US6491400B1 - Correcting for keystone distortion in a digital image displayed by a digital projector - Google Patents

Correcting for keystone distortion in a digital image displayed by a digital projector Download PDF

Info

Publication number
US6491400B1
US6491400B1 US09/694,963 US69496300A US6491400B1 US 6491400 B1 US6491400 B1 US 6491400B1 US 69496300 A US69496300 A US 69496300A US 6491400 B1 US6491400 B1 US 6491400B1
Authority
US
United States
Prior art keywords
digital image
keystone
digital
cor
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US09/694,963
Inventor
Stephanie S. Chen
James E. Adams, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US09/694,963 priority Critical patent/US6491400B1/en
Assigned to EASTMAN KODAK COMPANY reassignment EASTMAN KODAK COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADAMS, JAMES E., JR., CHEN, STEPHANIE S.
Application granted granted Critical
Publication of US6491400B1 publication Critical patent/US6491400B1/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to digital projection of images and, more particularly, to correcting for keystone distortion in such projected images.
  • FIG. 1 depicts a digital projector 10 projecting an image onto a viewing screen 12 , where the optical axis of the projector 14 is normal to the plane of the viewing screen.
  • These systems are typically used by positioning the projector on a level surface (e.g., tabletop, desk, file cabinet, etc.), and projecting the image up at an angle above the plane of the surface, so that the view of the projected image is unobstructed by the audience.
  • a level surface e.g., tabletop, desk, file cabinet, etc.
  • the projected image is trapezoidal in shape and is referred to as “keystone” distortion since the distorted image resembles the shape of a keystone (FIG. 3 a ).
  • the distorted image becomes an inverted keystone shape, where the width of the top of the image is now smaller than the bottom (FIG. 3 b ).
  • Digital keystone correction is implemented by performing a compensation operation on the original digital image prior to projection. If the original digital image is distorted such that the amount of distortion is the inverse of the distortion introduced by the projection setup, then the final projected image will be rectilinear.
  • One of the benefits of digital keystone correction is that additional optical elements are not needed since the correction is performed electronically.
  • the correction applied to the original digital image can be varied according to the tilt angle and direction of tilt (positive and negative keystone correction).
  • Interpolation artifacts such as loss in sharpness and aliasing, which can manifest themselves as low frequency banding patterns and edge discontinuities, may be introduced as a result of digital keystone correction.
  • This object is achieved by a method for correcting for keystone distortion and reducing aliasing defects in a digital image for use by a digital image projector, comprising the steps of:
  • the present invention provides a method that reduces the occurrence of aliasing defects prior to the digital keystone correction process, while preserving the sharpness of the original digital image.
  • FIG. 1 is a prior art schematic showing a digital projector which projects an image onto a viewing screen
  • FIG. 2 shows the prior art digital projector of FIG. I being tilted in a vertical direction
  • FIGS. 3A and 3B depict two different prior art types of keystone distortion that are produced by the digital projector of FIG. 2;
  • FIG. 4 is a block diagram which depicts the overall operation of the method in accordance with the present invention.
  • FIG. 5 is a detail of Block 30 in FIG. 4.
  • FIG. 6 shows an alternative projection configuration to FIG. 2 .
  • Block 28 depicts the application of lowpass filtering on the original digital image to provide a lowpass filtered digital image having reduced high frequency spatial components which contribute to aliasing defects introduced by the digital keystone correction.
  • Aliasing is an artifact related to the high frequency spatial components and caused when the digital sampling is at a too low of a sampling frequency.
  • This step can be represented mathematically as the convolution of the original digital image, I, and a lowpass filter, K LP :
  • I B is the lowpass filtered digital image.
  • a suitable choice for a lowpass filter is:
  • Block 30 depicts the application of the digital keystone correction step, and it is expanded in FIG. 5 to show four subsequent processing steps.
  • Block 34 depicts the computation of the magnification correction factor as a function of row. This can be accomplished by assuming a simple thin lens model and using the ABCD Matrix ray tracing method to calculate the location of the ideal image plane and the system magnification at the ideal image plane. It is assumed that parameters such as the object size, object-to-lens distance, and the focal length of the projection lens are known.
  • object in this discussion refers to the light modulator (e.g. LCD panel) in the projector. It will be understood by one skilled in the art that the use of the thin lens approximation is just one method of modeling the optical system. Alternative approaches to modeling the optical system can be used arrive at the necessary parameters.
  • FIG. 6 depicts an alternative representation of the projection configuration shown in FIG. 2 .
  • the keystone angle 42 is now represented by the angle formed between the tilted image plane 44 and the ideal image plane 46 .
  • angle 42 in FIG. 6 is mathematically equivalent to angle 20 in FIG. 2 .
  • the image heights 48 and 50 can be computed using trigonometry. These image heights can then be used to compute the respective magnifications at the tilted plane.
  • the magnification change as a function of row is determined by assuming that the magnification varies linearly from the top to the bottom of the image.
  • cor_mag i is the correction factor at row i
  • mag i is the magnification at row i
  • min_mag is the minimum magnification over all rows in the keystone distorted image.
  • Block 36 depicts the process of padding the lowpass filtered image with columns of zeros at the left and right edges of the image. This step is necessary to avoid edge effects in the interpolation process. A suitable choice for the number of columns of padding is 20 columns per side.
  • the padded, lowpass filtered digital image will hereinafter be referred to as the “padded digital image”.
  • Block 38 depicts the computation of the interpolation vector using the magnification correction factors computed in Block 34 .
  • the interpolation vector is a vector containing new pixel locations for a row of data that has been appropriately scaled by the corresponding magnification correction factor.
  • cor_xI ij is the new pixel location for the j-th pixel in the i-th row
  • cor_mag i is defined by equation (3)
  • cor_x j is the column location of the j-th pixel in the padded digital image
  • cor_zero is an offset value corresponding to the center of the padded digital image.
  • Block 40 in FIG. 5 depicts the interpolation process using the interpolation vectors computed in Block 38 .
  • the padded digital image data is used to compute the new pixel values at the scaled pixel locations specified by the interpolation vector on a row by row basis. Each row of the image data is effectively compressed or expanded in length depending on the value of the magnification correction factor.
  • the padded digital image data is resampled at the spacing determined by the interpolation vectors.
  • the data can be resampled using various methods, e.g., linear, cubic, or cubic spline interpolation. A suitable choice for the resampling is cubic spline interpolation.
  • the output from Block 40 is a keystone corrected digital image.
  • the final step in the keystone correction process outlined in FIG. 4 is image sharpening as depicted by Block 32 .
  • This step can be represented mathematically by the following expression:
  • I S I KC +G ⁇ ( I KC *K HP ) (5)
  • I KC is the keystone corrected digital image
  • G is a gain factor
  • K HP is a highpass filter.
  • a suitable choice for a highpass filter is: 1 4 ⁇ [ - 1 0 6 0 - 1 ] ( 6 )
  • a look-up table can be used to reduce some of the sharpening artifacts such as “ringing” at edges. This LUT is used to remap the values from the second term in equation (5), which will be referred to as the edge_boost term.
  • the entire sharpening process can be expressed as:
  • I S I KC +LUT[G ⁇ ( I KC *K HP )] (9)
  • LUT is the look-up table, and the remaining terms are defined in equation (5).
  • the present invention can be extended so that two-dimensional keystone correction can be achieved by two orthogonal, one-dimensional keystone corrections.
  • the lowpass filtering and sharpening steps can also be also be extended to two-dimensions accordingly.

Abstract

A method for correcting for keystone distortion and reducing aliasing defects in a digital image for use by a digital image projector, includes the steps of receiving an original digital image; lowpass filtering the original digital image to provide a lowpass filtered digital image having reduced high frequency spatial components which contribute to aliasing defects introduced by digital keystone correction; processing the lowpass filtered digital image to provide for digital keystone correction; and sharpening the keystone corrected digital image.

Description

FIELD OF THE INVENTION
The present invention relates to digital projection of images and, more particularly, to correcting for keystone distortion in such projected images.
BACKGROUND OF THE INVENTION
Image projection systems are used to project images onto a viewing screen. Examples of projection systems include overhead projectors, traditional slide projectors, and digital projectors. FIG. 1 depicts a digital projector 10 projecting an image onto a viewing screen 12, where the optical axis of the projector 14 is normal to the plane of the viewing screen. These systems are typically used by positioning the projector on a level surface (e.g., tabletop, desk, file cabinet, etc.), and projecting the image up at an angle above the plane of the surface, so that the view of the projected image is unobstructed by the audience. Referring to FIG. 2, when the projector 16 is positioned such that the optical axis 18 of the projection lens is at an angle 20 relative to the normal to the viewing screen 22, geometrical distortion is introduced to the projected image. Let the convention be that a positive angle represents a tilt above the normal to the viewing screen (positive tilt), and a negative angle represents a tilt below the normal to the viewing screen (negative tilt). In the case for positive tilt, the distance from the top of the image to the projection lens 24 is longer than the distance from the bottom of the image to the projection lens 26. The path length discrepancy results in a larger magnification at the top of the image than at the bottom, thus yielding an image that has a larger width at the top of the image than the bottom. The projected image is trapezoidal in shape and is referred to as “keystone” distortion since the distorted image resembles the shape of a keystone (FIG. 3a). In the case of negative tilt where the projected image is lower than the projector, e.g., ceiling mounted projectors, the distorted image becomes an inverted keystone shape, where the width of the top of the image is now smaller than the bottom (FIG. 3b).
There are several methods disclosed in the prior art addressing the correction for keystone distortion in projected images of projection systems. Among these are numerous patents that describe optical keystone correction implementations for fixed projection angles (see U.S. Pat. Nos. 5,283,602, 5,355,188 and 5,706,062). Although some effort has been made towards developing a projector with a variable optical keystone correction (U.S. Pat. No. 5,975,704), optical correction is generally limited to a fixed angle. In addition to the restricted correction angle, the more complicated optical design increases the cost in manufacturing and potentially increases size and weight. An alternative to the optical correction method that is now possible since the availability of digital projection systems is electronic or digital keystone correction.
Digital keystone correction is implemented by performing a compensation operation on the original digital image prior to projection. If the original digital image is distorted such that the amount of distortion is the inverse of the distortion introduced by the projection setup, then the final projected image will be rectilinear. One of the benefits of digital keystone correction is that additional optical elements are not needed since the correction is performed electronically. In addition, the correction applied to the original digital image can be varied according to the tilt angle and direction of tilt (positive and negative keystone correction). Despite the added flexibility with digital keystone correction, there are some limitations. Interpolation artifacts such as loss in sharpness and aliasing, which can manifest themselves as low frequency banding patterns and edge discontinuities, may be introduced as a result of digital keystone correction.
There exist in the prior art several patents that disclose different methods of implementing a digital keystone correction process in hardware (U.S. Pat. Nos. 5,764,311 and 5,795,046); however, these methods do not address the reduction of the interpolation artifacts. Kazutaka, et. al., teach a method of reducing edge discontinuity artifacts after keystone correction in Japanese Patent No. 09-247593; however, this method focuses on correcting for artifacts after they have been introduced by the keystone correction process. Once introduced into the original image information, it is very difficult to eliminate these artifacts without further degrading the image.
SUMMARY OF THE INVENTION
It is an object of the present invention to correct for keystoning distortion in digital images projected by a digital projector.
This object is achieved by a method for correcting for keystone distortion and reducing aliasing defects in a digital image for use by a digital image projector, comprising the steps of:
(a) receiving an original digital image;
(b) lowpass filtering the original digital image to provide a lowpass filtered digital image having reduced high frequency spatial components which contribute to aliasing defects introduced by digital keystone correction;
(c) processing the lowpass filtered digital image to provide for digital keystone correction; and
(d) sharpening the keystone corrected digital image.
The present invention provides a method that reduces the occurrence of aliasing defects prior to the digital keystone correction process, while preserving the sharpness of the original digital image.
It is an advantage of the present invention that it reduces aliasing defects while at the same time correcting for keystone distortion. A second advantage is that the loss of sharpness due to the interpolation process is compensated for in the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a prior art schematic showing a digital projector which projects an image onto a viewing screen;
FIG. 2 shows the prior art digital projector of FIG. I being tilted in a vertical direction;
FIGS. 3A and 3B depict two different prior art types of keystone distortion that are produced by the digital projector of FIG. 2;
FIG. 4 is a block diagram which depicts the overall operation of the method in accordance with the present invention;
FIG. 5 is a detail of Block 30 in FIG. 4; and
FIG. 6 shows an alternative projection configuration to FIG. 2.
DETAIL DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIG. 4, Block 28 depicts the application of lowpass filtering on the original digital image to provide a lowpass filtered digital image having reduced high frequency spatial components which contribute to aliasing defects introduced by the digital keystone correction. Aliasing is an artifact related to the high frequency spatial components and caused when the digital sampling is at a too low of a sampling frequency. This step can be represented mathematically as the convolution of the original digital image, I, and a lowpass filter, KLP:
I B =I*K LP  (1)
wherein IB is the lowpass filtered digital image. A suitable choice for a lowpass filter is:
{fraction (1/16)}·[−1 4 10 4 −1].  (2)
The application of a lowpass filter to a digital image is well known to those skilled in the art and therefore need not be described in further detail here.
Block 30 depicts the application of the digital keystone correction step, and it is expanded in FIG. 5 to show four subsequent processing steps. Referring to FIG. 5, Block 34 depicts the computation of the magnification correction factor as a function of row. This can be accomplished by assuming a simple thin lens model and using the ABCD Matrix ray tracing method to calculate the location of the ideal image plane and the system magnification at the ideal image plane. It is assumed that parameters such as the object size, object-to-lens distance, and the focal length of the projection lens are known. The term object in this discussion refers to the light modulator (e.g. LCD panel) in the projector. It will be understood by one skilled in the art that the use of the thin lens approximation is just one method of modeling the optical system. Alternative approaches to modeling the optical system can be used arrive at the necessary parameters.
FIG. 6 depicts an alternative representation of the projection configuration shown in FIG. 2. The keystone angle 42 is now represented by the angle formed between the tilted image plane 44 and the ideal image plane 46. Note that angle 42 in FIG. 6 is mathematically equivalent to angle 20 in FIG. 2. The image heights 48 and 50 can be computed using trigonometry. These image heights can then be used to compute the respective magnifications at the tilted plane. The magnification change as a function of row is determined by assuming that the magnification varies linearly from the top to the bottom of the image. The magnification correction factor for a particular row is the inverse of the magnification at that row, normalized to the minimum magnification value for all rows. It can be expressed as: cor_mag i = 1 mag i · ( min_mag ) ( 3 )
Figure US06491400-20021210-M00001
wherein cor_magi is the correction factor at row i, magi is the magnification at row i, and min_mag is the minimum magnification over all rows in the keystone distorted image.
Referring again to FIG. 5, Block 36 depicts the process of padding the lowpass filtered image with columns of zeros at the left and right edges of the image. This step is necessary to avoid edge effects in the interpolation process. A suitable choice for the number of columns of padding is 20 columns per side. The padded, lowpass filtered digital image will hereinafter be referred to as the “padded digital image”.
Block 38 depicts the computation of the interpolation vector using the magnification correction factors computed in Block 34. The interpolation vector is a vector containing new pixel locations for a row of data that has been appropriately scaled by the corresponding magnification correction factor. The new pixel location for a pixel in a particular column and row can be calculated by the following equation: cor_xI ij = ( 1 cor_mag i ) · ( cor_x j - cor_zero ) + cor_zero ( 4 )
Figure US06491400-20021210-M00002
wherein cor_xIij is the new pixel location for the j-th pixel in the i-th row, cor_magi is defined by equation (3), cor_xj is the column location of the j-th pixel in the padded digital image, and cor_zero is an offset value corresponding to the center of the padded digital image.
Finally, Block 40 in FIG. 5 depicts the interpolation process using the interpolation vectors computed in Block 38. The padded digital image data is used to compute the new pixel values at the scaled pixel locations specified by the interpolation vector on a row by row basis. Each row of the image data is effectively compressed or expanded in length depending on the value of the magnification correction factor. The padded digital image data is resampled at the spacing determined by the interpolation vectors. The data can be resampled using various methods, e.g., linear, cubic, or cubic spline interpolation. A suitable choice for the resampling is cubic spline interpolation. The output from Block 40 is a keystone corrected digital image.
The final step in the keystone correction process outlined in FIG. 4 is image sharpening as depicted by Block 32. This step can be represented mathematically by the following expression:
I S =I KC +G·(I KC *K HP)  (5)
wherein IKC is the keystone corrected digital image, G is a gain factor, and KHP is a highpass filter. A suitable choice for a highpass filter is: 1 4 · [ - 1 0 6 0 - 1 ] ( 6 )
Figure US06491400-20021210-M00003
and a suitable value for the gain factor is:
G=1.  (7)
A look-up table (LUT) can be used to reduce some of the sharpening artifacts such as “ringing” at edges. This LUT is used to remap the values from the second term in equation (5), which will be referred to as the edge_boost term. A suitable table shape is a piecewise linear curve with: slope = { 100 128 , for edge_boost 0 ; 40 128 , for edge_boost > 0 ; ( 8 )
Figure US06491400-20021210-M00004
The entire sharpening process can be expressed as:
I S =I KC +LUT[G·(I KC *K HP)]  (9)
wherein LUT is the look-up table, and the remaining terms are defined in equation (5).
It will be understood by one skilled in the art that the present invention can be extended so that two-dimensional keystone correction can be achieved by two orthogonal, one-dimensional keystone corrections. The lowpass filtering and sharpening steps can also be also be extended to two-dimensions accordingly.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
PARTS LIST
10 untilted digital projector relative to the normal of the viewing screen
12 the viewing screen
14 optical axis of the untilted digital projector 10
16 tilted digital projector relative to the normal of the viewing screen
18 optical axis of the tilted digital projector 16
20 angle between the optical axis of the tilted projector and the normal to the viewing screen
22 normal to the viewing screen
24 distance from the top of the projected image to the tilted projector lens
26 distance from the bottom of the projected image to the tilted projector lens
28 block depicting application of a lowpass filter to the original digital image
30 block depicting application of the keystone correction to the lowpass filtered digital image
32 block depicting application of sharpening to the keystone corrected image
34 block depicting computation of magnification correction factors
36 block depicting application of image padding
38 block depicting computation of the interpolation vectors
40 block depicting interpolation on a row by row basis using the interpolation vector for keystone correction
42 angle between tilted image plane and ideal image plane
44 tilted image plane
46 ideal image plane
48 distance between the bottom of the projected image and the optical axis of the untilted projector
50 distance between the top of the projected image and the optical axis of the untilted projector

Claims (5)

What is claimed is:
1. A method for correcting for keystone distortion and reducing aliasing defects in a digital image for use by a digital image projector, comprising the steps of:
(a) receiving an original digital image;
(b) lowpass filtering the original digital image to provide a lowpass filtered digital image having reduced high frequency spatial components which contribute to aliasing defects introduced by digital keystone correction;
(c) processing the lowpass filtered digital image to provide for digital keystone correction; and
(d) sharpening the keystone corrected digital image.
2. The method of claim 1 wherein the keystone corrected digital image is projected by the digital projector to provide a digital image.
3. A method for correcting for keystone distortion and aliasing defects in a digital image having pixels arranged in rows and columns for use by a digital image projector, comprising the steps of:
(a) receiving an original digital image;
(b) lowpass filtering the original digital image to provide a lowpass filtered digital image having pixels arranged in rows and columns and having reduced high frequency spatial components which contribute to aliasing defects introduced by digital keystone correction;
(c) processing the lowpass filtered digital image to provide for digital keystone correction by correcting each row in the lowpass filtered digital image in accordance with magnification changes in the digital image when it is projected onto a viewing surface; and
(d) sharpening the keystone corrected digital image.
4. The method of claim 3 wherein the keystone corrected digital image is projected by the digital projector to provide a digital image.
5. A method for correcting for keystone distortion and reducing aliasing defects in a digital image having pixels arranged in rows and columns for use by a digital image projector, comprising the steps of:
(a) receiving an original digital image;
(b) lowpass filtering the original digital image to provide a lowpass filtered digital image having pixels arranged in rows and columns and having reduced high frequency spatial components which contribute to keystone defects;
(c) processing the lowpass filtered digital image to provide for digital keystone correction by correcting each row in the lowpass filtered digital image in accordance with magnification changes in the digital image when it is projected onto a viewing surface in accordance with the following scaling relationship for each row: cor_xI ij = ( 1 cor_mag i ) · ( cor_x j - cor_zero ) + cor_zero
Figure US06491400-20021210-M00005
wherein cor_xIij is the new pixel location for the j-th pixel in the i-th row, cor_magi is the magnification correction factor, cor_xj is the column location of the j-th pixel in the padded digital image, and cor_zero is an offset value corresponding to the center of the padded digital image; and
(d) sharpening the keystone corrected digital image.
US09/694,963 2000-10-24 2000-10-24 Correcting for keystone distortion in a digital image displayed by a digital projector Expired - Fee Related US6491400B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/694,963 US6491400B1 (en) 2000-10-24 2000-10-24 Correcting for keystone distortion in a digital image displayed by a digital projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/694,963 US6491400B1 (en) 2000-10-24 2000-10-24 Correcting for keystone distortion in a digital image displayed by a digital projector

Publications (1)

Publication Number Publication Date
US6491400B1 true US6491400B1 (en) 2002-12-10

Family

ID=24791004

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/694,963 Expired - Fee Related US6491400B1 (en) 2000-10-24 2000-10-24 Correcting for keystone distortion in a digital image displayed by a digital projector

Country Status (1)

Country Link
US (1) US6491400B1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020158877A1 (en) * 2000-11-22 2002-10-31 Guckenberger Ronald James Shadow buffer control module method and software construct for adjusting per pixel raster images attributes to screen space and projector features for digital wrap, intensity transforms, color matching, soft-edge blending and filtering for multiple projectors and laser projectors
US20020180727A1 (en) * 2000-11-22 2002-12-05 Guckenberger Ronald James Shadow buffer control module method and software construct for adjusting per pixel raster images attributes to screen space and projector features for digital warp, intensity transforms, color matching, soft-edge blending, and filtering for multiple projectors and laser projectors
US20030068094A1 (en) * 2001-09-05 2003-04-10 Seiko Epson Corporation Image processing with keystone correction of the digital image data for projector
US20030095239A1 (en) * 2001-11-16 2003-05-22 Yoshichika Hirao Projection type display device
US20040130669A1 (en) * 2003-01-08 2004-07-08 Lg Electronics Inc. Image distortion correcting apparatus and method thereof
US20040218152A1 (en) * 2003-02-13 2004-11-04 Samsung Electronics Co., Ltd. Optical system for a projector and a projection method using
US20040257540A1 (en) * 2003-04-16 2004-12-23 Sebastien Roy Single or multi-projector for arbitrary surfaces without calibration nor reconstruction
US20050041045A1 (en) * 2003-07-16 2005-02-24 Plut William J. Customizable user interface background sizes
US20060204125A1 (en) * 2005-03-09 2006-09-14 Kempf Jeffrey M Multi-dimensional keystone correction image projection system and method
US20060203207A1 (en) * 2005-03-09 2006-09-14 Ikeda Roger M Multi-dimensional keystone correction projection system and method
US20060291744A1 (en) * 2005-03-09 2006-12-28 Ikeda Roger M System and method for two-dimensional keystone correction for aerial imaging
US20080012880A1 (en) * 2003-07-16 2008-01-17 Plut William J Graphics items that extend outside a background perimeter
US7441906B1 (en) 2005-07-05 2008-10-28 Pixelworks, Inc. Keystone correction system and method
WO2010073045A2 (en) 2008-12-24 2010-07-01 Light Blue Optics Ltd Display device
US20110007278A1 (en) * 2009-07-02 2011-01-13 Thomson Licensing Method and system for differential distortion correction for three-dimensional (3D) projection
US20110032340A1 (en) * 2009-07-29 2011-02-10 William Gibbens Redmann Method for crosstalk correction for three-dimensional (3d) projection
US20110038042A1 (en) * 2009-08-12 2011-02-17 William Gibbens Redmann Method and system for crosstalk and distortion corrections for three-dimensional (3D) projection
US20110141243A1 (en) * 2009-12-07 2011-06-16 Sony Corporation Three-dimensional imaging apparatus and a method of generating a three-dimensional image of an object
US20110221753A1 (en) * 2010-03-09 2011-09-15 Seiko Epson Corporation Image display apparatus and image display method
WO2012172360A2 (en) 2011-06-16 2012-12-20 Light Blue Optics Ltd Touch-sensitive display devices
WO2012172363A2 (en) 2011-06-16 2012-12-20 Light Blue Optics Ltd Touch sensitive display devices
WO2012172364A2 (en) 2011-06-16 2012-12-20 Light Blue Optics Ltd Touch-sensitive display devices
WO2013054096A1 (en) 2011-10-11 2013-04-18 Light Blue Optics Limited Touch-sensitive display devices
WO2013108032A1 (en) 2012-01-20 2013-07-25 Light Blue Optics Limited Touch sensitive image display devices
WO2013108031A2 (en) 2012-01-20 2013-07-25 Light Blue Optics Limited Touch sensitive image display devices
WO2013144599A2 (en) 2012-03-26 2013-10-03 Light Blue Optics Ltd Touch sensing systems
KR101792886B1 (en) * 2011-12-13 2017-11-02 엘지이노텍 주식회사 Camera module and method for inspecting horizontality of object and the camera mocule
GB2565867A (en) * 2017-08-15 2019-02-27 Imagination Tech Ltd Low Latency Distortion Unit For Head Mounted Displays

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283602A (en) 1990-12-29 1994-02-01 Goldstar Co., Ltd. Optical system for projector
US5355188A (en) 1993-09-09 1994-10-11 In Focus Systems, Inc. Method and apparatus for distortion correction in optical projectors
US5532764A (en) * 1993-03-16 1996-07-02 Nec Corporation Convergence error detecting apparatus capable of being applied to projection-type displays having different scanning frequencies
JPH09247593A (en) 1996-03-06 1997-09-19 Nec Corp Distortion correction device for liquid crystal projector
US5706062A (en) 1993-06-20 1998-01-06 Unic View Ltd. Projector system including keystone correction
US5754163A (en) * 1994-08-26 1998-05-19 Lg Electronics Inc. Liquid crystal display controlling apparatus
US5764311A (en) 1995-11-30 1998-06-09 Victor Company Of Japan, Ltd. Image processing apparatus
US5795046A (en) 1995-11-13 1998-08-18 Daewoo Electronics, Ltd. Method for pre-compensating an asymmetrical picture in a projection system for displaying a picture
US5975704A (en) 1997-01-10 1999-11-02 In Focus Systems, Inc. Multimedia projection system with image quality correction
US6305805B1 (en) * 1998-12-17 2001-10-23 Gateway, Inc. System, method and software for correcting keystoning of a projected image
US6340994B1 (en) * 1998-08-12 2002-01-22 Pixonics, Llc System and method for using temporal gamma and reverse super-resolution to process images for use in digital display systems

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283602A (en) 1990-12-29 1994-02-01 Goldstar Co., Ltd. Optical system for projector
US5532764A (en) * 1993-03-16 1996-07-02 Nec Corporation Convergence error detecting apparatus capable of being applied to projection-type displays having different scanning frequencies
US5706062A (en) 1993-06-20 1998-01-06 Unic View Ltd. Projector system including keystone correction
US5355188A (en) 1993-09-09 1994-10-11 In Focus Systems, Inc. Method and apparatus for distortion correction in optical projectors
US5754163A (en) * 1994-08-26 1998-05-19 Lg Electronics Inc. Liquid crystal display controlling apparatus
US5795046A (en) 1995-11-13 1998-08-18 Daewoo Electronics, Ltd. Method for pre-compensating an asymmetrical picture in a projection system for displaying a picture
US5764311A (en) 1995-11-30 1998-06-09 Victor Company Of Japan, Ltd. Image processing apparatus
JPH09247593A (en) 1996-03-06 1997-09-19 Nec Corp Distortion correction device for liquid crystal projector
US5975704A (en) 1997-01-10 1999-11-02 In Focus Systems, Inc. Multimedia projection system with image quality correction
US6340994B1 (en) * 1998-08-12 2002-01-22 Pixonics, Llc System and method for using temporal gamma and reverse super-resolution to process images for use in digital display systems
US6305805B1 (en) * 1998-12-17 2001-10-23 Gateway, Inc. System, method and software for correcting keystoning of a projected image

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020180727A1 (en) * 2000-11-22 2002-12-05 Guckenberger Ronald James Shadow buffer control module method and software construct for adjusting per pixel raster images attributes to screen space and projector features for digital warp, intensity transforms, color matching, soft-edge blending, and filtering for multiple projectors and laser projectors
US20020158877A1 (en) * 2000-11-22 2002-10-31 Guckenberger Ronald James Shadow buffer control module method and software construct for adjusting per pixel raster images attributes to screen space and projector features for digital wrap, intensity transforms, color matching, soft-edge blending and filtering for multiple projectors and laser projectors
US20030068094A1 (en) * 2001-09-05 2003-04-10 Seiko Epson Corporation Image processing with keystone correction of the digital image data for projector
US20030095239A1 (en) * 2001-11-16 2003-05-22 Yoshichika Hirao Projection type display device
US6843569B2 (en) * 2001-11-16 2005-01-18 Sanyo Electric Co., Ltd. Projection type display device
US7142258B2 (en) * 2003-01-08 2006-11-28 Lg Electronics Inc. Image distortion correcting apparatus and method thereof
US20040130669A1 (en) * 2003-01-08 2004-07-08 Lg Electronics Inc. Image distortion correcting apparatus and method thereof
US20040218152A1 (en) * 2003-02-13 2004-11-04 Samsung Electronics Co., Ltd. Optical system for a projector and a projection method using
US7086741B2 (en) * 2003-02-13 2006-08-08 Samsung Electronics Co., Ltd. Optical system for a projector and a projection method using the same
US20040257540A1 (en) * 2003-04-16 2004-12-23 Sebastien Roy Single or multi-projector for arbitrary surfaces without calibration nor reconstruction
US7928994B2 (en) 2003-07-16 2011-04-19 Transpacific Image, Llc Graphics items that extend outside a background perimeter
US9229735B2 (en) 2003-07-16 2016-01-05 Transpacific Image, Llc Graphics items that extend outside a background perimeter
US20110148920A1 (en) * 2003-07-16 2011-06-23 Transpacific Image, Llc Graphics items that extend outside a background perimeter
US8130241B2 (en) 2003-07-16 2012-03-06 Transpacific Image, Llc Graphics items that extend outside a background perimeter
US7274382B2 (en) 2003-07-16 2007-09-25 Plut William J Customizable background sizes and controls for changing background size
US20070257941A1 (en) * 2003-07-16 2007-11-08 Plut William J Graphics controls for permitting background size changes
US20080012880A1 (en) * 2003-07-16 2008-01-17 Plut William J Graphics items that extend outside a background perimeter
US20050041045A1 (en) * 2003-07-16 2005-02-24 Plut William J. Customizable user interface background sizes
US8610742B2 (en) 2003-07-16 2013-12-17 Transpacific Image, Llc Graphics controls for permitting background size changes
US7379619B2 (en) 2005-03-09 2008-05-27 Texas Instruments Incorporated System and method for two-dimensional keystone correction for aerial imaging
US20060203207A1 (en) * 2005-03-09 2006-09-14 Ikeda Roger M Multi-dimensional keystone correction projection system and method
US20060291744A1 (en) * 2005-03-09 2006-12-28 Ikeda Roger M System and method for two-dimensional keystone correction for aerial imaging
US20060204125A1 (en) * 2005-03-09 2006-09-14 Kempf Jeffrey M Multi-dimensional keystone correction image projection system and method
US7441906B1 (en) 2005-07-05 2008-10-28 Pixelworks, Inc. Keystone correction system and method
WO2010073047A1 (en) 2008-12-24 2010-07-01 Light Blue Optics Limited Touch sensitive image display device
US8947401B2 (en) 2008-12-24 2015-02-03 Light Blue Optics Ltd Display device
US8514194B2 (en) 2008-12-24 2013-08-20 Light Blue Optics Ltd Touch sensitive holographic displays
US9557855B2 (en) 2008-12-24 2017-01-31 Promethean Limited Touch sensitive holographic displays
WO2010073045A2 (en) 2008-12-24 2010-07-01 Light Blue Optics Ltd Display device
US8947402B2 (en) 2008-12-24 2015-02-03 Light Blue Optics Ltd Touch sensitive image display
US9143748B2 (en) 2009-07-02 2015-09-22 Thomson Licensing Method and system for differential distortion correction for three-dimensional (3D) projection
US20110007278A1 (en) * 2009-07-02 2011-01-13 Thomson Licensing Method and system for differential distortion correction for three-dimensional (3D) projection
US20110032340A1 (en) * 2009-07-29 2011-02-10 William Gibbens Redmann Method for crosstalk correction for three-dimensional (3d) projection
US9140974B2 (en) 2009-08-12 2015-09-22 Thomson Licensing Method and system for crosstalk and distortion corrections for three-dimensional (3D) projection
US20110038042A1 (en) * 2009-08-12 2011-02-17 William Gibbens Redmann Method and system for crosstalk and distortion corrections for three-dimensional (3D) projection
US8350893B2 (en) 2009-12-07 2013-01-08 Sony Corporation Three-dimensional imaging apparatus and a method of generating a three-dimensional image of an object
US20110141243A1 (en) * 2009-12-07 2011-06-16 Sony Corporation Three-dimensional imaging apparatus and a method of generating a three-dimensional image of an object
US20110221753A1 (en) * 2010-03-09 2011-09-15 Seiko Epson Corporation Image display apparatus and image display method
WO2012172364A2 (en) 2011-06-16 2012-12-20 Light Blue Optics Ltd Touch-sensitive display devices
WO2012172363A2 (en) 2011-06-16 2012-12-20 Light Blue Optics Ltd Touch sensitive display devices
WO2012172360A2 (en) 2011-06-16 2012-12-20 Light Blue Optics Ltd Touch-sensitive display devices
WO2013054096A1 (en) 2011-10-11 2013-04-18 Light Blue Optics Limited Touch-sensitive display devices
KR101792886B1 (en) * 2011-12-13 2017-11-02 엘지이노텍 주식회사 Camera module and method for inspecting horizontality of object and the camera mocule
WO2013108031A2 (en) 2012-01-20 2013-07-25 Light Blue Optics Limited Touch sensitive image display devices
WO2013108032A1 (en) 2012-01-20 2013-07-25 Light Blue Optics Limited Touch sensitive image display devices
WO2013144599A2 (en) 2012-03-26 2013-10-03 Light Blue Optics Ltd Touch sensing systems
GB2565867A (en) * 2017-08-15 2019-02-27 Imagination Tech Ltd Low Latency Distortion Unit For Head Mounted Displays
US11079597B2 (en) 2017-08-15 2021-08-03 Imagination Technologies Limited Low latency distortion unit for head mounted displays
GB2565867B (en) * 2017-08-15 2022-03-09 Imagination Tech Ltd Low Latency Distortion Unit For Head Mounted Displays

Similar Documents

Publication Publication Date Title
US6491400B1 (en) Correcting for keystone distortion in a digital image displayed by a digital projector
US7352913B2 (en) System and method for correcting multiple axis displacement distortion
US5572608A (en) Sinc filter in linear lumen space for scanner
US6361171B1 (en) Projector with adjustably positioned image plate
US7705862B1 (en) System and method for improved keystone correction
US7474799B2 (en) System and method for electronic correction of optical anomalies
EP1395952B1 (en) Method and system for processing a non-linear two dimensional spatial transformation
JP3167891B2 (en) Apparatus and method for modifying a substrate image to produce a high quality image
US20040001146A1 (en) Real-time wide-angle image correction system and method for computer image viewing
JP4118059B2 (en) Method and apparatus for digital video processing
JP2007143173A (en) Method and apparatus for preventing keystone distortion
WO2000033564A9 (en) Electronic keystone correction for electronic devices with a visual display
JP2005269528A (en) Image correction method for multi-projection system
US20040156558A1 (en) Image warping method and apparatus thereof
KR20130054868A (en) Geometric correction apparatus and method based on recursive bezier patch sub-division
US20020009699A1 (en) Data receiving device and image forming apparatus using same
US8497873B2 (en) Apparatus and method for correction of projected images
US8396322B1 (en) Optical distortion correction in digital video processing applications
US7561306B2 (en) One-dimensional lens shading correction
US6511185B1 (en) Method and apparatus for compensating a projected image
EP3246872A1 (en) Image processing apparatus, image processing method, and program
JP2005012561A (en) Image processing apparatus, image processing method, and image projector
US20030215230A1 (en) Method and system for correcting non-symmetric distortion in an image
JP2003029714A (en) Method for correcting image of projection type display device
CN115150597B (en) Projection display method and device and projection equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: EASTMAN KODAK COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, STEPHANIE S.;ADAMS, JAMES E., JR.;REEL/FRAME:011256/0817

Effective date: 20001023

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20101210