US6507663B2 - Method and apparatus for detecting very small breast anomalies - Google Patents

Method and apparatus for detecting very small breast anomalies Download PDF

Info

Publication number
US6507663B2
US6507663B2 US09/874,077 US87407701A US6507663B2 US 6507663 B2 US6507663 B2 US 6507663B2 US 87407701 A US87407701 A US 87407701A US 6507663 B2 US6507663 B2 US 6507663B2
Authority
US
United States
Prior art keywords
breast tissue
palpation finger
palpation
tissue
finger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/874,077
Other versions
US20010031077A1 (en
Inventor
Farid Souluer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultratouch Corp
Original Assignee
Ultratouch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/957,648 external-priority patent/US6192143B1/en
Application filed by Ultratouch Corp filed Critical Ultratouch Corp
Priority to US09/874,077 priority Critical patent/US6507663B2/en
Publication of US20010031077A1 publication Critical patent/US20010031077A1/en
Assigned to ULTRATOUCH CORPORATION reassignment ULTRATOUCH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SOULUER, FARID
Application granted granted Critical
Publication of US6507663B2 publication Critical patent/US6507663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0041Detection of breast cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0091Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/444Evaluating skin marks, e.g. mole, nevi, tumour, scar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • A61B5/704Tables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis

Definitions

  • This invention relates to apparatus and methods for detecting very small anomalous masses, in particular tumors, in the human breast.
  • this invention relates to detection heads for physically detecting breast anomalies and generating an electrical signal corresponding to changes in breast characteristics due to such anomalies.
  • breast cancer The earliest indication of breast cancer generally is the occurrence of a painless lump, sometimes associated with nipple discharge and skin retraction. Later symptoms are generally due to metastases to bone, brain, lungs and liver. Early diagnosis may be possible through monthly self-examinations. Mammography has proven beneficial in early detection.
  • a biopsy is generally performed, followed by treatment when the lump is found to be malignant.
  • This can range from a lumpectomy with possible radiation treatment of axillary nodes to a modified radical mastectomy with axillary node dissection.
  • the five-year survival rate is about 85%. Without early detection, if distant metastasis occur, the survival rate may drop to 10% or less.
  • Palpation of breasts will not detect very small changes and anomalies of the breast until the changes are so large or hard compared to the normal breast tissue that the difference can be detected by a touch of a finger.
  • palpation is only capable of detecting changes where the anomalous tissue is relatively hard, has a diameter of at least about one centimeter and is close to the surface of the skin. Deeper anomalies, particular in large breasts, are difficult to detect by palpation. Since the characteristics of anomalies are not quantifiable, detecting changes in anomalies from one examination to another is difficult.
  • an anomalies detection apparatus for thoroughly palpating entire breasts in a continuous, automatic scanning manner, to detect changes in breast tissue physical characteristics.
  • density is measured across the entire breast and, where anomalies are detected, mobility and size of the anomaly are measured.
  • the overall system of this detection apparatus includes a bed upon which the patient lies face up and which includes means for precisely positioning the patient in the same position for each of a series of periodic examinations.
  • the detection head is mounted on a carriage for movement in three dimensions adjacent to a patient on the bed.
  • a locator head associated with the detection head controls the bed positioning means to position the breasts in precisely the same position as for prior examinations.
  • a palpation means on the detection head includes at least one finger-like palpation end movable toward and away from the breast surface to palpate the breast in the same general manner as a physician.
  • the palpation device is preferably mounted so as to be movable across the entire breast surface sequentially while maintaining the finger generally perpendicular to the breast surface.
  • Information sensed by the palpation device is collected, stored and displayed in a conventional manner, such as is done with information from other systems such as computerized tomography and magnetic resonance imaging.
  • the display will reveal, and show details of, any anomalies detected, so that further testing, such as through a biopsy, can be done.
  • FIG. 1 is a schematic elevation view of an entire anomaly detection apparatus
  • FIG. 2 is a schematic top plan view showing a patient positioned on the patient positioning bed
  • FIG. 3 is a schematic elevation view of a detection head and actuator
  • FIG. 4 is a schematic elevation view of a detection head and actuator positioning device
  • FIG. 4 a is a schematic representation of a laser transmitter and receiver reading a laser card within a laser reader of the anomaly detection apparatus
  • FIG. 5 is a schematic diagram of a first embodiment of a locator head assembly
  • FIG. 6 is a schematic elevation view of a vertical positioning mechanism of the anomaly detection apparatus of FIG. 1;
  • FIG. 7 is a schematic representation of the internal components of a first detection head embodiment
  • FIG. 8 is a schematic representation of the internal components of a second detection head embodiment
  • FIG. 9 is a schematic representation of the internal components of a third detection head embodiment.
  • FIG. 10 is a schematic representation of the internal components of a fourth detection head embodiment
  • FIG. 11 is a schematic representation of a palpation tip for a detection head
  • FIG. 12 is a schematic representation of a detection head having a plurality of parallel palpation tips
  • FIG. 13 a is a schematic representation of one embodiment of an encoder slide assembly for palpation tip position measurement for use with a single tip arrangement or a multi-tip arrangement as seen in FIG. 12;
  • FIG. 13 b is a schematic representation of a second embodiment of the encoder slide assembly shown in FIG. 13 a;
  • FIG. 14 is a schematic elevation view of a second embodiment of the distal end of the carriage shown in FIG. 1;
  • FIG. 15 is a schematic representation of the internal components of a second embodiment of a locator head assembly.
  • FIG. 1 there is seen a carriage 10 mounted at a proximal end on a horizontal support 12 for movement therealong.
  • a detection head 14 (as detailed in FIGS. 3 and 4) is mounted at the distal end of carriage 10 .
  • a locator head 16 (detailed in FIG. 5) is also mounted to the carriage 10 for movement therewith.
  • Digital information from and to detection head 14 , locator head 16 and control commands to various motors, limit switches and the like are passed between a computer center 17 as schematically indicated. Information is received, stored, interpreted and displayed in the same manner as other medical scanning devices, such as CAT scans, MRI scans, etc. Three dimensional images can be viewed on a conventional computer monitor.
  • images may be shown with different tissue density areas shown in different colors.
  • Artificial intelligence techniques may be used to improve system performance. The combination of tissue density information as developed by palpation and the ancillary local color and temperature information results in detection of much smaller tumors and the ability to easily track changes in discrete tissue areas.
  • Horizontal support 12 is mounted on a vertical support mechanism 18 (as detailed in FIG. 6) along which support 12 can move in a vertical direction.
  • Horizontal support includes a traveler 20 that rides in bearings 22 along rods or tubes 24 that are secured at their ends to end blocks 26 and 28 .
  • a lead screw 30 extends from a bearing 32 at end block 26 to a drive motor 34 at end block 28 .
  • Lead screw 30 extends through correspondingly threaded openings in walls 36 of traveler 20 so that traveler 20 will move to the right or left as the lead screw 30 is rotated in one direction or the other.
  • Conventional limit switches 37 prevent over travel of traveler 20 .
  • Guide rods 38 extend vertically through end blocks 26 and 28 and a lead screw 40 extends vertically through end block 28 .
  • Carriage 10 includes a base 42 secured to traveler 20 .
  • a motor 44 within base 42 rotates a screw 46 that is threaded into an intermediate body 48 to raise and lower the intermediate body 48 as the screw 46 is rotated one way or the other.
  • a pair of guide rods 50 extend through brackets 52 to guide movement of the intermediate body 48 .
  • a lower body 54 is secured to intermediate body 48 for rotation relative thereto.
  • a motor 56 is mounted on intermediate body 48 with lower body 54 mounted on the motor shaft 58 for rotation with the shaft.
  • An arm 61 is pivotally mounted at pivot 62 on bracket 64 mounted on the distal end of lower body 54 .
  • a motor 60 on lower body 54 drives a pulley 63 on arm 61 through a jackshaft 65 .
  • the entire carriage 10 can be moved horizontally by horizontal support 12 and vertically by the vertical support 18 of FIG. 6 .
  • Lower body 54 of the carriage 10 can be rotated through a full circle.
  • Arm 61 carrying detection head 14 can be pivoted through at least 180°. This combination of movements permits the detection 14 head to be positioned in any desired position relative to any portion of a breast surface.
  • a person lies face-up on a bed 67 mounted on a position adjusting assembly 69 as seen in FIG. 2 .
  • the bed will be positioned generally below detection head 14 of FIG. 1 .
  • Bed 67 has a comfortably padded upper surface, with matrix boards 66 adjacent to the shoulders of person 68 .
  • Conventional optical measuring means (not shown) can be provided to locate the exact position of arms, shoulders and neck relative to the matrix board 66 pattern during a first examination. Then, when the person 68 is again positioned on the bed 67 for a later examination, the optical system in conjunction with conventional software can again determine the person's position relative to matrix boards 66 and the position of the bed 67 can be adjusted in accordance with stored location information to place the person in substantially the identical position as for the first examination. Further, if person 68 were to move during the examination, the optical system can detect and correct for the change in position. It is highly desirable that the person 68 be positioned as identically as possible for each of the periodic examinations.
  • the underside of bed 67 includes conventional tubular bearings (not seen) through which horizontal guide rods 70 pass.
  • a central threaded rod 72 engages end bearings 74 on assembly 69 and passes through a conventional motor driven nut assembly 76 .
  • a pair of guide rods 78 extend between end walls 80 of assembly 69 .
  • Guide rods 70 and 78 are each arranged in a set of at least two parallel guide rods.
  • a central threaded rod 82 passes through a conventional threaded block (not seen) secured to the underside of bed 67 .
  • a motor 84 rotates threaded rod 82 to move the bed 67 in either lengthwise direction, as desired.
  • the overhead end blocks 26 and 28 (FIG. 1) are mounted on posts 85 , the lower portions of which are seen in FIG. 2 .
  • detection head 14 is detailed in schematic elevation view in FIG. 3.
  • a removable connection 86 for main housing 87 mounts detection head 14 on arm 61 .
  • detection head 14 is rotatable relative to arm 61 by a motor 88 .
  • a detector housing 90 for palpation finger 92 and sensor 94 for sensing distance, color and temperature is mounted on main housing 87 through arms 96 and 98 .
  • Finger 92 is designed to act like a physician's palpating finger in a manual breast examination.
  • finger 92 will be formed from a sturdy, disposable material, such as glass
  • Sensor 94 includes a distance measuring mechanism, of the sort used in cameras and the like, for providing precise distances between the breast surface and the sensor. If desired, a plurality of spaced range finders may be used to assure that palpation finger 92 is oriented perpendicular to the breast surface.
  • a conventional means for measuring the color of the breast surface being examined is included in sensor 94 .
  • this can be a conventional prism for breaking up incoming light and refracting each color of light to an independent photo electric or photo resistive sensor.
  • Palpation finger 92 is secured to a distal end of a shaft 100 that is slidable through housing 90 and pivoted at its proximal end to a distal end of arm 102 at pivot point 104 .
  • Arm 102 is rotatable about an axis 106 centrally located along arm 98 .
  • the proximal end of arm 102 is pivotally connected to drive shaft 108 at pivot point 110 .
  • shaft 108 is moved axially by an actuator within actuator housing 112 (as detailed below in conjunction with the description of FIG. 4)
  • shaft 100 and palpation finger 92 move a proportional distance in the opposite direction.
  • a laser reader in reader housing 114 detects movement of shaft 108 and the feedback resistance to movement experienced by palpation finger 92 when pressing against breast tissue.
  • An error correction sensor 116 is provided on detector housing 90 , cooperating with a member 119 mounted on shaft 100 to detect and correct positioning errors. It is possible that moving components of the detection head 14 mechanism shown in FIG. 3 may not be positioned correctly any time after coils 118 (FIG. 4) have been activated and repositioned. Resetting the position of the moving components , e.g., detection head 90 , shaft 100 , arm 102 , and therefore palpation finger 92 , is accomplished by the first coil 118 at the left as seen in FIG. 4 . Slight changes in position of the breast skin, due to breathing or the like, is sensed by finger 92 and a corresponding position correction signal is sent to the leftmost coil 118 to correct for that displacement. While this precision is often not required, it is available if needed.
  • actuator housing 112 and reader housing 114 are schematically illustrated in FIG. 4.
  • a series of electromagnetic coils 118 are arranged in a uniformly spaced relationship along a central tube 120 .
  • An end shaft 122 is axially secured to the proximal end of shaft 108 and extends into tube 120 .
  • Shaft 108 slides in a sleeve 123 .
  • End shaft 122 is formed from a magnetic material so that when coils 118 are actuated sequentially, beginning with the coil adjacent to the end shaft 122 fastened to shaft 108 , the magnetic forces will tend to pull end shaft 122 into tube 120 . As shown in FIG. 3 , this pulls shaft 108 , arm 102 and shaft 100 and pressing palpation finger 92 toward an adjacent breast.
  • the magnetic forces provide a rather “soft” pull so that breast tissue can stop the advance of palpation finger 92 without severe compression.
  • the distance the finger advances will be in proportion to the density of the tissue, with a lump of more dense tissue resisting penetration, so the distance the finger advances will be less.
  • This arrangement of arm 102 , shafts 100 and 108 with magnetic coils 118 could be thought of as a weighing scale where breast tissue density corresponds to the object to be weighed and the magnetic actuator is the standard portion of weight placed on the other side of the scale.
  • the first coil of coils 118 will be actuated, moving palpation finger 92 a predetermined distance.
  • the coil is powered up stepwise, at about 250 mv per step up to about 10 volts maximum.
  • the pressure change per step is typically only about 10 grams per mm 2 per step. If tissue resistance is low, the second coil of coils 118 , and others in sequence, will be similarly actuated, further moving the finger 92 . Eventually, tissue resistance will reach a predetermined level and the distance traveled by the finger 92 will be measured, as detailed below, and the information transferred to conventional information storage means.
  • the mechanism for encoding and transmitting the palpation information to the storage and use station is enclosed in reader housing 114 .
  • a conventional laser optic card 124 using technology as applied in musical compact disks but with a single straight track, is carried by shaft 108 .
  • a laser card reader 126 reads the shaft 108 position from the card 124 and transmits the encoded information to the information collection station.
  • the information can be converted to machine language or any desired format for interpretation by conventional software systems of the sort used in CAT scan systems or other medical scanning systems. Any error or mechanical tilt is detected in real time by error correction sensor 116 that filters out any mechanical movement other than the desired palpation movement.
  • a typical laser card 127 of the sort used in reader 126 is schematically illustrated in FIG. 4 a .
  • Card 127 has a series of reflecting areas 129 separated by non-reflective areas 131 . While non-reflecting areas 131 could be light absorbing, generally it is preferred that they be transparent so the incident light will pass through.
  • a laser transmitter 133 directs a laser beam 135 against the patterned area of laser card 127 . When the laser beam 135 hits a reflecting area 129 , reflected light is picked up by a receiver 137 .
  • conventional software can count the pattern of reflected pulses to measure movement of shaft 108 and, ultimately, palpation finger 92 .
  • the reflecting areas 129 can be as small as about 0.001 mm for highly precise movement measurement.
  • An adjustment mechanism 128 such as a threaded adjustment shaft acting similar to a turnbuckle, is provided to adjust the position of shaft 108 relative to the array of electromagnetic coils 118 .
  • the maximum excursion of shaft 108 is limited by pin 130 extending from shaft 108 and limit switches 132 .
  • the unit will thus sequentially test areas to provide a “picture” of the entire breast surface, revealing density changes indicative of tumors on a very fine scale, in a manner similar to the images produced in MRI, CAT and other physical scanning methods.
  • the movable bed arrangement shown in FIG. 2 in cooperation with the locator head 16 schematically illustrated in FIG. 5, provides accurate positioning by locating the position of a person 68 on the bed 67 and actuating the various carriage 10 , bed 67 and detection head 14 movement mechanisms under computer control to locate the breast to be examined in substantially the same position it was in at the last prior examination.
  • a digital camera 134 provides a digitized image of the breast and patient in a matrix manner to supply sufficient data for the ongoing examination session and the pre-positioning of the patient whenever a new image is required.
  • a computer system can compare the original image to a subsequent image at the start of a subsequent examination so that the patient's position can be adjusted until the images match.
  • a white light source 136 is provided with a schematically illustrated focussing lens system including lens 138 , a lead screw 140 rotatable by motor 142 and threaded through a lens mount bracket 144 to focus a light spot on the breast surface.
  • the scan can be saved in computer memory in a conventional manner to produce a three-dimensional image of the breast.
  • a laser scanner 146 including a laser emitter 148 and a focussing system 150 for producing a small spot on the breast being examined may be used in the same way as the white light spot to create a three-dimensional image.
  • a 680-820 nm, 0.0095 mw laser may be used, since that laser has sufficient power for imaging without damaging the skin.
  • the vertical support mechanism 18 for raising and lowering the entire carriage 10 , as seen in FIG. 1, is illustrated in FIG. 6 .
  • Vertical guide rods 38 extend from a sturdy base 156 to a top plate 158 .
  • End blocks 26 and 28 carry horizontal support 12 (FIG. 1, omitted from FIG. 6 for clarity) for vertical movement therealong.
  • a powerful motor 160 rotates the sturdy lead screw 40 threaded through block 28 .
  • An upper limit switch 164 and a lower limit switch 166 prevent movement of horizontal support 12 beyond desired limits.
  • base 156 will rest on the floor or a sub-floor so that bed assembly 67 could be positioned within a frame formed by base 156 , top plate 158 and vertical guide rods 38 .
  • the image produced by either of these light spots produced at a first examination can be compared to an initial image produced at a later examination to adjust the breast position to substantially match the original position. This will aid in re-examining a suspicious spot or lump found in the initial examination during later examinations.
  • the three-dimensional images can be divided into a matrix of cubes or slices with geometric indicia (e.g., a cube might be identified as cube 2 , 4 , 9 on an x-y-z axis basis) and location scan be directly compared between the light spot image and the finger palpation locations.
  • geometric indicia e.g., a cube might be identified as cube 2 , 4 , 9 on an x-y-z axis basis
  • FIG. 7 A second embodiment of internal components of a detection head for detecting changes in density, hardness, and the like in breast tissue in as elected very small area is schematically illustrated in FIG. 7 .
  • a permanent magnet 200 mounted on a non-magnetic rod 202 is movable along the axis of the rod 202 centerline.
  • Suitable guides 204 such as rollers, ball bearings, a sleeve or the like, allows smooth, low resistance, axial movement of rod 202 .
  • Permanent magnet 200 faces an electromagnet head 206 mounted on a shaft 207 and fixed to housing 208 .
  • Poles of permanent magnet 200 and electromagnet head 206 (when activated) have the same poles juxtaposed, here having north poles adjacent to each other as indicated, with the electromagnet south pole at 210 .
  • Electromagnet head 206 is powered by any suitable number of powered coils 212 , connected at terminal 214 to a power source via wires 216 .
  • the arrangement will tend to “push” the magnets apart as soon as electromagnet coils 212 are activated.
  • the intensity of this “pushing” force can be varied in accordance with the number of turns in coil 212 and the power provided thereto.
  • a palpation tip 218 (i.e., palpation finger 92 ), as detailed in FIG. 11, is mounted on the distal end of rod 202 . Tip 218 is brought into contact with(or to a predetermined distance from) the breast surface by carriage 10 as described above. Coil 212 is energized to increase the field around shaft 207 to increase the field at electromagnet head 206 and force permanent magnet 200 further away from electromagnet head 206 , which moves tip 218 against the breast. The breast tissue is depressed at the point of contact, with tissue elasticity pressing tip 218 and non-magnetic rod 202 back toward coil 206 in accordance with tissue elasticity and hardness at the contact point.
  • Variations in this back pressure as represented by the extent to which the tip presses into the breast tissue are transmitted to the recording instrumentation by any suitable means for measuring the movement of tip 218 .
  • the position of tip 218 may be measured by the mechanism shown in FIGS. 4 and 4 a , as discussed above.
  • FIG. 13 Another embodiment of a tip 218 position measuring system is shown in FIG. 13, described below.
  • the resilient mounting of permanent magnet 200 resulting from the field between the two magnets 200 , 206 will permit the permanent magnet 200 , should it strike a breast or other surface during positioning of detection head 14 , to provide sufficient “give” to prevent injury or damage to the breast or other surface.
  • FIG. 8 Another embodiment of internal components of the detection head is illustrated in FIG. 8.
  • a permanent magnet 222 is mounted on the proximal end of an actuator rod 224 which is slidable along a sleeve 226 mounted on housing 228 .
  • Atip 218 of the sort detailed in FIG. 11 is secured to the distal end of rod 224 .
  • a second permanent magnet 230 is mounted on a holder 231 coaxial with rod 224 . Same poles (north to north or south to south) on each of magnets 222 and 230 face and repel each other.
  • Holder 231 is supported on a disk 232 slidable within housing 234 coaxial with rod 224 .
  • a sleeve 236 is preferably mounted on holder 231 to aid in guiding movement of rod 224 .
  • Detection head 14 is moved as discussed above to bring palpation tip 218 into proximity with a selected location along the breast surface.
  • tip 218 is initially brought into proximity to the breast surface, rod 224 will hang down and the force of gravity will cause the rod to move to a point where the gap between magnets 222 and 230 will increase.
  • a motor 238 mounted in housing 234 drives a lead screw 240 which is threaded through a corresponding female thread 241 in disk 232 .
  • Motor 238 may be any suitable motor, such as a low rpm DC motor or a stepper motor. Rotation of lead screw 240 will move magnet 230 toward magnet 222 decreasing the intermagnet gap until breast resistance to penetration of tip 218 will return the intermagnet gap to a predetermined distance. The distance that holder 231 and disk 232 move is representative of breast density characteristics at the contact point.
  • a conventional sensor 242 counts the revolutions of motor 238 to measure the corresponding degree of penetration of tip 218 into the breast.
  • Conventional safety sensors 244 may be provided to limit maximum movement of disk 232 (and movement of tip 218 in accordance with disk position) to prevent damage to the breast.
  • the magnetic field between magnets 222 and 230 will act as a resilient mount for tip 218 , limiting damage or injury should the tip strike a breast or other surface.
  • FIG. 9 is a schematic diagram of another embodiment of detection head 14 .
  • housings 228 and 234 , actuator rod 224 , sleeves 226 and 236 , tip 218 , holder 231 , disk 232 , motor 238 and sensors 242 and 244 are the same as shown in FIG. 8 and discussed above.
  • a spring 248 is fastened between the proximal end of rod 224 and holder 231 .
  • Spring 248 is selected to bias the two juxtaposed ends to a particular, predetermined spacing.
  • tip 218 extends downwardly under the force of gravity.
  • Motor 238 rotates to move disk 232 and holder 231 toward rod 224 until the gap between the distal end of holder 231 and the proximal end of rod 224 is at the original predetermined distance.
  • the total movement of holder 231 is indicated by the number of revolutions of lead screw 240 as measured by counting sensor 242 , which is indicative of breast tissue physical parameters.
  • FIG. 10 Another embodiment of a detection head 14 is schematically illustrated in FIG. 10 .
  • Most components are the same as in the embodiments of FIGS. 8 and 9.
  • a gas 250 is enclosed within sleeve 236 at the proximal end of rod 224 .
  • Sleeve 236 fits over rod 224 in a sealing arrangement to prevent pressurized gas 250 from escaping. Any suitable conventional seals may be used between rod 224 and sleeve 236 .
  • any axial physical force applied to rod 224 will change the gas pressure within sleeve 236 which will be measured by a conventional pressure sensor 252 capable of providing an electronic read-out.
  • a conventional pressure sensor 252 capable of providing an electronic read-out.
  • Lead screw 240 will be rotated by motor 238 to move holder 231 toward sleeve 236 to slide the sleeve 236 over rod 224 , decreasing the volume and increasing pressure.
  • the number of motor rotations, as counted by sensor 242 required to bring pressure up to a predetermined level is indicative of breast physical parameters, such as hardness and density.
  • Tip 218 includes a rounded endpiece 254 which touches the breast surface. Any suitable material may be used, which should be disposable or washable.
  • An end isolator 256 made up of a soft electrically insulating material prevents any static electricity discharge from the body from affecting the readings.
  • a core member 258 connects endpiece 254 to base 260 which is secured in any suitable manner, such as threads, to rod 224 .
  • Side isolator 261 is generally tubular and is mounted on base 260 and spaced from core 258 to absorb any side impacts or sudden shakes.
  • FIG. 12 schematically illustrates a detection head 14 embodiment in which a plurality of tips 218 can be used in a closely spaced parallel array.
  • a plurality of tips 218 are mounted on actuator rods 262 , typically rods similar to rods 224 described above, mounted for axial movement.
  • Extension connectors 264 which may be rigid offset members of the sort schematically shown, inflexible cables, or the like, which are capable of transmitting motion from systems 266 of the sort shown in FIGS. 7-10, are connected between the output ends of rods 224 of those systems and tip 218 actuator rods.
  • An encoder slide is preferably included in each extension connector 264 to provide highly accurate readout of movement of each tip 218 during breast palpation.
  • a preferred encoder slide assembly 268 is detailed in the schematic illustration of FIG. 13 . Such an encoder slide assembly 268 may be used with any of the single tip arrangements of FIGS. 7-10.
  • a preferred encoder slide assembly 268 includes an encoder slide 270 secured to rod 224 , as schematically shown, for movement with that rod.
  • Encoder slide 270 could be secured to any suitable part of rod 224 or to tip 218 , as desired.
  • Encoder slide 270 is transparent and includes a strip 272 bearing reflective dots 274 (or, in the alternative transparent dots in an otherwise opaque strip 272 ).
  • Decoder sensors 276 are provided on opposite sides of encoder slide 270 , mounted on a housing 278 secured to housing 228 by any suitable mounting means. Decoder sensors 276 are optical or laser sensors and light emitters of the sort used with conventional music or computer compact disks.
  • dots 274 are reflective against a transparent background
  • light will pass from a light transmitting decoder sensor 276 to the other, which is a light detector.
  • a light transmitting decoder sensor 276 As encoder slide 270 moves, light will be reflected away when a reflective dot is present between the decoder sensors and will pass to the detector when a space between dots is present in the optical path.
  • changes between receiving and not receiving light at the second decoder sensor will indicate movement of the slide and the number of pulses of light received during encoder slide 270 movement will indicate distance of movement of rod 224 and tip 218 .
  • FIG. 14 illustrates an alternate embodiment in which the optical locating head 16 and detection head 14 are both mounted at the end of the arm 61 on carriage 10 .
  • Optical locator head 16 in the FIG. 15 embodiment includes a motor housing 282 secured by any conventional means, such as bolts (not seen) to detection head 16 .
  • a lens enclosure 284 is secured to motor housing 282 after precise positioning during manufacture of the assembly.
  • a lens assembly 286 is slidably mounted within lens enclosure 284 for axial movement relative thereto.
  • a motor 288 is mounted within motor housing 282 and drives a lead screw 290 which is threaded through a nut 292 secured to lens assembly 286 to move the lens assembly 286 axially within lens enclosure 284 .
  • Each enclosure 294 contains a pre-focussed conventional visible light (typically 680 to 850 nanometer) laser diode and light sensor unit 296 .
  • a prism 297 refracts light from the laser diode in unit 296 toward the breast being examined, typically along schematically indicated light beams 298 .
  • Light reflected from the breast surface passes back through prism 297 to the sensor in unit 296 .
  • This diode and sensor unit 296 operates in the same manner as conventional compact disk readers. The sensed returned light will be maximum when the beam from the beam generated by unit 296 is 90° to the breast surface.
  • the mechanism described above for moving palpation tip 218 in three dimensions can thus adjust tip orientation to provide palpation at 90° to the breast surface.
  • Two enclosures 294 with the components described above are preferably provided, with the first used to palpate one breast and the second used to palpate the second breast, since the size and shape of the two breasts are often somewhat different.
  • a motor 300 in each of the laser beam positioning enclosures 294 drives a lead screw 302 that engages an arcuate gear sector 304 to rotate each unit 296 and prism 297 about a center of rotation of the gear sector 304 .
  • Prism 297 preferably refracts light from the diode in unit 296 at 90°.
  • the laser diode within unit 296 generates a laser beam that produces a red dot on the breast being examined.
  • a conventional sensor 306 within each enclosure 294 counts rotation of lead screw 302 and is calibrated to indicate the exact distance to the surface upon which the dot appears when the beam is 90° to the surface. The system computer then can conventionally calculate a three dimensional image of the breast surface from a number of these angle readings.
  • Lens assembly 286 in conjunction with a light sensor 308 , a pre-focussed sensor lens 310 and lenses 312 operate in the same manner as conventional camera automatic focussing systems to bring the breast surface into sharp optical focus by rotating lead screw 290 as necessary.
  • a position sensor 313 counts rotation of lead screw 290 to provide information to the central computer as to the position of focus. Since optical locator head 16 moves in conjunction with detection head 14 , when locator head 16 is moved to focus on the breast surface, palpation tip 218 will be brought into the predetermined contact with the breast tissue.
  • Extreme position sensors 314 are preferably provided to sense movement of lens enclosure 284 to the ends of its desired range of movement and prevent damage which might be caused by movement outside the selected range. Sensors 314 may be any conventional sensors, such as pressure switches, which can turnoff motor 288 .
  • either of the locator head 16 embodiments as shown in FIG. 5 or 15 can be conventionally programmed to map an entire breast step by step.
  • the horizontal and vertical (X and Y) movement of the carriage 10 takes locator head 16 to all of the selected points across the breast.
  • the focussing mechanism within motor housing 282 and lens enclosure 284 will continually focus sensor 308 to provide the necessary Z direction alignment.
  • the position sensor 313 will count the revolution of motor 288 while the motor is bringing lens assembly 286 to the point of focus to continuously provide lens position information.
  • locator head 16 Once locator head 16 has visited all desired points on the breast and has calculated its distance from every visited point, the computer can provide a conventional drawing in three dimensions of the entire breast. During palpation of the breast, location head 16 verifies the address being palpitated. Also, location head 16 will automatically compensate for breast movement as the patient breathes. If desired, a video camera 316 may be mounted on locator head 16 , as seen in FIG. 14, to provide a general view of the breast during palpation.
  • the apparatus of this invention will provide an accurate map of the breast, will detect tissue density anomalies and will accurately re-examine the breast from time to time to monitor any changes in breast density anomalies.

Abstract

A computer controlled apparatus for detecting breast tumors by mechanically palpating a breast in a full scan manner to detect small lumps or anomalies. The patient is positioned on a fully adjustable bed and oriented relative to the apparatus. A detection head mounted for movement in three dimensions is positioned above the bed. A palpation finger is brought into pressure contact with a sequence of small areas across the entire breast, palpating each area to measure tissue density. Concurrent with the palpation scan, a scan of breast color and temperature is conducted. A locator head positions the detector for the scan in a manner that assures repeatability during each of a series of periodic examinations. This system detects very small lumps and allows easy, accurate monitoring of suspicious areas over an extended time period. Several different embodiments of the detection head and location head are described.

Description

RELATED APPLICATIONS
This application is a continuation of applicant's co-pending U.S. patent application Ser. No. 09/241,193, filed Feb. 1, 1999, now U.S. Pat. No. 6,351,549 entitled “Apparatus for Detecting Very Small Breast Anomalies”, which application is a continuation-in-part of U.S. patent application Ser. No. 08/957,648, filed Oct. 24, 1997, now U.S. Pat. No. 6,192,143, dated Feb. 20, 2001.
This application is a continuation of applicant's copending U.S. patent application Ser. No. 09/241,193, filed Feb. 1, 1999, entitled “Apparatus for Detecting Very Small Breast Anomalies”, which application is a continuation-in-part of U.S. patent application Ser. No. 08/957,648, filed Oct. 24, 1997, now U.S. Pat. No. 6,192,143, dated Feb. 20, 2001.
FIELD OF THE INVENTION
This invention relates to apparatus and methods for detecting very small anomalous masses, in particular tumors, in the human breast. In particular, this invention relates to detection heads for physically detecting breast anomalies and generating an electrical signal corresponding to changes in breast characteristics due to such anomalies.
BACKGROUND OF THE INVENTION
Recent findings indicate that one of eight women will develop breast cancer, the second leading cause of cancer death in women. Unopposed estrogen activity is an important pathogenic factor, with other risk factors including nulliparity, early menarche, late menopause, a family history of breast cancer, middle age and prior breast cancer.
The earliest indication of breast cancer generally is the occurrence of a painless lump, sometimes associated with nipple discharge and skin retraction. Later symptoms are generally due to metastases to bone, brain, lungs and liver. Early diagnosis may be possible through monthly self-examinations. Mammography has proven beneficial in early detection.
When a very small lump, <2 cm, is detected, a biopsy is generally performed, followed by treatment when the lump is found to be malignant. This can range from a lumpectomy with possible radiation treatment of axillary nodes to a modified radical mastectomy with axillary node dissection. With early treatment, the five-year survival rate is about 85%. Without early detection, if distant metastasis occur, the survival rate may drop to 10% or less.
Early detection of lumps is thus essential. Monthly self-examinations are very desirable, followed by examination by a physician if any suspicious areas are detected. It is, however, difficult for an unskilled person to detect very small lumps or to do a thorough examination.
Periodic palpation of the breasts by a physician and mammography will often detect very small tumors. These examinations should be reasonably frequent, particularly in older women, in order to detect tumors before they can metastasize. However the cost of frequent examinations, plus the accumulated radiation exposure from frequent mammograms tend to limit frequency. In addition, mammography may miss very small tumors, especially in the dense breasts of younger women. Further, pregnant women should avoid exposure to radiation.
Palpation of breasts will not detect very small changes and anomalies of the breast until the changes are so large or hard compared to the normal breast tissue that the difference can be detected by a touch of a finger. Generally, palpation is only capable of detecting changes where the anomalous tissue is relatively hard, has a diameter of at least about one centimeter and is close to the surface of the skin. Deeper anomalies, particular in large breasts, are difficult to detect by palpation. Since the characteristics of anomalies are not quantifiable, detecting changes in anomalies from one examination to another is difficult.
Thus, there is a continuing need for improved methods and apparatus for very early detection of very small breast anomalies that could be malignant, while avoiding radiation exposure.
SUMMARY OF THE INVENTION
The above-noted problems, and others, are overcome in accordance with this invention by an anomalies detection apparatus for thoroughly palpating entire breasts in a continuous, automatic scanning manner, to detect changes in breast tissue physical characteristics. In particular density is measured across the entire breast and, where anomalies are detected, mobility and size of the anomaly are measured.
The overall system of this detection apparatus includes a bed upon which the patient lies face up and which includes means for precisely positioning the patient in the same position for each of a series of periodic examinations. The detection head is mounted on a carriage for movement in three dimensions adjacent to a patient on the bed. A locator head associated with the detection head controls the bed positioning means to position the breasts in precisely the same position as for prior examinations. A palpation means on the detection head includes at least one finger-like palpation end movable toward and away from the breast surface to palpate the breast in the same general manner as a physician. The palpation device is preferably mounted so as to be movable across the entire breast surface sequentially while maintaining the finger generally perpendicular to the breast surface.
Information sensed by the palpation device is collected, stored and displayed in a conventional manner, such as is done with information from other systems such as computerized tomography and magnetic resonance imaging. The display will reveal, and show details of, any anomalies detected, so that further testing, such as through a biopsy, can be done.
BRIEF DESCRIPTION OF THE DRAWING
Details of the invention, and of preferred embodiments thereof, will be further understood upon reference to the drawings, wherein:
FIG. 1 is a schematic elevation view of an entire anomaly detection apparatus;
FIG. 2 is a schematic top plan view showing a patient positioned on the patient positioning bed;
FIG. 3 is a schematic elevation view of a detection head and actuator;
FIG. 4 is a schematic elevation view of a detection head and actuator positioning device;
FIG. 4a is a schematic representation of a laser transmitter and receiver reading a laser card within a laser reader of the anomaly detection apparatus;
FIG. 5 is a schematic diagram of a first embodiment of a locator head assembly;
FIG. 6 is a schematic elevation view of a vertical positioning mechanism of the anomaly detection apparatus of FIG. 1;
FIG. 7 is a schematic representation of the internal components of a first detection head embodiment;
FIG. 8 is a schematic representation of the internal components of a second detection head embodiment;
FIG. 9 is a schematic representation of the internal components of a third detection head embodiment;
FIG. 10 is a schematic representation of the internal components of a fourth detection head embodiment;
FIG. 11 is a schematic representation of a palpation tip for a detection head;
FIG. 12 is a schematic representation of a detection head having a plurality of parallel palpation tips;
FIG. 13a is a schematic representation of one embodiment of an encoder slide assembly for palpation tip position measurement for use with a single tip arrangement or a multi-tip arrangement as seen in FIG. 12;
FIG. 13b is a schematic representation of a second embodiment of the encoder slide assembly shown in FIG. 13a;
FIG. 14 is a schematic elevation view of a second embodiment of the distal end of the carriage shown in FIG. 1; and
FIG. 15 is a schematic representation of the internal components of a second embodiment of a locator head assembly.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Referring to FIG. 1 there is seen a carriage 10 mounted at a proximal end on a horizontal support 12 for movement therealong. A detection head 14 (as detailed in FIGS. 3 and 4) is mounted at the distal end of carriage 10. A locator head 16 (detailed in FIG. 5) is also mounted to the carriage 10 for movement therewith. Digital information from and to detection head 14, locator head 16 and control commands to various motors, limit switches and the like are passed between a computer center 17 as schematically indicated. Information is received, stored, interpreted and displayed in the same manner as other medical scanning devices, such as CAT scans, MRI scans, etc. Three dimensional images can be viewed on a conventional computer monitor.
If desired, images may be shown with different tissue density areas shown in different colors. Artificial intelligence techniques may be used to improve system performance. The combination of tissue density information as developed by palpation and the ancillary local color and temperature information results in detection of much smaller tumors and the ability to easily track changes in discrete tissue areas.
Horizontal support 12 is mounted on a vertical support mechanism 18 (as detailed in FIG. 6) along which support 12 can move in a vertical direction. Horizontal support includes a traveler 20 that rides in bearings 22 along rods or tubes 24 that are secured at their ends to end blocks 26 and 28. A lead screw 30 extends from a bearing 32 at end block 26 to a drive motor 34 at end block 28. Lead screw 30 extends through correspondingly threaded openings in walls 36 of traveler 20 so that traveler 20 will move to the right or left as the lead screw 30 is rotated in one direction or the other. Conventional limit switches 37 prevent over travel of traveler 20.
Guide rods 38 extend vertically through end blocks 26 and 28 and a lead screw 40 extends vertically through end block 28. These components are shown completely and discussed in conjunction with the discussion of FIG. 6, below.
Carriage 10 includes a base 42 secured to traveler 20. A motor 44 within base 42 rotates a screw 46 that is threaded into an intermediate body 48 to raise and lower the intermediate body 48 as the screw 46 is rotated one way or the other. A pair of guide rods 50 extend through brackets 52 to guide movement of the intermediate body 48. A lower body 54 is secured to intermediate body 48 for rotation relative thereto. A motor 56 is mounted on intermediate body 48 with lower body 54 mounted on the motor shaft 58 for rotation with the shaft.
An arm 61 is pivotally mounted at pivot 62 on bracket 64 mounted on the distal end of lower body 54. A motor 60 on lower body 54 drives a pulley 63 on arm 61 through a jackshaft 65.
Thus, the entire carriage 10 can be moved horizontally by horizontal support 12 and vertically by the vertical support 18 of FIG. 6. Lower body 54 of the carriage 10 can be rotated through a full circle. Arm 61 carrying detection head 14 can be pivoted through at least 180°. This combination of movements permits the detection 14 head to be positioned in any desired position relative to any portion of a breast surface.
In order to perform a complete breast examination, a person lies face-up on a bed 67 mounted on a position adjusting assembly 69 as seen in FIG. 2. The bed will be positioned generally below detection head 14 of FIG. 1.
Bed 67 has a comfortably padded upper surface, with matrix boards 66 adjacent to the shoulders of person 68. Conventional optical measuring means (not shown) can be provided to locate the exact position of arms, shoulders and neck relative to the matrix board 66 pattern during a first examination. Then, when the person 68 is again positioned on the bed 67 for a later examination, the optical system in conjunction with conventional software can again determine the person's position relative to matrix boards 66 and the position of the bed 67 can be adjusted in accordance with stored location information to place the person in substantially the identical position as for the first examination. Further, if person 68 were to move during the examination, the optical system can detect and correct for the change in position. It is highly desirable that the person 68 be positioned as identically as possible for each of the periodic examinations.
The underside of bed 67 includes conventional tubular bearings (not seen) through which horizontal guide rods 70 pass. A central threaded rod 72 engages end bearings 74 on assembly 69 and passes through a conventional motor driven nut assembly 76. As the motor driven nut assembly 76 is rotated in one direction or the other, bed 67 will be correspondingly moved sideways. Similarly, a pair of guide rods 78 extend between end walls 80 of assembly 69. Guide rods 70 and 78 are each arranged in a set of at least two parallel guide rods. A central threaded rod 82 passes through a conventional threaded block (not seen) secured to the underside of bed 67. A motor 84 rotates threaded rod 82 to move the bed 67 in either lengthwise direction, as desired. The overhead end blocks 26 and 28 (FIG. 1) are mounted on posts 85, the lower portions of which are seen in FIG. 2.
The operating structure of detection head 14 is detailed in schematic elevation view in FIG. 3. A removable connection 86 for main housing 87 mounts detection head 14 on arm 61. Preferably, detection head 14 is rotatable relative to arm 61 by a motor 88.
A detector housing 90 for palpation finger 92 and sensor 94 for sensing distance, color and temperature is mounted on main housing 87 through arms 96 and 98. Finger 92 is designed to act like a physician's palpating finger in a manual breast examination. Typically, finger 92 will be formed from a sturdy, disposable material, such as glass
Sensor 94 includes a distance measuring mechanism, of the sort used in cameras and the like, for providing precise distances between the breast surface and the sensor. If desired, a plurality of spaced range finders may be used to assure that palpation finger 92 is oriented perpendicular to the breast surface.
A conventional means for measuring the color of the breast surface being examined is included in sensor 94. Typically, this can be a conventional prism for breaking up incoming light and refracting each color of light to an independent photo electric or photo resistive sensor.
Palpation finger 92 is secured to a distal end of a shaft 100 that is slidable through housing 90 and pivoted at its proximal end to a distal end of arm 102 at pivot point 104. Arm 102 is rotatable about an axis 106 centrally located along arm 98. The proximal end of arm 102 is pivotally connected to drive shaft 108 at pivot point 110. When shaft 108 is moved axially by an actuator within actuator housing 112 (as detailed below in conjunction with the description of FIG. 4) shaft 100 and palpation finger 92 move a proportional distance in the opposite direction. As discussed below, a laser reader in reader housing 114 detects movement of shaft 108 and the feedback resistance to movement experienced by palpation finger 92 when pressing against breast tissue.
An error correction sensor 116 is provided on detector housing 90, cooperating with a member 119 mounted on shaft 100 to detect and correct positioning errors. It is possible that moving components of the detection head 14 mechanism shown in FIG. 3 may not be positioned correctly any time after coils 118 (FIG. 4) have been activated and repositioned. Resetting the position of the moving components , e.g., detection head 90, shaft 100, arm 102, and therefore palpation finger 92, is accomplished by the first coil 118 at the left as seen in FIG. 4. Slight changes in position of the breast skin, due to breathing or the like, is sensed by finger 92 and a corresponding position correction signal is sent to the leftmost coil 118 to correct for that displacement. While this precision is often not required, it is available if needed.
The internal components within actuator housing 112 and reader housing 114 are schematically illustrated in FIG. 4. A series of electromagnetic coils 118 are arranged in a uniformly spaced relationship along a central tube 120. An end shaft 122 is axially secured to the proximal end of shaft 108 and extends into tube 120. Shaft 108 slides in a sleeve 123.
End shaft 122 is formed from a magnetic material so that when coils 118 are actuated sequentially, beginning with the coil adjacent to the end shaft 122 fastened to shaft 108, the magnetic forces will tend to pull end shaft 122 into tube 120. As shown in FIG. 3 , this pulls shaft 108, arm 102 and shaft 100 and pressing palpation finger 92 toward an adjacent breast.
The magnetic forces provide a rather “soft” pull so that breast tissue can stop the advance of palpation finger 92 without severe compression. The distance the finger advances will be in proportion to the density of the tissue, with a lump of more dense tissue resisting penetration, so the distance the finger advances will be less. This arrangement of arm 102, shafts 100 and 108 with magnetic coils 118 could be thought of as a weighing scale where breast tissue density corresponds to the object to be weighed and the magnetic actuator is the standard portion of weight placed on the other side of the scale.
In operation, the first coil of coils 118 will be actuated, moving palpation finger 92 a predetermined distance. Typically the coil is powered up stepwise, at about 250 mv per step up to about 10 volts maximum. The pressure change per step is typically only about 10 grams per mm 2 per step. If tissue resistance is low, the second coil of coils 118, and others in sequence, will be similarly actuated, further moving the finger 92. Eventually, tissue resistance will reach a predetermined level and the distance traveled by the finger 92 will be measured, as detailed below, and the information transferred to conventional information storage means.
The mechanism for encoding and transmitting the palpation information to the storage and use station (computer center 17) is enclosed in reader housing 114. As seen in FIG. 4, a conventional laser optic card 124, using technology as applied in musical compact disks but with a single straight track, is carried by shaft 108. A laser card reader 126 reads the shaft 108 position from the card 124 and transmits the encoded information to the information collection station. There, the information can be converted to machine language or any desired format for interpretation by conventional software systems of the sort used in CAT scan systems or other medical scanning systems. Any error or mechanical tilt is detected in real time by error correction sensor 116 that filters out any mechanical movement other than the desired palpation movement.
A typical laser card 127 of the sort used in reader 126 is schematically illustrated in FIG. 4a. Card 127 has a series of reflecting areas 129 separated by non-reflective areas 131. While non-reflecting areas 131 could be light absorbing, generally it is preferred that they be transparent so the incident light will pass through. A laser transmitter 133 directs a laser beam 135 against the patterned area of laser card 127. When the laser beam 135 hits a reflecting area 129, reflected light is picked up by a receiver 137. As card 127 is moved transversely, conventional software can count the pattern of reflected pulses to measure movement of shaft 108 and, ultimately, palpation finger 92. The reflecting areas 129 can be as small as about 0.001 mm for highly precise movement measurement.
An adjustment mechanism 128, such as a threaded adjustment shaft acting similar to a turnbuckle, is provided to adjust the position of shaft 108 relative to the array of electromagnetic coils 118. The maximum excursion of shaft 108 is limited by pin 130 extending from shaft 108 and limit switches 132.
The unit will thus sequentially test areas to provide a “picture” of the entire breast surface, revealing density changes indicative of tumors on a very fine scale, in a manner similar to the images produced in MRI, CAT and other physical scanning methods.
To provide the maximum consistency of results from one examination to the next, it is highly desirable that the person and the breasts be positioned as identically as possible for each examination. The movable bed arrangement shown in FIG. 2, in cooperation with the locator head 16 schematically illustrated in FIG. 5, provides accurate positioning by locating the position of a person 68 on the bed 67 and actuating the various carriage 10, bed 67 and detection head 14 movement mechanisms under computer control to locate the breast to be examined in substantially the same position it was in at the last prior examination.
A digital camera 134 provides a digitized image of the breast and patient in a matrix manner to supply sufficient data for the ongoing examination session and the pre-positioning of the patient whenever a new image is required. A computer system can compare the original image to a subsequent image at the start of a subsequent examination so that the patient's position can be adjusted until the images match.
A white light source 136 is provided with a schematically illustrated focussing lens system including lens 138, a lead screw 140 rotatable by motor 142 and threaded through a lens mount bracket 144 to focus a light spot on the breast surface. As the spot of light is moved transversely and focussed at different depths along the breast, the scan can be saved in computer memory in a conventional manner to produce a three-dimensional image of the breast.
In addition, a laser scanner 146, including a laser emitter 148 and a focussing system 150 for producing a small spot on the breast being examined may be used in the same way as the white light spot to create a three-dimensional image. Typically, a 680-820 nm, 0.0095 mw laser may be used, since that laser has sufficient power for imaging without damaging the skin.
A window 152 of glass or plastic that is transparent to the white light and laser light closes the bottom of locator head 16. A similar window 154 covers the side of head 16 adjacent to camera 134.
The vertical support mechanism 18 for raising and lowering the entire carriage 10, as seen in FIG. 1, is illustrated in FIG. 6. Vertical guide rods 38 extend from a sturdy base 156 to a top plate 158. End blocks 26 and 28 carry horizontal support 12 (FIG. 1, omitted from FIG. 6 for clarity) for vertical movement therealong.
A powerful motor 160 rotates the sturdy lead screw 40 threaded through block 28. An upper limit switch 164 and a lower limit switch 166 prevent movement of horizontal support 12 beyond desired limits. For a very strong, sturdy assembly, base 156 will rest on the floor or a sub-floor so that bed assembly 67 could be positioned within a frame formed by base 156, top plate 158 and vertical guide rods 38.
The image produced by either of these light spots produced at a first examination can be compared to an initial image produced at a later examination to adjust the breast position to substantially match the original position. This will aid in re-examining a suspicious spot or lump found in the initial examination during later examinations.
The three-dimensional images can be divided into a matrix of cubes or slices with geometric indicia (e.g., a cube might be identified as cube 2,4,9 on an x-y-z axis basis) and location scan be directly compared between the light spot image and the finger palpation locations.
A second embodiment of internal components of a detection head for detecting changes in density, hardness, and the like in breast tissue in as elected very small area is schematically illustrated in FIG. 7.
A permanent magnet 200 mounted on a non-magnetic rod 202 is movable along the axis of the rod 202 centerline. Suitable guides 204, such as rollers, ball bearings, a sleeve or the like, allows smooth, low resistance, axial movement of rod 202. Permanent magnet 200 faces an electromagnet head 206 mounted on a shaft 207 and fixed to housing 208. Poles of permanent magnet 200 and electromagnet head 206 (when activated) have the same poles juxtaposed, here having north poles adjacent to each other as indicated, with the electromagnet south pole at 210. Electromagnet head 206 is powered by any suitable number of powered coils 212, connected at terminal 214 to a power source via wires 216.
Since the magnets 200, 206 have the same poles opposite each other, the arrangement will tend to “push” the magnets apart as soon as electromagnet coils 212 are activated. The intensity of this “pushing” force can be varied in accordance with the number of turns in coil 212 and the power provided thereto.
A palpation tip 218 (i.e., palpation finger 92), as detailed in FIG. 11, is mounted on the distal end of rod 202. Tip 218 is brought into contact with(or to a predetermined distance from) the breast surface by carriage 10 as described above. Coil 212 is energized to increase the field around shaft 207 to increase the field at electromagnet head 206 and force permanent magnet 200 further away from electromagnet head 206, which moves tip 218 against the breast. The breast tissue is depressed at the point of contact, with tissue elasticity pressing tip 218 and non-magnetic rod 202 back toward coil 206 in accordance with tissue elasticity and hardness at the contact point.
Variations in this back pressure as represented by the extent to which the tip presses into the breast tissue are transmitted to the recording instrumentation by any suitable means for measuring the movement of tip 218. Typically, the position of tip 218 may be measured by the mechanism shown in FIGS. 4 and 4a, as discussed above. Another embodiment of a tip 218 position measuring system is shown in FIG. 13, described below.
The resilient mounting of permanent magnet 200 resulting from the field between the two magnets 200, 206 will permit the permanent magnet 200, should it strike a breast or other surface during positioning of detection head 14, to provide sufficient “give” to prevent injury or damage to the breast or other surface.
Another embodiment of internal components of the detection head is illustrated in FIG. 8. A permanent magnet 222 is mounted on the proximal end of an actuator rod 224 which is slidable along a sleeve 226 mounted on housing 228. Atip 218 of the sort detailed in FIG. 11 is secured to the distal end of rod 224.
A second permanent magnet 230 is mounted on a holder 231 coaxial with rod 224. Same poles (north to north or south to south) on each of magnets 222 and 230 face and repel each other. Holder 231 is supported on a disk 232 slidable within housing 234 coaxial with rod 224. A sleeve 236 is preferably mounted on holder 231 to aid in guiding movement of rod 224.
Detection head 14 is moved as discussed above to bring palpation tip 218 into proximity with a selected location along the breast surface. When tip 218 is initially brought into proximity to the breast surface, rod 224 will hang down and the force of gravity will cause the rod to move to a point where the gap between magnets 222 and 230 will increase.
A motor 238 mounted in housing 234 drives a lead screw 240 which is threaded through a corresponding female thread 241 in disk 232. Motor 238 may be any suitable motor, such as a low rpm DC motor or a stepper motor. Rotation of lead screw 240 will move magnet 230 toward magnet 222 decreasing the intermagnet gap until breast resistance to penetration of tip 218 will return the intermagnet gap to a predetermined distance. The distance that holder 231 and disk 232 move is representative of breast density characteristics at the contact point. A conventional sensor 242 counts the revolutions of motor 238 to measure the corresponding degree of penetration of tip 218 into the breast.
Conventional safety sensors 244 may be provided to limit maximum movement of disk 232 (and movement of tip 218 in accordance with disk position) to prevent damage to the breast. As mentioned above, the magnetic field between magnets 222 and 230 will act as a resilient mount for tip 218, limiting damage or injury should the tip strike a breast or other surface.
FIG. 9 is a schematic diagram of another embodiment of detection head 14. Here, housings 228 and 234, actuator rod 224, sleeves 226 and 236, tip 218, holder 231, disk 232, motor 238 and sensors 242 and 244 are the same as shown in FIG. 8 and discussed above.
Instead of the spaced permanent magnets 222 and 230 used in the FIG. 8 embodiment, a spring 248 is fastened between the proximal end of rod 224 and holder 231. Spring 248 is selected to bias the two juxtaposed ends to a particular, predetermined spacing. As discussed in conjunction with FIG. 8, above, when the detection head 14 is positioned over a breast, tip 218 extends downwardly under the force of gravity. Motor 238 rotates to move disk 232 and holder 231 toward rod 224 until the gap between the distal end of holder 231 and the proximal end of rod 224 is at the original predetermined distance. The total movement of holder 231 is indicated by the number of revolutions of lead screw 240 as measured by counting sensor 242, which is indicative of breast tissue physical parameters.
Another embodiment of a detection head 14 is schematically illustrated in FIG. 10. Most components are the same as in the embodiments of FIGS. 8 and 9. However, here in place of a magnetic field or spring between the proximal end of rod 224 and the distal end of holder 231, a gas 250 is enclosed within sleeve 236 at the proximal end of rod 224. Sleeve 236 fits over rod 224 in a sealing arrangement to prevent pressurized gas 250 from escaping. Any suitable conventional seals may be used between rod 224 and sleeve 236.
Any axial physical force applied to rod 224 will change the gas pressure within sleeve 236 which will be measured by a conventional pressure sensor 252 capable of providing an electronic read-out. As before, when the tip 218 is aligned downwardly in contact with breast tissue, the pressure sensed will be lower. Lead screw 240 will be rotated by motor 238 to move holder 231 toward sleeve 236 to slide the sleeve 236 over rod 224, decreasing the volume and increasing pressure. The number of motor rotations, as counted by sensor 242, required to bring pressure up to a predetermined level is indicative of breast physical parameters, such as hardness and density.
A preferred palpation tip 218 configuration is schematically illustrated in FIG. 11. Tip 218 includes a rounded endpiece 254 which touches the breast surface. Any suitable material may be used, which should be disposable or washable. An end isolator 256, made up of a soft electrically insulating material prevents any static electricity discharge from the body from affecting the readings. A core member 258 connects endpiece 254 to base 260 which is secured in any suitable manner, such as threads, to rod 224. Side isolator 261 is generally tubular and is mounted on base 260 and spaced from core 258 to absorb any side impacts or sudden shakes.
FIG. 12 schematically illustrates a detection head 14 embodiment in which a plurality of tips 218 can be used in a closely spaced parallel array. Here, a plurality of tips 218, typically of the sort shown in FIG. 11, are mounted on actuator rods 262, typically rods similar to rods 224 described above, mounted for axial movement. Extension connectors 264, which may be rigid offset members of the sort schematically shown, inflexible cables, or the like, which are capable of transmitting motion from systems 266 of the sort shown in FIGS. 7-10, are connected between the output ends of rods 224 of those systems and tip 218 actuator rods.
An encoder slide is preferably included in each extension connector 264 to provide highly accurate readout of movement of each tip 218 during breast palpation. A preferred encoder slide assembly 268 is detailed in the schematic illustration of FIG. 13. Such an encoder slide assembly 268 may be used with any of the single tip arrangements of FIGS. 7-10.
As seen in FIG. 13, a preferred encoder slide assembly 268 includes an encoder slide 270 secured to rod 224, as schematically shown, for movement with that rod. Encoder slide 270 could be secured to any suitable part of rod 224 or to tip 218, as desired. Encoder slide 270 is transparent and includes a strip 272 bearing reflective dots 274 (or, in the alternative transparent dots in an otherwise opaque strip 272).
Decoder sensors 276 are provided on opposite sides of encoder slide 270, mounted on a housing 278 secured to housing 228 by any suitable mounting means. Decoder sensors 276 are optical or laser sensors and light emitters of the sort used with conventional music or computer compact disks.
Where dots 274 are reflective against a transparent background, light will pass from a light transmitting decoder sensor 276 to the other, which is a light detector. As encoder slide 270 moves, light will be reflected away when a reflective dot is present between the decoder sensors and will pass to the detector when a space between dots is present in the optical path. Thus, changes between receiving and not receiving light at the second decoder sensor will indicate movement of the slide and the number of pulses of light received during encoder slide 270 movement will indicate distance of movement of rod 224 and tip 218.
Where dots 274 are transparent against an opaque background, light pulses received at the detector decoder sensor 276 will indicate movement and distance of movement.
In the embodiment shown in FIG. 1, the optical locator head 16 is mounted separately from the arm 61 carrying the detection head 14 carrying the palpation finger 92 and sensor 94. FIG. 14 illustrates an alternate embodiment in which the optical locating head 16 and detection head 14 are both mounted at the end of the arm 61 on carriage 10.
Optical locator head 16 in the FIG. 15 embodiment includes a motor housing 282 secured by any conventional means, such as bolts (not seen) to detection head 16. A lens enclosure 284 is secured to motor housing 282 after precise positioning during manufacture of the assembly. A lens assembly 286 is slidably mounted within lens enclosure 284 for axial movement relative thereto.
A motor 288 is mounted within motor housing 282 and drives a lead screw 290 which is threaded through a nut 292 secured to lens assembly 286 to move the lens assembly 286 axially within lens enclosure 284.
Two laser beam positioning enclosures 294 are mounted on opposite sides of motor housing 282. Each enclosure 294 contains a pre-focussed conventional visible light (typically 680 to 850 nanometer) laser diode and light sensor unit 296. A prism 297 refracts light from the laser diode in unit 296 toward the breast being examined, typically along schematically indicated light beams 298. Light reflected from the breast surface passes back through prism 297 to the sensor in unit 296. This diode and sensor unit 296 operates in the same manner as conventional compact disk readers. The sensed returned light will be maximum when the beam from the beam generated by unit 296 is 90° to the breast surface. The mechanism described above for moving palpation tip 218 in three dimensions can thus adjust tip orientation to provide palpation at 90° to the breast surface. Two enclosures 294 with the components described above are preferably provided, with the first used to palpate one breast and the second used to palpate the second breast, since the size and shape of the two breasts are often somewhat different.
A motor 300 in each of the laser beam positioning enclosures 294 drives a lead screw 302 that engages an arcuate gear sector 304 to rotate each unit 296 and prism 297 about a center of rotation of the gear sector 304. Prism 297 preferably refracts light from the diode in unit 296 at 90°. The laser diode within unit 296 generates a laser beam that produces a red dot on the breast being examined. A conventional sensor 306 within each enclosure 294 counts rotation of lead screw 302 and is calibrated to indicate the exact distance to the surface upon which the dot appears when the beam is 90° to the surface. The system computer then can conventionally calculate a three dimensional image of the breast surface from a number of these angle readings.
Lens assembly 286, in conjunction with a light sensor 308, a pre-focussed sensor lens 310 and lenses 312 operate in the same manner as conventional camera automatic focussing systems to bring the breast surface into sharp optical focus by rotating lead screw 290 as necessary. A position sensor 313 counts rotation of lead screw 290 to provide information to the central computer as to the position of focus. Since optical locator head 16 moves in conjunction with detection head 14, when locator head 16 is moved to focus on the breast surface, palpation tip 218 will be brought into the predetermined contact with the breast tissue.
Extreme position sensors 314 are preferably provided to sense movement of lens enclosure 284 to the ends of its desired range of movement and prevent damage which might be caused by movement outside the selected range. Sensors 314 may be any conventional sensors, such as pressure switches, which can turnoff motor 288.
In operation, either of the locator head 16 embodiments as shown in FIG. 5 or 15 can be conventionally programmed to map an entire breast step by step. The horizontal and vertical (X and Y) movement of the carriage 10 takes locator head 16 to all of the selected points across the breast. The focussing mechanism within motor housing 282 and lens enclosure 284 will continually focus sensor 308 to provide the necessary Z direction alignment. The position sensor 313 will count the revolution of motor 288 while the motor is bringing lens assembly 286 to the point of focus to continuously provide lens position information.
Once locator head 16 has visited all desired points on the breast and has calculated its distance from every visited point, the computer can provide a conventional drawing in three dimensions of the entire breast. During palpation of the breast, location head 16 verifies the address being palpitated. Also, location head 16 will automatically compensate for breast movement as the patient breathes. If desired, a video camera 316 may be mounted on locator head 16, as seen in FIG. 14, to provide a general view of the breast during palpation.
Thus, the apparatus of this invention will provide an accurate map of the breast, will detect tissue density anomalies and will accurately re-examine the breast from time to time to monitor any changes in breast density anomalies.
While certain specific relationships, materials and other parameters have been detailed in the above description of preferred embodiments, those can be varied, where suitable, with similar results. Other applications, variations and ramifications of the present invention will occur to those skilled in the art upon reading the present disclosure. Those are intended to be included within the scope of this invention as defined in the appended claims.

Claims (53)

What is claimed is:
1. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance; and
c. a controller in communication with the palpation finger and the detection device that records the distance traveled by the palpation finger and determines at least one characteristic of the breast tissue.
2. The apparatus of claim 1, wherein the controller further records a location of the palpation finger in each of three-dimensions and the force used during palpation at the location to determine the at least one characteristic of the breast tissue for the location.
3. The apparatus of claim 1, wherein the controller positions the at least one palpation finger to a pre-determined location on the surface of the breast tissue.
4. The apparatus of claim 1, wherein the at least one characteristic of the breast tissue includes density.
5. The apparatus of claim 1, wherein the at least one characteristic of the breast tissue includes dimensions of tissue having similar, pre-determined density.
6. The apparatus of claim 1, further comprising a location device that aligns a longitudinal axis of the palpation finger perpendicular to the surface of the breast tissue.
7. The apparatus of claim 3, further comprising a movable bed upon which a patient lies face up for examination, wherein the location device positions the bed to align breasts of the patient in a same location as in a prior examination.
8. The apparatus of claim 1, wherein the palpation finger is movable in three-dimensions across an entire breast surface, allowing perpendicular alignment of the palpation finger to any breast surface location providing sequential palpation capability for the entire breast surface.
9. The apparatus of claim 1, wherein the palpation finger is operably connected with a solenoid.
10. The apparatus of claim 9, wherein the controller applies a predetermined voltage to the solenoid to move the palpation finger a distance determined by resistance of the breast tissue.
11. The apparatus of claim 1, wherein the palpation finger is operably connected with an electromagnetic or electromechanical actuator.
12. The apparatus of claim 11, wherein the controller produces a signal causing the actuator to move the palpation finger a distance with a force against the surface of the breast tissue.
13. The apparatus of claim 1, wherein the detection device includes an optical encoder or a magnetic encoder.
14. The apparatus of claim 1, further comprising at least one sensor to map the surface of the breast tissue and to position the at least one palpation finger relative to the surface of the breast tissue.
15. The apparatus of claim 14, wherein the at least one sensor determines a distance the palpation finger is positioned relative to the surface of the breast tissue.
16. The apparatus of claim 14, wherein the at least one sensor determines an angle between a longitudinal axis of the palpation finger and the surface of the breast tissue.
17. The apparatus of claim 1, wherein the palpation finger is operably connected with a plurality of electromagnetic coils.
18. The apparatus of claim 17, wherein the electromagnetic coils are individually and sequentially actuated to increase the force of the palpation finger against the breast tissue, whereby the increased force of the palpation finger further advances the distance traveled by the palpation finger.
19. The apparatus of claim 18, wherein the electromagnetic coils continue to be individually and sequentially actuated until a pre-determined tissue resistance is reached, whereby increased tissue resistance lessens the advance of the palpation finger during increased force of the palpation finger against the breast tissue.
20. The apparatus of claim 19, wherein the distance traveled by the palpation finger is recorded when the pre-determined tissue resistance is reached.
21. The apparatus of claim 20, wherein the at least one characteristic of the breast tissue is determined based upon the force of the palpation finger against the breast tissue when the pre-determined tissue resistance is reached, the distance traveled by the palpation finger when the pre-determined tissue resistance is reached, and the pre-determined tissue resistance.
22. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance; and
c. a controller in communication with the palpation finger and the detection device that records the distance traveled by the palpation finger and determines at least one characteristic of the breast tissue; wherein the controller directs the at least one palpation finger in a continuous, automatic scanning pattern to palpate an entire surface of a breast.
23. The apparatus of claim 22, wherein the controller further stores in memory the continuous, automatic scanning pattern and the at least one characteristic of breast tissue determined for each location thereof creating a first examination result.
24. The apparatus of claim 23, wherein the controller compares the first examination with at least one subsequent examination result having the same scanning pattern to determine changes over time in the at least one characteristic of the breast tissue for each location thereof.
25. The apparatus of claim 23, wherein the controller produces an image of the breast tissue using the at least one characteristic of the breast tissue.
26. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance;
c. a controller in communication with the palpation finger and the detection device that records the distance traveled by the palpation finger and determines at least one characteristic of the breast tissue; and
d. at least one sensor to map the surface of the breast tissue or to positionally locate the at least one palpation finger relative to the surface of the breast tissue; wherein the at least one sensor includes a camera, an autofocus system, a rangefinder, an acoustic sensor, or an optical sensor.
27. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance;
c. a controller in communication with the palpation finger and the detection device that records the distance traveled by the palpation finger and determines at least one characteristic of the breast tissue; and
d. at least one sensor to map the surface of the breast tissue or to positionally locate the at least one palpation finger relative to the surface of the breast tissue; wherein the at least one sensor includes a digital camera and grid to establish investigation coordinates for use in comparing measurements made at some other time.
28. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance;
c. a controller in communication with the palpation finger and the detection device that records the distance traveled by the palpation finger and determines at least one characteristic of the breast tissue; and
d. at least one sensor to map the surface of the breast tissue or to positionally locate the at least one palpation finger relative to the surface of the breast tissue; wherein the at least one sensor measures color, or temperature, or both, of the breast tissue.
29. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance;
c. a location device that provides positional data to align the palpation finger relative to the surface of the breast tissue and produce an image of the breast tissue; and
d. a controller in communication with the palpation finger, the detection device and the location device, to position the palpation finger at a pre-determined location on the surface of the breast tissue, record the location of the palpation finger on the surface of the breast tissue, record a distance traveled by the palpation finger and determine at least one characteristic of the breast tissue for each location thereof.
30. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance;
c. a location device that provides positional data to align the palpation finger relative to the surface of the breast tissue and produce an image of the breast tissue; and
d. a controller in communication with the palpation finger, the detection device and the location device, to position the palpation finger at a pre-determined location on the surface of the breast tissue, record the location of the palpation finger on the surface of the breast tissue, record a distance traveled by the palpation finger and determine at least one characteristic of the breast tissue for each location thereof; wherein the controller directs the at least one palpation finger in a continuous, automatic scanning pattern to palpate an entire surface of a breast.
31. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance;
c. a location device that provides positional data to align the palpation finger relative to the surface of the breast tissue and produce an image of the breast tissue, wherein the location device includes a white light source and movable lens; and
d. a controller in communication with the palpation finger, the detection device and the location device, to position the palpation finger at a pre-determined location on the surface of the breast tissue, record the location of the palpation finger on the surface of the breast tissue, record a distance traveled by the palpation finger and determine at least one characteristic of the breast tissue for each location thereof.
32. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance;
c. a location device that provides positional data to align the palpation finger relative to the surface of the breast tissue and produce an image of the breast tissue, wherein the location device includes a laser scanner having a laser emitter and focussing system; and
d. a controller in communication with the palpation finger, the detection device and the location device, to position the palpation finger at a predetermined location on the surface of the breast tissue, record the location of the palpation finger on the surface of the breast tissue, record a distance traveled by the palpation finger and determine at least one characteristic of the breast tissue for each location thereof.
33. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a predetermined force against a tissue resistance;
c. a location device that provides positional data to align the palpation finger relative to the surface of the breast tissue and produce an image of the breast tissue, wherein the location device includes at least one laser diode and light sensor unit and an optical, focussing lens assembly; and
d. a controller in communication with the palpation finger, the detection device and the location device, to position the palpation finger at a pre-determined location on the surface of the breast tissue, record the location of the palpation finger on the surface of the breast tissue, record a distance traveled by the palpation finger and determine at least one characteristic of the breast tissue for each location thereof.
34. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a predetermined force against a tissue resistance;
c. a location device that provides positional data to align the palpation finger relative to the surface of the breast tissue and produce an image of the breast tissue, wherein the location device is incorporated with the detection device; and
d. a controller in communication with the palpation finger, the detection device and the location device, to position the palpation finger at a pre-determined location on the surface of the breast tissue, record the location of the palpation finger on the surface of the breast tissue, record a distance traveled by the palpation finger and determine at least one characteristic of the breast tissue for each location thereof.
35. A method for detecting anomalies in breast tissue, the method comprising the steps of:
a. depressing a surface of the breast tissue with a probe;
b. detecting a distance traveled by the probe; and
c. determining at least one breast tissue characteristic value based upon the distance traveled by the probe, the value indicative of a presence of an anomaly in the breast tissue.
36. The method of claim 35, wherein the probe is moved incrementally and steps (a) through (c) are performed at each of multiple locations.
37. The method of claim 36, wherein the multiple locations encompass an entire surface of a breast.
38. The method of claim 36, further including the step of storing positional information regarding each location and the at least one characteristic of breast tissue determined for each location thereby creating a first examination result.
39. The method of claim 38, further including the step of comparing the first examination result with at least one subsequent examination result having the same multiple locations to determine changes over time in the at least one characteristic of the breast tissue for each location.
40. The method of claim 39, wherein the at least one characteristic of the breast tissue is density.
41. The method of claim 35, wherein a force upon which the probe depresses the surface of the breast tissue is sequentially increased, whereby the sequentially increasing force of the probe further advances the distance traveled by the probe.
42. The apparatus of claim 41, wherein the force upon which the probe depresses the surface of the breast tissue continues to be increased until a pre-determined tissue resistance is reached, whereby increased tissue resistance lessens the advance of the probe during increased force of the probe against the breast tissue.
43. The apparatus of claim 42, wherein the distance traveled by the probe is detected when the pre-determined tissue resistance is reached.
44. The apparatus of claim 43, wherein determining the at least one breast tissue characteristic is further based upon the force of the probe against the breast tissue when the pre-determined tissue resistance is reached, the distance traveled by the probe when the pre-determined tissue resistance is reached, and the pre-determined tissue resistance.
45. A method for detecting anomalies in breast tissue, the method comprising the steps of:
a. positioning a probe at a predetermined location against a surface of breast tissue;
b. depressing the probe with a predetermined force against the surface of the breast tissue;
c. measuring a distance traveled by the probe;
d. determining a density value for the breast tissue based upon the distance traveled by the probe, the density value indicative of a presence of an anomaly in the breast tissue; and
e. storing the predetermined probe location, or the predetermined force, or the density value, or a combination thereof, to create an examination result, whereby the examination result can be compared to prior or subsequent examination results.
46. The method of claim 45, wherein steps (a) through (e) are performed for each of multiple predetermined locations.
47. The method of claim 46, wherein the multiple locations encompass an entire surface of a breast.
48. The method of claim 47, further comprising the step of comparing the examination result with at least one prior or subsequent examination result to determine a change over time in the density value of the breast tissue for each respective location, the change over time in the density value for each location being indicative of a presence of an anomaly in the breast tissue at the respective location.
49. The method of claim 46, further comprising the step of identifying a region of breast tissue having a predetermined density value.
50. The method of claim 45, further comprising the step of comparing the examination result with at least one prior or subsequent examination result to determine a change over time in the density value of the breast tissue, the change over time in the density value being indicative of a presence of an anomaly in the breast tissue.
51. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined, mechanically applied force against a tissue resistance; and
c. a controller in communication with the palpation finger and the detection device that records the distance traveled by the palpation finger and determines at least one characteristic of the breast tissue.
52. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined force against a tissue resistance, the distance traveled referring to a distance the finger advances along its longitudinal axis; and
c. a controller in communication with the palpation finger and the detection device that records the distance traveled by the palpation finger and determines at least one characteristic of the breast tissue.
53. An apparatus for detecting anomalies in breast tissue, comprising:
a. at least one palpation finger that palpates a surface of breast tissue;
b. at least one detection device that measures and transmits a distance traveled by the palpation finger while depressing the surface of the breast tissue at a pre-determined, and sequentially increasing, force until a pre-determined tissue resistance is reached; and
c. a controller in communication with the palpation finger and the detection device that records the distance traveled by the palpation finger and determines at least one characteristic of the breast tissue.
US09/874,077 1997-10-24 2001-06-05 Method and apparatus for detecting very small breast anomalies Expired - Fee Related US6507663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/874,077 US6507663B2 (en) 1997-10-24 2001-06-05 Method and apparatus for detecting very small breast anomalies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/957,648 US6192143B1 (en) 1997-10-24 1997-10-24 Apparatus for detecting very small breast anomalies
US09/241,193 US6351549B1 (en) 1997-10-24 1999-02-01 Detection head for an apparatus for detecting very small breast anomalies
US09/874,077 US6507663B2 (en) 1997-10-24 2001-06-05 Method and apparatus for detecting very small breast anomalies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/241,193 Continuation US6351549B1 (en) 1997-10-24 1999-02-01 Detection head for an apparatus for detecting very small breast anomalies

Publications (2)

Publication Number Publication Date
US20010031077A1 US20010031077A1 (en) 2001-10-18
US6507663B2 true US6507663B2 (en) 2003-01-14

Family

ID=22909647

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/241,193 Expired - Fee Related US6351549B1 (en) 1997-10-24 1999-02-01 Detection head for an apparatus for detecting very small breast anomalies
US09/874,077 Expired - Fee Related US6507663B2 (en) 1997-10-24 2001-06-05 Method and apparatus for detecting very small breast anomalies
US09/876,570 Expired - Fee Related US6400837B2 (en) 1997-10-24 2001-06-07 Location head for an apparatus for detecting very small breast anomalies

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/241,193 Expired - Fee Related US6351549B1 (en) 1997-10-24 1999-02-01 Detection head for an apparatus for detecting very small breast anomalies

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/876,570 Expired - Fee Related US6400837B2 (en) 1997-10-24 2001-06-07 Location head for an apparatus for detecting very small breast anomalies

Country Status (9)

Country Link
US (3) US6351549B1 (en)
EP (1) EP1152691A1 (en)
JP (1) JP2002536035A (en)
CN (1) CN1345203A (en)
AU (1) AU770192B2 (en)
BR (1) BR0007878A (en)
CA (1) CA2360725A1 (en)
IL (1) IL144601A0 (en)
WO (1) WO2000044281A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180314A1 (en) * 2003-03-11 2004-09-16 Promotions Unlimited, Inc. Training device for breast examination
US20090157057A1 (en) * 2007-12-18 2009-06-18 Searete LLC, a liability corporation of the State of Delaware Circulatory monitoring systems and methods
US20090157171A1 (en) * 2007-12-18 2009-06-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Treatment indications informed by a priori implant information
US20090287101A1 (en) * 2008-05-13 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287094A1 (en) * 2008-05-15 2009-11-19 Seacrete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287109A1 (en) * 2008-05-14 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287191A1 (en) * 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090292212A1 (en) * 2008-05-20 2009-11-26 Searete Llc, A Limited Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US9867668B2 (en) 2008-10-20 2018-01-16 The Johns Hopkins University Environment property estimation and graphical display

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6595933B2 (en) * 2000-03-31 2003-07-22 Artann Laboratories Self-palpation device for examination of breast with 3-D positioning system
US6468231B2 (en) * 2000-03-31 2002-10-22 Artann Laboratories Self-palpation device for examination of breast
US6712773B1 (en) * 2000-09-11 2004-03-30 Tyco Healthcare Group Lp Biopsy system
FR2822672B1 (en) * 2001-03-29 2004-03-05 Cognis Deutschland Gmbh APPARATUS FOR MEASURING MECHANICAL SURFACE PROPERTIES
US20040030672A1 (en) * 2001-08-01 2004-02-12 Garwin Jeffrey L Dynamic health metric reporting method and system
FR2830431B1 (en) * 2001-10-05 2004-07-02 Tijani Gharbi DEVICE FOR MEASURING SKIN CHARACTERISTICS AND MEASURING METHOD USING SUCH A DEVICE
US7203348B1 (en) * 2002-01-18 2007-04-10 R2 Technology, Inc. Method and apparatus for correction of mammograms for non-uniform breast thickness
JP4052504B2 (en) * 2002-01-29 2008-02-27 学校法人日本大学 Apparatus for measuring elasticity characteristics of living tissue
AUPS274102A0 (en) * 2002-06-03 2002-06-20 Pulmosonix Pty Ltd Measuring tissue mobility
US7505809B2 (en) * 2003-01-13 2009-03-17 Mediguide Ltd. Method and system for registering a first image with a second image relative to the body of a patient
US7204168B2 (en) * 2004-02-25 2007-04-17 The University Of Manitoba Hand controller and wrist device
GB0602739D0 (en) * 2006-02-10 2006-03-22 Ccbr As Breast tissue density measure
US8535308B2 (en) 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
US8357152B2 (en) 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
US20090216131A1 (en) * 2008-02-27 2009-08-27 James Geoffrey Chase Use of surface motion to identify mechanical properties of biological tissue
US8437832B2 (en) 2008-06-06 2013-05-07 Biosense Webster, Inc. Catheter with bendable tip
US9101734B2 (en) * 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
US9326700B2 (en) 2008-12-23 2016-05-03 Biosense Webster (Israel) Ltd. Catheter display showing tip angle and pressure
JP5605534B2 (en) * 2009-05-30 2014-10-15 国立大学法人 千葉大学 Palpation device, bed device, and abdominal diagnosis device using the same
US10688278B2 (en) 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
US8521462B2 (en) 2009-12-23 2013-08-27 Biosense Webster (Israel), Ltd. Calibration system for a pressure-sensitive catheter
US8529476B2 (en) 2009-12-28 2013-09-10 Biosense Webster (Israel), Ltd. Catheter with strain gauge sensor
US8798952B2 (en) 2010-06-10 2014-08-05 Biosense Webster (Israel) Ltd. Weight-based calibration system for a pressure sensitive catheter
US8226580B2 (en) 2010-06-30 2012-07-24 Biosense Webster (Israel), Ltd. Pressure sensing for a multi-arm catheter
US8731859B2 (en) 2010-10-07 2014-05-20 Biosense Webster (Israel) Ltd. Calibration system for a force-sensing catheter
US8979772B2 (en) 2010-11-03 2015-03-17 Biosense Webster (Israel), Ltd. Zero-drift detection and correction in contact force measurements
FR2972344B1 (en) * 2011-03-07 2014-01-31 Lape Medical DEVICE FOR MONITORING A MEDICAL PROSTHESIS AND THE HUMAN BODY
US8876735B2 (en) * 2011-05-26 2014-11-04 Southern Taiwan University Apparatus and methods for identifying a tissue inside a living body
US8523787B2 (en) * 2011-06-03 2013-09-03 Biosense Webster (Israel), Ltd. Detection of tenting
US9687289B2 (en) 2012-01-04 2017-06-27 Biosense Webster (Israel) Ltd. Contact assessment based on phase measurement
CN102908166B (en) * 2012-08-28 2014-11-12 华南理工大学 Scanning device and method for three-dimensional ultrasound elasticity imaging
CN102920429B (en) * 2012-10-07 2014-12-03 吴士明 Integrated device of mastopathy diagnosis and treatment
US9486233B2 (en) * 2013-04-26 2016-11-08 Iogyn, Inc. Tissue resecting systems and methods
WO2015121957A1 (en) 2014-02-14 2015-08-20 富士通株式会社 Palpation assistance device, palpation assistance method, and palpation assistance program
US20170181634A1 (en) * 2014-04-09 2017-06-29 Northeastern University Mechanical palpation for subsurface sensing device
CN104198591A (en) * 2014-08-28 2014-12-10 宁夏共享集团有限责任公司 Automatic ultrasonic detection device applicable to casting of complex structure
ES2532523A1 (en) * 2014-10-01 2015-03-27 Universidad Politécnica de Madrid Electromechanical mechanism locator of non-palpable lesions in mammograms (Machine-translation by Google Translate, not legally binding)
US10674917B2 (en) * 2015-04-24 2020-06-09 Board Of Regents, The University Of Texas System Device for the mechanical detection of underlying tissues
CN106264483A (en) * 2015-05-29 2017-01-04 上海温尔信息科技有限公司 A kind of breast carcinoma early warning system
EP3426130A4 (en) * 2016-03-10 2019-12-25 Biop - Medical Ltd Device for diagnosing a tissue
CN105615922B (en) * 2016-04-01 2018-08-03 舟山巨洋技术开发有限公司 A kind of ancillary equipment for helping to identify that Benign Thyroid Nodules are pernicious
TWI763719B (en) * 2016-10-05 2022-05-11 香港商慧創脊椎照護(香港)有限公司 Supporting structure for a testing devices, systems for evaluation of scoliosis and kyphosis and methods using the same
DE102016123010A1 (en) * 2016-11-29 2018-05-30 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Measuring device, measuring arrangement and method for determining measurement signals during a penetration movement of an indenter into a surface of a test specimen
CN108261182B (en) * 2018-02-11 2021-02-05 天津大学 Human face skin mechanical property testing device
CN108378871A (en) * 2018-02-12 2018-08-10 鲁媛媛 The device of breast ultrasound image complete sequence three-dimensional reconstruction can be achieved
CN108853702B (en) * 2018-05-15 2021-02-26 中国科学院苏州生物医学工程技术研究所 Novel intelligent medicine sprinkling system
CN108577844A (en) * 2018-05-18 2018-09-28 北京先通康桥医药科技有限公司 The method and system of opening relationships model based on pressure distribution data, storage medium
CN109330802B (en) * 2018-09-29 2020-11-13 嘉善非凡热处理有限公司 Moving device for whole body counter
CN111657977A (en) * 2020-05-28 2020-09-15 东北师范大学 Quick screening equipment of breast cancer initial stage

Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498114A (en) 1968-04-11 1970-03-03 Hewlett Packard Co Transducer for measuring force and displacement
US3933148A (en) 1973-04-16 1976-01-20 Lovida Ag Device for determining skin sensitivity
US3965727A (en) 1974-10-17 1976-06-29 Argabrite George A Hardness testing instrument
US4159640A (en) 1977-03-04 1979-07-03 L'oreal Apparatus for measuring the consistency or hardness of a material
US4250894A (en) 1978-11-14 1981-02-17 Yeda Research & Development Co., Ltd. Instrument for viscoelastic measurement
US4257705A (en) 1978-03-23 1981-03-24 Canon Kabushiki Kaisha Device for focus detection or distance detection
US4286602A (en) 1979-06-20 1981-09-01 Robert Guy Transillumination diagnostic system
US4407292A (en) 1978-08-14 1983-10-04 Jochen Edrich Procedure and apparatus for noncontacting measurement of subcutaneous temperature distributions
GB2173896A (en) 1985-04-12 1986-10-22 Oreal Investigation of the properties of a surface e.g. the elasticity of skin
EP0244274A1 (en) 1986-03-31 1987-11-04 Faro Medical Technologies Inc. 3-Dimensional digitizer for skeletal analysis
GB2206791A (en) 1987-07-17 1989-01-18 Dr Kevin Gordon Kelly Diagnostic instrument
US4930872A (en) 1988-12-06 1990-06-05 Convery Joseph J Imaging with combined alignment fixturing, illumination and imaging optics
DE3900561A1 (en) 1989-01-11 1990-07-12 Wolfgang Dr Neher Measurement device for diagnosis of breast tumours and other measurable changes in organs
US4984575A (en) 1987-04-16 1991-01-15 Olympus Optical Co., Ltd. Therapeutical apparatus of extracorporeal type
US5079698A (en) 1989-05-03 1992-01-07 Advanced Light Imaging Technologies Ltd. Transillumination method apparatus for the diagnosis of breast tumors and other breast lesions by normalization of an electronic image of the breast
US5078142A (en) 1989-11-21 1992-01-07 Fischer Imaging Corporation Precision mammographic needle biopsy system
US5107837A (en) 1989-11-17 1992-04-28 Board Of Regents, University Of Texas Method and apparatus for measurement and imaging of tissue compressibility or compliance
US5122644A (en) 1988-11-17 1992-06-16 Alps Electric Co., Ltd. Optical code reading device with autofocussing
US5225886A (en) 1989-09-18 1993-07-06 Hitachi, Ltd. Method of and apparatus for detecting foreign substances
US5265612A (en) 1992-12-21 1993-11-30 Medical Biophysics International Intracavity ultrasonic device for elasticity imaging
US5301681A (en) 1991-09-27 1994-04-12 Deban Abdou F Device for detecting cancerous and precancerous conditions in a breast
US5320111A (en) 1992-02-07 1994-06-14 Livingston Products, Inc. Light beam locator and guide for a biopsy needle
US5361767A (en) 1993-01-25 1994-11-08 Igor Yukov Tissue characterization method and apparatus
DE4343612A1 (en) 1993-12-16 1995-06-22 Uwe Dipl Ing Bluecher Cervix elasticity determn. method for detecting premature birth
US5432544A (en) 1991-02-11 1995-07-11 Susana Ziarati Magnet room display of MRI and ultrasound images
US5465722A (en) 1991-12-11 1995-11-14 Fort; J. Robert Synthetic aperture ultrasound imaging system
US5508825A (en) 1990-03-15 1996-04-16 Canon Kabushiki Kaisha Image processing system having automatic focusing device
US5519198A (en) 1991-10-15 1996-05-21 Gap Technologies, Inc. Electro-optical scanning system
US5524636A (en) 1992-12-21 1996-06-11 Artann Corporation Dba Artann Laboratories Method and apparatus for elasticity imaging
US5568811A (en) 1994-10-04 1996-10-29 Vingmed Sound A/S Method for motion encoding of tissue structures in ultrasonic imaging
US5632276A (en) 1995-01-27 1997-05-27 Eidelberg; David Markers for use in screening patients for nervous system dysfunction and a method and apparatus for using same
US5657760A (en) 1994-05-03 1997-08-19 Board Of Regents, The University Of Texas System Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy
WO1997031573A1 (en) 1996-02-27 1997-09-04 Artann Laboratories Method and device for mechanical imaging of breast
US5706822A (en) 1996-03-29 1998-01-13 Kozz Incorporated Method and computer program for creating individualized exercise protocols
US5730146A (en) 1991-08-01 1998-03-24 Itil; Turan M. Transmitting, analyzing and reporting EEG data
US5733739A (en) 1995-06-07 1998-03-31 Inphocyte, Inc. System and method for diagnosis of disease by infrared analysis of human tissues and cells
US5749364A (en) 1996-06-21 1998-05-12 Acuson Corporation Method and apparatus for mapping pressure and tissue properties
US5779634A (en) 1991-05-10 1998-07-14 Kabushiki Kaisha Toshiba Medical information processing system for supporting diagnosis
US5833634A (en) 1995-11-09 1998-11-10 Uromed Corporation Tissue examination
US5879312A (en) 1996-11-08 1999-03-09 Imoto Machinery Co., Ltd. Hardness tester for living body
US5922018A (en) * 1992-12-21 1999-07-13 Artann Corporation Method for using a transrectal probe to mechanically image the prostate gland
US5940802A (en) 1997-03-17 1999-08-17 The Board Of Regents Of The University Of Oklahoma Digital disease management system
US5957866A (en) 1995-07-03 1999-09-28 University Technology Corporation Apparatus and methods for analyzing body sounds
US5989199A (en) * 1996-11-27 1999-11-23 Assurance Medical, Inc. Tissue examination
US6005911A (en) 1995-11-17 1999-12-21 Trex Medical Corporation Large area array, single exposure digital mammography
US6015384A (en) 1998-08-31 2000-01-18 Acuson Corporation Ultrasonic system and method for tissue viability imaging
US6031930A (en) 1996-08-23 2000-02-29 Bacus Research Laboratories, Inc. Method and apparatus for testing a progression of neoplasia including cancer chemoprevention testing
US6032678A (en) 1997-03-14 2000-03-07 Shraga Rottem Adjunct to diagnostic imaging systems for analysis of images of an object or a body part or organ
US6055452A (en) * 1994-10-24 2000-04-25 Transcan Research & Development Co., Ltd. Tissue characterization based on impedance images and on impedance measurements
US6056690A (en) 1996-12-27 2000-05-02 Roberts; Linda M. Method of diagnosing breast cancer
US6058322A (en) 1997-07-25 2000-05-02 Arch Development Corporation Methods for improving the accuracy in differential diagnosis on radiologic examinations
US6091981A (en) * 1997-09-16 2000-07-18 Assurance Medical Inc. Clinical tissue examination
US6099471A (en) 1997-10-07 2000-08-08 General Electric Company Method and apparatus for real-time calculation and display of strain in ultrasound imaging
US6113540A (en) 1993-12-29 2000-09-05 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US6179790B1 (en) * 1997-10-20 2001-01-30 Assurance Medical, Inc. Layer of material for use with tissue examination device
US6186962B1 (en) 1997-10-28 2001-02-13 Alere Incorporated Method and device for detecting edema
US6190334B1 (en) 1999-05-24 2001-02-20 Rbp, Inc. Method and apparatus for the imaging of tissue

Patent Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498114A (en) 1968-04-11 1970-03-03 Hewlett Packard Co Transducer for measuring force and displacement
US3933148A (en) 1973-04-16 1976-01-20 Lovida Ag Device for determining skin sensitivity
US3965727A (en) 1974-10-17 1976-06-29 Argabrite George A Hardness testing instrument
US4159640A (en) 1977-03-04 1979-07-03 L'oreal Apparatus for measuring the consistency or hardness of a material
US4257705A (en) 1978-03-23 1981-03-24 Canon Kabushiki Kaisha Device for focus detection or distance detection
US4407292A (en) 1978-08-14 1983-10-04 Jochen Edrich Procedure and apparatus for noncontacting measurement of subcutaneous temperature distributions
US4250894A (en) 1978-11-14 1981-02-17 Yeda Research & Development Co., Ltd. Instrument for viscoelastic measurement
US4286602A (en) 1979-06-20 1981-09-01 Robert Guy Transillumination diagnostic system
GB2173896A (en) 1985-04-12 1986-10-22 Oreal Investigation of the properties of a surface e.g. the elasticity of skin
EP0244274A1 (en) 1986-03-31 1987-11-04 Faro Medical Technologies Inc. 3-Dimensional digitizer for skeletal analysis
US4984575A (en) 1987-04-16 1991-01-15 Olympus Optical Co., Ltd. Therapeutical apparatus of extracorporeal type
GB2206791A (en) 1987-07-17 1989-01-18 Dr Kevin Gordon Kelly Diagnostic instrument
US5122644A (en) 1988-11-17 1992-06-16 Alps Electric Co., Ltd. Optical code reading device with autofocussing
US4930872A (en) 1988-12-06 1990-06-05 Convery Joseph J Imaging with combined alignment fixturing, illumination and imaging optics
DE3900561A1 (en) 1989-01-11 1990-07-12 Wolfgang Dr Neher Measurement device for diagnosis of breast tumours and other measurable changes in organs
US5079698A (en) 1989-05-03 1992-01-07 Advanced Light Imaging Technologies Ltd. Transillumination method apparatus for the diagnosis of breast tumors and other breast lesions by normalization of an electronic image of the breast
US5225886A (en) 1989-09-18 1993-07-06 Hitachi, Ltd. Method of and apparatus for detecting foreign substances
US5107837A (en) 1989-11-17 1992-04-28 Board Of Regents, University Of Texas Method and apparatus for measurement and imaging of tissue compressibility or compliance
US5078142A (en) 1989-11-21 1992-01-07 Fischer Imaging Corporation Precision mammographic needle biopsy system
US5508825A (en) 1990-03-15 1996-04-16 Canon Kabushiki Kaisha Image processing system having automatic focusing device
US5432544A (en) 1991-02-11 1995-07-11 Susana Ziarati Magnet room display of MRI and ultrasound images
US5779634A (en) 1991-05-10 1998-07-14 Kabushiki Kaisha Toshiba Medical information processing system for supporting diagnosis
US5730146A (en) 1991-08-01 1998-03-24 Itil; Turan M. Transmitting, analyzing and reporting EEG data
US5301681A (en) 1991-09-27 1994-04-12 Deban Abdou F Device for detecting cancerous and precancerous conditions in a breast
US5519198A (en) 1991-10-15 1996-05-21 Gap Technologies, Inc. Electro-optical scanning system
US5465722A (en) 1991-12-11 1995-11-14 Fort; J. Robert Synthetic aperture ultrasound imaging system
US5320111A (en) 1992-02-07 1994-06-14 Livingston Products, Inc. Light beam locator and guide for a biopsy needle
US5524636A (en) 1992-12-21 1996-06-11 Artann Corporation Dba Artann Laboratories Method and apparatus for elasticity imaging
US5833633A (en) 1992-12-21 1998-11-10 Artann Laboratories Device for breast haptic examination
US5922018A (en) * 1992-12-21 1999-07-13 Artann Corporation Method for using a transrectal probe to mechanically image the prostate gland
US5265612A (en) 1992-12-21 1993-11-30 Medical Biophysics International Intracavity ultrasonic device for elasticity imaging
US5860934A (en) 1992-12-21 1999-01-19 Artann Corporation Method and device for mechanical imaging of breast
US5361767A (en) 1993-01-25 1994-11-08 Igor Yukov Tissue characterization method and apparatus
DE4343612A1 (en) 1993-12-16 1995-06-22 Uwe Dipl Ing Bluecher Cervix elasticity determn. method for detecting premature birth
US6113540A (en) 1993-12-29 2000-09-05 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US5657760A (en) 1994-05-03 1997-08-19 Board Of Regents, The University Of Texas System Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy
US5568811A (en) 1994-10-04 1996-10-29 Vingmed Sound A/S Method for motion encoding of tissue structures in ultrasonic imaging
US6055452A (en) * 1994-10-24 2000-04-25 Transcan Research & Development Co., Ltd. Tissue characterization based on impedance images and on impedance measurements
US5632276A (en) 1995-01-27 1997-05-27 Eidelberg; David Markers for use in screening patients for nervous system dysfunction and a method and apparatus for using same
US5733739A (en) 1995-06-07 1998-03-31 Inphocyte, Inc. System and method for diagnosis of disease by infrared analysis of human tissues and cells
US5957866A (en) 1995-07-03 1999-09-28 University Technology Corporation Apparatus and methods for analyzing body sounds
US5833634A (en) 1995-11-09 1998-11-10 Uromed Corporation Tissue examination
US6005911A (en) 1995-11-17 1999-12-21 Trex Medical Corporation Large area array, single exposure digital mammography
WO1997031573A1 (en) 1996-02-27 1997-09-04 Artann Laboratories Method and device for mechanical imaging of breast
US5706822A (en) 1996-03-29 1998-01-13 Kozz Incorporated Method and computer program for creating individualized exercise protocols
US5749364A (en) 1996-06-21 1998-05-12 Acuson Corporation Method and apparatus for mapping pressure and tissue properties
US6031930A (en) 1996-08-23 2000-02-29 Bacus Research Laboratories, Inc. Method and apparatus for testing a progression of neoplasia including cancer chemoprevention testing
US5879312A (en) 1996-11-08 1999-03-09 Imoto Machinery Co., Ltd. Hardness tester for living body
US5989199A (en) * 1996-11-27 1999-11-23 Assurance Medical, Inc. Tissue examination
US6056690A (en) 1996-12-27 2000-05-02 Roberts; Linda M. Method of diagnosing breast cancer
US6032678A (en) 1997-03-14 2000-03-07 Shraga Rottem Adjunct to diagnostic imaging systems for analysis of images of an object or a body part or organ
US5940802A (en) 1997-03-17 1999-08-17 The Board Of Regents Of The University Of Oklahoma Digital disease management system
US6058322A (en) 1997-07-25 2000-05-02 Arch Development Corporation Methods for improving the accuracy in differential diagnosis on radiologic examinations
US6091981A (en) * 1997-09-16 2000-07-18 Assurance Medical Inc. Clinical tissue examination
US6099471A (en) 1997-10-07 2000-08-08 General Electric Company Method and apparatus for real-time calculation and display of strain in ultrasound imaging
US6179790B1 (en) * 1997-10-20 2001-01-30 Assurance Medical, Inc. Layer of material for use with tissue examination device
US6186962B1 (en) 1997-10-28 2001-02-13 Alere Incorporated Method and device for detecting edema
US6015384A (en) 1998-08-31 2000-01-18 Acuson Corporation Ultrasonic system and method for tissue viability imaging
US6190334B1 (en) 1999-05-24 2001-02-20 Rbp, Inc. Method and apparatus for the imaging of tissue

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Cook et al., IEEE Transactions on Biochemical Engineering, Apr. 1981, vol. BME-28; pp. 366-371.
Koreska, J. and Smith, J.M., Portable Desktop Computer-Aided Digitiser System for the analysis of Spinal Deformities; Medical & Biological Engineering, Nov. 1982, pp. 715-726.
Sarazyan et al., Mechanical Introscopy-A New Modality of Medical Imaging for Detection of Breast and Prostrate Cancer, Proc. of the 8th Symposium on Computer Based Medical Systems, Jun. 9-10, 1995, pp. 4-5.
Sarazyan et al., Mechanical Introscopy—A New Modality of Medical Imaging for Detection of Breast and Prostrate Cancer, Proc. of the 8th Symposium on Computer Based Medical Systems, Jun. 9-10, 1995, pp. 4-5.
Sarvazyan, A.; Mechanical Imaging: A New Technology For Medical Diagnostics; International Journal of Medical Informatics; 1988, vol. 49, pp. 195-216.

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180314A1 (en) * 2003-03-11 2004-09-16 Promotions Unlimited, Inc. Training device for breast examination
US6817865B2 (en) 2003-03-11 2004-11-16 Promotions Unlimited, Inc. Training device for breast examination
US8317776B2 (en) 2007-12-18 2012-11-27 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US20090157057A1 (en) * 2007-12-18 2009-06-18 Searete LLC, a liability corporation of the State of Delaware Circulatory monitoring systems and methods
US20090157058A1 (en) * 2007-12-18 2009-06-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090157171A1 (en) * 2007-12-18 2009-06-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Treatment indications informed by a priori implant information
US8409132B2 (en) 2007-12-18 2013-04-02 The Invention Science Fund I, Llc Treatment indications informed by a priori implant information
US20090157056A1 (en) * 2007-12-18 2009-06-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US8403881B2 (en) 2007-12-18 2013-03-26 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US20090287120A1 (en) * 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287191A1 (en) * 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US8870813B2 (en) 2007-12-18 2014-10-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US20090287101A1 (en) * 2008-05-13 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US20090287109A1 (en) * 2008-05-14 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287094A1 (en) * 2008-05-15 2009-11-19 Seacrete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090292212A1 (en) * 2008-05-20 2009-11-26 Searete Llc, A Limited Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US9867668B2 (en) 2008-10-20 2018-01-16 The Johns Hopkins University Environment property estimation and graphical display

Also Published As

Publication number Publication date
WO2000044281A9 (en) 2001-07-26
US20010031077A1 (en) 2001-10-18
US20010043730A1 (en) 2001-11-22
IL144601A0 (en) 2002-05-23
US6400837B2 (en) 2002-06-04
BR0007878A (en) 2002-04-16
JP2002536035A (en) 2002-10-29
AU2746500A (en) 2000-08-18
AU770192B2 (en) 2004-02-12
WO2000044281A1 (en) 2000-08-03
US6351549B1 (en) 2002-02-26
EP1152691A1 (en) 2001-11-14
CA2360725A1 (en) 2000-08-03
CN1345203A (en) 2002-04-17

Similar Documents

Publication Publication Date Title
US6507663B2 (en) Method and apparatus for detecting very small breast anomalies
US6379041B1 (en) X-ray apparatus for producing a 3D image from a set of 2D projections
US6192143B1 (en) Apparatus for detecting very small breast anomalies
KR101156306B1 (en) Method and apparatus for instrument tracking on a scrolling series of 2d fluoroscopic images
CN100333692C (en) X-ray ct system, information processing method, and storage medium
US20060034421A1 (en) Method and apparatus for adjusting a scanning region in a computed tomography system
JPH02161962A (en) Mesuring and inspecting apparatus
JPH07171121A (en) Magnetic resonance device
CN110906880A (en) Object automatic three-dimensional laser scanning system and method
US6868171B2 (en) Dynamic color imaging method and system
JP2009537240A (en) Retrospective sorting of 4D CT into respiratory phase based on geometric analysis of imaging criteria
US5273043A (en) Medical imaging apparatus with accurate patient postioning
US5799059A (en) Phantom and method for accuracy and repeatability testing of positional mechanisms of computer assisted tomography and magnetic resonance imaging systems
EP2839307A1 (en) Magnetic resonance imaging with automatic selection of a recording sequence
JPH02504117A (en) X-ray tomography device with position detector
CN101422378A (en) Ultrasound diagnostic device
KR20160133048A (en) Device for catheter feeding and catheter system
US6115449A (en) Apparatus for quantitative stereoscopic radiography
CN1791359A (en) Apparatus and method for recording the movement of organs of the body
US20090227850A1 (en) Malignancy detection apparatus
WO2002033649A1 (en) A dynamic color imaging method and system
KR20140058595A (en) Column height sensing for extra-oral imaging
JP2009000398A (en) Magnetic resonance imaging system
CN219048595U (en) Spine ultrasonic scanning system
JPH06209912A (en) Magnetic resonance imaging device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ULTRATOUCH CORPORATION, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOULUER, FARID;REEL/FRAME:012500/0074

Effective date: 19990123

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20070114