US6415220B1 - Geolocation determination - Google Patents

Geolocation determination Download PDF

Info

Publication number
US6415220B1
US6415220B1 US09/578,119 US57811900A US6415220B1 US 6415220 B1 US6415220 B1 US 6415220B1 US 57811900 A US57811900 A US 57811900A US 6415220 B1 US6415220 B1 US 6415220B1
Authority
US
United States
Prior art keywords
network
stationary
position information
mobile device
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/578,119
Inventor
Ernô Kovacs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Deutschland GmbH
Original Assignee
Sony International Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony International Europe GmbH filed Critical Sony International Europe GmbH
Assigned to SONY INTERNATIONAL (EUROPE) GMBH reassignment SONY INTERNATIONAL (EUROPE) GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOVACS, ERNO
Application granted granted Critical
Publication of US6415220B1 publication Critical patent/US6415220B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/40Data acquisition and logging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/04Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]

Definitions

  • the present invention relates to a method for the determination of the current position of a mobile device, a program element loadable into a memory of a mobile device, a mobile communications device with current position determination capability as well as to a network providing a current position determination capability for attached mobile devices.
  • the invention generally relates to the field of mobile computing and more specific, to problem of determining the current position of a mobile device with communication ability.
  • the first technique is hardware support based, i.e. the mobile device has a special support for hardware devices.
  • GPS Global Positioning System
  • D Different
  • measurement equipment for the speed and direction of the user such as f.e. car navigation systems, are devices which fall into said category.
  • FIG. 1 schematically shows a GPS Satellite connecting to a mobile client.
  • the next technique is network support based.
  • the network has means to determine the location of the mobile device. This can be done e.g. by using the base stations of the network or a triangulation method (see FIG. 1 ).
  • the mobile device is equipped with a special module for determining the location e.g. a data base of streets and their location or a data base containing network identification and their current location.
  • GPS and some other known mentioned techniques are not useable indoors. On the one hand they can not be used indoors because they usually need a line of sight to the transmitter. On the other hand, the information that is provided by outdoor services is not very accurate. Indoor use requires much more precise location capability.
  • GSM cells Today's GSM networks use the so-called GSM cell broadcast service to send location information to the mobile phones on a specific geographic area. This service can be offered by the network provider. Note that the position of the base station is transmitted. therefore not the position of the user, but only the cell he is located in is known. GSM cells, however, cover a huge range. The service relies on the network specific cell broadcast and is only useable within the GSM network as this solution works on layer 2 of the OSI model (see FIG. 7 ), i.e. the data link layer containing the specific GSM internal protocols.
  • the mobile device can be f.e. a laptop computer.
  • Visualization of physical geography and object locations via a protocol for interactive floor maps is proposed.
  • Local-area service discovery is based on embedding location information into a existing data network rather than using external information such as GPS coordinates. Outfitted subnets broadcast periodically a beacon packet to the local subnet addresses (and in some cases multicast with limited scope).
  • a method for the determination of the current position of a mobile device is provided.
  • Stationary nodes of at least one network are provided with position information representing the stationary position of the corresponding node.
  • the position information of at least one node of the at least one network is transmitted to a mobile device.
  • the current position of the mobile device is determined on the basis of the at least one transmitted position information.
  • the transmission of the position information is effected above the transport layer (layer 4 ) of the OSI model such that the transmission is independent from the physical type of the networks and/or the transmission.
  • the precision of the determination of the current position of the mobile device essentially corresponds to the range of the transmission used which can be as small as f.e. 0.6 m in case of an Infrared transmission.
  • the transmission on the physical layer can be particularly effected such that is adapted for indoor use or generally for non-line-of-sight (NLOS) communication.
  • NLOS non-line-of-sight
  • a broadcast mode can be provided in which the corresponding stationary nodes of the network send periodically their position information to mobile devices.
  • a request/reply mode can be provided in which the corresponding stationary nodes of the network send their position information to mobile devices only on request.
  • a conflict resolution function can be provided to detect the appropriate current position of the mobile device in case a plurality of different position information of different nodes have been transmitted to the mobile device.
  • the conflict resolution can be effected in the network or in the mobile device.
  • the position information furthermore can contain additional information about technical and/or geographical features of the network, such as e.g. the geographic extension of the corresponding network, room information and/or site information.
  • a geolocation server in the network can be provided being connected to a data base comprising the positional information of at least one stationary node of the corresponding network.
  • the position information can be broadcast or transmitted in a request-reply mode of communication.
  • a program element comprising program code means loadable into a memory of a mobile device.
  • the program element is a application protocol above layer four of the OSI model, for
  • the device can comprise a communication controller designed to receive positional information from at least one stationary transmitting node of at least one network.
  • the communication controller can be adapted to receive the positional information, which transmission is effected by means of an application protocol, i.e. a protocol above the transport layer (layer 4 ) of the OSI model such that the transmission is independent from the physical type of the networks and/or the transmission.
  • the mobile communications device can comprise a storage unit for storing positional information received.
  • a network providing for a current position determination ability for mobile devices.
  • the network comprises at least one stationary node adapted to transmit position information representing the stationary position of the corresponding node.
  • At least one stationary node is adapted to transmit the position information above the transport layer (layer 4 ) of the OSI model such that the transmission is independent from the physical type of the network and/or the transmission.
  • the at least one stationary node of the network can be adapted for a broadcast mode in which the corresponding positional information is broadcast periodically.
  • the at least one stationary node can be adapted for a request/reply position information transmission mode.
  • the network can comprise a geolocation server being connected to a data base comprising the positional information of at least one stationary node of the network.
  • FIG. 1 shows position determination techniques from mobile devices according to the prior art
  • FIG. 2 shows an example for the use of an infrared transmission to broadcast location position according to the present invention
  • FIG. 3 shows an example for the use of an IP (Internet Protocol) broadcast from a mobile device according to the present invention
  • FIG. 4 shows an example for using an IP (Internet Protocol) broadcast service from a geolocation server according to the present invention
  • FIG. 5 shows cells with a physical hand-over function
  • FIG. 6 shows the architecture of a stationary node and a mobile device according to the present invention
  • FIG. 7 shows a comparison of the technique according to the present invention and a known GSM position determination solution using the ISO/OSI protocol layer representation.
  • a mobile device 1 can connect itself to (wireless) networks covering a small geographic area by means of an infrared transmission 2 .
  • the mobile device 1 can determine its current position by receiving positional information from stationary nodes 3 attached to the network 4 .
  • the mobile device 1 can for example query stationary nodes 3 about their location.
  • the mobile device 1 connects itself to local networks 4 with a limited geographic extension by means of an infrared (0.6 meter), wave LAN (100 meter to 400 meter), Ethernet (500 meter to 1500 meter) or Bluetooth (2.4 GHz, 10 m) network. If the position extension of the network 4 is known, the mobile device 1 can determine its position with a certain limited range. If additional information can be extracted from the network 4 (e.g. on which stationary nodes 3 of the network 4 the mobile device 1 is connected), additional data bases can be searched for the position information.
  • infrared 0.6 meter
  • wave LAN 100 meter to 400 meter
  • Ethernet 500 meter to 1500 meter
  • Bluetooth 2.4 GHz, 10 m
  • the program element according to the present invention can be applied to any kind of transmission and/or network 4 , i.e. it is platform independent.
  • the network can for example be an IP (Internet Protocol) network.
  • IP Internet Protocol
  • the transmission of the position information is effected on top of the TCP/IP or UDP/IP protocol stack (above layer 4 of the OSI model), while the known GSM solution works on layer 2 (the GSM internal protocols).
  • the transmission of the position information according to the present invention is effected by means of a application protocol and therefore in the layer of E-Mail, WWW, TELNET, FTP, DNS and other applications of the TCP/IP protocol stack.
  • additional information can be attached to the transmitted position information, such that the transmitted information contains much more information than the information cell broadcast by GSM networks.
  • Said additional information can for example be the geographic extension of the network, room information and/or site information. Details of said attached information can be found in table 1 further below.
  • the known GSM solution is based on a periodic broadcast, whereas according to the present invention a plurality of modes, such as for example a broadcast mode and a reply/response mode are provided.
  • a communication means (special node) having the internal structure as shown in FIG. 6 (reference 5 ) is added either to a network infrastructure component (router, switches, etc.) or to one of the stationary attached devices in the network 4 .
  • This special node is called geolocation server 5 of the network 4 .
  • a permanent (persistent) storing unit 6 contains the location of the corresponding stationary device and is called location store.
  • a communication controller 8 is provided for answering queries or for broadcasting the information of the storing unit 6 on the network 4 .
  • a management controller 7 is provided for managing the communication means, e.g. setting the broadcast interval, changing the content of the storing unit 6 , etc.
  • the communication controller 8 is connected to the network 4 by means of a network interface 9 .
  • a communication controller 12 is provided to send queries to the network 4 or to receive broadcast position information from the network 4 .
  • a transient storing unit 10 is provided for storing position information received.
  • a so-called location API 11 is provided for accessing the position information from the operating system or applications of the mobile device 1 .
  • the communication controller 12 is connected to the network 4 by means of a network interface 13 .
  • the mobile device 1 can access position information stored on the stationary node in the network 4 . This can be effected in the following two modes:
  • the communication component in the network 4 uses the network broadcast facilities to periodically broadcast the current position information to the attached (mobile) devices.
  • a mobile node just has to listen to incoming broadcast information packets. This can be of advantage, as the mobile device 1 can save power as it does not have to transmit query signals.
  • the broadcast mode is shown in FIG. 4 .
  • the server 5 broadcasts its position information on the network 4 .
  • the mobile device 1 receives the information in a passive mode.
  • the mobile device 1 requests the position information by sending its request on the network (for example by broadcasting) and waits for a reply from the nodes in the network 4 .
  • FIG. 3 shows such a request/reply mode. As shown in the example of FIG. 3, the mobile device 1 requests the position information by sending a broadcast information to the network 4 and by receiving the co-ordinates correspondingly directly.
  • the geolocation server might send the geolocation information directly (not using broadcast) to the mobile device if it is able to determine the active (mobile) devices within its cell. This is especially useful if the network does not provide a broadcast service.
  • the information used to describe the location of the network can have different structure and encoding.
  • the following table 1 gives an example of how this information can be structured using Key/Value pairs. Other structures are possible:
  • Network.Sender Location (position) of the transmitting stationary node.
  • Network.Extension Geographic extension of the network range of the transmission, e.g. 0.6 meter for Infrared).
  • Network.Name Logical Name of the network.
  • Network.Room Name of the room where the network is located.
  • Network.Building Name of the building where the network is located.
  • Network.Locationname Name of the location where the network is located.
  • Network.CellId The CellId (cell identification) where the sending/stationary node is located. Can be used if the physical network provide transparent hand-over between different physical cells.
  • Network.Shape The shape of the network with addition information, e.g. where the corners are located. E.g. a rectangle can be defined by declaring its four corners, a circle through its middle point and its extension, etc.
  • Some wireless networks provide as shown in FIG. 5 cell hand-over on the physical level without changing the network on the network layer (layer 3 ).
  • a Geolocation Server can be placed into each of the different physical cells.
  • the information send to the mobile device will include the CellId of the physical network. By comparing this information with the current CellId of the physical network enables the mobile device to determine the current valid geolocation.
  • the mobile device In both operational modes, the mobile device might receive answers from different machines. This might happen, if more than one machine in the network is configured to send the required information. The client must then perform a conflict resolution to find an appropriate location.
  • Some forms of conflict resolution are:

Abstract

The invention relates to the field of mobile computing and more specific to the problem of determining the current position of a mobile device (1). If the mobile device (1) can attach itself to (wireless) networks (4) covering a small geographic area, the mobile device (1) can determine its position by querying stationary nodes attached to the network about their location. According to the invention a transmission of position information from a stationary node (3) to a mobile device (1) is effected above the transport layer (layer 4) of the OSI model such that the transmission is independent from the physical type of the networks (4) and/or the transmission (2) used.

Description

The present invention relates to a method for the determination of the current position of a mobile device, a program element loadable into a memory of a mobile device, a mobile communications device with current position determination capability as well as to a network providing a current position determination capability for attached mobile devices.
The invention generally relates to the field of mobile computing and more specific, to problem of determining the current position of a mobile device with communication ability.
The external state of the art in the field of position determination of mobile devices includes the following techniques:
The first technique is hardware support based, i.e. the mobile device has a special support for hardware devices. GPS (Global Positioning System) and D (Differential)-GPS receiver as well as measurement equipment for the speed and direction of the user, such as f.e. car navigation systems, are devices which fall into said category. FIG. 1 schematically shows a GPS Satellite connecting to a mobile client.
The next technique is network support based. In this case the network has means to determine the location of the mobile device. This can be done e.g. by using the base stations of the network or a triangulation method (see FIG. 1).
Another technique is based on a specific support on the mobile device. In this case the mobile device is equipped with a special module for determining the location e.g. a data base of streets and their location or a data base containing network identification and their current location.
GPS and some other known mentioned techniques are not useable indoors. On the one hand they can not be used indoors because they usually need a line of sight to the transmitter. On the other hand, the information that is provided by outdoor services is not very accurate. Indoor use requires much more precise location capability.
Today's GSM networks use the so-called GSM cell broadcast service to send location information to the mobile phones on a specific geographic area. This service can be offered by the network provider. Note that the position of the base station is transmitted. therefore not the position of the user, but only the cell he is located in is known. GSM cells, however, cover a huge range. The service relies on the network specific cell broadcast and is only useable within the GSM network as this solution works on layer 2 of the OSI model (see FIG. 7), i.e. the data link layer containing the specific GSM internal protocols.
Details of the cell broadcast short message service of the GSM service can be found in Redel et al, “GSM and personal communications handbook”, 1998, Artec House, Inc.
From IEEE Personal Communications, October 1998, pages 8 to 24, a mobile access to web resources is known. The mobile device can be f.e. a laptop computer. Visualization of physical geography and object locations via a protocol for interactive floor maps is proposed. Local-area service discovery is based on embedding location information into a existing data network rather than using external information such as GPS coordinates. Outfitted subnets broadcast periodically a beacon packet to the local subnet addresses (and in some cases multicast with limited scope).
Departing from the above prior art it is therefore the object of the present invention to provide for a technique for the determination of the position of mobile devices which is platform independent.
This object is achieved by means of the features of the independent claims. The dependent claims develop further the central idea of the present invention.
According to the present invention therefore a method for the determination of the current position of a mobile device is provided. Stationary nodes of at least one network are provided with position information representing the stationary position of the corresponding node. The position information of at least one node of the at least one network is transmitted to a mobile device. The current position of the mobile device is determined on the basis of the at least one transmitted position information. The transmission of the position information is effected above the transport layer (layer 4) of the OSI model such that the transmission is independent from the physical type of the networks and/or the transmission.
Without triangulation or generally, without processing position information of a plurality of stationary nodes, the precision of the determination of the current position of the mobile device essentially corresponds to the range of the transmission used which can be as small as f.e. 0.6 m in case of an Infrared transmission.
The transmission on the physical layer can be particularly effected such that is adapted for indoor use or generally for non-line-of-sight (NLOS) communication.
A broadcast mode can be provided in which the corresponding stationary nodes of the network send periodically their position information to mobile devices.
Alternatively or additionally, a request/reply mode can be provided in which the corresponding stationary nodes of the network send their position information to mobile devices only on request.
A conflict resolution function can be provided to detect the appropriate current position of the mobile device in case a plurality of different position information of different nodes have been transmitted to the mobile device.
The conflict resolution can be effected in the network or in the mobile device.
The position information furthermore can contain additional information about technical and/or geographical features of the network, such as e.g. the geographic extension of the corresponding network, room information and/or site information.
A geolocation server in the network can be provided being connected to a data base comprising the positional information of at least one stationary node of the corresponding network.
The position information can be broadcast or transmitted in a request-reply mode of communication.
According to another aspect of the present invention a program element comprising program code means loadable into a memory of a mobile device is provided. The program element is a application protocol above layer four of the OSI model, for
receiving position information of at least one node of a network, and
determining the current position of the mobile device on the basis of the transmitted position information.
According to the present invention furthermore a mobile communications device with current position determination ability is provided. The device can comprise a communication controller designed to receive positional information from at least one stationary transmitting node of at least one network. The communication controller can be adapted to receive the positional information, which transmission is effected by means of an application protocol, i.e. a protocol above the transport layer (layer 4) of the OSI model such that the transmission is independent from the physical type of the networks and/or the transmission.
The mobile communications device can comprise a storage unit for storing positional information received.
According to another aspect of the present invention a network providing for a current position determination ability for mobile devices is provided. The network comprises at least one stationary node adapted to transmit position information representing the stationary position of the corresponding node. At least one stationary node is adapted to transmit the position information above the transport layer (layer 4) of the OSI model such that the transmission is independent from the physical type of the network and/or the transmission.
The at least one stationary node of the network can be adapted for a broadcast mode in which the corresponding positional information is broadcast periodically. Alternatively or additionally the at least one stationary node can be adapted for a request/reply position information transmission mode.
The network can comprise a geolocation server being connected to a data base comprising the positional information of at least one stationary node of the network.
Further advantages, features and objects of the present invention will come clearer from the following detailed explanation of embodiments and with reference to the figures of the enclosed drawings.
FIG. 1 shows position determination techniques from mobile devices according to the prior art,
FIG. 2 shows an example for the use of an infrared transmission to broadcast location position according to the present invention,
FIG. 3 shows an example for the use of an IP (Internet Protocol) broadcast from a mobile device according to the present invention,
FIG. 4 shows an example for using an IP (Internet Protocol) broadcast service from a geolocation server according to the present invention,
FIG. 5 shows cells with a physical hand-over function,
FIG. 6 shows the architecture of a stationary node and a mobile device according to the present invention, and
FIG. 7 shows a comparison of the technique according to the present invention and a known GSM position determination solution using the ISO/OSI protocol layer representation.
With reference to FIG. 2 a first embodiment of the present invention will now be explained. A mobile device 1 can connect itself to (wireless) networks covering a small geographic area by means of an infrared transmission 2. The mobile device 1 can determine its current position by receiving positional information from stationary nodes 3 attached to the network 4. The mobile device 1 can for example query stationary nodes 3 about their location.
As the present invention is particularly adapted for indoor use, it is preferred that the mobile device 1 connects itself to local networks 4 with a limited geographic extension by means of an infrared (0.6 meter), wave LAN (100 meter to 400 meter), Ethernet (500 meter to 1500 meter) or Bluetooth (2.4 GHz, 10 m) network. If the position extension of the network 4 is known, the mobile device 1 can determine its position with a certain limited range. If additional information can be extracted from the network 4 (e.g. on which stationary nodes 3 of the network 4 the mobile device 1 is connected), additional data bases can be searched for the position information.
In contrast to the prior art the program element according to the present invention can be applied to any kind of transmission and/or network 4, i.e. it is platform independent. Note that the network can for example be an IP (Internet Protocol) network. According to the present invention the transmission of the position information is effected on top of the TCP/IP or UDP/IP protocol stack (above layer 4 of the OSI model), while the known GSM solution works on layer 2 (the GSM internal protocols). With other words, the transmission of the position information according to the present invention is effected by means of a application protocol and therefore in the layer of E-Mail, WWW, TELNET, FTP, DNS and other applications of the TCP/IP protocol stack.
In contrast to the known GSM solution according to the present invention additional information can be attached to the transmitted position information, such that the transmitted information contains much more information than the information cell broadcast by GSM networks. Said additional information can for example be the geographic extension of the network, room information and/or site information. Details of said attached information can be found in table 1 further below.
The known GSM solution is based on a periodic broadcast, whereas according to the present invention a plurality of modes, such as for example a broadcast mode and a reply/response mode are provided.
As will now be explained with reference to FIGS. 3 and 4 a communication means (special node) having the internal structure as shown in FIG. 6 (reference 5) is added either to a network infrastructure component (router, switches, etc.) or to one of the stationary attached devices in the network 4. This special node is called geolocation server 5 of the network 4.
The internal structure of the geolocation server 5 of the network 4 is shown in FIG. 6. A permanent (persistent) storing unit 6 contains the location of the corresponding stationary device and is called location store. A communication controller 8 is provided for answering queries or for broadcasting the information of the storing unit 6 on the network 4. A management controller 7 is provided for managing the communication means, e.g. setting the broadcast interval, changing the content of the storing unit 6, etc. The communication controller 8 is connected to the network 4 by means of a network interface 9.
The internal structure of a mobile device according to the present invention is shown in FIG. 6. A communication controller 12 is provided to send queries to the network 4 or to receive broadcast position information from the network 4. A transient storing unit 10 is provided for storing position information received. A so-called location API 11 is provided for accessing the position information from the operating system or applications of the mobile device 1. The communication controller 12 is connected to the network 4 by means of a network interface 13.
Using the devices as shown in FIG. 6, the mobile device 1 can access position information stored on the stationary node in the network 4. This can be effected in the following two modes:
1. Broadcast mode
In the broadcast mode, the communication component in the network 4 uses the network broadcast facilities to periodically broadcast the current position information to the attached (mobile) devices. A mobile node just has to listen to incoming broadcast information packets. This can be of advantage, as the mobile device 1 can save power as it does not have to transmit query signals. The broadcast mode is shown in FIG. 4. In the shown example the server 5 broadcasts its position information on the network 4. The mobile device 1 receives the information in a passive mode.
2. Request/reply mode
In this mode, the mobile device 1 requests the position information by sending its request on the network (for example by broadcasting) and waits for a reply from the nodes in the network 4. FIG. 3 shows such a request/reply mode. As shown in the example of FIG. 3, the mobile device 1 requests the position information by sending a broadcast information to the network 4 and by receiving the co-ordinates correspondingly directly.
In addition to the above described modes, the geolocation server might send the geolocation information directly (not using broadcast) to the mobile device if it is able to determine the active (mobile) devices within its cell. This is especially useful if the network does not provide a broadcast service.
The information used to describe the location of the network can have different structure and encoding. The following table 1 gives an example of how this information can be structured using Key/Value pairs. Other structures are possible:
TABLE 1
Attribute Meaning
Network.Sender Location (position) of the transmitting
stationary node.
Network.Extension Geographic extension of the network (range of
the transmission, e.g. 0.6 meter for Infrared).
Network.Name Logical Name of the network.
Network.Room Name of the room where the network is
located.
Network.Building Name of the building where the network is
located.
Network.Locationname Name of the location where the network is
located.
Network.CellId The CellId (cell identification) where the
sending/stationary node is located. Can be used
if the physical network provide transparent
hand-over between different physical cells.
Network.Shape The shape of the network with addition
information, e.g. where the corners are located.
E.g. a rectangle can be defined by declaring its
four corners, a circle through its middle point
and its extension, etc.
The given values are just examples. Not all of them must be present. Also addition information might be send.
Some wireless networks provide as shown in FIG. 5 cell hand-over on the physical level without changing the network on the network layer (layer 3). To have a more accurate indication of the geolocation, a Geolocation Server can be placed into each of the different physical cells. In this case, the information send to the mobile device will include the CellId of the physical network. By comparing this information with the current CellId of the physical network enables the mobile device to determine the current valid geolocation.
In both operational modes, the mobile device might receive answers from different machines. This might happen, if more than one machine in the network is configured to send the required information. The client must then perform a conflict resolution to find an appropriate location. Some forms of conflict resolution are:
Building an intersection of the two received locations,
Select one, e.g. the first incoming position information,
Request the transmitting nodes to solve the problem between them such that the conflict is solve on the network side,
Checking the CellId

Claims (18)

What is claimed is:
1. Method for the determination of the current position of a mobile device, the method comprising the following steps:
providing a plurality of stationary nodes in at least one network,
providing each of said plurality of stationary nodes with position information representing the stationary position of the respective corresponding node,
transmitting the respective position information from at least one stationary node of the at least one network to a mobile device, and
determining the current position of the mobile device on the basis of the at least one transmitted position information,
wherein the transmission of the position information is effected in an OSI protocol layer higher than a transport layer of the OSI protocol such that the transmission is independent from the physical type of the networks and/or the transmission.
2. Method according to claim 1, characterized in that the transmission (2) is effected on the physical layer such that it is adapted for non-line-of-sight communication.
3. Method according to claim 1, characterized in that a broadcast mode is provided in which the corresponding stationary nodes (3) of the network (4) send periodically their position information to mobile devices (1).
4. Method according to claim 1, characterized in that a request/reply mode is provided in which the corresponding stationary nodes (3) of the network (4) send their position information to mobile devices (1) on request.
5. Method according to claim 1, characterized in that a conflict resolution function is provided to detect the appropriate current position of the mobile device (1) in case a plurality of different position information of different nodes (3) have been sent to the mobile device (1).
6. Method according to claim 5, characterized in that the conflict resolution is effected in the network (4).
7. Method according to claim 5, characterized in that the conflict resolution is effected in the mobile device (1).
8. Method according to claim 1, characterized in that the positional information furthermore contains additional information about technical and/or geographical features of the network.
9. Method according to claim 1, characterized by providing a geolocation server (5) in the network (4), the geolocation server being connected to a database (6) comprising the positional information of at least one stationary node (3) of the corresponding network (4).
10. Method according to claim 1, characterized in that the position information is broadcast.
11. Method according to claim 1, characterized in that the position information is transmitted in a point-to-point communication.
12. A program element comprising a program code loadable into a memory of a mobile device,
wherein the program element operates in an OSI protocol layer higher than a transport layer of the OSI protocol, such that, the program element is independent from the physical type of the networks and/or the transmission, for
receiving position information from at least one of a plurality of stationary nodes of at least one network, in which the position information of a respective node represents a stationary position of the respective node, and
determining the current position of the mobile device on the basis of the received position information.
13. Mobile communications device with current position determination capability, the device comprising:
a communication controller designed to receive positional information from at least one of a plurality of stationary nodes of at least one network, in which the positional information of a respective node represents the stationary position of the respective node;
wherein the communication controller is adapted to receive the positional information which transmission is effected in an OSI protocol layer higher than a transport layer of the OSI protocol such that the transmission is independent from the physical type of the networks and/or the transmission.
14. Mobile communications device according to claim 13, characterized in that it comprises a storage unit (10) for storing positional information received.
15. Network with a current position determination capability for mobile devices, comprising a plurality of stationary nodes in said network, whereby at least one stationary node is adapted to transmit position information representing the stationary position thereof, wherein the at least one stationary node is adapted to transmit the position information in an OSI protocol layer higher than a transport layer of the OSI protocol of the mobile device such that the transmission is independent from the physical type of the network and/or the transmission.
16. Network according to claim 15, characterized in that the at least one stationary node (3) is adapted for a broadcast mode in which the corresponding positional information is broadcast periodically.
17. Network according to claim 16, characterized in that the at least one stationary node (3) is adapted for a request/reply position information transmission mode.
18. Network according to anyone of claim 16, characterized in that it comprises a geolocation server (5), the geolocation server (5) being connected to a database (6) comprising the positional information of at least one stationary node of the network (4).
US09/578,119 1999-05-26 2000-05-24 Geolocation determination Expired - Lifetime US6415220B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99110237A EP1056306B1 (en) 1999-05-26 1999-05-26 Geolocation determination
EP99110237 1999-05-26

Publications (1)

Publication Number Publication Date
US6415220B1 true US6415220B1 (en) 2002-07-02

Family

ID=8238247

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/578,119 Expired - Lifetime US6415220B1 (en) 1999-05-26 2000-05-24 Geolocation determination

Country Status (5)

Country Link
US (1) US6415220B1 (en)
EP (1) EP1056306B1 (en)
JP (1) JP2001045543A (en)
KR (1) KR100745542B1 (en)
DE (1) DE69933542T2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020026389A1 (en) * 2000-08-25 2002-02-28 Nec Corporation Shopping system based on information retrieval
US20020101993A1 (en) * 2001-02-01 2002-08-01 Eleazar Eskin Mobile computing and communication
US20050010663A1 (en) * 2003-07-11 2005-01-13 Tatman Lance A. Systems and methods for physical location self-awareness in network connected devices
US20060122995A1 (en) * 2003-09-01 2006-06-08 Fujitsu Limited Searching method of position information and searching system thereof
US20070282678A1 (en) * 2006-06-01 2007-12-06 Microsoft Corporation Platform to enable sharing of location information from a single device to multiple devices in range of communication
US20080040272A1 (en) * 2000-01-07 2008-02-14 Ack Venture Holdings, Llc, A Connecticut Corporation Mobile computing and communication
US7860516B2 (en) 2006-12-05 2010-12-28 Microsoft Corporation Automatic localization of devices
US8031050B2 (en) 2000-06-07 2011-10-04 Apple Inc. System and method for situational location relevant invocable speed reference
US8060389B2 (en) 2000-06-07 2011-11-15 Apple Inc. System and method for anonymous location based services
US8073565B2 (en) 2000-06-07 2011-12-06 Apple Inc. System and method for alerting a first mobile data processing system nearby a second mobile data processing system
US8108144B2 (en) 2007-06-28 2012-01-31 Apple Inc. Location based tracking
US8175802B2 (en) 2007-06-28 2012-05-08 Apple Inc. Adaptive route guidance based on preferences
US8180379B2 (en) 2007-06-28 2012-05-15 Apple Inc. Synchronizing mobile and vehicle devices
US8204684B2 (en) 2007-06-28 2012-06-19 Apple Inc. Adaptive mobile device navigation
US8260320B2 (en) 2008-11-13 2012-09-04 Apple Inc. Location specific content
US8275352B2 (en) 2007-06-28 2012-09-25 Apple Inc. Location-based emergency information
US8290513B2 (en) 2007-06-28 2012-10-16 Apple Inc. Location-based services
US8311526B2 (en) 2007-06-28 2012-11-13 Apple Inc. Location-based categorical information services
US8332402B2 (en) 2007-06-28 2012-12-11 Apple Inc. Location based media items
US8355862B2 (en) 2008-01-06 2013-01-15 Apple Inc. Graphical user interface for presenting location information
US8359643B2 (en) 2008-09-18 2013-01-22 Apple Inc. Group formation using anonymous broadcast information
US8369867B2 (en) 2008-06-30 2013-02-05 Apple Inc. Location sharing
US8385964B2 (en) 2005-04-04 2013-02-26 Xone, Inc. Methods and apparatuses for geospatial-based sharing of information by multiple devices
WO2013047967A1 (en) * 2011-09-29 2013-04-04 Samsung Electronics Co., Ltd. Apparatus and method for generating and retrieving location-tagged content in computing device
US8644843B2 (en) 2008-05-16 2014-02-04 Apple Inc. Location determination
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US8670748B2 (en) 2009-05-01 2014-03-11 Apple Inc. Remotely locating and commanding a mobile device
US8762056B2 (en) 2007-06-28 2014-06-24 Apple Inc. Route reference
US8774825B2 (en) 2007-06-28 2014-07-08 Apple Inc. Integration of map services with user applications in a mobile device
US9066199B2 (en) 2007-06-28 2015-06-23 Apple Inc. Location-aware mobile device
US9109904B2 (en) 2007-06-28 2015-08-18 Apple Inc. Integration of map services and user applications in a mobile device
US9250092B2 (en) 2008-05-12 2016-02-02 Apple Inc. Map service with network-based query for search
US9702709B2 (en) 2007-06-28 2017-07-11 Apple Inc. Disfavored route progressions or locations
US9716928B2 (en) 2012-08-29 2017-07-25 Fujitsu Limited Communications apparatus, system, and communications method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI110738B (en) 2000-05-22 2003-03-14 Nokia Corp Data transmission in a packet switched radio system implementing a subscriber terminal location service
EP1271876A1 (en) * 2001-06-25 2003-01-02 Koninklijke Philips Electronics N.V. Transmitting device and method of enhanced rendering
KR100902891B1 (en) * 2002-01-29 2009-06-16 엘지전자 주식회사 Mobile terminal and Method for providing a location information using bluetooth thereof
JP4255441B2 (en) 2002-08-15 2009-04-15 サーフ テクノロジー インコーポレイテッド GPS system interface
US7239271B1 (en) 2002-08-15 2007-07-03 Sirf Technology, Inc. Partial almanac collection system
AU2002368323A1 (en) 2002-11-08 2004-06-07 Nokia Corporation Method, terminal device and system allowing for handling location services independently from a cellular communication system
US7248880B2 (en) * 2003-02-07 2007-07-24 Siemens Communications, Inc. Methods and apparatus for determining a location of a device
US8750191B2 (en) 2010-03-12 2014-06-10 Htc Corporation Communication devices for providing multimedia broadcast/multicast services
US8812014B2 (en) * 2010-08-30 2014-08-19 Qualcomm Incorporated Audio-based environment awareness
KR101127794B1 (en) * 2011-08-17 2012-03-23 주식회사 씽크풀 Judgement system for location of network idendifier and method thereof
KR101931658B1 (en) 2012-02-27 2018-12-21 삼성전자주식회사 Unit pixel of image sensor and image sensor including the same
EP3182737B1 (en) * 2015-12-15 2017-11-29 Axis AB Method, stationary device, and system for determining a position
KR20180002487U (en) 2017-02-09 2018-08-20 박일영 Radiator lid to detect temperature change

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410543A (en) * 1993-01-04 1995-04-25 Apple Computer, Inc. Method for connecting a mobile computer to a computer network by using an address server
US5850388A (en) * 1996-08-02 1998-12-15 Wandel & Goltermann Technologies, Inc. Protocol analyzer for monitoring digital transmission networks
WO1998058506A1 (en) 1997-06-17 1998-12-23 Telefonaktiebolaget Lm Ericsson System and method for customizing wireless communication units
US5923659A (en) * 1996-09-20 1999-07-13 Bell Atlantic Network Services, Inc. Telecommunications network
US6112085A (en) * 1995-11-30 2000-08-29 Amsc Subsidiary Corporation Virtual network configuration and management system for satellite communication system
US6115580A (en) * 1998-09-08 2000-09-05 Motorola, Inc. Communications network having adaptive network link optimization using wireless terrain awareness and method for use therein
US6115615A (en) * 1996-02-26 2000-09-05 Fuji Xerox Co., Ltd. Cellular communication network and its communication method
US6115390A (en) * 1997-10-14 2000-09-05 Lucent Technologies, Inc. Bandwidth reservation and collision resolution method for multiple access communication networks where remote hosts send reservation requests to a base station for randomly chosen minislots
US6167513A (en) * 1996-11-01 2000-12-26 Kabushiki Kaisha Toshiba Mobile computing scheme using encryption and authentication processing based on mobile computer location and network operating policy
US6167255A (en) * 1998-07-29 2000-12-26 @Track Communications, Inc. System and method for providing menu data using a communication network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057913B2 (en) * 1992-06-11 2000-07-04 日本電気株式会社 Telephone with location display function
JPH11205845A (en) * 1998-01-14 1999-07-30 Locus:Kk Position specifying system
US6496701B1 (en) * 1998-08-25 2002-12-17 Lucent Technologies Inc. Pattern-recognition-based geolocation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410543A (en) * 1993-01-04 1995-04-25 Apple Computer, Inc. Method for connecting a mobile computer to a computer network by using an address server
US6112085A (en) * 1995-11-30 2000-08-29 Amsc Subsidiary Corporation Virtual network configuration and management system for satellite communication system
US6115615A (en) * 1996-02-26 2000-09-05 Fuji Xerox Co., Ltd. Cellular communication network and its communication method
US5850388A (en) * 1996-08-02 1998-12-15 Wandel & Goltermann Technologies, Inc. Protocol analyzer for monitoring digital transmission networks
US5923659A (en) * 1996-09-20 1999-07-13 Bell Atlantic Network Services, Inc. Telecommunications network
US6181695B1 (en) * 1996-09-20 2001-01-30 Bell Atlantic Network Services, Inc. Telecommunications network
US6167513A (en) * 1996-11-01 2000-12-26 Kabushiki Kaisha Toshiba Mobile computing scheme using encryption and authentication processing based on mobile computer location and network operating policy
WO1998058506A1 (en) 1997-06-17 1998-12-23 Telefonaktiebolaget Lm Ericsson System and method for customizing wireless communication units
US6115390A (en) * 1997-10-14 2000-09-05 Lucent Technologies, Inc. Bandwidth reservation and collision resolution method for multiple access communication networks where remote hosts send reservation requests to a base station for randomly chosen minislots
US6167255A (en) * 1998-07-29 2000-12-26 @Track Communications, Inc. System and method for providing menu data using a communication network
US6115580A (en) * 1998-09-08 2000-09-05 Motorola, Inc. Communications network having adaptive network link optimization using wireless terrain awareness and method for use therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fujino N Et Al: "Mobile Information Service Based on Multi-Agent Architecture" IEICE Transactions on Communications, vol. E80-B, No. 10, Oct. 1, 1997, pp. 1401-1406, XP000734533.

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080040272A1 (en) * 2000-01-07 2008-02-14 Ack Venture Holdings, Llc, A Connecticut Corporation Mobile computing and communication
US9317867B2 (en) 2000-06-07 2016-04-19 Apple Inc. System and method for situational location relevant invocable speed reference
US8073565B2 (en) 2000-06-07 2011-12-06 Apple Inc. System and method for alerting a first mobile data processing system nearby a second mobile data processing system
US8930233B2 (en) 2000-06-07 2015-01-06 Apple Inc. System and method for anonymous location based services
US8984059B2 (en) 2000-06-07 2015-03-17 Apple Inc. Mobile data processing system moving interest radius
US9100793B2 (en) 2000-06-07 2015-08-04 Apple Inc. System and method for alerting a first mobile data processing system nearby a second mobile data processing system
US8489669B2 (en) 2000-06-07 2013-07-16 Apple Inc. Mobile data processing system moving interest radius
US8060389B2 (en) 2000-06-07 2011-11-15 Apple Inc. System and method for anonymous location based services
US8031050B2 (en) 2000-06-07 2011-10-04 Apple Inc. System and method for situational location relevant invocable speed reference
US8538685B2 (en) 2000-06-07 2013-09-17 Apple Inc. System and method for internet connected service providing heterogeneous mobile systems with situational location relevant content
US8963686B2 (en) 2000-06-07 2015-02-24 Apple Inc. System and method for situational location relevant invocable speed reference
US20020026389A1 (en) * 2000-08-25 2002-02-28 Nec Corporation Shopping system based on information retrieval
US20080039020A1 (en) * 2001-02-01 2008-02-14 Ack Venture Holdings Llc, A Connecticut Corporation Mobile computing and communication
US9924305B2 (en) 2001-02-01 2018-03-20 Ack Ventures Holdings, Llc Mobile computing and communication
WO2002062039A2 (en) * 2001-02-01 2002-08-08 Kargo Inc. Mobile computing and communication
US7299007B2 (en) 2001-02-01 2007-11-20 Ack Venture Holdings, Llc Mobile computing and communication
US20020101993A1 (en) * 2001-02-01 2002-08-01 Eleazar Eskin Mobile computing and communication
WO2002062039A3 (en) * 2001-02-01 2003-02-27 Kargo Inc Mobile computing and communication
US20080039019A1 (en) * 2001-02-01 2008-02-14 Ack Venture Holdings, A Connecticut Corporation Mobile computing and communication
US20050010663A1 (en) * 2003-07-11 2005-01-13 Tatman Lance A. Systems and methods for physical location self-awareness in network connected devices
US20060122995A1 (en) * 2003-09-01 2006-06-08 Fujitsu Limited Searching method of position information and searching system thereof
US9942705B1 (en) 2005-04-04 2018-04-10 X One, Inc. Location sharing group for services provision
US8750898B2 (en) 2005-04-04 2014-06-10 X One, Inc. Methods and systems for annotating target locations
US11778415B2 (en) 2005-04-04 2023-10-03 Xone, Inc. Location sharing application in association with services provision
US11356799B2 (en) 2005-04-04 2022-06-07 X One, Inc. Fleet location sharing application in association with services provision
US10856099B2 (en) 2005-04-04 2020-12-01 X One, Inc. Application-based two-way tracking and mapping function with selected individuals
US10791414B2 (en) 2005-04-04 2020-09-29 X One, Inc. Location sharing for commercial and proprietary content applications
US8385964B2 (en) 2005-04-04 2013-02-26 Xone, Inc. Methods and apparatuses for geospatial-based sharing of information by multiple devices
US10750311B2 (en) 2005-04-04 2020-08-18 X One, Inc. Application-based tracking and mapping function in connection with vehicle-based services provision
US10750309B2 (en) 2005-04-04 2020-08-18 X One, Inc. Ad hoc location sharing group establishment for wireless devices with designated meeting point
US10750310B2 (en) 2005-04-04 2020-08-18 X One, Inc. Temporary location sharing group with event based termination
US8538458B2 (en) 2005-04-04 2013-09-17 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US10341809B2 (en) 2005-04-04 2019-07-02 X One, Inc. Location sharing with facilitated meeting point definition
US10341808B2 (en) 2005-04-04 2019-07-02 X One, Inc. Location sharing for commercial and proprietary content applications
US10313826B2 (en) 2005-04-04 2019-06-04 X One, Inc. Location sharing and map support in connection with services request
US10299071B2 (en) 2005-04-04 2019-05-21 X One, Inc. Server-implemented methods and systems for sharing location amongst web-enabled cell phones
US10200811B1 (en) 2005-04-04 2019-02-05 X One, Inc. Map presentation on cellular device showing positions of multiple other wireless device users
US10165059B2 (en) 2005-04-04 2018-12-25 X One, Inc. Methods, systems and apparatuses for the formation and tracking of location sharing groups
US8712441B2 (en) 2005-04-04 2014-04-29 Xone, Inc. Methods and systems for temporarily sharing position data between mobile-device users
US10149092B1 (en) 2005-04-04 2018-12-04 X One, Inc. Location sharing service between GPS-enabled wireless devices, with shared target location exchange
US9467832B2 (en) 2005-04-04 2016-10-11 X One, Inc. Methods and systems for temporarily sharing position data between mobile-device users
US9967704B1 (en) 2005-04-04 2018-05-08 X One, Inc. Location sharing group map management
US9955298B1 (en) 2005-04-04 2018-04-24 X One, Inc. Methods, systems and apparatuses for the formation and tracking of location sharing groups
US9584960B1 (en) 2005-04-04 2017-02-28 X One, Inc. Rendez vous management using mobile phones or other mobile devices
US8798645B2 (en) 2005-04-04 2014-08-05 X One, Inc. Methods and systems for sharing position data and tracing paths between mobile-device users
US8798647B1 (en) 2005-04-04 2014-08-05 X One, Inc. Tracking proximity of services provider to services consumer
US8798593B2 (en) 2005-04-04 2014-08-05 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US8831635B2 (en) 2005-04-04 2014-09-09 X One, Inc. Methods and apparatuses for transmission of an alert to multiple devices
US9253616B1 (en) 2005-04-04 2016-02-02 X One, Inc. Apparatus and method for obtaining content on a cellular wireless device based on proximity
US9883360B1 (en) 2005-04-04 2018-01-30 X One, Inc. Rendez vous management using mobile phones or other mobile devices
US9854394B1 (en) 2005-04-04 2017-12-26 X One, Inc. Ad hoc location sharing group between first and second cellular wireless devices
US9854402B1 (en) 2005-04-04 2017-12-26 X One, Inc. Formation of wireless device location sharing group
US9031581B1 (en) 2005-04-04 2015-05-12 X One, Inc. Apparatus and method for obtaining content on a cellular wireless device based on proximity to other wireless devices
US9749790B1 (en) 2005-04-04 2017-08-29 X One, Inc. Rendez vous management using mobile phones or other mobile devices
US9736618B1 (en) 2005-04-04 2017-08-15 X One, Inc. Techniques for sharing relative position between mobile devices
US9654921B1 (en) 2005-04-04 2017-05-16 X One, Inc. Techniques for sharing position data between first and second devices
US9615204B1 (en) 2005-04-04 2017-04-04 X One, Inc. Techniques for communication within closed groups of mobile devices
US9167558B2 (en) 2005-04-04 2015-10-20 X One, Inc. Methods and systems for sharing position data between subscribers involving multiple wireless providers
US9185522B1 (en) 2005-04-04 2015-11-10 X One, Inc. Apparatus and method to transmit content to a cellular wireless device based on proximity to other wireless devices
US20070282678A1 (en) * 2006-06-01 2007-12-06 Microsoft Corporation Platform to enable sharing of location information from a single device to multiple devices in range of communication
US7860516B2 (en) 2006-12-05 2010-12-28 Microsoft Corporation Automatic localization of devices
US8762056B2 (en) 2007-06-28 2014-06-24 Apple Inc. Route reference
US8275352B2 (en) 2007-06-28 2012-09-25 Apple Inc. Location-based emergency information
US9414198B2 (en) 2007-06-28 2016-08-09 Apple Inc. Location-aware mobile device
US9310206B2 (en) 2007-06-28 2016-04-12 Apple Inc. Location based tracking
US9578621B2 (en) 2007-06-28 2017-02-21 Apple Inc. Location aware mobile device
US8332402B2 (en) 2007-06-28 2012-12-11 Apple Inc. Location based media items
US9131342B2 (en) 2007-06-28 2015-09-08 Apple Inc. Location-based categorical information services
US9109904B2 (en) 2007-06-28 2015-08-18 Apple Inc. Integration of map services and user applications in a mobile device
US9702709B2 (en) 2007-06-28 2017-07-11 Apple Inc. Disfavored route progressions or locations
US11665665B2 (en) 2007-06-28 2023-05-30 Apple Inc. Location-aware mobile device
US11419092B2 (en) 2007-06-28 2022-08-16 Apple Inc. Location-aware mobile device
US8175802B2 (en) 2007-06-28 2012-05-08 Apple Inc. Adaptive route guidance based on preferences
US9066199B2 (en) 2007-06-28 2015-06-23 Apple Inc. Location-aware mobile device
US8180379B2 (en) 2007-06-28 2012-05-15 Apple Inc. Synchronizing mobile and vehicle devices
US8204684B2 (en) 2007-06-28 2012-06-19 Apple Inc. Adaptive mobile device navigation
US11221221B2 (en) 2007-06-28 2022-01-11 Apple Inc. Location based tracking
US9891055B2 (en) 2007-06-28 2018-02-13 Apple Inc. Location based tracking
US8924144B2 (en) 2007-06-28 2014-12-30 Apple Inc. Location based tracking
US8774825B2 (en) 2007-06-28 2014-07-08 Apple Inc. Integration of map services with user applications in a mobile device
US8311526B2 (en) 2007-06-28 2012-11-13 Apple Inc. Location-based categorical information services
US10952180B2 (en) 2007-06-28 2021-03-16 Apple Inc. Location-aware mobile device
US8290513B2 (en) 2007-06-28 2012-10-16 Apple Inc. Location-based services
US10064158B2 (en) 2007-06-28 2018-08-28 Apple Inc. Location aware mobile device
US8108144B2 (en) 2007-06-28 2012-01-31 Apple Inc. Location based tracking
US8738039B2 (en) 2007-06-28 2014-05-27 Apple Inc. Location-based categorical information services
US8694026B2 (en) 2007-06-28 2014-04-08 Apple Inc. Location based services
US10508921B2 (en) 2007-06-28 2019-12-17 Apple Inc. Location based tracking
US10412703B2 (en) 2007-06-28 2019-09-10 Apple Inc. Location-aware mobile device
US8548735B2 (en) 2007-06-28 2013-10-01 Apple Inc. Location based tracking
US8355862B2 (en) 2008-01-06 2013-01-15 Apple Inc. Graphical user interface for presenting location information
US9250092B2 (en) 2008-05-12 2016-02-02 Apple Inc. Map service with network-based query for search
US9702721B2 (en) 2008-05-12 2017-07-11 Apple Inc. Map service with network-based query for search
US8644843B2 (en) 2008-05-16 2014-02-04 Apple Inc. Location determination
US8369867B2 (en) 2008-06-30 2013-02-05 Apple Inc. Location sharing
US10368199B2 (en) 2008-06-30 2019-07-30 Apple Inc. Location sharing
US10841739B2 (en) 2008-06-30 2020-11-17 Apple Inc. Location sharing
US8359643B2 (en) 2008-09-18 2013-01-22 Apple Inc. Group formation using anonymous broadcast information
US8260320B2 (en) 2008-11-13 2012-09-04 Apple Inc. Location specific content
US9979776B2 (en) 2009-05-01 2018-05-22 Apple Inc. Remotely locating and commanding a mobile device
US8670748B2 (en) 2009-05-01 2014-03-11 Apple Inc. Remotely locating and commanding a mobile device
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
WO2013047967A1 (en) * 2011-09-29 2013-04-04 Samsung Electronics Co., Ltd. Apparatus and method for generating and retrieving location-tagged content in computing device
CN103874997A (en) * 2011-09-29 2014-06-18 三星电子株式会社 Apparatus and method for generating and retrieving location-tagged content in computing device
CN103874997B (en) * 2011-09-29 2018-10-12 三星电子株式会社 The device and method for the content for adding location tags are generated and retrieved in computing device
US9716928B2 (en) 2012-08-29 2017-07-25 Fujitsu Limited Communications apparatus, system, and communications method

Also Published As

Publication number Publication date
KR100745542B1 (en) 2007-08-03
EP1056306B1 (en) 2006-10-11
DE69933542T2 (en) 2007-05-16
DE69933542D1 (en) 2006-11-23
JP2001045543A (en) 2001-02-16
KR20010020910A (en) 2001-03-15
EP1056306A1 (en) 2000-11-29

Similar Documents

Publication Publication Date Title
US6415220B1 (en) Geolocation determination
CN101779505B (en) Registration of wireless node
US7224979B2 (en) Location-aware service proxies in a short-range wireless environment
KR101607605B1 (en) Peer-to-peer location service
US7149499B1 (en) System for dynamically tracking the location of network devices to enable emergency services
US6650896B1 (en) Error correlation for wireless networks
US7930729B2 (en) Performing presence service in a wireless communication system
KR101603801B1 (en) PROVIDING Wi-Fi LOCATION INFORMATION TO A MOBILE DEVICE IN ORDER TO ESTIMATE ITS POSITION
Di Flora et al. Indoor and outdoor location based services for portable wireless devices
US20050055374A1 (en) Method of and apparatus for providing localized information from an internet server or portal to user without requiring user to enter location
US7050815B2 (en) Deriving location information about a communicating entity
US20120083291A1 (en) Method and Apparatus for WLAN Location Services
US20050170852A1 (en) Position system and method for subscribers in the wireless local area network
US20070121557A1 (en) Location broadcasting
KR20070029373A (en) A method and apparatus of finding person using mobile messenger service
US20080107055A1 (en) Performing presence service in a wireless communication system
KR20060104175A (en) Method for position detection in indoor environment by using heterogeneous access points
US7295846B2 (en) Method for localizing a mobile terminal in an area under radio coverage of a cellular communication network and of a localization point, corresponding mobile terminal, server and localization point
US20040116131A1 (en) Method and device for exchange of geographical location information between location information server and core network element
EP1111951A2 (en) Wireless access systems and method of portable device location therein
Roth Flexible positioning for location-based services
US8150406B1 (en) System and method for providing robust location based services
Barahim et al. Low-cost bluetooth mobile positioning for location-based application
KR101044522B1 (en) Position recognition system and position recognition method
US20080109551A1 (en) Performing presence service in a wireless communication system

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY INTERNATIONAL (EUROPE) GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOVACS, ERNO;REEL/FRAME:011141/0155

Effective date: 20000428

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12