US6311044B1 - Method and apparatus for determining failure modes of a transceiver - Google Patents

Method and apparatus for determining failure modes of a transceiver Download PDF

Info

Publication number
US6311044B1
US6311044B1 US09/063,463 US6346398A US6311044B1 US 6311044 B1 US6311044 B1 US 6311044B1 US 6346398 A US6346398 A US 6346398A US 6311044 B1 US6311044 B1 US 6311044B1
Authority
US
United States
Prior art keywords
power level
receiver
indicator
transmitter
transmit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/063,463
Inventor
David Wilde
John Kelley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to US09/063,463 priority Critical patent/US6311044B1/en
Assigned to MOTOROLA, INC. reassignment MOTOROLA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KELLEY, JOHN, WILDE, DAVID
Application granted granted Critical
Publication of US6311044B1 publication Critical patent/US6311044B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations

Definitions

  • the present invention relates generally to a transceiver, and more particularly to a transceiver that has self-testing capability.
  • a transceiver normally includes a receiver, a transmitter, and an associated control circuitry.
  • the receiver and the transmitter may be on a single module, or incorporated over several modules even though the receiver and transmitter work together as a single transceiver unit.
  • Transceivers are used in many different applications. One such an application is in cellular basestations in a cellular communication system. Cellular base stations are normally mounted at locations that are not easily accessible. As a result, maintenance or trouble shooting of the transceivers are difficult and time consuming tasks.
  • transceivers are incorporated to have a self-testing capability for determining failure of the transceiver, thus, eliminating a need for a physical access to the transceiver board for testing purposes.
  • a self-testing capability is disclosed in a patent issued to Weiss et al on Aug. 9, 1994, U.S. Pat. No. 5,337,316 (316 patent), title: “Transceiver Self-Diagnostic Testing Apparatus and Method”, assigned to Motorola, Inc., herein incorporated by reference.
  • the diagnosis of a transceiver should provide sufficient information about the failure mode and its characteristic.
  • the solution provided by prior art is further enhanced by a transceiver capability which allows determining characteristic of a failure mode, and whether the transceiver failure is due to a failure of the receiver or transmitter or both.
  • FIG. 1 depicts a block diagram of a transceiver according to various embodiments of the invention.
  • a method for determining failure mode of a transceiver includes applying a control signal at a predetermined voltage level to a power control input of an amplifier in a transmitter of the transceiver.
  • the power level of a transmit signal is proportional to the predetermined voltage level of the control signal.
  • a detector detects the power level of the transmit signal at an output of the transmitter, and produces a transmit power level indicator corresponding to the power level of the transmit signal.
  • a portion of the transmit signal is coupled to produce a coupled transmit signal.
  • the coupled transmit signal is received by a receiver of the transceiver.
  • the receiver produces a receive signal strength indicator corresponding to the power level of the coupled transmit signal. Voltage levels of the received signal strength indicator, the transmit power level indicator and the predetermined voltage level of the control signal are compared to determine failure of the receiver and transmitter.
  • the receiver and transmitter are in an operable condition without failure.
  • the transmitter is in a failure mode.
  • the transmitter is in a failure mode.
  • the transmitter is in a failure mode, and the receiver is in an operable condition without failure.
  • the predetermined voltage level of the control signal and the level of the transmit power level indicator are not positively comparable, and the levels of the transmit power level indicator and receive signal strength indicator are not positively comparable, the transmitter and receiver are in a failure mode.
  • failure conditions of the receiver and transmitter may be determined independently since one or more comparisons are made between levels of the control signal, the transmit power level indicator and receive signal strength indicator. If the predetermined voltage level of the control signal and the level of the transmit power level indicator are not positively comparable such that the transmit power level indicator is indicating for example 5-10 dB lower signal level than expected based on the predetermined voltage level of the control signal, the transmitter failure is characterized as a soft failure mode. In soft failure mode, transmitter may be usable for some application until a repair can be made to correct the problem. Such a failure characterization for extending the usability of the transceiver is another enhancement over prior art.
  • the receive signal strength indicator in comparison with the transmit power level indicator should also show 5-10 lower coupled signal level. If such a lower signal level is also measured at the receiver, it indicates that the receiver is in a working condition, and only the transmitter is in a failure mode.
  • the voltage levels of the transmit power level indicator, receive signal strength indicator and the predetermined voltage level of the control signal are stored in a memory block in the transceiver board.
  • the stored information is retrieved to determine the failure mode of the transceiver by making a comparison of the stored data. This data is important because it indicates the condition of the failure mode at the time that the failure occurred. For example, if the failure is not repeatable when the transceiver is at a repair facility, the stored data becomes useful for finding the root cause of the problem at the time that the failure occurred.
  • the transmit power level indicator, receive signal strength indicator and the predetermined voltage level may need to be converted from digital to analog or from analog to digital at various sections of the transceiver to effectively make the comparison, and storing the data in a memory device. Since transceivers are normally expected to operate in a wide range of frequencies, and the receive frequency may be different than the transmit frequency, carrier frequency of the coupled transmit signal is translated to a frequency that is compatible with a receive frequency of the receiver.
  • one or more calibration of the transceiver at a time before the installation may be required. For example, such calibration may be performed at the factory. Once a calibration is performed, the calibration data is stored in the transceiver memory section. The calibration information corresponds to the control signal predetermined voltage level, the transmit power level indicator level, and the received signal strength indicator level. The calibration information is retrieved from the memory section to account for losses and gains in the transceiver for determining operability of the receiver and transmitter before the comparing step.
  • the control signal at a predetermined voltage is applied to the transmitter. While the control signal is applied, voltage levels of the transmit power level indicator and the received signal level indicator are stored. As a result, a table may created for convenience that includes voltage levels of the control signal that are corresponding to voltage levels of the transmit power level indicator and the received signal level indicator.
  • the calibration information may include calibration information at a number of the predetermined voltage levels to gather a complete calibration data. Such a complete calibration data would include information at various transmit power level. For example, in a situation that the transmit power level is 5-10 dB lower than expected, a received signal strength indicator corresponding to 5-10 dB lower transmit power level is available in the calibration data to make the comparison at the lower received signal level.
  • the calibration information may include calibration information at a number of carrier frequencies of the transmit signal, and a number of receive frequency of the receiver.
  • self-testing capability of a transceiver is greatly enhanced by determining characteristic of the failure modes, such as total failure or soft mode failure modes, and whether the transmitter or receiver or both are in a failure condition.
  • the diagnostic data is stored in a memory device for retrieval at a later time, thus making an efficient remote repair.
  • Transceiver 100 includes a receiver 110 , a transmitter 130 , a power detector 132 coupled to transmitter 130 for detecting power level of a transmit signal at an output 131 of transmitter 130 .
  • Power detector 132 produces a transmit power level indicator 133 proportional to power level of the transmit signal.
  • a coupler 140 diverts a coupled portion of the transmit signal power level to an input 111 of receiver 110 to produce a received signal strength indicator 112 proportional to the coupled portion of the transmit signal.
  • a controller 120 coupled to receiver 110 for receiving received signal strength indicator 112 , transmitter 130 for input a control signal 121 to control power level of an amplifier 160 which amplifies the transmit signal at output 131 , and power detector 132 for receiving transmit power level indicator 133 .
  • Controller 120 includes a memory means 125 , such as a memory device, for storing signal levels of received signal strength indicator 112 , transmit power level indicator 133 and control signal 121 . Means 125 may also be used for storing calibration information.
  • Controller 120 includes a means 126 , such as a microcontroller, for comparing signal levels of received signal strength indicator 112 , transmit power level indicator 133 and control signal 121 .
  • Coupler 140 may include a means 141 for carrier frequency translation of the coupled transmit signal to be compatible with a receive frequency of receiver 110 .
  • Transceiver 100 provides the necessary capability to perform a self-test routine that includes the characterization of the failure modes by including power detector 132 , and memory means 125 .

Abstract

A method for determining failure modes of a transceiver (100) includes applying a control signal (121) to a transmitter (130) of transceiver (100). The power level of a transmit signal (131) is proportional to a predetermined voltage level of control signal (121), and is detected by a detector (132) which correspondingly produces a transmit power level indicator (133). A portion of transmit signal (131) is coupled to produce a coupled transmit signal (111) which is received by a receiver (110) of transceiver (100). Receiver (111) produces a receive signal strength indicator (112) corresponding to the power level of coupled transmit signal (111). Voltage levels of received signal strength indicator (112), transmit power level indicator (133) and predetermined voltage level of control signal (121) are stored in a memory means 125, and compared in a controller 126 to determine failure modes of receiver (110) and transmitter (130).

Description

FIELD OF THE INVENTION
The present invention relates generally to a transceiver, and more particularly to a transceiver that has self-testing capability.
BACKGROUND OF THE INVENTION
A transceiver normally includes a receiver, a transmitter, and an associated control circuitry. The receiver and the transmitter may be on a single module, or incorporated over several modules even though the receiver and transmitter work together as a single transceiver unit. Transceivers are used in many different applications. One such an application is in cellular basestations in a cellular communication system. Cellular base stations are normally mounted at locations that are not easily accessible. As a result, maintenance or trouble shooting of the transceivers are difficult and time consuming tasks.
In prior art, transceivers are incorporated to have a self-testing capability for determining failure of the transceiver, thus, eliminating a need for a physical access to the transceiver board for testing purposes. Such a self-testing capability is disclosed in a patent issued to Weiss et al on Aug. 9, 1994, U.S. Pat. No. 5,337,316 (316 patent), title: “Transceiver Self-Diagnostic Testing Apparatus and Method”, assigned to Motorola, Inc., herein incorporated by reference.
To eliminate false positive failure diagnosis of the transceiver boards, and make the trouble shooting an efficient task, the diagnosis of a transceiver however should provide sufficient information about the failure mode and its characteristic. The solution provided by prior art, therefore, is further enhanced by a transceiver capability which allows determining characteristic of a failure mode, and whether the transceiver failure is due to a failure of the receiver or transmitter or both.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 depicts a block diagram of a transceiver according to various embodiments of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
According to an embodiment of the invention, a method for determining failure mode of a transceiver includes applying a control signal at a predetermined voltage level to a power control input of an amplifier in a transmitter of the transceiver. The power level of a transmit signal is proportional to the predetermined voltage level of the control signal. A detector detects the power level of the transmit signal at an output of the transmitter, and produces a transmit power level indicator corresponding to the power level of the transmit signal. A portion of the transmit signal is coupled to produce a coupled transmit signal. The coupled transmit signal is received by a receiver of the transceiver. The receiver produces a receive signal strength indicator corresponding to the power level of the coupled transmit signal. Voltage levels of the received signal strength indicator, the transmit power level indicator and the predetermined voltage level of the control signal are compared to determine failure of the receiver and transmitter.
When the predetermined voltage level of the control signal, and the levels of the received signal strength indicator and the transmit power level indicator are positively comparable, the receiver and transmitter are in an operable condition without failure. In another situation, when the transmit power level indicator and the level of the received signal strength indicator are not positively comparable, the receiver is in a failure mode. In another situation, when the predetermined voltage level of the control signal and level of the transmit power level indicator are not positively comparable, the transmitter is in a failure mode. In another situation, when the predetermined voltage level of the control signal and the level of the transmit power level indicator are not positively comparable, and levels of the transmit power level indicator and receive signal strength indicator are positively comparable, the transmitter is in a failure mode, and the receiver is in an operable condition without failure. In another situation, when the predetermined voltage level of the control signal and the level of the transmit power level indicator are not positively comparable, and the levels of the transmit power level indicator and receive signal strength indicator are not positively comparable, the transmitter and receiver are in a failure mode.
According to an enhancement that the invention provides over prior art, failure conditions of the receiver and transmitter may be determined independently since one or more comparisons are made between levels of the control signal, the transmit power level indicator and receive signal strength indicator. If the predetermined voltage level of the control signal and the level of the transmit power level indicator are not positively comparable such that the transmit power level indicator is indicating for example 5-10 dB lower signal level than expected based on the predetermined voltage level of the control signal, the transmitter failure is characterized as a soft failure mode. In soft failure mode, transmitter may be usable for some application until a repair can be made to correct the problem. Such a failure characterization for extending the usability of the transceiver is another enhancement over prior art. Moreover, when the transmit power level indicator is indicating 5-10 dB lower signal level, the receive signal strength indicator in comparison with the transmit power level indicator should also show 5-10 lower coupled signal level. If such a lower signal level is also measured at the receiver, it indicates that the receiver is in a working condition, and only the transmitter is in a failure mode.
To make a proper and efficient repair at a remote repair facility, the voltage levels of the transmit power level indicator, receive signal strength indicator and the predetermined voltage level of the control signal are stored in a memory block in the transceiver board. At the repair facility, the stored information is retrieved to determine the failure mode of the transceiver by making a comparison of the stored data. This data is important because it indicates the condition of the failure mode at the time that the failure occurred. For example, if the failure is not repeatable when the transceiver is at a repair facility, the stored data becomes useful for finding the root cause of the problem at the time that the failure occurred.
The transmit power level indicator, receive signal strength indicator and the predetermined voltage level may need to be converted from digital to analog or from analog to digital at various sections of the transceiver to effectively make the comparison, and storing the data in a memory device. Since transceivers are normally expected to operate in a wide range of frequencies, and the receive frequency may be different than the transmit frequency, carrier frequency of the coupled transmit signal is translated to a frequency that is compatible with a receive frequency of the receiver.
To effectively account for various losses or gains in the transceiver before the making a comparison of the data, one or more calibration of the transceiver at a time before the installation may be required. For example, such calibration may be performed at the factory. Once a calibration is performed, the calibration data is stored in the transceiver memory section. The calibration information corresponds to the control signal predetermined voltage level, the transmit power level indicator level, and the received signal strength indicator level. The calibration information is retrieved from the memory section to account for losses and gains in the transceiver for determining operability of the receiver and transmitter before the comparing step.
To perform a calibration, the control signal at a predetermined voltage is applied to the transmitter. While the control signal is applied, voltage levels of the transmit power level indicator and the received signal level indicator are stored. As a result, a table may created for convenience that includes voltage levels of the control signal that are corresponding to voltage levels of the transmit power level indicator and the received signal level indicator. The calibration information may include calibration information at a number of the predetermined voltage levels to gather a complete calibration data. Such a complete calibration data would include information at various transmit power level. For example, in a situation that the transmit power level is 5-10 dB lower than expected, a received signal strength indicator corresponding to 5-10 dB lower transmit power level is available in the calibration data to make the comparison at the lower received signal level. Such a comparison is needed in case the transmitter is in a soft failure mode, moreover, the comparison is used to determine whether the receiver is operating without failure. The calibration information may include calibration information at a number of carrier frequencies of the transmit signal, and a number of receive frequency of the receiver.
According to various embodiment of the invention, self-testing capability of a transceiver is greatly enhanced by determining characteristic of the failure modes, such as total failure or soft mode failure modes, and whether the transmitter or receiver or both are in a failure condition. The diagnostic data is stored in a memory device for retrieval at a later time, thus making an efficient remote repair.
Referring to FIG. 1, a block diagram of a transceiver 100 according to various embodiments of the invention is shown. Transceiver 100 includes a receiver 110, a transmitter 130, a power detector 132 coupled to transmitter 130 for detecting power level of a transmit signal at an output 131 of transmitter 130. Power detector 132 produces a transmit power level indicator 133 proportional to power level of the transmit signal. A coupler 140 diverts a coupled portion of the transmit signal power level to an input 111 of receiver 110 to produce a received signal strength indicator 112 proportional to the coupled portion of the transmit signal. A controller 120 coupled to receiver 110 for receiving received signal strength indicator 112, transmitter 130 for input a control signal 121 to control power level of an amplifier 160 which amplifies the transmit signal at output 131, and power detector 132 for receiving transmit power level indicator 133. Controller 120 includes a memory means 125, such as a memory device, for storing signal levels of received signal strength indicator 112, transmit power level indicator 133 and control signal 121. Means 125 may also be used for storing calibration information. Controller 120 includes a means 126, such as a microcontroller, for comparing signal levels of received signal strength indicator 112, transmit power level indicator 133 and control signal 121. Coupler 140 may include a means 141 for carrier frequency translation of the coupled transmit signal to be compatible with a receive frequency of receiver 110. Transceiver 100 provides the necessary capability to perform a self-test routine that includes the characterization of the failure modes by including power detector 132, and memory means 125.
While the invention has been particularly shown and described with reference to a particular embodiment, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention. The corresponding structures, materials, acts and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or acts for performing the functions in combination with other claimed elements as specifically claimed.

Claims (15)

What is claimed is:
1. A method for determining failure mode of a transceiver, comprising the steps of:
applying a control signal at a predetermined voltage level to a power control input of an amplifier in a transmitter portion of said transceiver;
detecting a power level of a transmit signal at an output of said transmitter and producing a transmit power level indicator corresponding to said power level of said transmit signal, wherein power level of said transmit signal is proportional to said predetermined voltage level of said control signal;
coupling said transmit signal to produce a coupled transmit signal;
receiving said coupled transmit signal by a receiver portion of said transceiver;
producing by said receiver a receive signal strength indicator corresponding to a power level of said coupled transmit signal; and
comparing levels of said receive signal strength indicator, said transmit power level indicator and said predetermined voltage level of said control signal to determine a failure mode of said transceiver, wherein said failure modes include a failure of said receiver, said transmitter, and said receiver and transmitter.
2. The method as recited in claim 1 further comprising steps of:
storing voltage levels of said transmit power level indicator, receive signal strength indicator and said predetermined voltage level of said control signal; and
retrieving said stored voltage levels before said comparing step.
3. The method as recited in claim 1 further comprising a step of converting at least one of said transmit power level indicator, receive signal strength indicator and said predetermined voltage level to a digital format.
4. The method as recited in claim 1 further comprising a step of converting at least one of said transmit power level indicator, receive signal strength indicator and said predetermined voltage level to an analog format.
5. The method as recited in claim 1 further comprising a step of translating a carrier frequency of said transmit signal to be compatible with a receive frequency of said receiver.
6. The method as recited in claim 1 further including the step of determining that said receiver and transmitter are in an operable condition in response to said comparing of said control signal and said levels of said receive signal strength indicator and said transmit power level indicator being substantially equal to expected comparisons.
7. The method as recited in claim 1 further including the step of determining said receiver is in a receiver failure mode in response to said comparing of said transmit power level indicator and said receive signal strength indicator not being substantially equal to an expected comparison.
8. The method as recited in claim 1 further including the step of determining said transmitter is in a transmitter failure mode in response to said comparing of said predetermined level of said control signal and said transmit power level indicator not being substantially equal to an expected comparison.
9. The method as recited in claim 1 further including the step of determining said transmitter is in a transmitter failure mode and said receiver is in an operable condition in response to said comparing of said predetermined level of said control signal and said transmit power level indicator not being substantially equal to an expected comparison, and said comparing of said transmit power level indicator and said receive signal strength indicator being substantially equal to an expected comparison.
10. The method as recited in claim 1 further including the step of determining said transmitter is in a transmitter failure mode and said receiver is in a receiver failure mode in response to said comparing of said predetermined level of said control signal and said transmit power level indicator not being substantially equal to an expected comparison, and said comparing of said transmit power level indicator and said receive signal strength indicator not being substantially equal to an expected comparison.
11. The method as recited in claim 1 further comprising the steps of:
storing calibration information corresponding to said control signal predetermined voltage level, said transmit power level indicator level, and said received signal strength indicator level in a memory at an initial time; and
retrieving said calibration information at a time later than the initial time for determining failure modes of said receiver and transmitter in said comparing step.
12. The method as recited in claim 11 further comprising the step of obtaining said calibration information at said initial time by applying said control signal at said predetermined voltage level.
13. The method as recited in claim 12 wherein said calibration information comprises calibration information at a plurality of said predetermined voltage levels.
14. The method as recited in claim 12 wherein said calibration information comprises calibration information at a plurality of said carrier frequencies of said transmit signal.
15. The method as recited in claim 12 wherein said calibration information comprises calibration information at a plurality of said receive frequencies of said receiver.
US09/063,463 1998-04-20 1998-04-20 Method and apparatus for determining failure modes of a transceiver Expired - Fee Related US6311044B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/063,463 US6311044B1 (en) 1998-04-20 1998-04-20 Method and apparatus for determining failure modes of a transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/063,463 US6311044B1 (en) 1998-04-20 1998-04-20 Method and apparatus for determining failure modes of a transceiver

Publications (1)

Publication Number Publication Date
US6311044B1 true US6311044B1 (en) 2001-10-30

Family

ID=22049375

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/063,463 Expired - Fee Related US6311044B1 (en) 1998-04-20 1998-04-20 Method and apparatus for determining failure modes of a transceiver

Country Status (1)

Country Link
US (1) US6311044B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030002452A1 (en) * 2001-06-26 2003-01-02 Sahota Gurkanwal Singh System and method for power control calibration and a wireless communication device
US20030218538A1 (en) * 2002-05-24 2003-11-27 Cingular Wireless, L.L.C. System and method for alarm monitoring
US20060030262A1 (en) * 2004-07-29 2006-02-09 Jon James Anderson Airlink sensing watermarking repeater
US20070024362A1 (en) * 2005-07-29 2007-02-01 Mks Instruments, Inc. High reliability rf generator architecture
US20080132186A1 (en) * 2006-12-04 2008-06-05 Samsung Electronics Co., Ltd. Device and method for controlling radio-frequency power in wireless terminal
US20100163933A1 (en) * 2006-11-28 2010-07-01 Chen Xu Antiblooming imaging apparatus, systems, and methods
WO2016191088A1 (en) * 2015-05-22 2016-12-01 Qualcomm Incorporated Pilot-based analog active interference canceller
WO2017031080A1 (en) * 2013-03-12 2017-02-23 Geotek Energy, Llc Magnetically coupled expander pump with axial flow path
EP4290777A3 (en) * 2019-04-16 2024-03-06 QUALCOMM Incorporated A method and apparatus for maximum permissible exposure proximity sensor fault detection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144258A (en) * 1990-07-19 1992-09-01 Oki Electric Industry Co., Ltd. Power amplifier system for radio transmitter and method for using the same
US5337316A (en) 1992-01-31 1994-08-09 Motorola, Inc. Transceiver self-diagnostic testing apparatus and method
US5481186A (en) * 1994-10-03 1996-01-02 At&T Corp. Method and apparatus for integrated testing of a system containing digital and radio frequency circuits
US5521902A (en) * 1993-12-06 1996-05-28 Hewlett-Packard Company Location identification in a communications signalling network
US5574993A (en) * 1993-09-24 1996-11-12 Hitachi, Ltd. Mobile communication apparatus and method
US5742589A (en) * 1994-07-01 1998-04-21 Mitsubishi Denki Kabushiki Kaisha Radio apparatus
US5903823A (en) * 1995-09-19 1999-05-11 Fujitsu Limited Radio apparatus with distortion compensating function
US5960333A (en) * 1997-03-31 1999-09-28 Ericsson Inc. Circuitry and method for power calibration
US5987314A (en) * 1996-06-21 1999-11-16 Nec Corporation Radio communication apparatus having a high receiving sensitivity

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144258A (en) * 1990-07-19 1992-09-01 Oki Electric Industry Co., Ltd. Power amplifier system for radio transmitter and method for using the same
US5337316A (en) 1992-01-31 1994-08-09 Motorola, Inc. Transceiver self-diagnostic testing apparatus and method
US5574993A (en) * 1993-09-24 1996-11-12 Hitachi, Ltd. Mobile communication apparatus and method
US5521902A (en) * 1993-12-06 1996-05-28 Hewlett-Packard Company Location identification in a communications signalling network
US5742589A (en) * 1994-07-01 1998-04-21 Mitsubishi Denki Kabushiki Kaisha Radio apparatus
US5481186A (en) * 1994-10-03 1996-01-02 At&T Corp. Method and apparatus for integrated testing of a system containing digital and radio frequency circuits
US5903823A (en) * 1995-09-19 1999-05-11 Fujitsu Limited Radio apparatus with distortion compensating function
US5987314A (en) * 1996-06-21 1999-11-16 Nec Corporation Radio communication apparatus having a high receiving sensitivity
US5960333A (en) * 1997-03-31 1999-09-28 Ericsson Inc. Circuitry and method for power calibration

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8457570B2 (en) 2001-06-26 2013-06-04 Qualcomm, Incorporated System and method for power control calibration and a wireless communication device
US6819938B2 (en) * 2001-06-26 2004-11-16 Qualcomm Incorporated System and method for power control calibration and a wireless communication device
US20050059424A1 (en) * 2001-06-26 2005-03-17 Sahota Gurkanwal Singh System and method for power control calibration and a wireless communication device
US7076266B2 (en) * 2001-06-26 2006-07-11 Qualcomm Inc System and method for power control calibration and a wireless communication device
US20030002452A1 (en) * 2001-06-26 2003-01-02 Sahota Gurkanwal Singh System and method for power control calibration and a wireless communication device
US20030218538A1 (en) * 2002-05-24 2003-11-27 Cingular Wireless, L.L.C. System and method for alarm monitoring
US7053763B2 (en) 2002-05-24 2006-05-30 Cingular Wireless Ii, Llc System and method for alarm monitoring
US20060030262A1 (en) * 2004-07-29 2006-02-09 Jon James Anderson Airlink sensing watermarking repeater
US9214909B2 (en) * 2005-07-29 2015-12-15 Mks Instruments, Inc. High reliability RF generator architecture
US20070024362A1 (en) * 2005-07-29 2007-02-01 Mks Instruments, Inc. High reliability rf generator architecture
US20100163933A1 (en) * 2006-11-28 2010-07-01 Chen Xu Antiblooming imaging apparatus, systems, and methods
US7797015B2 (en) * 2006-12-04 2010-09-14 Samsung Electronics Co., Ltd. Device and method for controlling radio-frequency power in wireless terminal
US20080132186A1 (en) * 2006-12-04 2008-06-05 Samsung Electronics Co., Ltd. Device and method for controlling radio-frequency power in wireless terminal
WO2017031080A1 (en) * 2013-03-12 2017-02-23 Geotek Energy, Llc Magnetically coupled expander pump with axial flow path
WO2016191088A1 (en) * 2015-05-22 2016-12-01 Qualcomm Incorporated Pilot-based analog active interference canceller
US9800287B2 (en) * 2015-05-22 2017-10-24 Qualcomm Incorporated Pilot-based analog active interference canceller
EP4290777A3 (en) * 2019-04-16 2024-03-06 QUALCOMM Incorporated A method and apparatus for maximum permissible exposure proximity sensor fault detection

Similar Documents

Publication Publication Date Title
US5289526A (en) Cellular system access monitor
EP0420508B1 (en) Logic controlled adjustment and compensation of signal levels and deviations in a radio telephone
US6094577A (en) Method for fault diagnosis of a RF receive path in a CDMA digital cellular base-station system
US7459916B2 (en) Electromagnetic shielding defect monitoring system and method for using the same
US6311044B1 (en) Method and apparatus for determining failure modes of a transceiver
GB2397712A (en) Transceiver with memory for failure information storage
RU2153224C1 (en) Self-test method and device for detection of faults in transceiver of receiving radio communication unit of base transceiver station
US6259912B1 (en) Apparatus and method for measurement of transmission power of base station and call-test of base station in a digital mobile communication system
GB2313723A (en) Controlling the output power of a mobile phone using a look-up table for attenuation values and frequencies
US20050046430A1 (en) RF testing method and arrangement
RU2181895C2 (en) Circuit in shf equipment with self-testing
US6002928A (en) Switching apparatus and method for transceiver of cellular base station in code division multiple access mobile telecommunication system
KR100274044B1 (en) Apparatus of acoustic test for a handyphone
EP0420506B1 (en) Method of simplifying the adjustment of a radio telephone
US6560465B1 (en) Method and apparatus for controlling and maintaining a tower top low noise amplifier
US7949314B2 (en) Transmission output control apparatus
KR100336844B1 (en) Remote monitoring system of base station for wireless communication device
RU2172563C2 (en) Method detecting faults in receiving hf path in system of base station of digital cellular communication with code- division multiple access
JP2543113B2 (en) Radio inspection method
KR930004092B1 (en) Processing method for inspecting loss itself in rf cable
US20020083374A1 (en) Identification module for a passive component of a system
JPH0799482A (en) Discrimination device for optical communication system and terminal equipment for optical communication equipment
KR20050097828A (en) Apparatus and method for real time determination of high power amplifier's output power level and it's operating point in satellite communication
JP3027044U (en) Communication terminal sensitivity tester
KR100340002B1 (en) Device and method for changing automatically channel list in mobile communication system

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOTOROLA, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILDE, DAVID;KELLEY, JOHN;REEL/FRAME:009122/0788

Effective date: 19980420

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20091030