. 5 shows the processing steps used during the thin film deposition process.
FIG. 6 shows the processing steps used during the BUM process.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now specifically to FIG. 1, there is shown a cross section of a high density BGA. The metal substrate 14 has two surfaces, a first surface 24 and a second surface 26. A dielectric layer (not shown) is laminated or deposited on the first surface 24 of the metal substrate 14, the interconnect substrate 12 contains two patterned metal layers 18 and 20. Typical dimensions for the metal lines and the dielectric layers of the invention are as follows: the width of the created metal lines and the spacing between the metal lines are between about 12 and 20 um; the thickness of the applied dielectric layers is between about 10 and 40 um.
The interconnect substrate 12 is hereby defined as the structure that contains the totality of the sequence of layers that are created within the scope of the invention for making a high density packaging substrate. The metal layer within the interconnect substrate 12 that is closest to the first surface 24 of the metal substrate 14 is referred to as the bottom layer, the metal layer within the interconnect substrate 12 that is furthest removed from the first surface 24 of the metal substrate 14 is referred to as the top layer.
The metal substrate 14 is, in the cross section as shown in FIG. 1, used as the ground power supply. Layer 20, the bottom layer of the interconnect substrate 12, serves primarily as the power supply layer but can also be used for some fan-out connections.
The top layer 18 of the interconnect substrate is created using state of the art thin film deposition techniques. The thin film deposition technique contains the following steps, see FIG. 5:
FIG. 5a, depositing an interconnect plating base 50 by consecutive sputtering of Cr, Cu and Cr on the surface of a layer of dielectric 51;
FIG. 5b, depositing a layer 52 of photoresist on the surface of the plating base 50, masking and patterning (in the reverse pattern of the interconnect lines) the layer 52 of photoresist in preparation for semi-additive plating of the interconnect pattern and wet etching the thin Cr layer to expose the copper layer;
FIG. 5c, depositing semi-additive plating 54 of the interconnect pattern by depositing Cu or Cu, Ni and Au;
FIG. 5d, removing of the mask 52 (FIG. 5b) that was used for the semi-additive plating of the interconnect pattern;
FIG. 5e, wet etching to remove the sputtered plating base 56, FIG. 5d, from between the interconnect pattern 54;
FIG. 5f, coating the created interconnect pattern with a layer 58 of dielectric;
for applications where solder connections need to be made to the interconnect pattern the above dielectric forms a solder mask and vias are created in the dielectric for the solder connections.
Layer 20 is created using state of the art BUM fabrication technology. This technology contains the following processing steps, see FIG. 6:
FIG. 6a, the starting substrate 60 can be a metallized or it can also be a cleaned metal substrate panel without any interconnect layers;
FIG. 6b, coating of the substrate 60 with a layer 62 of dielectric;
FIG. 6c, creating of vias 64 in the dielectric 62 for electrical connections to the substrate 60;
FIG. 6d, etching and swelling of the dielectric 62 to roughen the surface and thereby promote adhesion for the subsequent electroless copper deposition;
It must be noted that the thickness of the dielectric that is applied in the above sequence must be considerably less than the thickness of dielectric layers typically used in the BUM process which are between about 50 and 75 um. This objective can also be reached by creating the layer of dielectric by curtain coating or by spinning or a combination of spinning and extrusion steps that are typically used in the flat panel display industry to create thin layers of dielectric.
The process of electroless seeding creates a continuous metal film that is used as a plating base for the subsequent panel plating and the wet etch processing steps. The process of electroless seeding contains a series of steps that are used in the Printed Wiring Board (PWB) industry as applied to a dielectric (e.g. epoxy). These steps consist of conditioner, micro-etch, pre-dip, catalyze, accelerate and metalize and are aimed at creating a thin layer of continuous copper film.
Further highlighted in FIG. 1 are the BGA contact balls 10, the integrated circuit (chip) 16 and bond wires 22. The BGA contact balls form the contact points between the total package of the high density BGA and the underlying interconnect configuration. The bond wires 22 establish the contact between the IC and the interconnect substrate 12.
The openings that are created to contact the first surface 24 of the interconnect substrate for the patterned metal layer 20 can be created using laser technology. This offsets the expense of conventional (mechanical) drilling of contact holes in this surface by offering increased speed and accuracy.
The Integrated Circuit 16 is inserted into an opening that has been etched or milled mechanically for this purpose in the first surface 24 of the metal substrate 14. It is clear from the cross section as shown in FIG. 1, the opening into which the IC chip is inserted can be of any dimension and can readily be adapted to either BGA or LGA or PGA devices of any dimension. It is further clear that more than one opening can be created in the first surface 24 of the metal substrate 14 thereby creating device packages that can contain more than one IC chip in the same BGA or LGA or PGA device.
FIG. 2 shows a cross section where only one patterned layer 28 is created using the above-indicated thin film deposition techniques. This layer serves as both the signal interconnect layer and the power supply layer, the metal substrate 14 remains the ground power supply layer.
Prior to the deposition of the thin film interconnecting pattern, the surface of the metal substrate 14 is cleaned, coated with a dielectric and vias are opened in the dielectric for connection the metal substrate (which serves as ground power supply). After the metal substrate 14 has been prepared in this manner, the thin film deposition process that has been highlighted above is applied to the top surface of the dielectric, the interconnect plating base establishes electrical contact between the layer of interconnecting lines and the metal substrate, while, after the interconnecting line pattern has been formed, the plating base is etched off to isolate the interconnecting lines, the dielectric deposited over the interconnecting lines patterns insulates the pattern.
The metal substrate has planar dimensions (typically 18″×24″) that allow for a multiplicity of BGA packages to be created within one metal substrate. After this process of creating the BGA packages is complete, the metal substrate is sub-divided (by cutting or scoring) thereby creating individual BGA packages.
The basic design of creating one BUM layer followed by one or more thin film deposited layers of interconnect lines can be used to package more than one chip. This is shown in FIG. 3 which shows a cross section of a two chip BGA package with three layers of patterned metal within the interconnect substrate. The interconnect substrate 30 contains layers 32, 34 and 36. Layer 32, the bottom layer, serves as the power layer, layers 34 and 36 are created using thin film deposition technology. Also highlighted are the bond wires 38. Layer 32 is created using the above highlighted BUM technology, layers 34 and 36 have been created using the above highlighted thin film processing techniques.
FIG. 3 shows the previously indicated example of two openings that have been etched or milled into the first surface of the metal substrate 14. The BGA contact ball 11 is connected to the part of the interconnect substrate that resides between the two openings that have been created in the metal substrate 14 and is, as such, a part of the interconnect substrate.
FIG. 4 shows a cross section of a multi-chip BGA package where two patterned layer 40 and 42 have been created in the interconnect substrate 46. Both layers 40 and 42 have been created using thin film deposition techniques. Bond wire 44 is highlighted.
It must further again be emphasized that it is clear from the above that the invention is not limited to a fixed number of BUM layers or interconnect layers that can be deposited on the first surface of said metal substrate. Multiple layers of dielectric can be combined with the deposition of multiple BUM layers and/or interconnect layers. Limitations that are imposed on the overall structure are limitations that are imposed due to such electrical design restraints as propagation delay, line resistivity, capacitive coupling, RC-time constant delay, dielectric constants between deposited layers, and others. The invention therefore provides the means of constructing high density BGA/LGA/PGA packages without, due to the nature of the invention, imposing any constraints on these packages. It further follows that the number of cavities that are created in the first surface of the metal substrate or the size of the created cavities can be selected at will and can be dictated by design requirements without being limited in this selection by limitations imposed by the invention.
Although the preferred embodiment of the present invention has been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (9)

What is claimed is:
1. A method of mounting a Ball Grid Array chip comprising:
providing a metal substrate said metal substrate having a first surface and a second surface;
creating a thin film layer over said first surface of said metal substrate, said thin film layer having a first and a second surface whereby selected points of said second surface are in electrical contact with said first surface of said metal substrate, said thin film layer being created using a combination of printed wiring board equipment such as plating and wet etch and Build Up Multi-layer (BUM) equipment such as a dielectric coater and laser via and thin film deposition equipment such as a sputter or a projection printer;
exposing the metal pads within said first surface of said thin film layer thereby creating openings for wire bond connections in addition to BGA solder connections;
milling said first surface of said metal substrate thereby creating an opening for the insertion of said GBA chip;
inserting a BGA chip into said opening in said first surface of said metal substrate;
connecting bond wires between said BGA chip and openings for wire bond connections created in said thin film layer;
inserting BGA contact balls into said openings in said first surface of said thin film for BGA solder connections;
heat-treating said BGA device, establishing electrical contacts between said BGA contact balls and said first surface of said thin film layer; and
subdividing said metal substrate into individual BGA substrates.
2. The method of claim 1 wherein said creating a thin film layer comprises the steps of:
cleaning the first surface of said metal substrate;
treating said first surface with an adhesion promotion step such as an oxidation growth step;
coating of said metal substrate with a first layer of dielectric such as curtain coating or roller coating;
creating of vias in said first layer of dielectric for electrical connections to the metal substrate;
sputter depositing an interconnect plating base having a surface over said first layer of dielectric by depositing a first layer of Cr, a first layer of Cu, and a second layer of Cr;
depositing a layer of photoresist over said interconnect plating base;
masking and patterning said layer of photoresist, creating a mask of photoresist;
etching the second layer of Cr to expose portions of the underlying first layer of Cu contained within said interconnect plating base;
forming a semi-additive plating on said exposed portions of the underlying Cu contained within said interconnect plating base by depositing a second layer of Cu, a first layer of Ni and a first layer of Au;
removing said mask of photoresist to expose portions of said interconnect plating base; and
etching said exposed portions of said interconnect plating base to form an interconnect pattern comprising said interconnect plating base and said semi-additive plating.
3. The method of claim 2 wherein coating of said metal substrate with a first layer of dielectric is creating a layer of dielectric with a thickness between about 10 and 40 um.
4. The method of claim 1 wherein said exposing the metal substrate or metal pads within said first surface of a metal layer is performed using laser technology thereby creating laser vias.
5. The method of claim 1 wherein said milling said first surface of said metal substrate is a mechanical milling or an etchback of said first surface of said metal substrate.
6. The method of claim 1 wherein said metal substrate contains an element selected from the group of copper or aluminum or stainless steel.
7. The method of claim 1 wherein said metal substrate is about 40 mills thick and has planar dimensions that are large enough to provide for one or more surfaces each having dimensions of about 18×24 inches.
8. The method of claim 2 wherein said first layer of dielectric contains an element selected from the group of epoxy with or without glass reinforcement or polyimide or a composite dielectric and is deposited to a thickness between about 10 and 40 um using either lamination techniques or coating and curing techniques.
9. The method of claim 1 wherein said Grid Array is selected from the group consisting of Ball Grid Array (BGA), Land Grid Array (LGA) and Pin Grid Array (PGA).
US09/332,428 1999-06-14 1999-06-14 High density wire bond BGA Expired - Fee Related US6242279B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/332,428 US6242279B1 (en) 1999-06-14 1999-06-14 High density wire bond BGA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/332,428 US6242279B1 (en) 1999-06-14 1999-06-14 High density wire bond BGA

Publications (1)

Publication Number Publication Date
US6242279B1 true US6242279B1 (en) 2001-06-05

Family

ID=23298190

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/332,428 Expired - Fee Related US6242279B1 (en) 1999-06-14 1999-06-14 High density wire bond BGA

Country Status (1)

Country Link
US (1) US6242279B1 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395578B1 (en) * 1999-05-20 2002-05-28 Amkor Technology, Inc. Semiconductor package and method for fabricating the same
US6413798B2 (en) * 1998-01-18 2002-07-02 Kabushiki Kaisha Toshiba Package having very thin semiconductor chip, multichip module assembled by the package, and method for manufacturing the same
US20020135065A1 (en) * 2000-12-01 2002-09-26 Zhao Sam Ziqun Thermally and electrically enhanced ball grid array packaging
US20020185722A1 (en) * 2000-12-22 2002-12-12 Zhao Sam Ziqun Die-up ball grid array package with enhanced stiffener
US20030025201A1 (en) * 2001-07-13 2003-02-06 Hiroshi Harada Integrated circuit chip with little possibility of becoming damaged and structure for mounting the same
US6537848B2 (en) * 2001-05-30 2003-03-25 St. Assembly Test Services Ltd. Super thin/super thermal ball grid array package
US20030057550A1 (en) * 2000-12-22 2003-03-27 Broadcom Corporation Ball grid array package enhanced with a thermal and electrical connector
US20030062602A1 (en) * 2001-09-28 2003-04-03 Kristopher Frutschy Arrangements to supply power to semiconductor package
US20030128044A1 (en) * 2000-12-15 2003-07-10 Pierce John L. Method for producing a wafer interposer for use in a wafer interposer assembly
US20030146503A1 (en) * 2002-02-01 2003-08-07 Broadcom Corporation Ball grid array package with stepped stiffener layer
US20030146506A1 (en) * 2002-02-01 2003-08-07 Broadcom Corporation Ball grid array package fabrication with IC die support structures
US20030146511A1 (en) * 2002-02-01 2003-08-07 Broadcom Corporation Ball grid array package with multiple interposers
US20030179549A1 (en) * 2002-03-22 2003-09-25 Zhong Chong Hua Low voltage drop and high thermal perfor mance ball grid array package
US6673653B2 (en) 2001-02-23 2004-01-06 Eaglestone Partners I, Llc Wafer-interposer using a ceramic substrate
US6686657B1 (en) 2000-11-07 2004-02-03 Eaglestone Partners I, Llc Interposer for improved handling of semiconductor wafers and method of use of same
US6717248B2 (en) 1999-05-07 2004-04-06 Amkor Technology, Inc. Semiconductor package and method for fabricating the same
US20040113284A1 (en) * 2002-03-21 2004-06-17 Broadcom Corporation Method for making an enhanced die-up ball grid array package with two substrates
US6759741B2 (en) 2000-07-31 2004-07-06 Eaglestone Partners I, Llc Matched set of integrated circuit chips selected from a multi wafer-interposer
US20040212051A1 (en) * 2000-12-22 2004-10-28 Broadcom Corporation Ball grid array package with patterned stiffener layer
US6812048B1 (en) 2000-07-31 2004-11-02 Eaglestone Partners I, Llc Method for manufacturing a wafer-interposer assembly
US6815712B1 (en) 2000-10-02 2004-11-09 Eaglestone Partners I, Llc Method for selecting components for a matched set from a wafer-interposer assembly
US6825678B2 (en) 1999-11-16 2004-11-30 Eaglestone Partners I, Llc Wafer level interposer
US20050012203A1 (en) * 2001-02-15 2005-01-20 Rahman Khan Reza-Ur Enhanced die-down ball grid array and method for making the same
US20050051890A1 (en) * 2001-05-07 2005-03-10 Broadcom Corporation Die-up ball grid array package including a substrate capable of mounting an integrated circuit die and method for making the same
US6879039B2 (en) * 2001-12-18 2005-04-12 Broadcom Corporation Ball grid array package substrates and method of making the same
US6903278B2 (en) * 2001-06-29 2005-06-07 Intel Corporation Arrangements to provide mechanical stiffening elements to a thin-core or coreless substrate
US20050280141A1 (en) * 2004-06-21 2005-12-22 Broadcom Corporation Integrated circuit device package having both wire bond and flip-chip interconnections and method of making the same
US20050280139A1 (en) * 2004-06-21 2005-12-22 Broadcom Corporation Multipiece apparatus for thermal and electromagnetic interference (EMI) shielding enhancement in die-up array packages and method of making the same
US20060012035A1 (en) * 2002-12-10 2006-01-19 Infineon Technologies Ag Method of packaging integrated circuits, and integrated circuit packages produced by the method
US20060065972A1 (en) * 2004-09-29 2006-03-30 Broadcom Corporation Die down ball grid array packages and method for making same
US7045890B2 (en) * 2001-09-28 2006-05-16 Intel Corporation Heat spreader and stiffener having a stiffener extension
US7132744B2 (en) 2000-12-22 2006-11-07 Broadcom Corporation Enhanced die-up ball grid array packages and method for making the same
US20070267734A1 (en) * 2006-05-16 2007-11-22 Broadcom Corporation No-lead IC packages having integrated heat spreader for electromagnetic interference (EMI) shielding and thermal enhancement
EP1884995A2 (en) * 2006-08-01 2008-02-06 Shinko Electric Industries Co., Ltd. Wiring substrate and manufacturing method thereof, and semiconductor device
US7432586B2 (en) 2004-06-21 2008-10-07 Broadcom Corporation Apparatus and method for thermal and electromagnetic interference (EMI) shielding enhancement in die-up array packages
US20090028491A1 (en) * 2007-07-26 2009-01-29 General Electric Company Interconnect structure
US7550845B2 (en) 2002-02-01 2009-06-23 Broadcom Corporation Ball grid array package with separated stiffener layer
US20110308079A1 (en) * 2006-10-23 2011-12-22 Ibiden Co., Ltd Flex-rigid wiring board and method of manufacturing the same
US20120291276A1 (en) * 2006-10-30 2012-11-22 Ibiden Co., Ltd. Flex-rigid wiring board and method of manufacturing the same
US20130194754A1 (en) * 2010-10-05 2013-08-01 Samsung Electronics Co. Ltd. Transmission line transition having vertical structure and single chip package using land grip array coupling
US20140131875A1 (en) * 2012-11-13 2014-05-15 Invensas Corporation Z-connection using electroless plating
US9466545B1 (en) 2007-02-21 2016-10-11 Amkor Technology, Inc. Semiconductor package in package

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509553A (en) 1994-04-22 1996-04-23 Litel Instruments Direct etch processes for the manufacture of high density multichip modules
US5525834A (en) 1994-10-17 1996-06-11 W. L. Gore & Associates, Inc. Integrated circuit package
US5530287A (en) * 1994-09-14 1996-06-25 Unisys Corporation High density wire bond pattern for integratd circuit package
US5578869A (en) 1994-03-29 1996-11-26 Olin Corporation Components for housing an integrated circuit device
US5660697A (en) 1991-08-20 1997-08-26 Fuji Electric Co., Ltd. Electroluminescent display device and method of manufacturing same
US5723906A (en) * 1996-06-07 1998-03-03 Hewlett-Packard Company High-density wirebond chip interconnect for multi-chip modules
US5724232A (en) * 1995-02-15 1998-03-03 International Business Machines Corporation Chip carrier having an organic photopatternable material and a metal substrate
US5830563A (en) 1995-11-29 1998-11-03 Nec Corporation Interconnection structures and method of making same
US5837427A (en) * 1996-04-30 1998-11-17 Samsung Electro-Mechanics Co Co., Ltd. Method for manufacturing build-up multi-layer printed circuit board
US5866942A (en) 1995-04-28 1999-02-02 Nec Corporation Metal base package for a semiconductor device
US6080936A (en) * 1996-04-26 2000-06-27 Ngk Spark Plug Co., Ltd. Connecting board with oval-shaped protrusions

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660697A (en) 1991-08-20 1997-08-26 Fuji Electric Co., Ltd. Electroluminescent display device and method of manufacturing same
US5578869A (en) 1994-03-29 1996-11-26 Olin Corporation Components for housing an integrated circuit device
US5509553A (en) 1994-04-22 1996-04-23 Litel Instruments Direct etch processes for the manufacture of high density multichip modules
US5660738A (en) 1994-04-22 1997-08-26 Litel Instruments Direct etch processes for the manufacture of high density modules
US5530287A (en) * 1994-09-14 1996-06-25 Unisys Corporation High density wire bond pattern for integratd circuit package
US5525834A (en) 1994-10-17 1996-06-11 W. L. Gore & Associates, Inc. Integrated circuit package
US5724232A (en) * 1995-02-15 1998-03-03 International Business Machines Corporation Chip carrier having an organic photopatternable material and a metal substrate
US5866942A (en) 1995-04-28 1999-02-02 Nec Corporation Metal base package for a semiconductor device
US5830563A (en) 1995-11-29 1998-11-03 Nec Corporation Interconnection structures and method of making same
US6080936A (en) * 1996-04-26 2000-06-27 Ngk Spark Plug Co., Ltd. Connecting board with oval-shaped protrusions
US5837427A (en) * 1996-04-30 1998-11-17 Samsung Electro-Mechanics Co Co., Ltd. Method for manufacturing build-up multi-layer printed circuit board
US5723906A (en) * 1996-06-07 1998-03-03 Hewlett-Packard Company High-density wirebond chip interconnect for multi-chip modules

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413798B2 (en) * 1998-01-18 2002-07-02 Kabushiki Kaisha Toshiba Package having very thin semiconductor chip, multichip module assembled by the package, and method for manufacturing the same
US6717248B2 (en) 1999-05-07 2004-04-06 Amkor Technology, Inc. Semiconductor package and method for fabricating the same
US6395578B1 (en) * 1999-05-20 2002-05-28 Amkor Technology, Inc. Semiconductor package and method for fabricating the same
US20040175916A1 (en) * 1999-05-20 2004-09-09 Amkor Technology, Inc. Stackable semiconductor package having semiconductor chip within central through hole of substrate
US6825678B2 (en) 1999-11-16 2004-11-30 Eaglestone Partners I, Llc Wafer level interposer
US6759741B2 (en) 2000-07-31 2004-07-06 Eaglestone Partners I, Llc Matched set of integrated circuit chips selected from a multi wafer-interposer
US6812048B1 (en) 2000-07-31 2004-11-02 Eaglestone Partners I, Llc Method for manufacturing a wafer-interposer assembly
US6815712B1 (en) 2000-10-02 2004-11-09 Eaglestone Partners I, Llc Method for selecting components for a matched set from a wafer-interposer assembly
US20040166663A1 (en) * 2000-11-07 2004-08-26 Kline Jerry D. Method for constructing a wafer-interposer assembly
US6686657B1 (en) 2000-11-07 2004-02-03 Eaglestone Partners I, Llc Interposer for improved handling of semiconductor wafers and method of use of same
US6882042B2 (en) 2000-12-01 2005-04-19 Broadcom Corporation Thermally and electrically enhanced ball grid array packaging
US8039949B2 (en) 2000-12-01 2011-10-18 Broadcom Corporation Ball grid array package having one or more stiffeners
US20100052151A1 (en) * 2000-12-01 2010-03-04 Broadcom Corporation Ball Grid Array Package Having One or More Stiffeners
US8686558B2 (en) 2000-12-01 2014-04-01 Broadcom Corporation Thermally and electrically enhanced ball grid array package
US7629681B2 (en) 2000-12-01 2009-12-08 Broadcom Corporation Ball grid array package with patterned stiffener surface and method of assembling the same
US20050077545A1 (en) * 2000-12-01 2005-04-14 Broadcom Corporation Ball grid array package with patterned stiffener surface and method of assembling the same
US20020135065A1 (en) * 2000-12-01 2002-09-26 Zhao Sam Ziqun Thermally and electrically enhanced ball grid array packaging
US20030128044A1 (en) * 2000-12-15 2003-07-10 Pierce John L. Method for producing a wafer interposer for use in a wafer interposer assembly
US7893546B2 (en) 2000-12-22 2011-02-22 Broadcom Corporation Ball grid array package enhanced with a thermal and electrical connector
US20090057871A1 (en) * 2000-12-22 2009-03-05 Broadcom Corporation Ball Grid Array Package Enhanced With a Thermal and Electrical Connector
US20040212051A1 (en) * 2000-12-22 2004-10-28 Broadcom Corporation Ball grid array package with patterned stiffener layer
US7005737B2 (en) 2000-12-22 2006-02-28 Broadcom Corporation Die-up ball grid array package with enhanced stiffener
US7161239B2 (en) 2000-12-22 2007-01-09 Broadcom Corporation Ball grid array package enhanced with a thermal and electrical connector
US20110140272A1 (en) * 2000-12-22 2011-06-16 Broadcom Corporation Ball Grid Array Package Enhanced With a Thermal and Electrical Connector
US8310067B2 (en) 2000-12-22 2012-11-13 Broadcom Corporation Ball grid array package enhanced with a thermal and electrical connector
US20030057550A1 (en) * 2000-12-22 2003-03-27 Broadcom Corporation Ball grid array package enhanced with a thermal and electrical connector
US6989593B2 (en) 2000-12-22 2006-01-24 Broadcom Corporation Die-up ball grid array package with patterned stiffener opening
US7227256B2 (en) 2000-12-22 2007-06-05 Broadcom Corporation Die-up ball grid array package with printed circuit board attachable heat spreader
US20050029657A1 (en) * 2000-12-22 2005-02-10 Broadcom Corporation Enhanced die-up ball grid array and method for making the same
US20090203172A1 (en) * 2000-12-22 2009-08-13 Broadcom Corporation Enhanced Die-Up Ball Grid Array and Method for Making the Same
US7132744B2 (en) 2000-12-22 2006-11-07 Broadcom Corporation Enhanced die-up ball grid array packages and method for making the same
US7202559B2 (en) 2000-12-22 2007-04-10 Broadcom Corporation Method of assembling a ball grid array package with patterned stiffener layer
US7462933B2 (en) 2000-12-22 2008-12-09 Broadcom Corporation Ball grid array package enhanced with a thermal and electrical connector
US7102225B2 (en) 2000-12-22 2006-09-05 Broadcom Corporation Die-up ball grid array package with printed circuit board attachable heat spreader
US20020185722A1 (en) * 2000-12-22 2002-12-12 Zhao Sam Ziqun Die-up ball grid array package with enhanced stiffener
US7859101B2 (en) 2000-12-22 2010-12-28 Broadcom Corporation Die-up ball grid array package with die-attached heat spreader
US20070045824A1 (en) * 2000-12-22 2007-03-01 Broadcom Corporation Methods of making a die-up ball grid array package with printed circuit board attachable heat spreader
US6906414B2 (en) 2000-12-22 2005-06-14 Broadcom Corporation Ball grid array package with patterned stiffener layer
US20050133905A1 (en) * 2000-12-22 2005-06-23 Broadcom Corporation Method of assembling a ball grid array package with patterned stiffener layer
US7038312B2 (en) 2000-12-22 2006-05-02 Broadcom Corporation Die-up ball grid array package with attached stiffener ring
US7402906B2 (en) 2001-02-15 2008-07-22 Broadcom Corporation Enhanced die-down ball grid array and method for making the same
US6853070B2 (en) 2001-02-15 2005-02-08 Broadcom Corporation Die-down ball grid array package with die-attached heat spreader and method for making the same
US20050012203A1 (en) * 2001-02-15 2005-01-20 Rahman Khan Reza-Ur Enhanced die-down ball grid array and method for making the same
US6673653B2 (en) 2001-02-23 2004-01-06 Eaglestone Partners I, Llc Wafer-interposer using a ceramic substrate
US7259457B2 (en) 2001-05-07 2007-08-21 Broadcom Corporation Die-up ball grid array package including a substrate capable of mounting an integrated circuit die and method for making the same
US7259448B2 (en) 2001-05-07 2007-08-21 Broadcom Corporation Die-up ball grid array package with a heat spreader and method for making the same
US20050051890A1 (en) * 2001-05-07 2005-03-10 Broadcom Corporation Die-up ball grid array package including a substrate capable of mounting an integrated circuit die and method for making the same
US6537848B2 (en) * 2001-05-30 2003-03-25 St. Assembly Test Services Ltd. Super thin/super thermal ball grid array package
US6903278B2 (en) * 2001-06-29 2005-06-07 Intel Corporation Arrangements to provide mechanical stiffening elements to a thin-core or coreless substrate
US20030025201A1 (en) * 2001-07-13 2003-02-06 Hiroshi Harada Integrated circuit chip with little possibility of becoming damaged and structure for mounting the same
US7173329B2 (en) 2001-09-28 2007-02-06 Intel Corporation Package stiffener
US7045890B2 (en) * 2001-09-28 2006-05-16 Intel Corporation Heat spreader and stiffener having a stiffener extension
US20030062602A1 (en) * 2001-09-28 2003-04-03 Kristopher Frutschy Arrangements to supply power to semiconductor package
US20070120149A1 (en) * 2001-09-28 2007-05-31 Intel Corporation Package stiffener
US7405145B2 (en) 2001-12-18 2008-07-29 Broadcom Corporation Ball grid array package substrates with a modified central opening and method for making the same
US6879039B2 (en) * 2001-12-18 2005-04-12 Broadcom Corporation Ball grid array package substrates and method of making the same
US20030146506A1 (en) * 2002-02-01 2003-08-07 Broadcom Corporation Ball grid array package fabrication with IC die support structures
US6825108B2 (en) 2002-02-01 2004-11-30 Broadcom Corporation Ball grid array package fabrication with IC die support structures
US7245500B2 (en) 2002-02-01 2007-07-17 Broadcom Corporation Ball grid array package with stepped stiffener layer
US7550845B2 (en) 2002-02-01 2009-06-23 Broadcom Corporation Ball grid array package with separated stiffener layer
US6861750B2 (en) 2002-02-01 2005-03-01 Broadcom Corporation Ball grid array package with multiple interposers
US20030146503A1 (en) * 2002-02-01 2003-08-07 Broadcom Corporation Ball grid array package with stepped stiffener layer
US20030146511A1 (en) * 2002-02-01 2003-08-07 Broadcom Corporation Ball grid array package with multiple interposers
US20040262754A1 (en) * 2002-02-01 2004-12-30 Khan Reza-Ur Rahman IC die support structures for ball grid array package fabrication
US7078806B2 (en) 2002-02-01 2006-07-18 Broadcom Corporation IC die support structures for ball grid array package fabrication
US7241645B2 (en) 2002-02-01 2007-07-10 Broadcom Corporation Method for assembling a ball grid array package with multiple interposers
US6887741B2 (en) 2002-03-21 2005-05-03 Broadcom Corporation Method for making an enhanced die-up ball grid array package with two substrates
US7312108B2 (en) 2002-03-21 2007-12-25 Broadcom Corporation Method for assembling a ball grid array package with two substrates
US6876553B2 (en) 2002-03-21 2005-04-05 Broadcom Corporation Enhanced die-up ball grid array package with two substrates
US20040113284A1 (en) * 2002-03-21 2004-06-17 Broadcom Corporation Method for making an enhanced die-up ball grid array package with two substrates
US7566590B2 (en) 2002-03-22 2009-07-28 Broadcom Corporation Low voltage drop and high thermal performance ball grid array package
US20090267222A1 (en) * 2002-03-22 2009-10-29 Broadcom Corporation Low Voltage Drop and High Thermal Performance Ball Grid Array Package
US7196415B2 (en) 2002-03-22 2007-03-27 Broadcom Corporation Low voltage drop and high thermal performance ball grid array package
US7781882B2 (en) 2002-03-22 2010-08-24 Broadcom Corporation Low voltage drop and high thermal performance ball grid array package
US20030179549A1 (en) * 2002-03-22 2003-09-25 Zhong Chong Hua Low voltage drop and high thermal perfor mance ball grid array package
US20060012035A1 (en) * 2002-12-10 2006-01-19 Infineon Technologies Ag Method of packaging integrated circuits, and integrated circuit packages produced by the method
US20050280139A1 (en) * 2004-06-21 2005-12-22 Broadcom Corporation Multipiece apparatus for thermal and electromagnetic interference (EMI) shielding enhancement in die-up array packages and method of making the same
US7482686B2 (en) 2004-06-21 2009-01-27 Braodcom Corporation Multipiece apparatus for thermal and electromagnetic interference (EMI) shielding enhancement in die-up array packages and method of making the same
US7595227B2 (en) 2004-06-21 2009-09-29 Broadcom Corporation Integrated circuit device package having both wire bond and flip-chip interconnections and method of making the same
US7432586B2 (en) 2004-06-21 2008-10-07 Broadcom Corporation Apparatus and method for thermal and electromagnetic interference (EMI) shielding enhancement in die-up array packages
US7411281B2 (en) 2004-06-21 2008-08-12 Broadcom Corporation Integrated circuit device package having both wire bond and flip-chip interconnections and method of making the same
US20080182364A1 (en) * 2004-06-21 2008-07-31 Broadcom Corporation Integrated Circuit Device Package Having Both Wire Bond and Flip-Chip Interconnections and Method of Making the Same
US20050280141A1 (en) * 2004-06-21 2005-12-22 Broadcom Corporation Integrated circuit device package having both wire bond and flip-chip interconnections and method of making the same
US7791189B2 (en) 2004-06-21 2010-09-07 Broadcom Corporation Multipiece apparatus for thermal and electromagnetic interference (EMI) shielding enhancement in die-up array packages and method of making the same
US8021927B2 (en) 2004-09-29 2011-09-20 Broadcom Corporation Die down ball grid array packages and method for making same
US20060065972A1 (en) * 2004-09-29 2006-03-30 Broadcom Corporation Die down ball grid array packages and method for making same
US7786591B2 (en) 2004-09-29 2010-08-31 Broadcom Corporation Die down ball grid array package
US20070267734A1 (en) * 2006-05-16 2007-11-22 Broadcom Corporation No-lead IC packages having integrated heat spreader for electromagnetic interference (EMI) shielding and thermal enhancement
US8183680B2 (en) 2006-05-16 2012-05-22 Broadcom Corporation No-lead IC packages having integrated heat spreader for electromagnetic interference (EMI) shielding and thermal enhancement
US7943863B2 (en) 2006-08-01 2011-05-17 Shinko Electric Industries Co., Ltd. Wiring substrate and manufacturing method thereof, and semiconductor device
EP1884995A3 (en) * 2006-08-01 2009-01-07 Shinko Electric Industries Co., Ltd. Wiring substrate and manufacturing method thereof, and semiconductor device
US20080029297A1 (en) * 2006-08-01 2008-02-07 Shinko Electric Industries Co., Ltd. Wiring substrate and manufacturing method thereof, and semiconductor device
EP1884995A2 (en) * 2006-08-01 2008-02-06 Shinko Electric Industries Co., Ltd. Wiring substrate and manufacturing method thereof, and semiconductor device
US20110308079A1 (en) * 2006-10-23 2011-12-22 Ibiden Co., Ltd Flex-rigid wiring board and method of manufacturing the same
US8925194B2 (en) * 2006-10-23 2015-01-06 Ibiden Co., Ltd. Flex-rigid wiring board and method of manufacturing the same
US20120291276A1 (en) * 2006-10-30 2012-11-22 Ibiden Co., Ltd. Flex-rigid wiring board and method of manufacturing the same
US9271405B2 (en) * 2006-10-30 2016-02-23 Ibiden Co., Ltd. Flex-rigid wiring board and method of manufacturing the same
US9466545B1 (en) 2007-02-21 2016-10-11 Amkor Technology, Inc. Semiconductor package in package
US9768124B2 (en) 2007-02-21 2017-09-19 Amkor Technology, Inc. Semiconductor package in package
US8498131B2 (en) 2007-07-26 2013-07-30 General Electric Company Interconnect structure
US20090028491A1 (en) * 2007-07-26 2009-01-29 General Electric Company Interconnect structure
US20130194754A1 (en) * 2010-10-05 2013-08-01 Samsung Electronics Co. Ltd. Transmission line transition having vertical structure and single chip package using land grip array coupling
US9030017B2 (en) * 2012-11-13 2015-05-12 Invensas Corporation Z-connection using electroless plating
US20140131875A1 (en) * 2012-11-13 2014-05-15 Invensas Corporation Z-connection using electroless plating
US9443837B2 (en) 2012-11-13 2016-09-13 Invensas Corporation Z-connection for a microelectronic package using electroless plating

Similar Documents

Publication Publication Date Title
US6242279B1 (en) High density wire bond BGA
US5373627A (en) Method of forming multi-chip module with high density interconnections
US4918811A (en) Multichip integrated circuit packaging method
US4783695A (en) Multichip integrated circuit packaging configuration and method
KR100188620B1 (en) Electronic package
US8492870B2 (en) Semiconductor package with interconnect layers
US6197614B1 (en) Quick turn around fabrication process for packaging substrates and high density cards
USRE40887E1 (en) Semiconductor chip with redistribution metal layer
US5432677A (en) Multi-chip integrated circuit module
US7271031B2 (en) Universal interconnect die
US6400573B1 (en) Multi-chip integrated circuit module
US6277672B1 (en) BGA package for high density cavity-up wire bond device connections using a metal panel, thin film and build up multilayer technology
US6221693B1 (en) High density flip chip BGA
US6495912B1 (en) Structure of ceramic package with integrated passive devices
EP1052696A2 (en) Electrical interconnection medium
JP2008270810A (en) Semiconductor device package for improving functional capability of heat sink, and grounding shield
KR0157060B1 (en) Mounting substrate
US6562656B1 (en) Cavity down flip chip BGA
KR20010088866A (en) Deposited thin build-up layer dimensions as a method of relieving stress in high density interconnect printed wiring board substrates
US6888218B2 (en) Embedded capacitor multi-chip modules
US6294477B1 (en) Low cost high density thin film processing
US7427716B2 (en) Microvia structure and fabrication
JP2003513456A (en) Manufacturing method of laminated printed circuit board

Legal Events

Date Code Title Description
AS Assignment

Owner name: THIN FILM MODULE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HO, CHUNG W.;LITZA, ANNA;REEL/FRAME:010041/0172

Effective date: 19990524

AS Assignment

Owner name: THIN FILM MODULE, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THIN FILM MODULE, INC.;REEL/FRAME:011148/0632

Effective date: 20000803

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20050605