US6478432B1 - Dynamically generated interactive real imaging device - Google Patents

Dynamically generated interactive real imaging device Download PDF

Info

Publication number
US6478432B1
US6478432B1 US09/905,737 US90573701A US6478432B1 US 6478432 B1 US6478432 B1 US 6478432B1 US 90573701 A US90573701 A US 90573701A US 6478432 B1 US6478432 B1 US 6478432B1
Authority
US
United States
Prior art keywords
image
light
mirror
aperture
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/905,737
Inventor
Chad D. Dyner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/905,737 priority Critical patent/US6478432B1/en
Application granted granted Critical
Publication of US6478432B1 publication Critical patent/US6478432B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images

Definitions

  • This invention is directed generally at improvements in input/output devices that relate to computer user interfaces and video imaging/viewing that could benefit from user interaction.
  • This highly intuitive interface relates to human/image interaction in a familiar fashion to touching, grabbing and manipulating objects in the real world.
  • the present invention incorporates an imaging display that projects what appears to the human eye to be a floating image.
  • the experience is further enhanced by the ability to manipulate the image as if it existed in the real world. This overall engaging experience is not possible with existing devices.
  • 4,802,750 has numerous disadvantages including the fact that the orientation of the two mirrors provides limited viewing only from the front of the device. This is solved as described by Welk, by rotating the entire enclosure on a turntable. In Summer's U.S. Pat. No. 5,311,357 and Monroe's U.S. Pat. No. 5,257,130 there is the same restricted viewing angle, although the incorporation of a television cathode ray tube (CRT) or projector allowed for a dynamic image, yet lacked any degree of interactivity. Furthermore, the exterior dimensions of the unit limit its application to permanent installations that are better suited for exhibition type events. While various variations of this principle in the aforementioned art have been employed, none offered the degree of flexibility of this device; dynamic imaging and interaction in a portable unit.
  • CTR television cathode ray tube
  • the present invention creates an environment that is a more natural interface, improving the overall computer and/or video display experience.
  • the mouse and keyboard serve as the standard input devices that are relics of the past, the keyboard a remnant of the typewriter.
  • the advent of the touchscreen has added a more unencumbered input method, it is limited by the surface of the image occurring behind the screen. Since the present invention contains no viewing screen, such as in a conventional television or computer monitor, the user can actually grab the image and engage it by placing one's fingers through the image to interact with it. This is quite different than touching the surface of a touch screen, where the operator is cognizant of touching a surface that is above an image contained within a monitor or box.
  • the input/output device of this invention is a vast improvement in the development of computer and video display interfaces.
  • This invention is a robust solid state method of producing dynamic interactive real images in a relatively small size, allowing the device to be portable with a user-friendly interface.
  • This embodiment reduces the number of parts to the bare essentials and contains virtually no moving components, which is advantageous to provide high real world reliability, low maintenance and relatively low cost of manufacturing by not being processor intensive.
  • the further ability to connect to existing external video devices allows the unit to integrate with existing display infrastructures, such as with any current video signal (videotape, DVD, TV or videogame) including a computer display signal.
  • this may include a portable power source comprising a battery pack, allowing for independent operation without the need of a power outlet.
  • the device of this invention acts as an interface between the image and the user, serving as an input/output device with almost limitless capabilities.
  • Traditional imaging devices require a separate display and input device, detaching the actual input function and executed response.
  • the device doesn't rely on any peripheral input devices, liberating the operator to freely work or play in an accustomed real world fashion.
  • the user can now write/draw or type in a virtual environment without the use of peripheral devices, and actually handle a virtual object as if it were present in real space.
  • Existing technology is limited to the actual tactile process, which does not allow the image to actually be engaged but rather the user must touch the CRT or LCD surface in front of the image, such as Weissmueller's Co-ordinate detection system, U.S. Pat. No. 4,459,476.
  • This invention provides a method that allows the operator to place his/her hand through the image and therefore provide a completely different experience in which the operator's hand appears to be in actual contact with the image. Therefore, if an artist were to choose a real, physical paint brush, and place it within the detection grid, the “paint” would occur at the location where the bristles interrupt the detection grids; dependent on the thickness of the paintbrush. If the artist chooses a fine tipped pencil, then the result would be a much finer line, that is defined by the silhouette of the tip. Coupled with the ability to integrate software to modify user defined parameters, the invention allows further user flexibility and user customization.
  • the present invention is intended to provide significant utility in numerous fields. Since the image can be viewed from 360 degrees, the device's application is suited for scenarios that require multi-viewing and multi-user interaction. This includes entertainment scenarios among numerous players, such as a game of virtual chess. Just as one would select a chess piece and move it, the same functions can be accomplished using the same movement as if they existed in the real world. This device is valuable to fields that are less “typing dependent” and more graphics related. For example, a 3D computer designer, who sculpts three-dimensional models,. does not find the mouse to be ideally suited for executing commands. Here the designer;can use his/her own hand.
  • the device could be placed at the center of a conference table where various users can view and manipulate the viewed image during a board meeting. Since the projected image is not limited to a horizontal position, a vertically positioned image can be viewed from all sides including the rear, something not possible in a conventional monitor.
  • the invention provides an interface that is more similar to a real world environment. The user manipulates an object, as if it were a clay model, with their hands and fingers, as if it existed in the physical world. This capability was not possible in the prior art.
  • FIG. 1 is a longitudinal sectional view of the significant components of the invention including the ray diagram of the projected image;
  • FIG. 2 is a plan view of the position detection device and viewport
  • FIG. 3 is a block diagram of the processes that occur in the operation of the invention.
  • the device of this invention contains four main components: an image generating device ( 1 ) such as a projector, a method of creating a real image ( 13 , 14 ), a method of tracking user input ( 47 ), and a method to communicate with the tracking device ( 47 ) and image generating device ( 1 ) such as a computer ( 46 ).
  • an image generating device ( 1 ) such as a projector
  • a method of creating a real image 13 , 14
  • a method of tracking user input 47
  • a method to communicate with the tracking device ( 47 ) and image generating device ( 1 ) such as a computer ( 46 ).
  • the image generating component can include several available technologies, including, but not limited to, high resolution full color images.
  • a video/data projector ( 1 ) provides the most convincing results by supplying the required luminosity for ambient daylight viewing.
  • the video/data projector ( 1 ) with its respective optics ( 2 ), allows for a close focused projected image ( 17 ) providing a 360 degree viewing angle of the dynamically generated real image ( 6 ).
  • the image displayed ( 6 ) is dynamically generated by computer ( 46 ), the device allows for updated real-time viewing, such as video, or similar types of information found on computers.
  • Other image generating devices such as any controllable opacity surface having a light source placed behind, such as an (LCD), can be substituted, so long as the image can be viewed from acute angles.
  • a cathode ray tube (CRT) television screen can be substituted, it does not provide as good a contrast.
  • current LCD technology is limited by a more or less on-axis viewing in one or two of the
  • various technologies may be employed in image/data projectors and include, but are not limited to, Digital Light Processing (DLP) developed by Texas Instruments, Micromirror (3M), LCD, or twisted nematic (TN) projectors. All of these can be utilized in component ( 1 ) of this invention.
  • illumination source ( 3 ) A number of manufacturers such as Sony manufacture ultra-portable projectors, such as the CPJ-200 offering VGA resolution, the Plus U3-1080, projecting an XGA image which provide a bright enough image with sufficient image quality.
  • a mirror ( 4 ) is set-to direct the image onto a rear projection screen ( 5 ). While projector ( 1 ) can be oriented vertically, in which case mirror. 4 is not needed, in order to save space projector ( 1 ) was placed at a right angle to screen ( 5 ).
  • Rear projection screen ( 5 ) is similar to a rear-projection system having a small diffuse reflection coefficient and negligible specular reflection. Light that is projected from behind is scattered diffusely, in the optimal case ideally diffused, such as in a Lambertian emitter. In addition, incoming stray light from the front is absorbed, and the material is non-reflective as much as possible to provide a high contrast ratio.
  • a holographic diffuser such as one manufactured by Physical Optics Corporation, coupled with a gray contrast filter, produces the desired result.
  • rear projection screen ( 5 ) is replaced by a backlit controllable opacity panel, such as a liquid crystal element allowing off-axis viewing.
  • both the real image ( 6 ) and the rear screen image ( 5 ) are in view.
  • An opaque surface ( 8 ) optimally light absorbing such as a matte black surface, is incorporated to block the direct view of rear screen ( 5 ).
  • a plexiglass or ideally anti-reflective (AR) coated glass container or hemisphere ( 9 ) conceals screen ( 5 ) preventing double image viewing, while protecting the inside mirrored surface ( 11 ) from a misguided operator's hand ( 51 ) and dust or airborne particles from accumulating on the mirror surfaces ( 10 and 11 ).
  • opaque surface ( 8 ) is determined so as to not obstruct the emanating image light rays (rc and re), to not be interrupted by opaque surface ( 8 ) while obstructing the direct view of screen ( 5 ), from the operator or observer ( 48 ). This does not affect real image ( 6 ), as light rays traveling in a vertical direction have no mirrored surface to bounce off, due to the location of top viewport aperture ( 7 ).
  • screen ( 5 ) is oriented in a vertical orientation ( 12 ) to allow the image to be presented vertically. Projector ( 1 ) and/or mirror ( 4 ) would need to be repositioned to direct the image onto vertical surface ( 12 ).
  • An obvious advantage to this is that the image can be viewed from all sides including the rear, something not possible in a conventional LCD or CRT.
  • the second component of the device includes a pair of parabolic or ellipsoid concave mirrors ( 13 and 14 ), with focal points facing each other on axis either positioned coaxially or near on-axis.
  • a pair of parabolic or ellipsoid concave mirrors ( 13 and 14 ) with focal points facing each other on axis either positioned coaxially or near on-axis.
  • An object located at one of the focal points of one mirror appears at a different location or focal point of the second mirror.
  • Each of the mirrors ( 13 and 14 ) are apertured ( 15 and 49 ) on either ends, allowing viewing from top viewport ( 7 ).
  • the image is generated by any of the previously described technologies on panel ( 16 ) and is illuminated by the light source ( 3 ) which passes through projector optics ( 2 ).
  • the silvered surface ( 10 and 11 ) of mirrors ( 13 and 14 ) need to be as accurate as possible, a perfect concave surface to provide the best results, with minimal image distortion.
  • the viewing angle over the vertical increases while the image size decreases in size, restricted by the smaller viewport.
  • mirrors ( 13 and 14 ) While ultimately the viewed real image ( 6 ) size depends on the actual dimensions of mirrors ( 13 and 14 ), by using different focal length mirrors, the real image can be enlarged or reduced in size from the rear projected image ( 17 ).
  • An aperture diameter of about one-fourth the diameter of the mirror provides suitable results, yet an infinite number of variations in the overall geometry of the mirrors and aperture sizes can exist, resulting in various viewing angles and image sizes.
  • mirrors ( 13 and 14 ) may be in contact with one another as shown in FIG. 1, or the mirrors may be separated while still facing one another, depending on the required viewing angles, image size and orientation.
  • input position detection device ( 18 ) allows user's hand ( 19 ) to interact with real image ( 50 ).
  • This component functions in a similar fashion to the way a touchpad or touchscreen operates on most computers.
  • Position detection device ( 18 ) translates absolute position analogous to operating a touchscreen on a computer.
  • Touchscreens operate with their appropriate drivers by communicating with the operating system using generic pointing device software.
  • Existing conventional touchpads rely on tactile contact with a surface in order for the device to detect position via acoustic wave, resistance or capacitance technologies. Because this invention relies on beams of light, there is no contact with any surface.
  • the real image ( 50 ) appears on the same plane as the detectors/emitters ( 20 - 23 ), the user perceives actual “touching” of the floating image ( 50 ), in this example a map of a part of the world.
  • Detection device ( 18 ) functions by utilizing a plurality of light emitting means, such as light emitting diodes (LED's) ( 20 & 21 ), or lasers, with corresponding light detecting switches, such as transistors ( 22 & 23 ) at the opposite ends of detection device ( 18 ).
  • the detection device ( 18 ) triggers a signal when the LED light beam is interrupted by a finger or stylus from reaching the transistor/detector at the opposite end.
  • the signal correlates to the absolute position for that axis that is recognized by the emitter/detector pair for one of the axis while the other pair simultaneously detects the input for the other axis. By combining both positions a true x-y coordinate position is detected.
  • LED ( 21 ) and detectors ( 22 ) correspond to the x axis of detection device ( 18 ) and LED ( 20 ) and detectors ( 23 ) correspond to the y axis of position detection device ( 18 ).
  • the series of emitter/detectors ( 20 , 21 , 22 & 23 ) are equidistantly spaced and positioned adjacent to one another to provide an invisible optical grid ( 24 ).
  • an invisible grid 24
  • the LED's operate at low wavelength infrared (IR) light, beyond human vision, they are never visible.
  • the detectors operate as on/off bistate gates, responding to emitter IR wavelength and therefore are not accidentally triggered by ambient light.
  • the IR light grid ( 26 ) produces a matrix of cells on a Cartesian x-y grid that correspond to,the number of detectable cells. By increasing the number of LED's and detectors the number of detectable cells increase and therefore the detectable resolution of the device.
  • the on/off signal corresponding to the user's input location is sent to the detector controller ( 28 ) which interprets the signal with prewritten computer software, such as a universal mouse driver emulation that translates this information to a cursor location that is recognized by computer ( 30 ).
  • the device works with existing software that recognizes an external input device such as a mouse.
  • Position detection controller ( 28 ) sends commands via an interface cable ( 29 ) instructing computer ( 30 ) of the location of an object within the IR field. This object, typically the user's finger ( 19 ), or a stylus, is interpreted as an input corresponding to that location in an. x-y grid.
  • User input ( 45 ) is determined by the user placing his or her finger ( 31 ), or stylus, within viewport ( 32 ) that is located on the same plane as detection device ( 51 ).
  • the user input occurs at the intersecting coordinates of emitter/detector G and emitter/detector 5 ( 33 ).
  • This selection of the intersecting pair G 5 ( 33 ) correlates to the part of the image that is projected at that particular location.
  • the position information is acknowledged by controller ( 34 ) by the interruption of IR light emanating from LED G and LED 5 from reaching corresponding detector G and detector 5 .
  • Controller ( 34 ) communicates with computer ( 35 ) either via a Universal Serial Bus (USB), parallel, serial port Input/output (I/O) or standard PS/2 interface ( 36 ) to connect external peripheral devices.
  • This information is interpreted by software operating system ( 37 ) which contains preloaded software that outputs a solution depending on the purpose of the software. If for example a software application is written such as a world atlas, then by selecting that particular location the software instructs the computer to pull up a close-up detailed view of the selected area. In a gaming scenario, a chess piece real image located at G 5 would have been selected and moved to the appropriate location by the user moving his or her hand to the new coordinate, in a similar way to the real world.
  • Computer ( 35 ) has the ability to accept external video ( 38 ) via a video inport to receive external sources such as a DVD, television signal, external computer or CD-ROM ( 39 ). This provides flexibility to run software off CD-ROMs, such as the quick change of games. Furthermore, the device could be hooked up to a local area network or, via the internet, to provide long distance gaming partners. In addition, computer ( 35 ) has the ability to run information kept on an internal storage device such as hard drive ( 40 ) for preprogrammed functions.
  • an internal storage device such as hard drive ( 40 ) for preprogrammed functions.
  • the program's solution is sent to a video graphics controller ( 41 ) via an accelerated graphics port (AGP) or Peripheral Component Interconnect (PCI) bus which translates the instructions into a video signal ( 42 ) sent to projector ( 43 ) that updates the image according to the users initial G- 5 input.
  • computer ( 35 ) and projector ( 43 ) may include a scan converter ( 44 ) which may be employed to generate a signal to be read by projector ( 43 ).
  • Computer ( 35 ) therefore generates a new image that correlates to the user selecting G 5 , which is sent to projector ( 43 ) where it is reflected off the previously described mirrors, to be finalized in updated real image ( 52 ) in viewport ( 32 ).
  • the degree of interactivity is determined by the software running in the background, such as allowing for pull-down menus, such as those on a standard computer desktop environment. In this way, an image can be selected, manipulated and translated by the detection system that locates the position of the user's input. Similar to the interaction with a mouse, one can click and drag objects invany Graphic User Interface (GUI) operating system such as Windows® or Macintosh® operating system (OS) to run the point, click and drag subroutines.
  • GUI Graphic User Interface
  • the device of this invention relies on existing software, the device can be upgraded to incorporate the latest developments in GUI or software advances.
  • Existing programs instruct the computer to “rollover”, or change the image, to show that the user has selected that icon or part of the image. For example, on a Windows desktop, an icon changes to a darker color as soon as the user selects it. Since sometimes the floating real image ( 52 ) within viewport ( 32 ) is obstructed by the location of the finger or stylus, impeding the user/operator from viewing what occurs behind the pointing device or finger ( 31 ), modification to software can accommodate this possible inconvenience.
  • Selection handles or the location within GUI where the selection of a particular item is recognized for that location can be positioned off-center, so as to allow the unobstructed view of the selected image at G- 5 by the operator's finger ( 31 ).
  • the software shifts its relative position off to one side.
  • the user intends on selecting the item in G 5 , he or she places their finger next to G 5 , such as F 5 and the software recognizes the selection of G 5 which remains in view by the operator at all times.
  • audio feedback can accompany the selection process to help in recognizing that the intended image was selected.
  • real image ( 52 ) allows this zone to be a flexible workspace that serves various functions. These can include a floating keyboard or drawing pad in order to accommodate the current task. A certain portion of the viewing zone can be used as a “keyboard” when needed and hidden away when not needed, by minimizing a new window as one would in Windows 95 for example. Software by Mass Multimedia Company provides My-T-Touch can be adapted for this function. Since the “virtual keyboard” is not physically present, the keys can change characters to be customized for the user or change to accommodate the task at hand or to foreign languages or user defined characters.

Abstract

This invention comprises a method and apparatus for displaying full color, high resolution dynamically generated real images and allowing the user to have direct interaction with the image. This input/output device provides an intuitive computer/video interface that permits the operator to grab, translate and manipulate a real image. The apparatus comprises a pair of coaxially positioned parabolic mirrors and a video imaging device allowing for 360 degree viewing. The real image, that appears floating within the opening of a viewport, is completely interactive by means of a detection system that tracks the operator, allowing the user to place his/her hand or finger through the image and engage it. Applications for this device are wide ranging, and include, for example, computer-aided design (CAD) and the entertainment/gaming industry by abandoning the conventional keyboard and mouse and allowing the user to have direct contact with the image.

Description

This invention is described in my Disclosure Document No. 493398, filed on May 11, 2001.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is directed generally at improvements in input/output devices that relate to computer user interfaces and video imaging/viewing that could benefit from user interaction.
2. Background Art
This highly intuitive interface relates to human/image interaction in a familiar fashion to touching, grabbing and manipulating objects in the real world. The present invention incorporates an imaging display that projects what appears to the human eye to be a floating image. The experience is further enhanced by the ability to manipulate the image as if it existed in the real world. This overall engaging experience is not possible with existing devices.
There are numerous types of approaches to trick the human eye into believing that an image exists in a different location. In the past these various techniques provided the eye with visual depth cues, giving the illusion of viewing a three-dimensional image that appears from a flat surface. These types of technologies include stereoscopic viewing, which restricts a separate image seen by either eye. fooling the brain to mentally reconstruct a composite image that appears to float above the actual image. Other methods include anaglyph (red/blue glasses), polarized, alternating-field (liquid crystal display (LCD) shutter glasses), lenticular screens and chromatic displacement or ClromaDepth® (flat holographic “prisms” displace colors so reds appear closest and blues farthest). This invention uses none of these techniques, liberating the user from wearing any extra equipment such as goggles.
In the prior art, ellipsoidal imaging mirrors are known in which an object or light source positioned at the first focal point is imaged by the mirror at the second focal point of the ellipsoid, McNally's U.S. Pat. No. 3,893,754. The present invention recognizes a general relationship with the overall mirror geometry of the Elings' U.S. Pat. No. 3,647,284, employing this well known optical principle, but applying it to a novel use of dynamic real-time imaging, offering a number of advantages not possible in Elings. The most obvious drawback of the Elings' device was that the image being viewed was a static object and offered no degree of interactivity. Other variations, such as Welck's U.S. Pat. No. 4,802,750 has numerous disadvantages including the fact that the orientation of the two mirrors provides limited viewing only from the front of the device. This is solved as described by Welk, by rotating the entire enclosure on a turntable. In Summer's U.S. Pat. No. 5,311,357 and Monroe's U.S. Pat. No. 5,257,130 there is the same restricted viewing angle, although the incorporation of a television cathode ray tube (CRT) or projector allowed for a dynamic image, yet lacked any degree of interactivity. Furthermore, the exterior dimensions of the unit limit its application to permanent installations that are better suited for exhibition type events. While various variations of this principle in the aforementioned art have been employed, none offered the degree of flexibility of this device; dynamic imaging and interaction in a portable unit.
The present invention creates an environment that is a more natural interface, improving the overall computer and/or video display experience. Currently the mouse and keyboard serve as the standard input devices that are relics of the past, the keyboard a remnant of the typewriter. While the advent of the touchscreen has added a more unencumbered input method, it is limited by the surface of the image occurring behind the screen. Since the present invention contains no viewing screen, such as in a conventional television or computer monitor, the user can actually grab the image and engage it by placing one's fingers through the image to interact with it. This is quite different than touching the surface of a touch screen, where the operator is cognizant of touching a surface that is above an image contained within a monitor or box. The input/output device of this invention is a vast improvement in the development of computer and video display interfaces.
BRIEF SUMMARY OF THE INVENTION
This invention is a robust solid state method of producing dynamic interactive real images in a relatively small size, allowing the device to be portable with a user-friendly interface. This embodiment reduces the number of parts to the bare essentials and contains virtually no moving components, which is advantageous to provide high real world reliability, low maintenance and relatively low cost of manufacturing by not being processor intensive. The further ability to connect to existing external video devices allows the unit to integrate with existing display infrastructures, such as with any current video signal (videotape, DVD, TV or videogame) including a computer display signal. Furthermore, this may include a portable power source comprising a battery pack, allowing for independent operation without the need of a power outlet.
The device of this invention acts as an interface between the image and the user, serving as an input/output device with almost limitless capabilities. Traditional imaging devices require a separate display and input device, detaching the actual input function and executed response. The device doesn't rely on any peripheral input devices, liberating the operator to freely work or play in an accustomed real world fashion. The user can now write/draw or type in a virtual environment without the use of peripheral devices, and actually handle a virtual object as if it were present in real space. Existing technology is limited to the actual tactile process, which does not allow the image to actually be engaged but rather the user must touch the CRT or LCD surface in front of the image, such as Weissmueller's Co-ordinate detection system, U.S. Pat. No. 4,459,476. This invention provides a method that allows the operator to place his/her hand through the image and therefore provide a completely different experience in which the operator's hand appears to be in actual contact with the image. Therefore, if an artist were to choose a real, physical paint brush, and place it within the detection grid, the “paint” would occur at the location where the bristles interrupt the detection grids; dependent on the thickness of the paintbrush. If the artist chooses a fine tipped pencil, then the result would be a much finer line, that is defined by the silhouette of the tip. Coupled with the ability to integrate software to modify user defined parameters, the invention allows further user flexibility and user customization.
General functions that were previously executed with the mouse are now replaced by the user's finger or stylus. Because the operator is not constrained by the physical limitations of the keyboard and mouse, there is no risk of carpal tunnel syndrome linked to long periods of typing. The ability to use existing handwriting software packages (character recognition) further allows users to input text through writing, a more natural movement. There is no need for any peripheral devices (mouse, keyboard or other input devices) to clutter the user's desk space while providing complete flexibility. Instead, the space within the viewport is organized to suit the required task at hand, such as a pull-down virtual keyboard that is retracted when not in use, freeing up valuable space.
The present invention is intended to provide significant utility in numerous fields. Since the image can be viewed from 360 degrees, the device's application is suited for scenarios that require multi-viewing and multi-user interaction. This includes entertainment scenarios among numerous players, such as a game of virtual chess. Just as one would select a chess piece and move it, the same functions can be accomplished using the same movement as if they existed in the real world. This device is valuable to fields that are less “typing dependent” and more graphics related. For example, a 3D computer designer, who sculpts three-dimensional models,. does not find the mouse to be ideally suited for executing commands. Here the designer;can use his/her own hand. In another arrangement the device could be placed at the center of a conference table where various users can view and manipulate the viewed image during a board meeting. Since the projected image is not limited to a horizontal position, a vertically positioned image can be viewed from all sides including the rear, something not possible in a conventional monitor. Thus, the invention provides an interface that is more similar to a real world environment. The user manipulates an object, as if it were a clay model, with their hands and fingers, as if it existed in the physical world. This capability was not possible in the prior art.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a longitudinal sectional view of the significant components of the invention including the ray diagram of the projected image;
FIG. 2 is a plan view of the position detection device and viewport; and
FIG. 3 is a block diagram of the processes that occur in the operation of the invention.
DETAILED DESCRIPTION OF THE INVENTION
The device of this invention contains four main components: an image generating device (1) such as a projector, a method of creating a real image (13,14), a method of tracking user input (47), and a method to communicate with the tracking device (47) and image generating device (1) such as a computer (46).
The image generating component can include several available technologies, including, but not limited to, high resolution full color images. A video/data projector (1) provides the most convincing results by supplying the required luminosity for ambient daylight viewing. The video/data projector (1) with its respective optics (2), allows for a close focused projected image (17) providing a 360 degree viewing angle of the dynamically generated real image (6). Since the image displayed (6) is dynamically generated by computer (46), the device allows for updated real-time viewing, such as video, or similar types of information found on computers. Other image generating devices, such as any controllable opacity surface having a light source placed behind, such as an (LCD), can be substituted, so long as the image can be viewed from acute angles. Although a cathode ray tube (CRT) television screen can be substituted, it does not provide as good a contrast. Furthermore, current LCD technology is limited by a more or less on-axis viewing in one or two of the directions.
While another approach may replace screen (5) with an LCD panel or other similar controllable opacity surface, a sufficient light source, placed behind produces the same result as a projector, as long as the image can be viewed from acute angles.
While coherent laser light can provide the high contrast, a highly complex set of rotating scanners and a set of three lasers are needed to provide a full color image utilizing red, green and blue light (RGB) to construct a color image. Furthermore the high computer intensive data needed to operate the lasers and scanners to generate an image increases the complexity and cost, limiting resolution and ultimately the quality of the image. In the preferred embodiment, various technologies may be employed in image/data projectors and include, but are not limited to, Digital Light Processing (DLP) developed by Texas Instruments, Micromirror (3M), LCD, or twisted nematic (TN) projectors. All of these can be utilized in component (1) of this invention. This allows the projected image (17) to be viewed from all angles, while having a controlled brightness by illumination source (3). A number of manufacturers such as Sony manufacture ultra-portable projectors, such as the CPJ-200 offering VGA resolution, the Plus U3-1080, projecting an XGA image which provide a bright enough image with sufficient image quality.
A mirror (4) is set-to direct the image onto a rear projection screen (5). While projector (1) can be oriented vertically, in which case mirror. 4 is not needed, in order to save space projector (1) was placed at a right angle to screen (5). Rear projection screen (5) is similar to a rear-projection system having a small diffuse reflection coefficient and negligible specular reflection. Light that is projected from behind is scattered diffusely, in the optimal case ideally diffused, such as in a Lambertian emitter. In addition, incoming stray light from the front is absorbed, and the material is non-reflective as much as possible to provide a high contrast ratio. A holographic diffuser, such as one manufactured by Physical Optics Corporation, coupled with a gray contrast filter, produces the desired result. In another embodiment, rear projection screen (5) is replaced by a backlit controllable opacity panel, such as a liquid crystal element allowing off-axis viewing.
The loss of light due to scattering of light as it hits small imperfections on the mirror surface and the number of times the light is bounced around mirrored surfaces (10 and 11) requires a sufficiently bright image for satisfactory results. For optimum use in ambient daylight, a light source greater than 800 lumens provides a bright enough image on the rear projection screen (5). This in turn projects a high enough contrast image which ultimately appears at the corresponding focal point (6) of top mirror (13) within viewport region (7) or top mirror aperture (49). Furthermore, rear projected image (17) does not illuminate the entire surface, allowing a frame of reference and a space surrounding the image (6). enhancing the illusion of a floating image.
From a high enough viewing angle, dependent on the geometry, curvature and position of mirrors (13 and 14), both the real image (6) and the rear screen image (5) are in view. An opaque surface (8), optimally light absorbing such as a matte black surface, is incorporated to block the direct view of rear screen (5). A plexiglass or ideally anti-reflective (AR) coated glass container or hemisphere (9) conceals screen (5) preventing double image viewing, while protecting the inside mirrored surface (11) from a misguided operator's hand (51) and dust or airborne particles from accumulating on the mirror surfaces (10 and 11). The specific location of opaque surface (8) is determined so as to not obstruct the emanating image light rays (rc and re), to not be interrupted by opaque surface (8) while obstructing the direct view of screen (5), from the operator or observer (48). This does not affect real image (6), as light rays traveling in a vertical direction have no mirrored surface to bounce off, due to the location of top viewport aperture (7). In another embodiment, screen (5) is oriented in a vertical orientation (12) to allow the image to be presented vertically. Projector (1) and/or mirror (4) would need to be repositioned to direct the image onto vertical surface (12). An obvious advantage to this is that the image can be viewed from all sides including the rear, something not possible in a conventional LCD or CRT.
The second component of the device includes a pair of parabolic or ellipsoid concave mirrors (13 and 14), with focal points facing each other on axis either positioned coaxially or near on-axis. Through the well established optical principle known as real imaging, described in the prior art (such as Elings patent '284) an object located at one of the focal points of one mirror appears at a different location or focal point of the second mirror. Each of the mirrors (13 and 14) are apertured (15 and 49) on either ends, allowing viewing from top viewport (7). The image is generated by any of the previously described technologies on panel (16) and is illuminated by the light source (3) which passes through projector optics (2). The light rays (ra) emanating from the projector (1) bounce off mirror (4) and light ray (rb), focus onto rear projection screen (5). The imaged light rays (rc) travel toward top mirrored surface (10) where the incident ray angle is equal to the reflected ray angle of rays (rd) which in turn become the incident rays for the bottom mirrored surface (11) and ultimately converge (re) into the viewed real image (6).
Due to the number of times light is reflected, the silvered surface (10 and 11) of mirrors (13 and 14) need to be as accurate as possible, a perfect concave surface to provide the best results, with minimal image distortion. By decreasing the size of the top viewport aperture (7) and bottom aperture (15) the viewing angle over the vertical increases while the image size decreases in size, restricted by the smaller viewport.
While ultimately the viewed real image (6) size depends on the actual dimensions of mirrors (13 and 14), by using different focal length mirrors, the real image can be enlarged or reduced in size from the rear projected image (17). An aperture diameter of about one-fourth the diameter of the mirror provides suitable results, yet an infinite number of variations in the overall geometry of the mirrors and aperture sizes can exist, resulting in various viewing angles and image sizes. Furthermore, mirrors (13 and 14) may be in contact with one another as shown in FIG. 1, or the mirrors may be separated while still facing one another, depending on the required viewing angles, image size and orientation.
Referring now to FIG. 2, located above top mirror (27) input position detection device (18) allows user's hand (19) to interact with real image (50). This component functions in a similar fashion to the way a touchpad or touchscreen operates on most computers. Position detection device (18) translates absolute position analogous to operating a touchscreen on a computer. Touchscreens operate with their appropriate drivers by communicating with the operating system using generic pointing device software. Existing conventional touchpads rely on tactile contact with a surface in order for the device to detect position via acoustic wave, resistance or capacitance technologies. Because this invention relies on beams of light, there is no contact with any surface. The real image (50) appears on the same plane as the detectors/emitters (20-23), the user perceives actual “touching” of the floating image (50), in this example a map of a part of the world.
Detection device (18) functions by utilizing a plurality of light emitting means, such as light emitting diodes (LED's) (20 & 21), or lasers, with corresponding light detecting switches, such as transistors (22 & 23) at the opposite ends of detection device (18). The detection device (18) triggers a signal when the LED light beam is interrupted by a finger or stylus from reaching the transistor/detector at the opposite end. The signal correlates to the absolute position for that axis that is recognized by the emitter/detector pair for one of the axis while the other pair simultaneously detects the input for the other axis. By combining both positions a true x-y coordinate position is detected. LED (21) and detectors (22) correspond to the x axis of detection device (18) and LED (20) and detectors (23) correspond to the y axis of position detection device (18). The series of emitter/detectors (20, 21, 22 & 23) are equidistantly spaced and positioned adjacent to one another to provide an invisible optical grid (24).
By surrounding the entirety of viewport (25) with emitter/detector pairs in both directions on all four sides, an invisible grid (24) is created. Since the LED's operate at low wavelength infrared (IR) light, beyond human vision, they are never visible. The detectors operate as on/off bistate gates, responding to emitter IR wavelength and therefore are not accidentally triggered by ambient light. The IR light grid (26) produces a matrix of cells on a Cartesian x-y grid that correspond to,the number of detectable cells. By increasing the number of LED's and detectors the number of detectable cells increase and therefore the detectable resolution of the device. Limitations arise to the proximity of LED's and detectors to one another, as stray light from an LED may trigger the neighbor detector, instead of the intended detector at the opposite end. Techniques existing presently to ameliorate this include using lenses for emitting narrow collimated beams, further compressing the space between adjacent LED's/detectors. It is well known in the art that by rapidly switching alternating even and odd LED/detector pairs on and off, the resolution can be further increased by operating only every other pair at a time preventing, their close proximity from accidental “cross-talk”. By replacing the LED's with coherent light emitting diodes, such as laser diodes, the controllable beam does not require the previously mentioned techniques to focus the light beam.
The on/off signal corresponding to the user's input location is sent to the detector controller (28) which interprets the signal with prewritten computer software, such as a universal mouse driver emulation that translates this information to a cursor location that is recognized by computer (30). Thus, the device works with existing software that recognizes an external input device such as a mouse. Position detection controller (28) sends commands via an interface cable (29) instructing computer (30) of the location of an object within the IR field. This object, typically the user's finger (19), or a stylus, is interpreted as an input corresponding to that location in an. x-y grid. Since the physical location of the detection device grid (24) is positioned on the same plane as the focal point of real image (50) the viewer perceives an interaction occurring with image (50). The physical overlap of detection grid (24) and the perceived location of real image (50) is critical, as it completes the user's experience of actual touching and interaction with image (50). Computer (30) receiving the instructions from-detection controller (28) interprets the position to be the location in this example to be the real image corresponding to Alaska (50).
Referring to FIG. 3 there is shown a flow chart of the processes involved in the operation of the invention. User input (45) is determined by the user placing his or her finger (31), or stylus, within viewport (32) that is located on the same plane as detection device (51). In this example, the user input occurs at the intersecting coordinates of emitter/detector G and emitter/detector 5 (33). This selection of the intersecting pair G5 (33) correlates to the part of the image that is projected at that particular location. The position information is acknowledged by controller (34) by the interruption of IR light emanating from LED G and LED 5 from reaching corresponding detector G and detector 5. Controller (34) communicates with computer (35) either via a Universal Serial Bus (USB), parallel, serial port Input/output (I/O) or standard PS/2 interface (36) to connect external peripheral devices. This information is interpreted by software operating system (37) which contains preloaded software that outputs a solution depending on the purpose of the software. If for example a software application is written such as a world atlas, then by selecting that particular location the software instructs the computer to pull up a close-up detailed view of the selected area. In a gaming scenario, a chess piece real image located at G5 would have been selected and moved to the appropriate location by the user moving his or her hand to the new coordinate, in a similar way to the real world. Computer (35) has the ability to accept external video (38) via a video inport to receive external sources such as a DVD, television signal, external computer or CD-ROM (39). This provides flexibility to run software off CD-ROMs, such as the quick change of games. Furthermore, the device could be hooked up to a local area network or, via the internet, to provide long distance gaming partners. In addition, computer (35) has the ability to run information kept on an internal storage device such as hard drive (40) for preprogrammed functions. The program's solution is sent to a video graphics controller (41) via an accelerated graphics port (AGP) or Peripheral Component Interconnect (PCI) bus which translates the instructions into a video signal (42) sent to projector (43) that updates the image according to the users initial G-5 input. Depending on the type of signal, computer (35) and projector (43) may include a scan converter (44) which may be employed to generate a signal to be read by projector (43). Computer (35) therefore generates a new image that correlates to the user selecting G5, which is sent to projector (43) where it is reflected off the previously described mirrors, to be finalized in updated real image (52) in viewport (32).
The degree of interactivity is determined by the software running in the background, such as allowing for pull-down menus, such as those on a standard computer desktop environment. In this way, an image can be selected, manipulated and translated by the detection system that locates the position of the user's input. Similar to the interaction with a mouse, one can click and drag objects invany Graphic User Interface (GUI) operating system such as Windows® or Macintosh® operating system (OS) to run the point, click and drag subroutines.
Since the device of this invention relies on existing software, the device can be upgraded to incorporate the latest developments in GUI or software advances. Existing programs instruct the computer to “rollover”, or change the image, to show that the user has selected that icon or part of the image. For example, on a Windows desktop, an icon changes to a darker color as soon as the user selects it. Since sometimes the floating real image (52) within viewport (32) is obstructed by the location of the finger or stylus, impeding the user/operator from viewing what occurs behind the pointing device or finger (31), modification to software can accommodate this possible inconvenience. Selection handles or the location within GUI where the selection of a particular item is recognized for that location can be positioned off-center, so as to allow the unobstructed view of the selected image at G-5 by the operator's finger (31). For example, in a scenario where a small chess piece at G5 is completely obstructed from view by the operator's finger, the software shifts its relative position off to one side. When the user intends on selecting the item in G5, he or she places their finger next to G5, such as F5 and the software recognizes the selection of G5 which remains in view by the operator at all times. In another scenario it might be difficult for the user to be aware that a selection has been executed, in this case audio feedback can accompany the selection process to help in recognizing that the intended image was selected.
At the present time, various software packages available to create interactive environments include, Macromedia Flash, Macromedia Director as well as numerous other applications. These software packages use Actionscripting and dynamically generated HTML (Hyper Text Markup Language) allowing for user controlled interactivity. By integrating this type of software, or similar software, the actual viewing experience is changed from a static one to an interactive one. This interactivity is not limited only to the use of this type of software, since existing operating systems such as Windows® and Mac® OS already integrate this into their operating systems in order for the user to communicate with the device.
The ability of real image (52) to be dynamic allows this zone to be a flexible workspace that serves various functions. These can include a floating keyboard or drawing pad in order to accommodate the current task. A certain portion of the viewing zone can be used as a “keyboard” when needed and hidden away when not needed, by minimizing a new window as one would in Windows 95 for example. Software by Mass Multimedia Company provides My-T-Touch can be adapted for this function. Since the “virtual keyboard” is not physically present, the keys can change characters to be customized for the user or change to accommodate the task at hand or to foreign languages or user defined characters.
The ability to work with existing software packages, integration of current video data signals and relative ease of operation due to the similarity to real world interaction make for a device that bridges the gap of computer user interface.
While a description of the preferred embodiment of the present invention has been given, further modifications and alterations will occur to those skilled in the art. It is therefore understood that all such modifications and alterations be considered as within the spirit and scope of the invention as defined by the appended claims.

Claims (20)

I claim:
1. A dynamically generated interactive real imaging device comprising, image generating means, a pair of parabolic or ellipsoidal mirrors, comprising an upper mirror and a lower mirror, with focal points facing each other, each mirror having an aperture therein, said mirrors adapted to produce a real image, produced by the image generating means, at the aperture of the upper mirror, input position detection means adjacent the aperture of said upper mirror, said input position detection means comprising a plurality of light emitting means disposed opposite a plurality of light detection means, computer means adapted to read the position of any interruption of light between any light emitting means and any light detection means.
2. The device of claim 1 in which the image generating means comprises a controllable opacity surface having a light source behind.
3. The device of claim 2 further comprising opaque surface means adapted to block the direct view from the upper mirror aperture, of the backlit controllable opacity panel.
4. The device of claim 1 in which the image generating means comprises a video projector.
5. The device of claim 1 in which the light emitting means comprise light emitting diodes or lasers.
6. The device of claim 1 in which the light detection means comprise light detecting switches.
7. The device of claim 1 in which the light detection means comprise light detecting transistors.
8. The device of claim 1 further comprising a third mirror adapted to direct the image from the image generating means onto a rear projection screen.
9. The device of claim 8 further comprising opaque surface means adapted to block the direct view from the upper mirror aperture, of the rear projection screen.
10. The device of claim 1 further comprising computer software, operated by said computer means, adapted to dynamically adapt the real image, in response to said position detector means.
11. The device of claim 1 in which said position detector means comprises a plurality of light emitting diodes and an opposing plurality, of light detecting transistors on one axis and a plurality of light emitting diodes and an opposing plurality of light detecting transistors on another axis.
12. The device of claim 1 in which power is provided by an alternating current connector or by a battery pack.
13. A dynamically generated interactive real imaging device comprising, a dynamic image generating video projector or backlit controllable opacity panel, a pair of parabolic or ellipsoidal mirrors, comprising an upper mirror and a lower mirror, with focal points facing each other, each mirror having an aperture therein, said mirrors adapted to produce a real image, produced by the image generating means, at the aperture of the upper mirror, input position detection means located on the same plane as the aperture of said upper mirror, said input position detection means comprising a plurality of light emitting diodes disposed opposite a plurality of light detection transistors on the x axis and a plurality of light emitting diodes disposed opposite a plurality of light detection transistors on the y axis, creating an invisible optical grid, computer means adapted to read the position of any interruption of light between any light emitting diode and any light detection transistor, software adapted to modify said real image upon interaction with the real image.
14. The device of claim 13 in which the light emitting diodes operate with low frequency infrared light.
15. The device of claim 13 further comprising a third mirror adapted to direct the image from the image generating means onto a rear projection screen.
16. The device of claim 15 further comprising opaque surface means adapted to block the direct view from the upper mirror aperture, of the rear projection screen.
17. A method for creating an interface between a user and a dynamically generated real image comprising, creating a dynamic image utilizing a video projector, or backlit controllable opacity panel, passing the image to a pair of parabolic or ellipsoidal mirrors, comprising an upper mirror and a lower mirror, with focal points facing each other, each mirror having an aperture therein, said mirrors adapted to create a real image, produced by the image generating means, at the aperture of the upper mirror, placing input position detection means located on the same plane as the aperture of said upper mirror, said input position detection means comprising a plurality of light emitting diodes or lasers disposed opposite a plurality of light detection switches on the x axis and a plurality of light emitting diodes or lasers disposed opposite a plurality of light detection switches on the y axis, creating an invisible optical grid, computer means adapted to read the position of any interruption of light, created by the user, between any light emitting diode or laser and any light detection switch, allowing said user to interface directly with said real image, software adapted to modify said real image upon interaction with the real image by said user.
18. The method of claim 17 further comprising first reflecting the image created by the video or backlit controllable opacity panel off of a third mirror adapted to direct the image onto a rear projection screen.
19. The method of claim 18 further comprising blocking the direct view of the rear projection screen or backlit controllable opacity panel by placing an opaque surface between the rear projection screen and the aperture of the upper mirror.
20. The method of claim 17 further comprising passing the location information of user interaction with the optical grid to the computer software for action by the software.
US09/905,737 2001-07-13 2001-07-13 Dynamically generated interactive real imaging device Expired - Fee Related US6478432B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/905,737 US6478432B1 (en) 2001-07-13 2001-07-13 Dynamically generated interactive real imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/905,737 US6478432B1 (en) 2001-07-13 2001-07-13 Dynamically generated interactive real imaging device

Publications (1)

Publication Number Publication Date
US6478432B1 true US6478432B1 (en) 2002-11-12

Family

ID=25421379

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/905,737 Expired - Fee Related US6478432B1 (en) 2001-07-13 2001-07-13 Dynamically generated interactive real imaging device

Country Status (1)

Country Link
US (1) US6478432B1 (en)

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040057024A1 (en) * 2002-06-05 2004-03-25 Olympus Optical Co., Ltd. Table type display device
US20040109145A1 (en) * 2002-06-05 2004-06-10 Olympus Optical Co., Ltd. Table type display device and an assembling method thereof
WO2004104473A2 (en) * 2003-05-17 2004-12-02 Greenco L.L.C. Dba Lfi International Programmable laser illuminated sign apparatus
US20050122584A1 (en) * 2003-11-07 2005-06-09 Pioneer Corporation Stereoscopic two-dimensional image display device and method
US20050219240A1 (en) * 2004-04-05 2005-10-06 Vesely Michael A Horizontal perspective hands-on simulator
WO2005098517A2 (en) * 2004-04-05 2005-10-20 Vesely Michael A Horizontal perspective hand-on simulator
US20050248566A1 (en) * 2004-04-05 2005-11-10 Vesely Michael A Horizontal perspective hands-on simulator
US20050276448A1 (en) * 2000-07-07 2005-12-15 Pryor Timothy R Multi-functional control and entertainment systems
US20060072009A1 (en) * 2004-10-01 2006-04-06 International Business Machines Corporation Flexible interaction-based computer interfacing using visible artifacts
US20060146047A1 (en) * 2003-07-16 2006-07-06 Marion Dale S Three dimensional display method, system and apparatus
US20060158617A1 (en) * 2005-01-20 2006-07-20 Hewlett-Packard Development Company, L.P. Projector
US20060183545A1 (en) * 2004-11-05 2006-08-17 Jourdian Robert W Multi-user touch-responsive entertainment device
US20060224598A1 (en) * 2005-03-29 2006-10-05 Jeffrey Thielman Communication device
US20070008636A1 (en) * 2005-07-07 2007-01-11 Shy-Pin Cuo Optical display device
US20070046625A1 (en) * 2005-08-31 2007-03-01 Microsoft Corporation Input method for surface of interactive display
US20070046624A1 (en) * 2005-08-31 2007-03-01 Chee-Heng Wong Scalable controller for a computer input area
US20070132721A1 (en) * 2005-12-09 2007-06-14 Edge 3 Technologies Llc Three-Dimensional Virtual-Touch Human-Machine Interface System and Method Therefor
US20070157095A1 (en) * 2005-12-29 2007-07-05 Microsoft Corporation Orientation free user interface
US20070188898A1 (en) * 2006-01-19 2007-08-16 University Of South Florida Real Image Optical System
US20070252809A1 (en) * 2006-03-28 2007-11-01 Io Srl System and method of direct interaction between one or more subjects and at least one image and/or video with dynamic effect projected onto an interactive surface
US20070262957A1 (en) * 2006-04-27 2007-11-15 Samsung Electronics Co., Ltd. Menu selection method and apparatus using pointing device
FR2908900A1 (en) * 2006-11-20 2008-05-23 Euroinvest Sarl Projection table for use during presentation evening of luxury product, has projecting unit with reception unit receiving light beam to display final image or visual information, and tabletop including orifice forming central orifice
US20080231611A1 (en) * 2004-04-29 2008-09-25 Microsoft Corporation Interaction between objects and a virtual environment display
US20080291156A1 (en) * 2007-05-23 2008-11-27 Dietz Paul H Sanitary User Interface
US20080316434A1 (en) * 2007-06-21 2008-12-25 National Taiwan University Multi-Resolution Digital Table Display System
US20090016585A1 (en) * 2004-08-02 2009-01-15 Searete Llc Time-lapsing data methods and systems
US20090066657A1 (en) * 2007-09-12 2009-03-12 Richard Charles Berry Contact search touch screen
US20090122008A1 (en) * 2007-11-14 2009-05-14 Boulder Innovation Group, Inc. Probe With A Virtual Marker
WO2010004563A1 (en) * 2008-07-10 2010-01-14 Real View Imaging Ltd. Broad viewing angle displays and user interfaces
US20100066978A1 (en) * 2008-09-18 2010-03-18 Disney Enterprises, Inc. Spatial projection
US7750886B2 (en) 2004-09-27 2010-07-06 Qualcomm Mems Technologies, Inc. Methods and devices for lighting displays
US20100182136A1 (en) * 2004-09-07 2010-07-22 Timothy Pryor Control of appliances, kitchen and home
US20100182137A1 (en) * 2002-07-03 2010-07-22 Pryor Timothy R Control systems involving novel physical controls and touch screens
US7766498B2 (en) 2006-06-21 2010-08-03 Qualcomm Mems Technologies, Inc. Linear solid state illuminator
US7777954B2 (en) 2007-01-30 2010-08-17 Qualcomm Mems Technologies, Inc. Systems and methods of providing a light guiding layer
US7796134B2 (en) 2004-06-01 2010-09-14 Infinite Z, Inc. Multi-plane horizontal perspective display
US20100231547A1 (en) * 2001-02-22 2010-09-16 Pryor Timothy R Reconfigurable tactile control display applications
WO2010104827A1 (en) * 2009-03-10 2010-09-16 3M Innovative Properties Company User interface with a composite image that floats
WO2010102838A1 (en) * 2009-03-13 2010-09-16 Deutsche Telekom Ag Device for recording, remotely transmitting and reproducing three-dimensional images
US7845841B2 (en) 2006-08-28 2010-12-07 Qualcomm Mems Technologies, Inc. Angle sweeping holographic illuminator
US7855827B2 (en) 2006-10-06 2010-12-21 Qualcomm Mems Technologies, Inc. Internal optical isolation structure for integrated front or back lighting
US7864395B2 (en) 2006-10-27 2011-01-04 Qualcomm Mems Technologies, Inc. Light guide including optical scattering elements and a method of manufacture
US7907167B2 (en) 2005-05-09 2011-03-15 Infinite Z, Inc. Three dimensional horizontal perspective workstation
US20110122130A1 (en) * 2005-05-09 2011-05-26 Vesely Michael A Modifying Perspective of Stereoscopic Images Based on Changes in User Viewpoint
US20110187706A1 (en) * 2010-01-29 2011-08-04 Vesely Michael A Presenting a View within a Three Dimensional Scene
US8029140B2 (en) 2008-09-18 2011-10-04 Disney Enterprises, Inc. Device to produce a floating image
US8040589B2 (en) 2008-02-12 2011-10-18 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
US20110281660A1 (en) * 2007-09-12 2011-11-17 Schumm Jr Brooke Combination for passing an object through a three dimensional true color image
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8077147B2 (en) 2005-12-30 2011-12-13 Apple Inc. Mouse with optical sensing surface
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
US20120038890A1 (en) * 2010-08-13 2012-02-16 National Central University (a university of Taiwan) Illuminated device possessing a floating image
US8165422B2 (en) 2004-06-16 2012-04-24 Microsoft Corporation Method and system for reducing effects of undesired signals in an infrared imaging system
US8212857B2 (en) 2007-01-26 2012-07-03 Microsoft Corporation Alternating light sources to reduce specular reflection
US8210694B1 (en) 2007-07-03 2012-07-03 University Of South Florida Pair of concave mirrors for projecting non-inverted real images
US8228305B2 (en) 1995-06-29 2012-07-24 Apple Inc. Method for providing human input to a computer
US8239784B2 (en) 2004-07-30 2012-08-07 Apple Inc. Mode-based graphical user interfaces for touch sensitive input devices
US20120240071A1 (en) * 2011-03-18 2012-09-20 Lg Electronics Inc. Mobile terminal and controlling method thereof
US20120262481A1 (en) * 2004-08-02 2012-10-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Medical overlay mirror
US8314773B2 (en) 2002-09-09 2012-11-20 Apple Inc. Mouse having an optically-based scrolling feature
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8381135B2 (en) 2004-07-30 2013-02-19 Apple Inc. Proximity detector in handheld device
US8396252B2 (en) 2010-05-20 2013-03-12 Edge 3 Technologies Systems and related methods for three dimensional gesture recognition in vehicles
US8467599B2 (en) 2010-09-02 2013-06-18 Edge 3 Technologies, Inc. Method and apparatus for confusion learning
US8482535B2 (en) 1999-11-08 2013-07-09 Apple Inc. Programmable tactile touch screen displays and man-machine interfaces for improved vehicle instrumentation and telematics
US20130179811A1 (en) * 2012-01-05 2013-07-11 Visteon Global Technologies, Inc. Projection dynamic icon knobs
GB2498821A (en) * 2012-01-25 2013-07-31 Samelsi Ltd Display device which may be suitable for use with a smart-phone and which may have 3D effects
US8576199B1 (en) 2000-02-22 2013-11-05 Apple Inc. Computer control systems
US8582866B2 (en) 2011-02-10 2013-11-12 Edge 3 Technologies, Inc. Method and apparatus for disparity computation in stereo images
US8586285B2 (en) 2007-11-27 2013-11-19 3M Innovative Properties Company Methods for forming sheeting with a composite image that floats and a master tooling
US8610674B2 (en) 1995-06-29 2013-12-17 Apple Inc. Programmable tactile touch screen displays and man-machine interfaces for improved vehicle instrumentation and telematics
US8655093B2 (en) 2010-09-02 2014-02-18 Edge 3 Technologies, Inc. Method and apparatus for performing segmentation of an image
US8666144B2 (en) 2010-09-02 2014-03-04 Edge 3 Technologies, Inc. Method and apparatus for determining disparity of texture
US8687172B2 (en) 2011-04-13 2014-04-01 Ivan Faul Optical digitizer with improved distance measurement capability
US8705877B1 (en) 2011-11-11 2014-04-22 Edge 3 Technologies, Inc. Method and apparatus for fast computational stereo
US20140111479A1 (en) * 2012-10-24 2014-04-24 Apple Inc. Interactive Three-Dimensional Display System
US8786529B1 (en) 2011-05-18 2014-07-22 Zspace, Inc. Liquid crystal variable drive voltage
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8970589B2 (en) 2011-02-10 2015-03-03 Edge 3 Technologies, Inc. Near-touch interaction with a stereo camera grid structured tessellations
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9019240B2 (en) 2011-09-29 2015-04-28 Qualcomm Mems Technologies, Inc. Optical touch device with pixilated light-turning features
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
DE102014000487A1 (en) * 2014-01-14 2015-07-16 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Display device, vehicle with a display device and computer program product
US9152019B2 (en) 2012-11-05 2015-10-06 360 Heros, Inc. 360 degree camera mount and related photographic and video system
US9239677B2 (en) 2004-05-06 2016-01-19 Apple Inc. Operation of a computer with touch screen interface
US9239673B2 (en) 1998-01-26 2016-01-19 Apple Inc. Gesturing with a multipoint sensing device
US9292111B2 (en) 1998-01-26 2016-03-22 Apple Inc. Gesturing with a multipoint sensing device
US9417700B2 (en) 2009-05-21 2016-08-16 Edge3 Technologies Gesture recognition systems and related methods
US9696531B2 (en) * 2007-04-25 2017-07-04 Stc.Unm Solid-state microscope for selectively imaging a sample
EP3499295A1 (en) * 2017-12-13 2019-06-19 Funai Electric Co., Ltd. Aerial image display device
US10379496B2 (en) * 2014-12-08 2019-08-13 Levent Onural System and method for displaying and capturing holographic true 3D images
US20200042097A1 (en) * 2015-06-10 2020-02-06 Wayne Patrick O'Brien Holographic interface for manipulation
US10721448B2 (en) 2013-03-15 2020-07-21 Edge 3 Technologies, Inc. Method and apparatus for adaptive exposure bracketing, segmentation and scene organization
US20210327105A1 (en) * 2019-01-10 2021-10-21 General Electric Company Systems and methods to semi-automatically segment a 3d medical image using a real-time edge-aware brush
US20220334405A1 (en) * 2021-04-14 2022-10-20 Bayerische Motoren Werke Aktiengesellschaft Apparatus, method, and computer program for a volumetric display

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609695A (en) 1968-05-10 1971-09-28 Honeywell Inc Display-entry data terminal
US3647284A (en) 1970-11-30 1972-03-07 Virgil B Elings Optical display device
US3774995A (en) 1968-08-21 1973-11-27 S Perret Reflector for projecting or receiving radiation
US3885096A (en) 1972-07-15 1975-05-20 Fuji Photo Film Co Ltd Optical display device
US3893754A (en) 1973-06-21 1975-07-08 Xerox Corp Combination paraboloid-ellipsoid mirror system
US4094501A (en) 1976-12-13 1978-06-13 Burnett Edward D Illusion apparatus
US4459476A (en) 1982-01-19 1984-07-10 Zenith Radio Corporation Co-ordinate detection system
US4517559A (en) 1982-08-12 1985-05-14 Zenith Electronics Corporation Optical gating scheme for display touch control
US4802750A (en) 1987-08-03 1989-02-07 Grand Mirage Real image projection system with two curved reflectors of paraboloid of revolution shape having each vertex coincident with the focal point of the other
US5059959A (en) 1985-06-03 1991-10-22 Seven Oaks Corporation Cursor positioning method and apparatus
US5168531A (en) 1991-06-27 1992-12-01 Digital Equipment Corporation Real-time recognition of pointing information from video
US5257130A (en) 1992-01-30 1993-10-26 The Walt Disney Company Apparatus and method for creating a real image illusion
US5311357A (en) 1992-01-28 1994-05-10 Image Technology Associates Device for the creation of three-dimensional images
US5424756A (en) * 1993-05-14 1995-06-13 Ho; Yung-Lung Track pad cursor positioning device and method
US5495306A (en) 1993-06-23 1996-02-27 Sharp Kabushiki Kaisha Projector
US5515083A (en) 1994-02-17 1996-05-07 Spacelabs Medical, Inc. Touch screen having reduced sensitivity to spurious selections
US5515079A (en) 1989-11-07 1996-05-07 Proxima Corporation Computer input system and method of using same
US5572375A (en) * 1990-08-03 1996-11-05 Crabtree, Iv; Allen F. Method and apparatus for manipulating, projecting and displaying light in a volumetric format
US5619382A (en) 1989-02-23 1997-04-08 Olympus Optical Co., Ltd. Reflection type imaging optical system
US5694142A (en) 1993-06-21 1997-12-02 General Electric Company Interactive digital arrow (d'arrow) three-dimensional (3D) pointing
US5767842A (en) 1992-02-07 1998-06-16 International Business Machines Corporation Method and device for optical input of commands or data
US5812118A (en) 1996-06-25 1998-09-22 International Business Machines Corporation Method, apparatus, and memory for creating at least two virtual pointing devices
US5821911A (en) 1993-09-07 1998-10-13 Motorola Miniature virtual image color display
US5896237A (en) 1994-07-22 1999-04-20 Mcdonnell Douglas Corporation Sensor assembly with dual reflectors to offset sensor
US6064354A (en) 1998-07-01 2000-05-16 Deluca; Michael Joseph Stereoscopic user interface method and apparatus
US6100862A (en) 1998-04-20 2000-08-08 Dimensional Media Associates, Inc. Multi-planar volumetric display system and method of operation
US6231199B1 (en) * 1999-07-01 2001-05-15 Cogent Light Technologies, Inc. Collecting and condensing optical system using cascaded parabolic reflectors

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609695A (en) 1968-05-10 1971-09-28 Honeywell Inc Display-entry data terminal
US3774995A (en) 1968-08-21 1973-11-27 S Perret Reflector for projecting or receiving radiation
US3647284A (en) 1970-11-30 1972-03-07 Virgil B Elings Optical display device
US3885096A (en) 1972-07-15 1975-05-20 Fuji Photo Film Co Ltd Optical display device
US3893754A (en) 1973-06-21 1975-07-08 Xerox Corp Combination paraboloid-ellipsoid mirror system
US4094501A (en) 1976-12-13 1978-06-13 Burnett Edward D Illusion apparatus
US4459476A (en) 1982-01-19 1984-07-10 Zenith Radio Corporation Co-ordinate detection system
US4517559A (en) 1982-08-12 1985-05-14 Zenith Electronics Corporation Optical gating scheme for display touch control
US5059959A (en) 1985-06-03 1991-10-22 Seven Oaks Corporation Cursor positioning method and apparatus
US4802750A (en) 1987-08-03 1989-02-07 Grand Mirage Real image projection system with two curved reflectors of paraboloid of revolution shape having each vertex coincident with the focal point of the other
US5619382A (en) 1989-02-23 1997-04-08 Olympus Optical Co., Ltd. Reflection type imaging optical system
US5515079A (en) 1989-11-07 1996-05-07 Proxima Corporation Computer input system and method of using same
US5572375A (en) * 1990-08-03 1996-11-05 Crabtree, Iv; Allen F. Method and apparatus for manipulating, projecting and displaying light in a volumetric format
US5168531A (en) 1991-06-27 1992-12-01 Digital Equipment Corporation Real-time recognition of pointing information from video
US5311357A (en) 1992-01-28 1994-05-10 Image Technology Associates Device for the creation of three-dimensional images
US5257130A (en) 1992-01-30 1993-10-26 The Walt Disney Company Apparatus and method for creating a real image illusion
US5767842A (en) 1992-02-07 1998-06-16 International Business Machines Corporation Method and device for optical input of commands or data
US5424756A (en) * 1993-05-14 1995-06-13 Ho; Yung-Lung Track pad cursor positioning device and method
US5694142A (en) 1993-06-21 1997-12-02 General Electric Company Interactive digital arrow (d'arrow) three-dimensional (3D) pointing
US5495306A (en) 1993-06-23 1996-02-27 Sharp Kabushiki Kaisha Projector
US5821911A (en) 1993-09-07 1998-10-13 Motorola Miniature virtual image color display
US5515083A (en) 1994-02-17 1996-05-07 Spacelabs Medical, Inc. Touch screen having reduced sensitivity to spurious selections
US5896237A (en) 1994-07-22 1999-04-20 Mcdonnell Douglas Corporation Sensor assembly with dual reflectors to offset sensor
US5812118A (en) 1996-06-25 1998-09-22 International Business Machines Corporation Method, apparatus, and memory for creating at least two virtual pointing devices
US6100862A (en) 1998-04-20 2000-08-08 Dimensional Media Associates, Inc. Multi-planar volumetric display system and method of operation
US6064354A (en) 1998-07-01 2000-05-16 Deluca; Michael Joseph Stereoscopic user interface method and apparatus
US6231199B1 (en) * 1999-07-01 2001-05-15 Cogent Light Technologies, Inc. Collecting and condensing optical system using cascaded parabolic reflectors

Cited By (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513744B2 (en) 1994-08-15 2016-12-06 Apple Inc. Control systems employing novel physical controls and touch screens
US8610674B2 (en) 1995-06-29 2013-12-17 Apple Inc. Programmable tactile touch screen displays and man-machine interfaces for improved vehicle instrumentation and telematics
US9758042B2 (en) 1995-06-29 2017-09-12 Apple Inc. Programmable tactile touch screen displays and man-machine interfaces for improved vehicle instrumentation and telematics
US8427449B2 (en) 1995-06-29 2013-04-23 Apple Inc. Method for providing human input to a computer
US8228305B2 (en) 1995-06-29 2012-07-24 Apple Inc. Method for providing human input to a computer
US9239673B2 (en) 1998-01-26 2016-01-19 Apple Inc. Gesturing with a multipoint sensing device
US9292111B2 (en) 1998-01-26 2016-03-22 Apple Inc. Gesturing with a multipoint sensing device
US8482535B2 (en) 1999-11-08 2013-07-09 Apple Inc. Programmable tactile touch screen displays and man-machine interfaces for improved vehicle instrumentation and telematics
US8576199B1 (en) 2000-02-22 2013-11-05 Apple Inc. Computer control systems
US20050276448A1 (en) * 2000-07-07 2005-12-15 Pryor Timothy R Multi-functional control and entertainment systems
US7466843B2 (en) * 2000-07-07 2008-12-16 Pryor Timothy R Multi-functional control and entertainment systems
US20100231547A1 (en) * 2001-02-22 2010-09-16 Pryor Timothy R Reconfigurable tactile control display applications
US9606668B2 (en) 2002-02-07 2017-03-28 Apple Inc. Mode-based graphical user interfaces for touch sensitive input devices
US6986583B2 (en) * 2002-06-05 2006-01-17 Olympus Optical Co., Ltd. Table type display device and an assembling method thereof
US20040109145A1 (en) * 2002-06-05 2004-06-10 Olympus Optical Co., Ltd. Table type display device and an assembling method thereof
US7029128B2 (en) 2002-06-05 2006-04-18 Olympus Optical Co., Ltd. Table type display device
US20040057024A1 (en) * 2002-06-05 2004-03-25 Olympus Optical Co., Ltd. Table type display device
US20100182137A1 (en) * 2002-07-03 2010-07-22 Pryor Timothy R Control systems involving novel physical controls and touch screens
US8314773B2 (en) 2002-09-09 2012-11-20 Apple Inc. Mouse having an optically-based scrolling feature
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
WO2004104473A2 (en) * 2003-05-17 2004-12-02 Greenco L.L.C. Dba Lfi International Programmable laser illuminated sign apparatus
US20060146047A1 (en) * 2003-07-16 2006-07-06 Marion Dale S Three dimensional display method, system and apparatus
US7385600B2 (en) * 2003-07-16 2008-06-10 1614367 Ontario Inc. Three dimensional display method, system and apparatus
WO2004104473A3 (en) * 2003-09-23 2005-08-25 Greenco L L C Dba Lfi Internat Programmable laser illuminated sign apparatus
US20060158756A1 (en) * 2003-09-23 2006-07-20 Greenco L.L.C., Dba Lfi International Programmable laser illuminated sign apparatus
US20050122584A1 (en) * 2003-11-07 2005-06-09 Pioneer Corporation Stereoscopic two-dimensional image display device and method
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US20050219240A1 (en) * 2004-04-05 2005-10-06 Vesely Michael A Horizontal perspective hands-on simulator
WO2005098517A2 (en) * 2004-04-05 2005-10-20 Vesely Michael A Horizontal perspective hand-on simulator
WO2005098517A3 (en) * 2004-04-05 2006-04-27 Michael A Vesely Horizontal perspective hand-on simulator
US20050248566A1 (en) * 2004-04-05 2005-11-10 Vesely Michael A Horizontal perspective hands-on simulator
US7907128B2 (en) * 2004-04-29 2011-03-15 Microsoft Corporation Interaction between objects and a virtual environment display
US20080231611A1 (en) * 2004-04-29 2008-09-25 Microsoft Corporation Interaction between objects and a virtual environment display
US9239677B2 (en) 2004-05-06 2016-01-19 Apple Inc. Operation of a computer with touch screen interface
US7796134B2 (en) 2004-06-01 2010-09-14 Infinite Z, Inc. Multi-plane horizontal perspective display
US8670632B2 (en) 2004-06-16 2014-03-11 Microsoft Corporation System for reducing effects of undesired signals in an infrared imaging system
US8165422B2 (en) 2004-06-16 2012-04-24 Microsoft Corporation Method and system for reducing effects of undesired signals in an infrared imaging system
US8381135B2 (en) 2004-07-30 2013-02-19 Apple Inc. Proximity detector in handheld device
US8612856B2 (en) 2004-07-30 2013-12-17 Apple Inc. Proximity detector in handheld device
US8239784B2 (en) 2004-07-30 2012-08-07 Apple Inc. Mode-based graphical user interfaces for touch sensitive input devices
US10042418B2 (en) 2004-07-30 2018-08-07 Apple Inc. Proximity detector in handheld device
US8479122B2 (en) 2004-07-30 2013-07-02 Apple Inc. Gestures for touch sensitive input devices
US11036282B2 (en) 2004-07-30 2021-06-15 Apple Inc. Proximity detector in handheld device
US9348458B2 (en) 2004-07-30 2016-05-24 Apple Inc. Gestures for touch sensitive input devices
US20120262481A1 (en) * 2004-08-02 2012-10-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Medical overlay mirror
US9155373B2 (en) * 2004-08-02 2015-10-13 Invention Science Fund I, Llc Medical overlay mirror
US8831300B2 (en) 2004-08-02 2014-09-09 The Invention Science Fund I, Llc Time-lapsing data methods and systems
US20090016585A1 (en) * 2004-08-02 2009-01-15 Searete Llc Time-lapsing data methods and systems
US20100182136A1 (en) * 2004-09-07 2010-07-22 Timothy Pryor Control of appliances, kitchen and home
US7750886B2 (en) 2004-09-27 2010-07-06 Qualcomm Mems Technologies, Inc. Methods and devices for lighting displays
US20060072009A1 (en) * 2004-10-01 2006-04-06 International Business Machines Corporation Flexible interaction-based computer interfacing using visible artifacts
US20060183545A1 (en) * 2004-11-05 2006-08-17 Jourdian Robert W Multi-user touch-responsive entertainment device
US20060158617A1 (en) * 2005-01-20 2006-07-20 Hewlett-Packard Development Company, L.P. Projector
US7503658B2 (en) * 2005-01-20 2009-03-17 Hewlett-Packard Development Company, L.P. Projector
US20060224598A1 (en) * 2005-03-29 2006-10-05 Jeffrey Thielman Communication device
US8717423B2 (en) 2005-05-09 2014-05-06 Zspace, Inc. Modifying perspective of stereoscopic images based on changes in user viewpoint
US9684994B2 (en) 2005-05-09 2017-06-20 Zspace, Inc. Modifying perspective of stereoscopic images based on changes in user viewpoint
US20110122130A1 (en) * 2005-05-09 2011-05-26 Vesely Michael A Modifying Perspective of Stereoscopic Images Based on Changes in User Viewpoint
US9292962B2 (en) 2005-05-09 2016-03-22 Zspace, Inc. Modifying perspective of stereoscopic images based on changes in user viewpoint
US7907167B2 (en) 2005-05-09 2011-03-15 Infinite Z, Inc. Three dimensional horizontal perspective workstation
US20070008636A1 (en) * 2005-07-07 2007-01-11 Shy-Pin Cuo Optical display device
US20070046624A1 (en) * 2005-08-31 2007-03-01 Chee-Heng Wong Scalable controller for a computer input area
US20070046625A1 (en) * 2005-08-31 2007-03-01 Microsoft Corporation Input method for surface of interactive display
US7911444B2 (en) 2005-08-31 2011-03-22 Microsoft Corporation Input method for surface of interactive display
US8552986B2 (en) * 2005-08-31 2013-10-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Scalable controller for a computer input area
US8519952B2 (en) 2005-08-31 2013-08-27 Microsoft Corporation Input method for surface of interactive display
US8279168B2 (en) 2005-12-09 2012-10-02 Edge 3 Technologies Llc Three-dimensional virtual-touch human-machine interface system and method therefor
US9684427B2 (en) 2005-12-09 2017-06-20 Microsoft Technology Licensing, Llc Three-dimensional interface
US20070132721A1 (en) * 2005-12-09 2007-06-14 Edge 3 Technologies Llc Three-Dimensional Virtual-Touch Human-Machine Interface System and Method Therefor
US20070157095A1 (en) * 2005-12-29 2007-07-05 Microsoft Corporation Orientation free user interface
US8060840B2 (en) 2005-12-29 2011-11-15 Microsoft Corporation Orientation free user interface
US8077147B2 (en) 2005-12-30 2011-12-13 Apple Inc. Mouse with optical sensing surface
US20070188898A1 (en) * 2006-01-19 2007-08-16 University Of South Florida Real Image Optical System
US20070252809A1 (en) * 2006-03-28 2007-11-01 Io Srl System and method of direct interaction between one or more subjects and at least one image and/or video with dynamic effect projected onto an interactive surface
US20070262957A1 (en) * 2006-04-27 2007-11-15 Samsung Electronics Co., Ltd. Menu selection method and apparatus using pointing device
US8384692B2 (en) * 2006-04-27 2013-02-26 Samsung Electronics Co., Ltd Menu selection method and apparatus using pointing device
US7766498B2 (en) 2006-06-21 2010-08-03 Qualcomm Mems Technologies, Inc. Linear solid state illuminator
US7845841B2 (en) 2006-08-28 2010-12-07 Qualcomm Mems Technologies, Inc. Angle sweeping holographic illuminator
US7855827B2 (en) 2006-10-06 2010-12-21 Qualcomm Mems Technologies, Inc. Internal optical isolation structure for integrated front or back lighting
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US7864395B2 (en) 2006-10-27 2011-01-04 Qualcomm Mems Technologies, Inc. Light guide including optical scattering elements and a method of manufacture
FR2908900A1 (en) * 2006-11-20 2008-05-23 Euroinvest Sarl Projection table for use during presentation evening of luxury product, has projecting unit with reception unit receiving light beam to display final image or visual information, and tabletop including orifice forming central orifice
US8212857B2 (en) 2007-01-26 2012-07-03 Microsoft Corporation Alternating light sources to reduce specular reflection
US7777954B2 (en) 2007-01-30 2010-08-17 Qualcomm Mems Technologies, Inc. Systems and methods of providing a light guiding layer
US9696531B2 (en) * 2007-04-25 2017-07-04 Stc.Unm Solid-state microscope for selectively imaging a sample
US20080291156A1 (en) * 2007-05-23 2008-11-27 Dietz Paul H Sanitary User Interface
US7967444B2 (en) * 2007-06-21 2011-06-28 National Taiwan University Multi-resolution digital table display system with projection device
US20080316434A1 (en) * 2007-06-21 2008-12-25 National Taiwan University Multi-Resolution Digital Table Display System
US8210694B1 (en) 2007-07-03 2012-07-03 University Of South Florida Pair of concave mirrors for projecting non-inverted real images
US8460119B2 (en) * 2007-09-12 2013-06-11 Brooke Schumm, Jr. Combination for passing an object through a three dimensional true color image
US20110281660A1 (en) * 2007-09-12 2011-11-17 Schumm Jr Brooke Combination for passing an object through a three dimensional true color image
US20090066657A1 (en) * 2007-09-12 2009-03-12 Richard Charles Berry Contact search touch screen
US8638451B2 (en) 2007-11-14 2014-01-28 Ivan Faul System for determining a location on a 2D surface or in a 3D volume
US8294082B2 (en) * 2007-11-14 2012-10-23 Boulder Innovation Group, Inc. Probe with a virtual marker
US20090122008A1 (en) * 2007-11-14 2009-05-14 Boulder Innovation Group, Inc. Probe With A Virtual Marker
US8586285B2 (en) 2007-11-27 2013-11-19 3M Innovative Properties Company Methods for forming sheeting with a composite image that floats and a master tooling
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8040589B2 (en) 2008-02-12 2011-10-18 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
CN102150072B (en) * 2008-07-10 2013-08-21 实景成像有限公司 Broad viewing angle displays and user interfaces
CN103558689B (en) * 2008-07-10 2017-09-26 实景成像有限公司 User interface and the method that aerial user interface is floated on for implementation
US10585395B2 (en) 2008-07-10 2020-03-10 Real View Imaging Ltd. Holographic image display system
WO2010004563A1 (en) * 2008-07-10 2010-01-14 Real View Imaging Ltd. Broad viewing angle displays and user interfaces
US10120335B2 (en) 2008-07-10 2018-11-06 Real View Imaging Ltd. Viewer tracking in a projection system
US9541901B2 (en) 2008-07-10 2017-01-10 Real View Imaging Ltd. Viewer tracking in a projection system
US9594347B2 (en) 2008-07-10 2017-03-14 Real View Imaging Ltd. Man machine interface for a 3D display system
US20110128555A1 (en) * 2008-07-10 2011-06-02 Real View Imaging Ltd. Broad viewing angle displays and user interfaces
US8500284B2 (en) 2008-07-10 2013-08-06 Real View Imaging Ltd. Broad viewing angle displays and user interfaces
US8029140B2 (en) 2008-09-18 2011-10-04 Disney Enterprises, Inc. Device to produce a floating image
US8042948B2 (en) 2008-09-18 2011-10-25 Disney Enterprises, Inc. Apparatus that produces a three-dimensional image
US20100066978A1 (en) * 2008-09-18 2010-03-18 Disney Enterprises, Inc. Spatial projection
US9268146B2 (en) 2009-03-10 2016-02-23 3M Innovative Properties Company User interface with a composite image that floats
WO2010104827A1 (en) * 2009-03-10 2010-09-16 3M Innovative Properties Company User interface with a composite image that floats
CN102265625B (en) * 2009-03-13 2014-08-27 德国电信股份公司 Device for recording, remotely transmitting and reproducing three-dimensional images
DE102009012664A1 (en) * 2009-03-13 2010-09-16 T-Mobile International Ag Device for recording, remote transmission and reproduction of three-dimensional images
WO2010102838A1 (en) * 2009-03-13 2010-09-16 Deutsche Telekom Ag Device for recording, remotely transmitting and reproducing three-dimensional images
CN102265625A (en) * 2009-03-13 2011-11-30 德国电信股份公司 Device for recording, remotely transmitting and reproducing three-dimensional images
US8933992B2 (en) * 2009-03-13 2015-01-13 Deutsche Telekom Ag Device for recording, remotely transmitting and reproducing three-dimensional images
US20110249097A1 (en) * 2009-03-13 2011-10-13 Stefanus Roemer Device for recording, remotely transmitting and reproducing three-dimensional images
US9417700B2 (en) 2009-05-21 2016-08-16 Edge3 Technologies Gesture recognition systems and related methods
US11703951B1 (en) 2009-05-21 2023-07-18 Edge 3 Technologies Gesture recognition systems
US9824485B2 (en) 2010-01-29 2017-11-21 Zspace, Inc. Presenting a view within a three dimensional scene
US9202306B2 (en) 2010-01-29 2015-12-01 Zspace, Inc. Presenting a view within a three dimensional scene
US20110187706A1 (en) * 2010-01-29 2011-08-04 Vesely Michael A Presenting a View within a Three Dimensional Scene
US8717360B2 (en) 2010-01-29 2014-05-06 Zspace, Inc. Presenting a view within a three dimensional scene
US8625855B2 (en) 2010-05-20 2014-01-07 Edge 3 Technologies Llc Three dimensional gesture recognition in vehicles
US9891716B2 (en) 2010-05-20 2018-02-13 Microsoft Technology Licensing, Llc Gesture recognition in vehicles
US9152853B2 (en) 2010-05-20 2015-10-06 Edge 3Technologies, Inc. Gesture recognition in vehicles
US8396252B2 (en) 2010-05-20 2013-03-12 Edge 3 Technologies Systems and related methods for three dimensional gesture recognition in vehicles
US20120038890A1 (en) * 2010-08-13 2012-02-16 National Central University (a university of Taiwan) Illuminated device possessing a floating image
US11710299B2 (en) 2010-09-02 2023-07-25 Edge 3 Technologies Method and apparatus for employing specialist belief propagation networks
US9990567B2 (en) 2010-09-02 2018-06-05 Edge 3 Technologies, Inc. Method and apparatus for spawning specialist belief propagation networks for adjusting exposure settings
US8891859B2 (en) 2010-09-02 2014-11-18 Edge 3 Technologies, Inc. Method and apparatus for spawning specialist belief propagation networks based upon data classification
US10586334B2 (en) 2010-09-02 2020-03-10 Edge 3 Technologies, Inc. Apparatus and method for segmenting an image
US8655093B2 (en) 2010-09-02 2014-02-18 Edge 3 Technologies, Inc. Method and apparatus for performing segmentation of an image
US10909426B2 (en) 2010-09-02 2021-02-02 Edge 3 Technologies, Inc. Method and apparatus for spawning specialist belief propagation networks for adjusting exposure settings
US11023784B2 (en) 2010-09-02 2021-06-01 Edge 3 Technologies, Inc. Method and apparatus for employing specialist belief propagation networks
US8798358B2 (en) 2010-09-02 2014-08-05 Edge 3 Technologies, Inc. Apparatus and method for disparity map generation
US8467599B2 (en) 2010-09-02 2013-06-18 Edge 3 Technologies, Inc. Method and apparatus for confusion learning
US8644599B2 (en) 2010-09-02 2014-02-04 Edge 3 Technologies, Inc. Method and apparatus for spawning specialist belief propagation networks
US8666144B2 (en) 2010-09-02 2014-03-04 Edge 3 Technologies, Inc. Method and apparatus for determining disparity of texture
US8983178B2 (en) 2010-09-02 2015-03-17 Edge 3 Technologies, Inc. Apparatus and method for performing segment-based disparity decomposition
US9723296B2 (en) 2010-09-02 2017-08-01 Edge 3 Technologies, Inc. Apparatus and method for determining disparity of textured regions
US11398037B2 (en) 2010-09-02 2022-07-26 Edge 3 Technologies Method and apparatus for performing segmentation of an image
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8582866B2 (en) 2011-02-10 2013-11-12 Edge 3 Technologies, Inc. Method and apparatus for disparity computation in stereo images
US10061442B2 (en) 2011-02-10 2018-08-28 Edge 3 Technologies, Inc. Near touch interaction
US10599269B2 (en) 2011-02-10 2020-03-24 Edge 3 Technologies, Inc. Near touch interaction
US9323395B2 (en) 2011-02-10 2016-04-26 Edge 3 Technologies Near touch interaction with structured light
US9652084B2 (en) 2011-02-10 2017-05-16 Edge 3 Technologies, Inc. Near touch interaction
US8970589B2 (en) 2011-02-10 2015-03-03 Edge 3 Technologies, Inc. Near-touch interaction with a stereo camera grid structured tessellations
US9176661B2 (en) * 2011-03-18 2015-11-03 Lg Electronics Inc. Mobile terminal and controlling method thereof
US20120240071A1 (en) * 2011-03-18 2012-09-20 Lg Electronics Inc. Mobile terminal and controlling method thereof
US8687172B2 (en) 2011-04-13 2014-04-01 Ivan Faul Optical digitizer with improved distance measurement capability
US9958712B2 (en) 2011-05-18 2018-05-01 Zspace, Inc. Liquid crystal variable drive voltage
US9134556B2 (en) 2011-05-18 2015-09-15 Zspace, Inc. Liquid crystal variable drive voltage
US8786529B1 (en) 2011-05-18 2014-07-22 Zspace, Inc. Liquid crystal variable drive voltage
US9019240B2 (en) 2011-09-29 2015-04-28 Qualcomm Mems Technologies, Inc. Optical touch device with pixilated light-turning features
US8761509B1 (en) 2011-11-11 2014-06-24 Edge 3 Technologies, Inc. Method and apparatus for fast computational stereo
US8705877B1 (en) 2011-11-11 2014-04-22 Edge 3 Technologies, Inc. Method and apparatus for fast computational stereo
US9672609B1 (en) 2011-11-11 2017-06-06 Edge 3 Technologies, Inc. Method and apparatus for improved depth-map estimation
US9324154B2 (en) 2011-11-11 2016-04-26 Edge 3 Technologies Method and apparatus for enhancing stereo vision through image segmentation
US11455712B2 (en) 2011-11-11 2022-09-27 Edge 3 Technologies Method and apparatus for enhancing stereo vision
US10825159B2 (en) 2011-11-11 2020-11-03 Edge 3 Technologies, Inc. Method and apparatus for enhancing stereo vision
US10037602B2 (en) 2011-11-11 2018-07-31 Edge 3 Technologies, Inc. Method and apparatus for enhancing stereo vision
US8718387B1 (en) 2011-11-11 2014-05-06 Edge 3 Technologies, Inc. Method and apparatus for enhanced stereo vision
US20130179811A1 (en) * 2012-01-05 2013-07-11 Visteon Global Technologies, Inc. Projection dynamic icon knobs
GB2498821A (en) * 2012-01-25 2013-07-31 Samelsi Ltd Display device which may be suitable for use with a smart-phone and which may have 3D effects
US20140111479A1 (en) * 2012-10-24 2014-04-24 Apple Inc. Interactive Three-Dimensional Display System
US9152019B2 (en) 2012-11-05 2015-10-06 360 Heros, Inc. 360 degree camera mount and related photographic and video system
US10721448B2 (en) 2013-03-15 2020-07-21 Edge 3 Technologies, Inc. Method and apparatus for adaptive exposure bracketing, segmentation and scene organization
DE102014000487A1 (en) * 2014-01-14 2015-07-16 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Display device, vehicle with a display device and computer program product
US10379496B2 (en) * 2014-12-08 2019-08-13 Levent Onural System and method for displaying and capturing holographic true 3D images
US20200042097A1 (en) * 2015-06-10 2020-02-06 Wayne Patrick O'Brien Holographic interface for manipulation
US10962797B2 (en) 2017-12-13 2021-03-30 Funai Electric Co., Ltd. Aerial image display device
CN109917545B (en) * 2017-12-13 2022-04-19 船井电机株式会社 Aerial image display device
EP3499295A1 (en) * 2017-12-13 2019-06-19 Funai Electric Co., Ltd. Aerial image display device
CN109917545A (en) * 2017-12-13 2019-06-21 船井电机株式会社 Aerial image display device
US20210327105A1 (en) * 2019-01-10 2021-10-21 General Electric Company Systems and methods to semi-automatically segment a 3d medical image using a real-time edge-aware brush
US11683438B2 (en) * 2019-01-10 2023-06-20 General Electric Company Systems and methods to semi-automatically segment a 3D medical image using a real-time edge-aware brush
US20220334405A1 (en) * 2021-04-14 2022-10-20 Bayerische Motoren Werke Aktiengesellschaft Apparatus, method, and computer program for a volumetric display

Similar Documents

Publication Publication Date Title
US6478432B1 (en) Dynamically generated interactive real imaging device
KR101831350B1 (en) Camera-based multi-touch interaction and illumination system and method
US7168813B2 (en) Mediacube
Khan et al. Spotlight: directing users' attention on large displays
Ni et al. A survey of large high-resolution display technologies, techniques, and applications
Butz et al. Enveloping users and computers in a collaborative 3D augmented reality
US8842076B2 (en) Multi-touch touchscreen incorporating pen tracking
Cheng et al. Direct interaction with large-scale display systems using infrared laser tracking devices
US20120023423A1 (en) Orientation free user interface
JP2018505455A (en) Multi-modal gesture-based interactive system and method using one single sensing system
CA2749378A1 (en) Dynamic rear-projected user interface
Benko Beyond flat surface computing: challenges of depth-aware and curved interfaces
JPWO2020105606A1 (en) Display control device, display device, display control method and program
US20090184943A1 (en) Displaying Information Interactively
JP2008524697A (en) Image interpretation
TW201823054A (en) Electronic whiteboard system and electronic whiteboard and operation method thereof
JP4455185B2 (en) Presentation system, control method therefor, program, and storage medium
JP2000148375A (en) Input system and projection type display system
JP4335468B2 (en) Information input / output system, information control method, program, and recording medium
KR102523091B1 (en) System and Method for Providing Location-based Content using Motion Base and Tracker in Immersive VR Experience Space
Kudale et al. Human computer interaction model based virtual whiteboard: A review
Gilliot et al. Direct and indirect multi-touch interaction on a wall display
KR20200083762A (en) A hologram-projection electronic board based on motion recognition
KR20160143051A (en) Transparency board screen apparatus
Ismail et al. Implementation of natural hand gestures in holograms for 3D object manipulation

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20061112