US6616725B2 - Self-grown monopoly compact grit - Google Patents

Self-grown monopoly compact grit Download PDF

Info

Publication number
US6616725B2
US6616725B2 US09/934,459 US93445901A US6616725B2 US 6616725 B2 US6616725 B2 US 6616725B2 US 93445901 A US93445901 A US 93445901A US 6616725 B2 US6616725 B2 US 6616725B2
Authority
US
United States
Prior art keywords
monopoly
diamond
compact
seed crystal
grit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/934,459
Other versions
US20030044613A1 (en
Inventor
Hyun Sam Cho
John Chen
Kyung Yul Han
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/934,459 priority Critical patent/US6616725B2/en
Publication of US20030044613A1 publication Critical patent/US20030044613A1/en
Application granted granted Critical
Publication of US6616725B2 publication Critical patent/US6616725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/063Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/063Carbides
    • B01J2203/0635Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates generally to methods of forming synthetic diamond or polycrystalline diamond (PCD). More specifically, the present invention relates to a new, high pressure-high temperature (HPHT) sintered/synthesized, self-grown, monopoly compact grit and methods of preparation thereof.
  • HPHT high pressure-high temperature
  • Diamond is a gemstone known for its rarity and beauty. As an industrial material, its superior hardness and wear resistance make diamond a preferred material in a variety of applications. For example, diamond is used extensively as an abrasive in polishing operations. Additionally, diamond-tipped drills and cutting tools are indispensable in shaping and cutting extremely hard materials such as sintered carbide and quartz. In order to help meet the industrial demand for these types of tools, a number of techniques have been developed for the production of synthetic diamonds. While natural diamond is still used in many industrial applications, diamond synthesis is emerging as the solution to the problem of inadequate supply of this unique material.
  • Diamond has a cube lattice, in which each carbon atom is covalently bonded to four other carbons to form a tetrahedron. This structure is repeated throughout the crystal and it is believed that this configuration of carbon—carbon bonds produces the extreme hardness of diamond. It has been discovered that at high temperatures and pressures, the conversion of carbon to diamond occurs at an appreciable rate. This phenomenon gave rise to the first synthetic high-pressure diamonds fabricated in the early 1950's.
  • a synthetic diamond grit manufacturing method is disclosed in U.S. Pat. No. 2,947,609 (1960) to Herbert M. Strong, hereby incorporated by reference.
  • a polycrystalline diamond compact with a metal bonded carbide substrate is described in U.S. Pat. No. 3,745,623 (1975) to Robert Wentorf Jr. et al, hereby incorporated by reference.
  • a polycrystalline cubic boron nitride with a metal bonded carbide substrate is disclosed in U.S. Pat. No. 3,743,489 to Robert Wentorf Jr. et al, also hereby incorporated by reference.
  • the first method is the “temperature gradient method,” and the second is the “thin film solvent method.”
  • the “temperature gradient method,” involves using transitional metal elements, i.e. Fe, Co, Ni, Cr, Mn, Pt, etc. or alloys thereof, as a solvent metal.
  • transitional metal elements i.e. Fe, Co, Ni, Cr, Mn, Pt, etc. or alloys thereof.
  • a diamond seed crystal is separated from a carbon source by the solvent metal so that the carbon source and the diamond seed crystal are not in contact with one another.
  • This assembly By maintaining the temperature of the seed crystal at a relatively lower level than that of the contact surface of the carbon source and solvent metal, and allowing this assembly to stand at a high pressure and high temperature causes epitaxial growth of diamond on the seed crystal. See U.S. Pat. Nos. 4,034,066 and 4,632,817, which are hereby incorporated by reference.
  • the “thin film solvent method” can be performed in two different ways.
  • the first way consists of creating a reaction mixture of a non-diamond carbon source powder, a solvent metal powder, and seed crystal.
  • the reaction mixture is then placed under temperature and pressure conditions in the diamond stable region, sufficient to convert the non-diamond carbon source into diamond in a relatively short time.
  • the second way is by creating a reaction system which includes a plate of a non-diamond carbon source, or a laminate thereof, a plate of solvent metal, and optionally a seed crystal, and placing the system at a temperature and pressure within the diamond stable range, such that the non-diamond carbon source is converted into diamond within a relatively short period of time.
  • the above described temperature gradient method is capable of synthesizing a relatively large grain size crystal.
  • the synthesis reaction takes a very long time, thus increasing the operation costs of the apparatus required to affect the carbon to diamond transition.
  • the method requires a temperature gradient to be created in a relatively small sample chamber, the number of crystals which can be produced in a single reaction is small. Therefore, the small crystal yield increases the production costs of each crystal.
  • the “thin film solvent method” solves many of the problems inherent in the “temperature gradient method”, but increases the frequency of other problems such as spontaneous nucleation. Such problems give rise to great difficulty in synthesizing crystals of a large grain size, and make the crystals produced inferior in quality as they may be contaminated with many inclusions.
  • a process for yielding a higher commercial quality valued diamond is the key to success.
  • a higher commercial value diamond is directly related to both a higher product quality and a larger crystal size.
  • Product quality is generally graded according to the compressive and impact strength of the crystal. Crystal shape and internal clarity are also barometers of quality. A large size crystal is more valued as compared to a small size crystal.
  • the manufacturing cost for growing larger diamond in the HPHT process is higher because of the required longer reaction/synthesis time and a relatively lower yield under HPHT conditions.
  • Desirable shapes include cubic, octahedral, and needle-like shapes. The production of crystals having such shapes is not readily commercially available.
  • PCD polycrystalline diamond
  • PCBN cubic boron nitride compact
  • the quality and performance of diamond grits incorporated into tools such as saw blades, other cutting tools, and drill bits is primarily based upon the length of time which the grit will last under the impact and wear loads imposed thereon while being used in contact with a workpiece such as stone, concrete, or engineered materials.
  • a workpiece such as stone, concrete, or engineered materials.
  • compressive and impact loading are key indicators of the potential performance of a diamond grit.
  • the impact strength of a single diamond crystal is far inferior to that of a polycrystalline diamond (PCD).
  • a “self-grown monopoly compact grit”, made by the process of this invention has unique physical properties as well as being economically feasible for large scale manufacture.
  • Such a combination of advantages provides a significant improvement in the art of diamond synthesis.
  • Particular areas of application of the crystals or PCD grits of this invention are the areas of saw blade, drill bit, cutting tool, dies, and grinding formations. In these areas, the impact strength of the diamond crystal provides a tool with greatly increased resistance to wear.
  • the crystals or PCD grits of the present invention may be formed in a number of desirable shapes in an economic and efficient manner.
  • PCDBN polycrystalline diamond boron nitride grit
  • Another object of the invention is to provide stronger and more resilient diamond or CBN grits, as compared to conventionally grown diamonds or CBN grits.
  • a further object of the present invention is to provide a method for producing improved diamond or CBN grits in a cost effective manner.
  • Still another object of the present invention is to provide a new PCDBN compact grit product and a method of preparing the same.
  • the diamond or CBN grit produced by the HPHT process may be either a single crystal or a polycrystalline structure grown over a seed material.
  • the diamond or CBN compact grit is designed to be incorporated into a superabrasive industrial tool for cutting, drilling, machining, drawing, dressing, grinding, and/or polishing.
  • the basic process of diamond synthesis used by the present invention is similar to conventional diamond synthesis, (i.e. using a pressure-temperature-time cycle in the proper thermodynamic region with an available carbon source in the presence of a suitable catalyst solvent).
  • monopoly compact grit is an as-sintered monopoly diamond with a polycrystalline diamond layer coated around a seed crystal.
  • the improved HPHT process includes a series of special chemical treatments for the preparation of monopoly precursor materials which include metallic coating and fluidized bed granulation processes.
  • monopoly precursor materials which include metallic coating and fluidized bed granulation processes.
  • the HPHT process of the present invention allows the manufacturing of grits in desirable shapes.
  • the large crystals (20 ⁇ 50 mesh) have significantly improved crush strength over similar crystals produced by known HPHT processes.
  • a PCDBN compact grit may comprise a newly grown diamond phase over a CBN seed. Further, either a CBN coating or a diamond phase may be grown over a PCD grit seed.
  • the newly grown diamond phase is either a single crystal or a polycrystalline structure.
  • the newly grown CBN phase can also be a single CBN crystal structure or a polycrystalline CBN structure.
  • the monopoly compact grit is formed of the following optional materials: a seed crystal, a polylayer coating, and a reactive or non-reactive medium material.
  • the self-grown monopoly diamond, CBN, PCD, or PCDBN compact grits of this invention are made possible by an improved HPHT process comprising the following steps:
  • a crystal seed is properly selected for type (either diamond, CBN, or non-diamond), the size (50 ⁇ 270 mesh); and an optional coating (metallic or non-metallic).
  • the seed crystal may include either a single mono-crystal or multiple crystals bound together to form a single composite multiple-grain seed.
  • the optimal coating layer is prepared from conventional non-electrolytic, electrolytic, and pack-diffusion micro-vaporizing processes as well as spray type granulation processes, which are all well known in the art. Thus, the coating layer is either of a uniform coating thickness or in the form of a loosely packed fine coating powder.
  • a polylayer precursor is prepared by mixing diamond or CBN powders in a suitable bonding agent. The mixture is then applied onto the entire surface of the seed crystal through a counterflow liquid-gas fluidized bed diffusion process. To make a predetermined shaped precursor material, a subsequent simple shaping step can be applied to provide a desirable shape to the seed monopoly crystal.
  • the monopoly seed crystal having been coated with the polylayer precursors is packed in a proper medium to form a monopoly precursor.
  • the proper medium material is either reactive or non-reactive with diamond or CBN.
  • a mixture of monopoly crystal and graphite powder and/or disc is one example.
  • a mixture of monopoly precursor crystal and alumina powder is another example.
  • FIG. 1 a is a schematic view of a coated seed having only one coat of catalyst metal solvent/binding material.
  • FIG. 1 b is a schematic view of a coated seed having multiple coats of a catalyst metal solvent/binding material.
  • FIG. 1 c is a schematic view of an uncoated seed.
  • FIG. 1 d is a schematic view of a multi-grain seed.
  • FIG. 2 a is a schematic view of a coated seed having a needle shape.
  • FIG. 2 b is a schematic view of a coated seed having a round or spherical shape.
  • FIG. 3 a is a top view of a monopoly precursor.
  • the monopoly precursor has a seed in the center which may be of either a diamond or a non-diamond material, a catalyst metal solvent coating and a diamond forming powder, shaped around the seed into a configuration which is desired for the ultimate shape of the synthesized crystal.
  • FIG. 3 b is a view of a monopoly precursor, as in FIG. 3 a, except the seed crystal is uncoated.
  • FIG. 4 a is a perspective view of a compacted pellet disc which contains a plurality of monopoly precursors assembled therein.
  • FIG. 4 b is a perspective view of a reaction cup assembly including a substrate disc which contains a plurality of monopoly precursors assembled therein.
  • FIG. 4 c is a perspective view of a reaction cup assembly without a substrate disc which contains a plurality of monopoly precursors assembled therein.
  • FIG. 4 d is a top view of the assembly of FIG. 4 b or 4 c wherein the seeds are in an array.
  • FIG. 5 a is a perspective view of a plurality of compacts assembled for HPHT processing, each of which contains a plurality of monopoly precursors therein.
  • FIG. 5 b is a perspective view of a plurality of compacts having spacers between layers.
  • FIG. 6 is a top view of a plurality of compact pieces and finished top surface of the as-pressed reaction cup assembly of FIGS. 4 b, 4 c and 5 b after the disc has been broken into several pieces.
  • FIG. 7 is a schematic view of a polycrystalline grit having a predetermined shape and ready for incorporation into a tool.
  • FIGS. 8 a and 8 b are schematic views of a final self-grown monopoly compact grit with a substrate disc in the form of either PCD compact grit or individual grit, respectively.
  • FIGS. 9 a through 9 e are schematic views of monopoly compact grits as formed in the experiments of Table 1.
  • Synthetic diamond products may take many forms such as mesh, sintered polycrystalline compacts, chemically vapor deposited polycrystalline diamonds, and gems.
  • Mesh products consist of fine, sand-like diamond crystals ranging in size from submicron to coarse 20 mesh. The crystals occur either as single crystals or in small multiple crystal clusters. Such materials include those marketed by General Electric Company under the trade names MBSTM, MGBTM, and RVGTM.
  • Sintered polycrystalline compacts consist of diamond grains that have been sintered into solid forms such as discs by connecting diamond powders through the action of a catalyst under diamond growing conditions.
  • the sintered products contain small amounts of residual catalysts in the grain boundaries or pores created through the sintering process.
  • the microstructure is dependant on the grain size of the diamond feedstock, and is quasi-isotropic. Sintered products may be leached, in order to remove the residual catalysts from the pores created by the sintering action, thus leaving a catalyst-free material that is thermally stable.
  • Polycrystalline chemically vapor deposited (CVD) diamonds are dense, metal free, and substantially non-porous. They are prepared by the energetic decomposition of a hydrocarbonaceous species at low pressure. Their microstructure is substantially columnar, and textures, flaws, and defects are dependant on the processing used to generate the polycrystalline diamonds.
  • Synthetic gems are single crystal products that are coarse, and range in size from about 0.5 carats to greater than about 2 carats. They are dense and generally free of defects. They can only be grown at a very slow rate, making mass production both time consuming and expensive.
  • the present invention provides a self-grown monopoly compact grit produced by an improved HPHT process.
  • the HPHT synthesized monopoly compact grit comprises a seed of crystal diamond, CBN, or non-diamond surrounded by either a self-grown diamond crystal layer or an integrally bonded PCD compact layer.
  • the self-grown diamond or CBN crystal layer is a newly grown crystal structure formed around the seed where the seed crystal extends into a new phase through a normal diamond or CBN synthesis process in the presence of a catalyst metal solvent.
  • the integrally bonded PCD compact layer is composed of 50 ⁇ 95 volume percent of diamond or CBN, a typical binder material which is a catalyst for crystal-to-crystal bonding (i.e. diamond-to-diamond), and a cementing agent which forms stable carbide and nitride (i.e. diamond-to-nondiamond) bonds.
  • the present invention provides a diamond crystal with a good morphology, grown from a seed crystal and a monopoly compact PCD grit comprising a polycrystalline diamond layer sintered around a seed crystal.
  • a typical HPHT process which includes a series of special chemical treatments for the preparation of monopoly precursors through metallic coating and fluidized bed granulation processes. The coating and granulation processes are followed by a typical HPHT synthesis/sintering operation.
  • HPHT process of the present invention it is possible to readily and reproducibly achieve larger sized crystals (20 ⁇ 50 mesh) at a reduced production cost.
  • the process of the present invention enables the production of diamond grits with desired shapes or configurations.
  • the newly grown large crystals (20 ⁇ 50 mesh) of the present invention are stronger and more resistant to crushing forces than those diamond mesh grits made from known HPHT processes.
  • monopoly precursor or “monopoly precursor material” is intended to mean a material coated around a seed crystal, wherein this material is loosely formed and then either converted to a polycrystalline structure, or consumed as a carbon source during HPHT sintering and synthesis.
  • HPHT conditions for producing diamond or PCD growth around seed crystals would preferably be those known in the art for producing large diamond crystals such as those described in the U.S. patents mentioned above.
  • seed refers to a crystal diamond, CBN, or non-diamond material.
  • the seed is surrounded by either a self-grown diamond crystal layer or an integrally bonded PCD compact layer.
  • the seed may be a single mono-crystal or multiple crystals bound together to form a single multiple-grain seed.
  • the seed and accompanying coatings may be formed into various shapes depending on the desired application. Thus, for convenience the same numeral is used in identifying the seed having differing shapes, i.e. needle, round, etc. Similarly, other features such as coatings and new diamond growth are identified by the same numeral when found on different shaped seeds, grits etc.
  • FIG. 1 a there is shown a schematic view of a mono-diamond seed 110 indicated generally at 100 , with a single metallic coat 120 .
  • the seed 110 may be either a diamond or a non-diamond material, such as a metal, carbide, or a ceramic. Additionally, the seed may be in powdered or solid form.
  • the coating 120 may be any metallic material capable of acting as a catalyst metal solvent for facilitating epitaxial diamond growth.
  • the seed 110 has a plurality of catalyst metal solvent coatings as indicated at 120 , 130 , and 140 .
  • FIG. 1 c a mono-diamond seed 110 is shown with no metal or ceramic coating.
  • a seed may have a single crystal 110 as shown in FIGS. 1 a - 1 c or be a composite seed 112 containing multiple crystals as shown in FIG. 1 d.
  • the composite seed 112 may be formed using a binder such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), cobalt, nickel, or iron to hold the grains together, or in the absence of a binder, be physically pressed together under optional heat.
  • PEG polyethylene glycol
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • cobalt nickel, or iron
  • FIG. 2 a shows a coated seed generally at 100 , having a needle-shaped seed 110 of either a diamond or a non-diamond material, and solvent metal coating 120 .
  • the seed 110 is made of a non-diamond material such as metal or ceramic, it is much more easily shaped into a needle configuration.
  • the particular dimensions of the needle-shaped seed may vary, sizes in the range of about 100 to 5000 ⁇ m by about 40 ⁇ m to 500 ⁇ m are typical.
  • a currently used needle-shape seed dimension is about 1000 ⁇ m by about 100 ⁇ m.
  • FIG. 2 b shows a coated seed generally at 100 with seed 110 having a round or spherical shape with a single catalyst metal coating 120 . Seeds having a round shape are particularly useful for the formation of a compact which will be discussed below. After the seed has been given the desired shape, it is coated and then subjected to a simple granulation process for applying a polylayer with diamond powder around the seed.
  • Crystal seeds may be formed from either diamond or non-diamond materials.
  • Preferred non-diamond materials may be selected from several groups including ceramics, such as SiC, Al 2 O 3 , TiC, B 4 C, carbides such as WC, TaC, or other metallic materials.
  • the seed material is generally in the form of a powder, typically with granule sizes within the range of 40 ⁇ 100 mesh.
  • the seed crystal size will be determined by the actual size of the wires to be drawn. For example, in a die for drawing fine stainless steel or copper wire, it is recommended that a seed crystal should be larger than 30 mesh.
  • the seed grits are then coated with a metal or non-metal material up to a thickness of about 10 ⁇ 100 ⁇ m.
  • Suitable coating methods include electrolyze (electrolytic or non-electrolytic) coating, and a vacuum micro-vaporizing deposition process.
  • the step of coating the seed material is optional. However, according to this invention, it is preferred to coat the seed crystal with a suitable coating material prior to the fluidized bed granulation process, which adds a polylayer of either diamond powder or a mixture of diamond and metal powders onto the outer surface of the seed. It is also understood that the proper selection of the coating material as well as the coating thickness determines the microstructure of the final monopoly compact grit product.
  • This metallic or non-metallic coating can be done by a conventional spray type coating process. Such a process places the coating material on the external surface of the seed crystal in a fine powdered form. Although the process is somewhat different from a uniform layer coating (i.e. electrolytic coating) its final behavior as a coating layer during the HPHT synthesis has proved to be acceptable. Alternatively, the coating layer of loosely packed powder may optionally be placed around the seed material and heat treated at an appropriate temperature in order to result in a hard coating layer around the seed.
  • the formulation of the diamond polylayer is accomplished by a modified spray type granulation process.
  • This process which takes place in the fluidized bed reactor, requires a slurry of fine diamond or non-diamond powder to be applied from the top of the reactor into a stream of upcoming coated or un-coated seed crystals which are lifted from the bottom of the reactor by forced air.
  • the reaction temperature is in the range of 50 ⁇ 60° C. and the duration time for coating is from about 60 to about 100 minutes.
  • FIG. 7 illustrates that the desired shape of a final grit product 210 is dictated by the configuration of the monopoly precursor material, prior to standard HPHT treatment, as shown in FIG. 3 a or 3 b.
  • FIG. 3 a shows a specific configuration of the monopoly precursor material 140 .
  • the chosen configuration may be affected by shaping the polycrystalline powder 130 around seed 110 optionally coated with solvent metal catalyst 120 (compare FIGS. 3 a and 3 b ), utilizing a physical pressing method, such as can be employed in a pill press, followed by heat treatment under a vacuum in order to achieve a minor solidification of the precursor material.
  • diamond powder is the preferred carbon source which is continuously supplied onto the seed crystal. Diamond powder is preferred over graphite as a carbon source. Although the exact reason for this preference is not fully understood, it is believed that the following benefits of diamond powder provide a basis. Diamond grains, compared to graphite or other carbonaceous material provide a cleaner carbon source and diamond is readily available in micron sized particles. Also, a diamond carbon source is less affected by the pressure exerted during the HPHT process than graphite. As a result, a final monopoly compact grit synthesized from a diamond carbon source will be larger than a grit from a graphite carbon source.
  • the carbon source utilized in connection with the present invention can also include graphite, amorphous carbon, and isotopically pure diamond such as is disclosed in British patent GB2239011. Such diamond consists of isotopically pure carbon-12 or carbon-13.
  • a small amount of binder such as PEG, PVA, PVB, alkylcellulose polymers, metallic binders such as cobalt, nickel, and iron or any other suitable binder known in the art, may be optionally added around the outer surface of the seed crystal during the process of polylayer formation, in order to adhere the small particles into a granulated form during the fluidized bed granulation process.
  • This granulated form of polylayer comprised of a mixture of diamond powder, catalyst, and a binder, when coated around the seed crystal is called “monopoly precursor,” as seen in FIGS. 3 a and 3 b.
  • the monopoly precursor may be optionally heat treated in the controlled gas flow of the fluidized bed at a temperature of about 800° C. for a time of about 10 minutes.
  • heat treatment can be affected in a typical vacuum furnace type apparatus with a controlled gas atmosphere. The main purpose of such heat treatment is to remove any organic matter which may be left over from the granulation of the polylayer and simultaneously strengthen the bonding between the agglomerated diamond powders.
  • FIG. 4 a illustrates a perspective view of a loosely packed powder disc 160 containing a plurality of monopoly precursors 140 .
  • the monopoly precursor material 140 is loaded into a typical cup 141 like tantalum with optionally a substrate disc 145 such as tungsten carbide disc as shown in FIGS. 4 b and 4 c, respectively to form a cup assembly 146 .
  • the loosely powder packed disc 160 or cup assembly 146 will be placed in a reaction cell for subsequent HPHT synthesis processing.
  • FIG. 4 a illustrates a perspective view of a loosely packed powder disc 160 containing a plurality of monopoly precursors 140 .
  • the monopoly precursor material 140 is loaded into a typical cup 141 like tantalum with optionally a substrate disc 145 such as tungsten carbide disc as shown in FIGS. 4 b and 4 c, respectively to form a cup assembly 146 .
  • the loosely powder packed disc 160 or cup assembly 146 will be placed in a reaction cell for subsequent
  • FIG. 4 d shows a top view of an array of individual precursors 140 loaded in regular arrays in the metal cup of FIG. 4 b or 4 c.
  • One advantage of arranging the individual precursors in an array is to facilitate ease of removal of final monopoly grits through cutting processes such as laser or wire EDM or crushing.
  • the shaded material 125 may be merely the underlying substrate 145 or a layer of diamond, CBN, ceramic, graphite, or a binder.
  • FIG. 5 a shows a loosely powder packed disc assembly 190 comprising a plurality of individual discs 160 , 170 and 180 , with each containing a plurality of monopoly precursors 140 . Any number of discs may be assembled in such a manner prior to placement in a reaction cell in order to maximize the efficiency and configuration of the finished monopoly compact grit product, such as that shown in FIG. 5 a or 5 b.
  • FIG. 5 b shows a plurality of as-loaded metal cup assemblies 146 of FIG. 4 b or 4 c, which are separated by spacers 147 for convenience.
  • spacers are well known in the art and may be made of materials such as salt, ceramic, graphite, or metal.
  • a disc is not limited to the round configuration shown in FIGS. 4 a through 5 b, but rather may take any number of substantially flat shapes such as square, rectangular, triangular, or wafer-type shapes.
  • Materials for the powder packed disc mediums are carefully selected for their relative reactivity with diamond/CBN and the metal catalyst.
  • Another determining factor of disc medium is its own phase transformation under HPHT conditions. Any volatile or undesirable reaction gas which might be generated from the disc medium would be critical to the formation of the monopoly compact grit under the HPHT process.
  • the discs or as-loaded cup assemblies are placed into a typical HPHT reaction cell, as shown in FIGS. 5 a and 5 b, where the synthesis reaction occurs at about 1300 ⁇ 1500° C. and at about 40 ⁇ 60 kb (kilobars) for at least 6 minutes in order to grow a new phase of diamond or CBN, as well as to sinter diamond-to-diamond or diamond-to-nondiamond medium into a polycrystalline sintered or cemented structure.
  • the high pressure apparatus may be any piece of equipment capable of inducing the necessary pressures to sustain diamond formation within the enclosed growth cell. Any such equipment, as is well known in the prior art, may be suitable. Additionally, heat can be supplied by any method known in the art for example, electrical resistance heating can be employed to attain the necessary temperatures to carry out the process of the present invention.
  • the monopoly precursors of FIGS. 3 a and 3 b can be converted to a size of 20 ⁇ 50 mesh from embedding in the loosely packed powdered discs as seen in FIGS. 4 a and 5 a.
  • Monopoly precursors in this size range when processed with the process of the present invention, yield stronger diamond grits within a shorter HPHT reaction time than existing methods.
  • FIG. 6 illustrates the crushed form of the HPHT cell discs, generally indicated at 200
  • FIG. 7 illustrates a singly prepared monopoly compact grit 210 in final form as recovered from the HPHT synthesis operation.
  • FIG. 8 a shows another possible configuration, wherein the monopoly compact grit 210 is recovered from the as-pressed cup assembly 146 by conventional cutting means such as wire EDM or laser.
  • FIG. 8 b shows the recovered individual monopoly compact grit 210 which in this case includes a portion of the substrate 145 material, compare to FIG. 4 b.
  • a monopoly compact grit including a substrate as shown in FIG. 8 b is useful for many applications including but not limited to incorporation into cutting tools, saw blades, wire drawing dies, drill bits, grinding wheels, polishing tools, dressing tools, and other machining tools known in the art.
  • the finally produced grits are self-grown monopoly diamond or CBN compact grits whose internal structure is either a wholly self-grown mesh size crystal or an integrally self-bonded compact layer surrounding the starting seed crystal, depending on the substance or mixture of substances chosen for the polylayer. Further, the process may result in either a solid crystalline compact or individual grits which are separated out of the powdered discs.
  • the improved HPHT process of the present invention provides a method of achieving a desirable morphology for a monopoly compact grit.
  • the improved process also includes proper preparation of a monopoly precursor material followed by the application of optimum Ptt (pressure-temperature-time) cycles during the HPHT synthesis process.
  • the resulting monopoly compact grits of varying composition, including diamond crystals, diamond seed-PCD grits, non-diamond seed-diamond grits, non-diamond seed PCD grits, and PCDBN grits, as fabricated in various desired shapes by the process of the present invention, are of particularly great value when incorporated into tools for industrial applications such as saw blades, drill bits, grinding tools, and machine tools.
  • the monopoly compact grits of the present invention may be a cost effective replacement for natural diamonds in some applications, as they have more desirable shapes and fewer defects.
  • the process of the present invention is capable of producing a thicker and more coarsely grained diamond than can be produced with traditional chemically vapor deposited diamond techniques.
  • a monopoly compact grit product of the present invention may be cut, diced or finished to a broader range of shapes and configurations than is feasible for those produced by current techniques and may be used in many industries as a cutting or machine tool.
  • the applications for monopoly compact grits as produced by the present invention are numerous, and include the production of wire drawing dies of smaller dimensions, use as a heat sink in electronic applications, such as multi-chip modules and opto-electronic applications such as laser diodes.
  • Other applications of the present invention include use in cutting tools, drill bits, saw blades, polishing tools, machining tools, grinding wheels, drawing, dressing, and finishing tools.
  • diamonds of the instant invention may be used as transparent windows in various applications such as in sensors and optics.
  • Radomes for aircraft can also incorporate the articles of the present invention. Numerous single or semi-single crystal wire dies, heat sinks, optics, and radomes can be sliced from one plate of diamond generated by the instant invention.
  • Seed crystals of 70/80, 80/100, 100/120, and 120/140 mesh sizes were cleaned in hydrogen gas at 900° C. for 2 hours and then coated with the type of coating and coating thickness as indicated in Table 1.
  • the nickel coating utilized was first carried out by a non-electrolytical process, using a solution of NiCl 2 .6H 2 O, NaH 2 PO 2 .H 2 O, Na 2 C 4 H 4 O 4 .6H 2 O, and H 3 BO 3 at a temperature of 70 ⁇ 90° C. for about 20 minutes. This pre-Ni coated seed material was then nickel coated electrolytically, in a Ni-electrolytic bath in order to achieve a 100 ⁇ m thick coating.
  • This example employs a triple coating of Ni-Fe-Ni, another nickel coating was put on by electrolysis and then a thin layer of fine iron powder was applied by a spray granulation coating process which can provide a loosely packed powder over the nickel layer. Finally, a third nickel coating was electrolytically applied.
  • a polylayer precursor was prepared of a slurry of 1 ⁇ 3 ⁇ m diamond powder mixed with 1 ⁇ 5 ⁇ m of metal powder binder (Fe, Ni, or Co) per the composition indicated in Table 1.
  • the metal coated seed crystals were then coated with this polylayer precursor in the fluidized bed at about 50° C. for approximately 80 minutes in order to provide a polylayer of about 200 ⁇ m thick.
  • This monopoly precursor was then thoroughly mixed with a packing medium disc such as ceramic powder and formed into a loosely packed powder disc.
  • the disc was then assembled into an HPHT reaction cell, which was pressurized to approximately 55 kb and raised to a temperature of approximately 1400° C. in about 30 seconds, and held at this temperature for 20 minutes. The temperature was then lowered to room temperature, and the pressure was removed.
  • the monopoly compact grits were then recovered by breaking up the powder packed disc material with the removal of the metal or its oxide and any carbides present with an optional acid solution.
  • the recovered monopoly grits of Example 1 show signs of new diamond growth 150 on the monopoly precursor 140 , similar to that shown in FIG. 9 a.
  • Example 2 The same process as in Example 1 was used, except for the variations as shown in Table 1, such as coating thickness, cobalt instead of iron coating, and use of a PEG binder in the polylayer precursor.
  • the recovered monopoly grits of Example 2 show signs of new PCD growth 150 , similar to that shown in FIG. 9 b.
  • FIG. 9d 80/100 Ti—Si 5-1 CBN (100%) 80/100 mesh 5 Ni-rod No coating 0 1 ⁇ 3 ⁇ m 300
  • FIG. 9e Needle-shape diamond 1000 ⁇ 100 ⁇ m 6 Diamond 1 ⁇ 3 ⁇ m 300
  • FIG. 9c 120/140 Ni—Co—Ni 40-5-40 diamond (100%) 80/100 Ni—Co—Ni 20-5-20 7 CBN Ni—Ti 40-2 1 ⁇ 3 ⁇ m 200
  • a mono-diamond seed of 25/30 mesh was prepared along with a very fine micron diamond powder for a reaction cup assembly as shown in FIG. 4 b.
  • This experiment was conducted in the typical high pressure high temperature reaction vessel by placing the blended diamond powder in a tantalum cup, as shown in FIG. 4 b such that the mono-diamond seed is lined up in one layer and small size micron diamond is filled in the gap between the larger diamond seed crystals.
  • the tantalum cup loaded with diamond powder was then placed in a typical HPHT apparatus (as shown in U.S. Pat. No. 3,745,623 which is incorporated herein) and subjected to a pressure of 55,000 atm and a temperature of about 1400° C. for about 20 minutes.
  • the disc was further subjected to laser cutting to cut out the individual monopoly compact grits (as in FIG. 8 b ) that will be tested in a final finishing/turning of aluminum to create a monopoly cutting tool.
  • a diamond seed of 40/50 mesh was cleaned in hydrogen gas at 900° C. for 2 hours.
  • the seed was coated by an non-electrolytic process using a solution of NiCl 2 .6H 2 O, NaH 2 PO 2 .H 2 O, Na 2 C 4 H 4 O 4 .6H 2 O, and H 3 BO 3 at a temperature of about 70 ⁇ 90° C. for about 20 minutes.
  • This pre-coated seed crystal was then nickel coated electrolytically, in a nickel electrolytic bath in order to achieve a 100 ⁇ m thick coating.
  • This nickel coated seed diamond was then coated by a polylayer precursor consisting of a slurry of 1 ⁇ 3 ⁇ m diamond powder mixed with 1 ⁇ 5 ⁇ m cobalt powder in the presence of PEG.
  • the thickness of the complete polylayer seed was about 250 ⁇ m.
  • This polylayer seed was loaded in one layer inside a conventional tantalum cup (as in FIG. 4 b ) along with a disc of WC support material and then assembled into a typical HPHT cell (as in FIG. 5 b ) which was pressurized to about 55 kb and raised to a temperature of about 1400° C. within about 13 seconds and held at this temperature for about 20 minutes. The temperature was then lowered to room temperature and the high pressure removed.
  • the PCD disc of monopoly compact grit (as in FIG. 4 d ) was recovered by removing the cup and metal disc through a typical PCD finishing operation such as grinding and lapping steps.
  • the PCD-like layer full of monopoly compact grits integrally bonded onto the WC support disc resulted in a well oriented individual monopoly seed crystal surrounded by a layer of PCD (as in FIG. 8 b ).
  • the individual monopoly seed appears to have grown in size, although the growth is difficult to measure.
  • Example 9 The same experiment as in Example 9, except a CBN seed crystal with titanium coating was used instead of a diamond seed.
  • the resultant monopoly PCBN product was obtained as a single CBN seed crystal surrounded by a PCD layer. A laser was then used to cut out individual monopoly PCBN in order to test as a cutting tool for ferrous materials.
  • Example 9 The same experiment as in Example 9, except the 30/40 mesh diamond seed crystal was prepared with a cobalt and/or cobalt-tungsten coating. Further, the reaction cup assembly included a fine size (2 ⁇ 4 ⁇ m) cobalt cemented tungsten carbide powder. Both materials were loaded into the tantalum cup such that the cobalt coated diamond seed was first loaded in the cup followed by tungsten carbide powder to fill in gaps and then a disc of cobalt cemented tungsten carbide was applied on top of the powders inside the cup. After HPHT processing as in Example 9, the individual monopoly compact grit was cut out by laser or wire EDM from the typical PCD disc form (as in FIGS. 8 a and 8 b ).

Abstract

A self-grown monopoly compact grit and high pressure, high temperature process for preparing the same. The high pressure, high temperature sintered/synthesized monopoly compact grit is used in various industrial tools such as saw blades, grinding wheels, cutting tools and drill bits. Further, the monopoly compact grit of the present invention is produced from a seed of a mono-crystal of diamond or cubic boron nitride surrounded by either a self-grown crystal layer or an integrally bonded poly-crystalline sintered compact layer. The self-grown crystal layer is a new grown crystal structure where the seed crystal grows into a new phase through a normal diamond or cubic boron nitride synthesis process in the presence of a catalyst metal solvent. The compact layer is composed of about 50 to about 90 volume percent of diamond or cubic boron nitride, a typical binder material, which is a catalyst for crystal-to-crystal bonding, and a cementing agent which is a binding agent capable of forming stable carbide and nitride bonds.

Description

THE FIELD OF THE INVENTION
The present invention relates generally to methods of forming synthetic diamond or polycrystalline diamond (PCD). More specifically, the present invention relates to a new, high pressure-high temperature (HPHT) sintered/synthesized, self-grown, monopoly compact grit and methods of preparation thereof.
BACKGROUND OF THE INVENTION
Diamond is a gemstone known for its rarity and beauty. As an industrial material, its superior hardness and wear resistance make diamond a preferred material in a variety of applications. For example, diamond is used extensively as an abrasive in polishing operations. Additionally, diamond-tipped drills and cutting tools are indispensable in shaping and cutting extremely hard materials such as sintered carbide and quartz. In order to help meet the industrial demand for these types of tools, a number of techniques have been developed for the production of synthetic diamonds. While natural diamond is still used in many industrial applications, diamond synthesis is emerging as the solution to the problem of inadequate supply of this unique material.
Diamond has a cube lattice, in which each carbon atom is covalently bonded to four other carbons to form a tetrahedron. This structure is repeated throughout the crystal and it is believed that this configuration of carbon—carbon bonds produces the extreme hardness of diamond. It has been discovered that at high temperatures and pressures, the conversion of carbon to diamond occurs at an appreciable rate. This phenomenon gave rise to the first synthetic high-pressure diamonds fabricated in the early 1950's.
A synthetic diamond grit manufacturing method is disclosed in U.S. Pat. No. 2,947,609 (1960) to Herbert M. Strong, hereby incorporated by reference. A polycrystalline diamond compact with a metal bonded carbide substrate is described in U.S. Pat. No. 3,745,623 (1975) to Robert Wentorf Jr. et al, hereby incorporated by reference. Similarly, a polycrystalline cubic boron nitride with a metal bonded carbide substrate is disclosed in U.S. Pat. No. 3,743,489 to Robert Wentorf Jr. et al, also hereby incorporated by reference. A great deal of effort has been expended to increase the economy of preparing diamond grits under the HPHT conditions, however, commercial production of synthetic diamond grits, using the HPHT process is still a very expensive operation. Therefore, continuous attempts have been made both for the manufacturing of quality diamond grits and to develop an optimum HPHT diamond synthesis process for converting less expensive forms of carbon, such as graphite, into expensive diamonds.
There are two methods for the synthesis of diamond crystals at ultra-high pressure and high temperatures, which are generally well known in the art. The first method is the “temperature gradient method,” and the second is the “thin film solvent method.”
The “temperature gradient method,” involves using transitional metal elements, i.e. Fe, Co, Ni, Cr, Mn, Pt, etc. or alloys thereof, as a solvent metal. By this method, a diamond seed crystal is separated from a carbon source by the solvent metal so that the carbon source and the diamond seed crystal are not in contact with one another. By maintaining the temperature of the seed crystal at a relatively lower level than that of the contact surface of the carbon source and solvent metal, and allowing this assembly to stand at a high pressure and high temperature causes epitaxial growth of diamond on the seed crystal. See U.S. Pat. Nos. 4,034,066 and 4,632,817, which are hereby incorporated by reference.
The “thin film solvent method” can be performed in two different ways. The first way consists of creating a reaction mixture of a non-diamond carbon source powder, a solvent metal powder, and seed crystal. The reaction mixture is then placed under temperature and pressure conditions in the diamond stable region, sufficient to convert the non-diamond carbon source into diamond in a relatively short time. The second way is by creating a reaction system which includes a plate of a non-diamond carbon source, or a laminate thereof, a plate of solvent metal, and optionally a seed crystal, and placing the system at a temperature and pressure within the diamond stable range, such that the non-diamond carbon source is converted into diamond within a relatively short period of time.
The above described temperature gradient method is capable of synthesizing a relatively large grain size crystal. However, it presents several problems. First, the synthesis reaction takes a very long time, thus increasing the operation costs of the apparatus required to affect the carbon to diamond transition. Additionally, because the method requires a temperature gradient to be created in a relatively small sample chamber, the number of crystals which can be produced in a single reaction is small. Therefore, the small crystal yield increases the production costs of each crystal.
The “thin film solvent method”, solves many of the problems inherent in the “temperature gradient method”, but increases the frequency of other problems such as spontaneous nucleation. Such problems give rise to great difficulty in synthesizing crystals of a large grain size, and make the crystals produced inferior in quality as they may be contaminated with many inclusions.
In the typical diamond synthesis from carbonaceous materials utilizing a catalyst solvent material, a process for yielding a higher commercial quality valued diamond is the key to success. Needless to say, a higher commercial value diamond is directly related to both a higher product quality and a larger crystal size. The higher the crystal quality and the larger the size, the higher the value of the diamond. Product quality is generally graded according to the compressive and impact strength of the crystal. Crystal shape and internal clarity are also barometers of quality. A large size crystal is more valued as compared to a small size crystal. However, the manufacturing cost for growing larger diamond in the HPHT process is higher because of the required longer reaction/synthesis time and a relatively lower yield under HPHT conditions.
Large diamond crystals (up to 1.0 carat) are commercially produced using the technique of a seed diamond being placed in contact with the catalyst solvent and an available carbon source under long duration of high temperature and high pressure conditions. Such a process is cost and quality prohibitive from being utilized on a mass production scale.
The typical grit size which is used in the construction industry for items such as diamond saws and drill bits, is in the range of 20/30, 30/40, and 40/50 mesh. Although the current HPHT diamond synthesis processes have been significantly improved over a decade of active research and development efforts, these processes are still below desirable level for the efficient production of large crystals (20˜50 mesh). Therefore, none of the current processes have so far been fully satisfactory in the super hard materials manufacturing industry.
Another problem inherent to many diamond grit applications such as diamond saw blades, grinding wheels and drill bits is obtaining a crystal shape which provides greater performance than that of existing crystals. Desirable shapes include cubic, octahedral, and needle-like shapes. The production of crystals having such shapes is not readily commercially available.
Yet another problem inherent in typical polycrystalline diamond (PCD) and cubic boron nitride compact (PCBN) applications, such as turning tools and wire dies, is producing ultra-fine grained (0.1˜0.5 μm) microstructure which provides a mirror-like surface finish to the product (optical lenses, aluminum, etc.). The production of such fine grained PCD or PCBN is not commercially and economically readily available.
For all intents and purposes, the quality and performance of diamond grits incorporated into tools such as saw blades, other cutting tools, and drill bits is primarily based upon the length of time which the grit will last under the impact and wear loads imposed thereon while being used in contact with a workpiece such as stone, concrete, or engineered materials. In fact, it has been discovered that shortened diamond grit performance is primarily due to the crushing effect imposed upon it by the workpiece rather than a wearing or abrading effect. Therefore, compressive and impact loading are key indicators of the potential performance of a diamond grit. Further, it has become well known that the impact strength of a single diamond crystal is far inferior to that of a polycrystalline diamond (PCD).
A “self-grown monopoly compact grit”, made by the process of this invention has unique physical properties as well as being economically feasible for large scale manufacture. Such a combination of advantages provides a significant improvement in the art of diamond synthesis. Particular areas of application of the crystals or PCD grits of this invention are the areas of saw blade, drill bit, cutting tool, dies, and grinding formations. In these areas, the impact strength of the diamond crystal provides a tool with greatly increased resistance to wear. Additionally, the crystals or PCD grits of the present invention may be formed in a number of desirable shapes in an economic and efficient manner.
Another well-known utility for synthetic diamond or cubic boron nitride (CBN) powders (60˜230 mesh) is in the fabrication of grinding tools. Traditionally, grinding wheels have been fabricated according to the types of materials which they are intended to grind. In this arena, diamonds have been traditionally used for grinding non-ferrous containing material, while CBN grinding wheels have been widely used for grinding ferrous containing materials. Consequently, it would be desirable to have a material that is suitable for grinding both materials. By means of the present invention, a “polycrystalline diamond boron nitride grit” (PCDBN) is synthesized from a combination of both diamond and CBN materials under HPHT conditions. This PCDBN possesses significant advantages over conventional CBN materials in ferrous material grinding tests.
OBJECTS AND SUMMARY OF THE INVENTION
It is an object of the present invention to provide a process for producing self-grown diamond crystals and/or monopoly compact PCD grits.
Another object of the invention is to provide stronger and more resilient diamond or CBN grits, as compared to conventionally grown diamonds or CBN grits. A further object of the present invention is to provide a method for producing improved diamond or CBN grits in a cost effective manner.
It is yet another object of the present invention to provide a process for the production of predetermined shapes of diamond or CBN compact grits in a cost effective manner.
Still another object of the present invention is to provide a new PCDBN compact grit product and a method of preparing the same.
These and other objects are accomplished by a self-grown monopoly compact grit produced from an improved HPHT process. The diamond or CBN grit produced by the HPHT process may be either a single crystal or a polycrystalline structure grown over a seed material. In each instance, the diamond or CBN compact grit is designed to be incorporated into a superabrasive industrial tool for cutting, drilling, machining, drawing, dressing, grinding, and/or polishing.
The basic process of diamond synthesis used by the present invention is similar to conventional diamond synthesis, (i.e. using a pressure-temperature-time cycle in the proper thermodynamic region with an available carbon source in the presence of a suitable catalyst solvent).
One aspect of the present invention is to provide a grown diamond crystal or PCD grit having a desired morphology. This synthesis process begins by obtaining a seed crystal and providing a suitable reaction site for controlling and maintaining diamond growth in such a manner that diamond nucleation does not take place. Another aspect of the present invention is to synthesize a new crystal (“monopoly compact grit”) which is an as-sintered monopoly diamond with a polycrystalline diamond layer coated around a seed crystal.
According to the present invention, the improved HPHT process includes a series of special chemical treatments for the preparation of monopoly precursor materials which include metallic coating and fluidized bed granulation processes. By utilizing the newly designed HPHT process, it is possible to readily and reproducibly accomplish the manufacture of larger size (20˜50 mesh) crystals at a reduced manufacturing cost. Additionally, the HPHT process of the present invention allows the manufacturing of grits in desirable shapes. Most importantly, the large crystals (20˜50 mesh) have significantly improved crush strength over similar crystals produced by known HPHT processes. These enumerated advantages of the present invention culminate to provide a significant economic advantage over existing processes for manufacturing metal bond diamond grit products such as saw blades, drill bits and grinding tools.
The product of the present invention may take several different forms. For example, a PCDBN compact grit may comprise a newly grown diamond phase over a CBN seed. Further, either a CBN coating or a diamond phase may be grown over a PCD grit seed. The newly grown diamond phase is either a single crystal or a polycrystalline structure. The newly grown CBN phase can also be a single CBN crystal structure or a polycrystalline CBN structure.
In another aspect of the present invention, the monopoly compact grit is formed of the following optional materials: a seed crystal, a polylayer coating, and a reactive or non-reactive medium material. By using different combinations of materials similar products resulted.
The self-grown monopoly diamond, CBN, PCD, or PCDBN compact grits of this invention are made possible by an improved HPHT process comprising the following steps:
1) Preparing a Seed Crystal:
A crystal seed is properly selected for type (either diamond, CBN, or non-diamond), the size (50˜270 mesh); and an optional coating (metallic or non-metallic). The seed crystal may include either a single mono-crystal or multiple crystals bound together to form a single composite multiple-grain seed. The optimal coating layer is prepared from conventional non-electrolytic, electrolytic, and pack-diffusion micro-vaporizing processes as well as spray type granulation processes, which are all well known in the art. Thus, the coating layer is either of a uniform coating thickness or in the form of a loosely packed fine coating powder.
2) Applying a Polylayer Precursor into the Seed Crystal:
A polylayer precursor is prepared by mixing diamond or CBN powders in a suitable bonding agent. The mixture is then applied onto the entire surface of the seed crystal through a counterflow liquid-gas fluidized bed diffusion process. To make a predetermined shaped precursor material, a subsequent simple shaping step can be applied to provide a desirable shape to the seed monopoly crystal.
3) Preparation of a Monopoly Precursor by the Packing of a Polylayer Precursor Coated Seed Crystal:
The monopoly seed crystal having been coated with the polylayer precursors is packed in a proper medium to form a monopoly precursor. The proper medium material is either reactive or non-reactive with diamond or CBN. A mixture of monopoly crystal and graphite powder and/or disc is one example. A mixture of monopoly precursor crystal and alumina powder is another example.
4) Application of Heat and Pressure for a Required Time:
The application of a specified amount of heat and pressure for a specified duration of time to the mixture of monopoly precursors and either reactive or non-reactive materials is required for the formation of the finished monopoly compact grits.
The above and other objects, features and advantages of the invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings which are made in accordance with the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1a is a schematic view of a coated seed having only one coat of catalyst metal solvent/binding material.
FIG. 1b is a schematic view of a coated seed having multiple coats of a catalyst metal solvent/binding material.
FIG. 1c is a schematic view of an uncoated seed.
FIG. 1d is a schematic view of a multi-grain seed.
FIG. 2a is a schematic view of a coated seed having a needle shape.
FIG. 2b is a schematic view of a coated seed having a round or spherical shape.
FIG. 3a is a top view of a monopoly precursor. The monopoly precursor has a seed in the center which may be of either a diamond or a non-diamond material, a catalyst metal solvent coating and a diamond forming powder, shaped around the seed into a configuration which is desired for the ultimate shape of the synthesized crystal.
FIG. 3b is a view of a monopoly precursor, as in FIG. 3a, except the seed crystal is uncoated.
FIG. 4a is a perspective view of a compacted pellet disc which contains a plurality of monopoly precursors assembled therein.
FIG. 4b is a perspective view of a reaction cup assembly including a substrate disc which contains a plurality of monopoly precursors assembled therein.
FIG. 4c is a perspective view of a reaction cup assembly without a substrate disc which contains a plurality of monopoly precursors assembled therein.
FIG. 4d is a top view of the assembly of FIG. 4b or 4 c wherein the seeds are in an array.
FIG. 5a is a perspective view of a plurality of compacts assembled for HPHT processing, each of which contains a plurality of monopoly precursors therein.
FIG. 5b is a perspective view of a plurality of compacts having spacers between layers.
FIG. 6 is a top view of a plurality of compact pieces and finished top surface of the as-pressed reaction cup assembly of FIGS. 4b, 4 c and 5 b after the disc has been broken into several pieces.
FIG. 7 is a schematic view of a polycrystalline grit having a predetermined shape and ready for incorporation into a tool.
FIGS. 8a and 8 b are schematic views of a final self-grown monopoly compact grit with a substrate disc in the form of either PCD compact grit or individual grit, respectively.
FIGS. 9a through 9 e are schematic views of monopoly compact grits as formed in the experiments of Table 1.
DETAILED DESCRIPTION
For the purposes of promoting an understanding of the principles in accordance with the invention, reference will now be made to several embodiments of the invention illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications of the illustrated device, and any additional applications of the principles of the invention as illustrated herein, which would normally occur to one skilled in the relevant art and in possession of this disclosure, are to be considered within the scope of the invention claimed.
The embodiments disclosed are chosen and described in order to best explain the principles of the invention and its practical application. The following description is intended to enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
Synthetic diamond products may take many forms such as mesh, sintered polycrystalline compacts, chemically vapor deposited polycrystalline diamonds, and gems. Mesh products consist of fine, sand-like diamond crystals ranging in size from submicron to coarse 20 mesh. The crystals occur either as single crystals or in small multiple crystal clusters. Such materials include those marketed by General Electric Company under the trade names MBS™, MGB™, and RVG™.
Sintered polycrystalline compacts consist of diamond grains that have been sintered into solid forms such as discs by connecting diamond powders through the action of a catalyst under diamond growing conditions. The sintered products contain small amounts of residual catalysts in the grain boundaries or pores created through the sintering process. The microstructure is dependant on the grain size of the diamond feedstock, and is quasi-isotropic. Sintered products may be leached, in order to remove the residual catalysts from the pores created by the sintering action, thus leaving a catalyst-free material that is thermally stable.
Polycrystalline chemically vapor deposited (CVD) diamonds are dense, metal free, and substantially non-porous. They are prepared by the energetic decomposition of a hydrocarbonaceous species at low pressure. Their microstructure is substantially columnar, and textures, flaws, and defects are dependant on the processing used to generate the polycrystalline diamonds.
Synthetic gems are single crystal products that are coarse, and range in size from about 0.5 carats to greater than about 2 carats. They are dense and generally free of defects. They can only be grown at a very slow rate, making mass production both time consuming and expensive.
The present invention provides a self-grown monopoly compact grit produced by an improved HPHT process. The HPHT synthesized monopoly compact grit comprises a seed of crystal diamond, CBN, or non-diamond surrounded by either a self-grown diamond crystal layer or an integrally bonded PCD compact layer. The self-grown diamond or CBN crystal layer is a newly grown crystal structure formed around the seed where the seed crystal extends into a new phase through a normal diamond or CBN synthesis process in the presence of a catalyst metal solvent. The integrally bonded PCD compact layer is composed of 50˜95 volume percent of diamond or CBN, a typical binder material which is a catalyst for crystal-to-crystal bonding (i.e. diamond-to-diamond), and a cementing agent which forms stable carbide and nitride (i.e. diamond-to-nondiamond) bonds.
The present invention provides a diamond crystal with a good morphology, grown from a seed crystal and a monopoly compact PCD grit comprising a polycrystalline diamond layer sintered around a seed crystal. This is achieved by providing a typical HPHT process, which includes a series of special chemical treatments for the preparation of monopoly precursors through metallic coating and fluidized bed granulation processes. The coating and granulation processes are followed by a typical HPHT synthesis/sintering operation. By employing the HPHT process of the present invention, it is possible to readily and reproducibly achieve larger sized crystals (20˜50 mesh) at a reduced production cost. Additionally, the process of the present invention enables the production of diamond grits with desired shapes or configurations. Most importantly, however, the newly grown large crystals (20˜50 mesh) of the present invention are stronger and more resistant to crushing forces than those diamond mesh grits made from known HPHT processes.
The term “monopoly precursor” or “monopoly precursor material” is intended to mean a material coated around a seed crystal, wherein this material is loosely formed and then either converted to a polycrystalline structure, or consumed as a carbon source during HPHT sintering and synthesis. The HPHT conditions for producing diamond or PCD growth around seed crystals would preferably be those known in the art for producing large diamond crystals such as those described in the U.S. patents mentioned above.
The terms “seed”, “seed crystal”, and “grain” are used interchangeably and refer to a crystal diamond, CBN, or non-diamond material. The seed is surrounded by either a self-grown diamond crystal layer or an integrally bonded PCD compact layer. The seed may be a single mono-crystal or multiple crystals bound together to form a single multiple-grain seed. The seed and accompanying coatings may be formed into various shapes depending on the desired application. Thus, for convenience the same numeral is used in identifying the seed having differing shapes, i.e. needle, round, etc. Similarly, other features such as coatings and new diamond growth are identified by the same numeral when found on different shaped seeds, grits etc.
Referring now to FIG. 1a, there is shown a schematic view of a mono-diamond seed 110 indicated generally at 100, with a single metallic coat 120. The seed 110 may be either a diamond or a non-diamond material, such as a metal, carbide, or a ceramic. Additionally, the seed may be in powdered or solid form. The coating 120 may be any metallic material capable of acting as a catalyst metal solvent for facilitating epitaxial diamond growth. In FIG. 1b, the seed 110 has a plurality of catalyst metal solvent coatings as indicated at 120, 130, and 140. In FIG. 1c, a mono-diamond seed 110 is shown with no metal or ceramic coating. By utilizing a non-diamond seed material which is easily shaped, the process of making compact grits with a particularly desired shape, such as a needle-shape, is much easier than with conventional processes which use a diamond seed material. A seed may have a single crystal 110 as shown in FIGS. 1a-1 c or be a composite seed 112 containing multiple crystals as shown in FIG. 1d. The composite seed 112 may be formed using a binder such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), cobalt, nickel, or iron to hold the grains together, or in the absence of a binder, be physically pressed together under optional heat. Thus, the seeds of any of the following embodiments may also have multiple grains, though not depicted.
FIG. 2a shows a coated seed generally at 100, having a needle-shaped seed 110 of either a diamond or a non-diamond material, and solvent metal coating 120. As noted above, since the seed 110 is made of a non-diamond material such as metal or ceramic, it is much more easily shaped into a needle configuration. Although, the particular dimensions of the needle-shaped seed may vary, sizes in the range of about 100 to 5000 μm by about 40 μm to 500 μm are typical. A currently used needle-shape seed dimension is about 1000 μm by about 100 μm. Additionally, FIG. 2b shows a coated seed generally at 100 with seed 110 having a round or spherical shape with a single catalyst metal coating 120. Seeds having a round shape are particularly useful for the formation of a compact which will be discussed below. After the seed has been given the desired shape, it is coated and then subjected to a simple granulation process for applying a polylayer with diamond powder around the seed.
Crystal seeds may be formed from either diamond or non-diamond materials. Preferred non-diamond materials may be selected from several groups including ceramics, such as SiC, Al2O3, TiC, B4C, carbides such as WC, TaC, or other metallic materials. The seed material is generally in the form of a powder, typically with granule sizes within the range of 40˜100 mesh. In the case of monopoly compact grits used for wire drawing die applications, the seed crystal size will be determined by the actual size of the wires to be drawn. For example, in a die for drawing fine stainless steel or copper wire, it is recommended that a seed crystal should be larger than 30 mesh. The seed grits are then coated with a metal or non-metal material up to a thickness of about 10˜100 μm. Suitable coating methods include electrolyze (electrolytic or non-electrolytic) coating, and a vacuum micro-vaporizing deposition process.
The step of coating the seed material is optional. However, according to this invention, it is preferred to coat the seed crystal with a suitable coating material prior to the fluidized bed granulation process, which adds a polylayer of either diamond powder or a mixture of diamond and metal powders onto the outer surface of the seed. It is also understood that the proper selection of the coating material as well as the coating thickness determines the microstructure of the final monopoly compact grit product.
This metallic or non-metallic coating can be done by a conventional spray type coating process. Such a process places the coating material on the external surface of the seed crystal in a fine powdered form. Although the process is somewhat different from a uniform layer coating (i.e. electrolytic coating) its final behavior as a coating layer during the HPHT synthesis has proved to be acceptable. Alternatively, the coating layer of loosely packed powder may optionally be placed around the seed material and heat treated at an appropriate temperature in order to result in a hard coating layer around the seed.
The formulation of the diamond polylayer is accomplished by a modified spray type granulation process. This process, which takes place in the fluidized bed reactor, requires a slurry of fine diamond or non-diamond powder to be applied from the top of the reactor into a stream of upcoming coated or un-coated seed crystals which are lifted from the bottom of the reactor by forced air. The reaction temperature is in the range of 50˜60° C. and the duration time for coating is from about 60 to about 100 minutes.
FIG. 7 illustrates that the desired shape of a final grit product 210 is dictated by the configuration of the monopoly precursor material, prior to standard HPHT treatment, as shown in FIG. 3a or 3 b. FIG. 3a shows a specific configuration of the monopoly precursor material 140. The chosen configuration may be affected by shaping the polycrystalline powder 130 around seed 110 optionally coated with solvent metal catalyst 120 (compare FIGS. 3a and 3 b), utilizing a physical pressing method, such as can be employed in a pill press, followed by heat treatment under a vacuum in order to achieve a minor solidification of the precursor material.
In this polylayer granulation process, diamond powder is the preferred carbon source which is continuously supplied onto the seed crystal. Diamond powder is preferred over graphite as a carbon source. Although the exact reason for this preference is not fully understood, it is believed that the following benefits of diamond powder provide a basis. Diamond grains, compared to graphite or other carbonaceous material provide a cleaner carbon source and diamond is readily available in micron sized particles. Also, a diamond carbon source is less affected by the pressure exerted during the HPHT process than graphite. As a result, a final monopoly compact grit synthesized from a diamond carbon source will be larger than a grit from a graphite carbon source. Even though the preferred carbon source is diamond powder, the carbon source utilized in connection with the present invention can also include graphite, amorphous carbon, and isotopically pure diamond such as is disclosed in British patent GB2239011. Such diamond consists of isotopically pure carbon-12 or carbon-13.
A small amount of binder, such as PEG, PVA, PVB, alkylcellulose polymers, metallic binders such as cobalt, nickel, and iron or any other suitable binder known in the art, may be optionally added around the outer surface of the seed crystal during the process of polylayer formation, in order to adhere the small particles into a granulated form during the fluidized bed granulation process. This granulated form of polylayer comprised of a mixture of diamond powder, catalyst, and a binder, when coated around the seed crystal is called “monopoly precursor,” as seen in FIGS. 3a and 3 b. The monopoly precursor, whether or not shaped into a specific configuration, may be optionally heat treated in the controlled gas flow of the fluidized bed at a temperature of about 800° C. for a time of about 10 minutes. Alternatively, heat treatment can be affected in a typical vacuum furnace type apparatus with a controlled gas atmosphere. The main purpose of such heat treatment is to remove any organic matter which may be left over from the granulation of the polylayer and simultaneously strengthen the bonding between the agglomerated diamond powders.
Suitable catalysts for high pressure diamond growth are well known in the art. They include such metals as iron, aluminum, nickel, cobalt, tantalum, manganese, chromium and alloys thereof. FIG. 4a illustrates a perspective view of a loosely packed powder disc 160 containing a plurality of monopoly precursors 140. In another embodiment, the monopoly precursor material 140 is loaded into a typical cup 141 like tantalum with optionally a substrate disc 145 such as tungsten carbide disc as shown in FIGS. 4b and 4 c, respectively to form a cup assembly 146. The loosely powder packed disc 160 or cup assembly 146 will be placed in a reaction cell for subsequent HPHT synthesis processing. FIG. 4d shows a top view of an array of individual precursors 140 loaded in regular arrays in the metal cup of FIG. 4b or 4 c. One advantage of arranging the individual precursors in an array is to facilitate ease of removal of final monopoly grits through cutting processes such as laser or wire EDM or crushing. The shaded material 125 may be merely the underlying substrate 145 or a layer of diamond, CBN, ceramic, graphite, or a binder.
FIG. 5a shows a loosely powder packed disc assembly 190 comprising a plurality of individual discs 160, 170 and 180, with each containing a plurality of monopoly precursors 140. Any number of discs may be assembled in such a manner prior to placement in a reaction cell in order to maximize the efficiency and configuration of the finished monopoly compact grit product, such as that shown in FIG. 5a or 5 b. In an alternative embodiment, FIG. 5b shows a plurality of as-loaded metal cup assemblies 146 of FIG. 4b or 4 c, which are separated by spacers 147 for convenience. Such spacers are well known in the art and may be made of materials such as salt, ceramic, graphite, or metal.
Additionally, a disc is not limited to the round configuration shown in FIGS. 4a through 5 b, but rather may take any number of substantially flat shapes such as square, rectangular, triangular, or wafer-type shapes. Materials for the powder packed disc mediums are carefully selected for their relative reactivity with diamond/CBN and the metal catalyst. Another determining factor of disc medium, is its own phase transformation under HPHT conditions. Any volatile or undesirable reaction gas which might be generated from the disc medium would be critical to the formation of the monopoly compact grit under the HPHT process.
Experimentation has confirmed that high quality graphite, boron carbide, aluminum nitride, high purity alumina and hexagonal boron nitride are fully acceptable for the aforementioned wafer or powder packed disc. In particular, the addition of extra metal powder into the powder packed disc has been shown to facilitate the synthesis of diamond or CBN during the HPHT process. When crystal forming powder is used such as diamond or CBN, then a polycrystalline compact will be formed, which can be used as is, or cut into smaller pieces. Additionally, when a non-crystalline powder is used for packing the monopoly precursors within disc 160, then the individual specifically shaped grits will be easily retrieved from the mixture after the HPHT processing.
Once formed, the discs or as-loaded cup assemblies are placed into a typical HPHT reaction cell, as shown in FIGS. 5a and 5 b, where the synthesis reaction occurs at about 1300˜1500° C. and at about 40˜60 kb (kilobars) for at least 6 minutes in order to grow a new phase of diamond or CBN, as well as to sinter diamond-to-diamond or diamond-to-nondiamond medium into a polycrystalline sintered or cemented structure. The high pressure apparatus may be any piece of equipment capable of inducing the necessary pressures to sustain diamond formation within the enclosed growth cell. Any such equipment, as is well known in the prior art, may be suitable. Additionally, heat can be supplied by any method known in the art for example, electrical resistance heating can be employed to attain the necessary temperatures to carry out the process of the present invention.
In the synthesis of diamonds from conventional carbonaceous materials, it is desirable to provide methods which can produce diamonds or CBN grits in shorter HPHT reaction times in order to reduce the overall manufacturing cost by reducing the wear and tear on the necessary processing equipment, and thus extending its effective useful life. According to the present invention, the monopoly precursors of FIGS. 3a and 3 b can be converted to a size of 20˜50 mesh from embedding in the loosely packed powdered discs as seen in FIGS. 4a and 5 a. Monopoly precursors in this size range, when processed with the process of the present invention, yield stronger diamond grits within a shorter HPHT reaction time than existing methods.
After undergoing the HPHT process, the discs of the present invention are removed from the reaction cell and crushed or cut in order to provide the final individual grits. FIG. 6 illustrates the crushed form of the HPHT cell discs, generally indicated at 200, and FIG. 7 illustrates a singly prepared monopoly compact grit 210 in final form as recovered from the HPHT synthesis operation. FIG. 8a shows another possible configuration, wherein the monopoly compact grit 210 is recovered from the as-pressed cup assembly 146 by conventional cutting means such as wire EDM or laser. FIG. 8b shows the recovered individual monopoly compact grit 210 which in this case includes a portion of the substrate 145 material, compare to FIG. 4b. A monopoly compact grit including a substrate as shown in FIG. 8b is useful for many applications including but not limited to incorporation into cutting tools, saw blades, wire drawing dies, drill bits, grinding wheels, polishing tools, dressing tools, and other machining tools known in the art.
The finally produced grits, are self-grown monopoly diamond or CBN compact grits whose internal structure is either a wholly self-grown mesh size crystal or an integrally self-bonded compact layer surrounding the starting seed crystal, depending on the substance or mixture of substances chosen for the polylayer. Further, the process may result in either a solid crystalline compact or individual grits which are separated out of the powdered discs.
In summary, the improved HPHT process of the present invention provides a method of achieving a desirable morphology for a monopoly compact grit. The improved process also includes proper preparation of a monopoly precursor material followed by the application of optimum Ptt (pressure-temperature-time) cycles during the HPHT synthesis process. The resulting monopoly compact grits, of varying composition, including diamond crystals, diamond seed-PCD grits, non-diamond seed-diamond grits, non-diamond seed PCD grits, and PCDBN grits, as fabricated in various desired shapes by the process of the present invention, are of particularly great value when incorporated into tools for industrial applications such as saw blades, drill bits, grinding tools, and machine tools. In addition to industrial tool applications, the monopoly compact grits of the present invention, may be a cost effective replacement for natural diamonds in some applications, as they have more desirable shapes and fewer defects. Further, the process of the present invention is capable of producing a thicker and more coarsely grained diamond than can be produced with traditional chemically vapor deposited diamond techniques. Finally, a monopoly compact grit product of the present invention may be cut, diced or finished to a broader range of shapes and configurations than is feasible for those produced by current techniques and may be used in many industries as a cutting or machine tool.
The applications for monopoly compact grits as produced by the present invention are numerous, and include the production of wire drawing dies of smaller dimensions, use as a heat sink in electronic applications, such as multi-chip modules and opto-electronic applications such as laser diodes. Other applications of the present invention include use in cutting tools, drill bits, saw blades, polishing tools, machining tools, grinding wheels, drawing, dressing, and finishing tools. Additionally, diamonds of the instant invention may be used as transparent windows in various applications such as in sensors and optics. Radomes for aircraft can also incorporate the articles of the present invention. Numerous single or semi-single crystal wire dies, heat sinks, optics, and radomes can be sliced from one plate of diamond generated by the instant invention.
EXAMPLES
The following examples 1˜12, as illustrated in Table 1 and in text are presented to enable those skilled in the art to more clearly understand and practice the present invention. It is to be understood that while the invention has been described in conjunction with the below-listed specific embodiments thereof, that such embodiments are intended to illustrate, but not limit the scope of the present invention. Other aspects of the invention will be apparent to those skilled in the art to which the invention pertains. Examples 1˜8 illustrate various embodiments of the invention. Table 1 summarizes the size of seed crystal, the type of coating and coating thickness, the polylayer composition and thickness, the sizes of the final monopoly grit products, and reference to a representative result figure.
Seed crystals of 70/80, 80/100, 100/120, and 120/140 mesh sizes were cleaned in hydrogen gas at 900° C. for 2 hours and then coated with the type of coating and coating thickness as indicated in Table 1.
Example 1
The nickel coating utilized was first carried out by a non-electrolytical process, using a solution of NiCl2.6H2O, NaH2PO2.H2O, Na2C4H4O4.6H2O, and H3BO3 at a temperature of 70˜90° C. for about 20 minutes. This pre-Ni coated seed material was then nickel coated electrolytically, in a Ni-electrolytic bath in order to achieve a 100 μm thick coating.
This example employs a triple coating of Ni-Fe-Ni, another nickel coating was put on by electrolysis and then a thin layer of fine iron powder was applied by a spray granulation coating process which can provide a loosely packed powder over the nickel layer. Finally, a third nickel coating was electrolytically applied.
A polylayer precursor was prepared of a slurry of 1˜3 μm diamond powder mixed with 1˜5 μm of metal powder binder (Fe, Ni, or Co) per the composition indicated in Table 1. The metal coated seed crystals were then coated with this polylayer precursor in the fluidized bed at about 50° C. for approximately 80 minutes in order to provide a polylayer of about 200 μm thick.
This monopoly precursor was then thoroughly mixed with a packing medium disc such as ceramic powder and formed into a loosely packed powder disc. The disc was then assembled into an HPHT reaction cell, which was pressurized to approximately 55 kb and raised to a temperature of approximately 1400° C. in about 30 seconds, and held at this temperature for 20 minutes. The temperature was then lowered to room temperature, and the pressure was removed.
The monopoly compact grits were then recovered by breaking up the powder packed disc material with the removal of the metal or its oxide and any carbides present with an optional acid solution. The recovered monopoly grits of Example 1 show signs of new diamond growth 150 on the monopoly precursor 140, similar to that shown in FIG. 9a.
Example 2
The same process as in Example 1 was used, except for the variations as shown in Table 1, such as coating thickness, cobalt instead of iron coating, and use of a PEG binder in the polylayer precursor. The recovered monopoly grits of Example 2 show signs of new PCD growth 150, similar to that shown in FIG. 9b.
Examples 3-8
The same process as in Examples 1 and 2 were used with the variations as shown in Table 1. The resulting monopoly compact grits are shown in FIGS. 9b through 9 e.
TABLE 1
Coating Polylayer Precursor Polylayer Monopoly
Example Mono seed size Type of thickness composition thickness compact grit
No (mesh) Coating (μm) (vol %) (μm) Result
1 Diamond Ni 100 1˜3 μm 200 FIG. 9a
70/80 Ni—Fe—Ni 40-10-40 diamond (100%) 70/80 mesh
2 Diamond Ni 50 1˜3 μm 250 FIG. 9b
80/100 Ni—Co—Ni 20-5-20 diamond (80%) 80/100 mesh
Binder (20%)
3 Diamond Ni—Ti 50-2 1˜3 μm 300 FIG. 9c
100/120 Ni—Fe—Ni 40-10-50 diamond (100%) 100/120 mesh
4 CBN Ti—Al 5-5 1˜3 μm 200 FIG. 9d
80/100 Ti—Si 5-1 CBN (100%) 80/100 mesh
5 Ni-rod No coating 0 1˜3 μm 300 FIG. 9e
Needle-shape diamond
1000 × 100 μm
6 Diamond 1˜3 μm 300 FIG. 9c
120/140 Ni—Co—Ni 40-5-40 diamond (100%)
80/100 Ni—Co—Ni 20-5-20
7 CBN Ni—Ti 40-2 1˜3 μm 200 FIG. 9b
80/100 diamond (80%) 80/100 mesh
Binder (20%)
8 Diamond Ni—Ti 20-2 1˜3 μm 200 FIG. 9b
80/100 Ti—Ni 2-20 CBN (80%) 80/100 mesh
Binder (20%)
Example 9
A mono-diamond seed of 25/30 mesh was prepared along with a very fine micron diamond powder for a reaction cup assembly as shown in FIG. 4b. This experiment was conducted in the typical high pressure high temperature reaction vessel by placing the blended diamond powder in a tantalum cup, as shown in FIG. 4b such that the mono-diamond seed is lined up in one layer and small size micron diamond is filled in the gap between the larger diamond seed crystals. The tantalum cup loaded with diamond powder was then placed in a typical HPHT apparatus (as shown in U.S. Pat. No. 3,745,623 which is incorporated herein) and subjected to a pressure of 55,000 atm and a temperature of about 1400° C. for about 20 minutes.
Upon removal from the reaction vessel, a disc of monopoly compact grits, wherein large seed crystals individually surrounded by a layer of sintered coherent diamond compact was obtained as a form of a typical PCD compact as in FIG. 8.
The disc was further subjected to laser cutting to cut out the individual monopoly compact grits (as in FIG. 8b) that will be tested in a final finishing/turning of aluminum to create a monopoly cutting tool.
Example 10
A diamond seed of 40/50 mesh was cleaned in hydrogen gas at 900° C. for 2 hours. Next, the seed was coated by an non-electrolytic process using a solution of NiCl2.6H2O, NaH2PO2.H2O, Na2C4H4O4.6H2O, and H3BO3 at a temperature of about 70˜90° C. for about 20 minutes. This pre-coated seed crystal was then nickel coated electrolytically, in a nickel electrolytic bath in order to achieve a 100 μm thick coating. This nickel coated seed diamond was then coated by a polylayer precursor consisting of a slurry of 1˜3 μm diamond powder mixed with 1˜5 μm cobalt powder in the presence of PEG. The thickness of the complete polylayer seed was about 250 μm.
This polylayer seed was loaded in one layer inside a conventional tantalum cup (as in FIG. 4b) along with a disc of WC support material and then assembled into a typical HPHT cell (as in FIG. 5b) which was pressurized to about 55 kb and raised to a temperature of about 1400° C. within about 13 seconds and held at this temperature for about 20 minutes. The temperature was then lowered to room temperature and the high pressure removed. The PCD disc of monopoly compact grit (as in FIG. 4d) was recovered by removing the cup and metal disc through a typical PCD finishing operation such as grinding and lapping steps. The PCD-like layer full of monopoly compact grits integrally bonded onto the WC support disc resulted in a well oriented individual monopoly seed crystal surrounded by a layer of PCD (as in FIG. 8b). The individual monopoly seed appears to have grown in size, although the growth is difficult to measure.
More importantly, numerous monopoly compact grits were well sintered in a matrix of one layer and each seed crystal yielded an integrally well bonded monopoly PCD exhibiting a seed crystal surrounded by a PCD layer. This experiment focused on the examination and evaluation of technical confirmation for monopoly seed to be either self-grown into a larger crystal and/or integrally bonded by a layer of PCD surrounding the seed crystal. The examination of the experimental sample has confirmed the morphology of the two above hypotheses. The seed crystal showed some growth and was surrounded with a typical compact layer which was clearly observed.
Example 11
The same experiment as in Example 9, except a CBN seed crystal with titanium coating was used instead of a diamond seed. The resultant monopoly PCBN product was obtained as a single CBN seed crystal surrounded by a PCD layer. A laser was then used to cut out individual monopoly PCBN in order to test as a cutting tool for ferrous materials.
Example 12
The same experiment as in Example 9, except the 30/40 mesh diamond seed crystal was prepared with a cobalt and/or cobalt-tungsten coating. Further, the reaction cup assembly included a fine size (2˜4 μm) cobalt cemented tungsten carbide powder. Both materials were loaded into the tantalum cup such that the cobalt coated diamond seed was first loaded in the cup followed by tungsten carbide powder to fill in gaps and then a disc of cobalt cemented tungsten carbide was applied on top of the powders inside the cup. After HPHT processing as in Example 9, the individual monopoly compact grit was cut out by laser or wire EDM from the typical PCD disc form (as in FIGS. 8a and 8 b).
It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended claims are intended to cover such modifications and arrangements. Thus, while the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein.

Claims (45)

What is claimed is:
1. A method for producing a self-grown monopoly compact grit comprising the steps of:
a) preparing at least one seed crystal from a pre-determined material and having a predetermined size;
b) applying a polylayer precursor composition onto the entire surface of said seed crystal, wherein said polylayer precursor composition comprises a micron powder carbon source selected from the group consisting of diamond, CBN, and mixtures thereof;
c) packing the at least one seed crystal coated with the polylayer precursor composition into a selected packing medium to form a monopoly precursor;
d) loading the monopoly precursor into a growth cell and applying an amount of heat and an amount of pressure for a length of time, such that at least one newly synthesized polycrystalline monopoly compact grit is produced.
2. A method according to claim 1, wherein said seed crystal is a single mono-crystal.
3. A method according to claim 1, wherein said seed crystal is a composite comprising a plurality of crystals bound together to form a composite multiple-grain seed.
4. A method according to claim 1, wherein the amount of pressure is from about 20 kb to about 80 kb, and the temperature is from about 1300 to about 1600° C., and the length of time is about at least 6 minutes.
5. A method according to claim 1, further comprising the step of coating the seed crystal with a coating material, prior to applying the polylayer precursor composition.
6. A method according to claim 5, wherein said coating is at least a single coating layer applied to at least a portion of the seed crystal surface.
7. A method according to claim 5, wherein said coating is at least a single coating layer applied to the entire surface of the seed crystal.
8. A method according to claim 6, wherein said coating further comprises multiple coating layers.
9. A method according to claim 7, wherein said coating further comprises multiple coating layers.
10. A method according to claim 5, wherein the coating is a metallic coating material.
11. A method according to claim 5, wherein said coating material is a non-metallic coating material.
12. A method according to claim 10, wherein said coating is an element selected from the group consisting of Group VIII elements of the periodic Table, chromium, manganese and alloys thereof.
13. A method according to claim 10, wherein the coating is an element selected from the group consisting of Ni, Fe, Co, Si, Ti, Ta, Mo, Mn, Al, Cr and alloys thereof.
14. A method according to claim 13, wherein said coating is an element selected from the group consisting of Ni, Fe, Al, Co, Ti, Mn, Cr and alloys thereof.
15. A method according to claim 10, wherein said coating comprises a mixture of carbon and nickel.
16. A method according to claim 1, wherein said seed crystal is a diamond powder.
17. A method according to claim 1, wherein said seed crystal is a CBN powder.
18. A method according to claim 1, wherein said seed crystal is a non-diamond powder selected from the group consisting of ceramic, carbide, metal, or mixtures thereof.
19. A method according to claim 18, wherein said seed crystal is a metal powder.
20. A method according to claim 18, wherein said seed crystal is a ceramic powder.
21. A method according to claim 18, wherein said seed crystal is a carbide powder.
22. A method according to claim 18, wherein said seed crystal has a pre-determined shape.
23. A method according to claim 22, wherein said pre-determined shape of the seed crystal is a needle-like shape.
24. A method according to claim 1, wherein said seed crystal has a size of about 50 to about 270 mesh.
25. A method according to claim 1 wherein said polylayer precursor composition further comprises a binding agent in an amount from about 5 to about 50% by volume of the polylayer.
26. A method according to claim 1, wherein said polylayer precursor composition further comprises a mixture of diamond and CBN combined with an organic binding agent present in an amount from about 5 to about 50% by weight volume, of the total polylayer.
27. A method according to claim 26, wherein said organic binding agent is selected from the group consisting of PEG, PVA, and PVB.
28. A method according to claim 1 wherein said packing medium is a member selected from the group consisting of high quality graphite, boron carbide, aluminum nitride, high purity alumina, hexagonal boron nitride, and mixtures thereof.
29. A method according to claim 1, further comprising the step of subjecting the monopoly precursor to a heat treatment prior to the step of loading the monopoly precursor into the growth cell.
30. A method according to claim 29 wherein said heat treatment comprises heating the monopoly precursor at a temperature of about 800° C. for about 10 minutes.
31. A self-grown monopoly grit produced in accordance with the method of claim 1.
32. An article comprising a self-grown monopoly grit produced in accordance with the method of claim 1.
33. A wire drawing die comprising a self-grown monopoly compact grit produced in accordance with claim 26.
34. A heat sink comprising a self-grown monopoly compact grit produced in accordance with claim 26.
35. A saw blade comprising a self-grown monopoly compact grit produced in accordance with claim 26.
36. A drill bit comprising a self-grown monopoly compact grit produced in accordance with claim 26.
37. A grinding wheel comprising a self-grown monopoly compact grit produced in accordance with claim 26.
38. A polishing tool comprising a self-grown monopoly compact grit produced in accordance with claim 26.
39. The method of claim 1, further comprising the step of recovering individual newly synthesized monopoly compact grits.
40. The method of claim 39, wherein the individual monopoly compact grit is recovered through a process selected from the group consisting of physical crushing, laser cutting, and wire EDM.
41. The method of claim 1, further comprising the step of providing a substrate layer which is in contact with the packed seed crystal such that when the heat and pressure is applied the substrate is sintered/cemented to the seed crystal.
42. The method of claim 41, further comprising the step of recovering individual monopoly compact grits including a portion of the substrate.
43. The method of claim 41, wherein said substrate is tungsten carbide.
44. A self-grown monopoly grit produced in accordance with the method of claim 42.
45. An article comprising a self-grown monopoly grit produced in accordance with the method of claim 42.
US09/934,459 2001-08-21 2001-08-21 Self-grown monopoly compact grit Expired - Fee Related US6616725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/934,459 US6616725B2 (en) 2001-08-21 2001-08-21 Self-grown monopoly compact grit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/934,459 US6616725B2 (en) 2001-08-21 2001-08-21 Self-grown monopoly compact grit

Publications (2)

Publication Number Publication Date
US20030044613A1 US20030044613A1 (en) 2003-03-06
US6616725B2 true US6616725B2 (en) 2003-09-09

Family

ID=25465599

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/934,459 Expired - Fee Related US6616725B2 (en) 2001-08-21 2001-08-21 Self-grown monopoly compact grit

Country Status (1)

Country Link
US (1) US6616725B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040194689A1 (en) * 1997-04-04 2004-10-07 Chien-Min Sung High pressure superabrasive particle synthesis
US20050050801A1 (en) * 2003-09-05 2005-03-10 Cho Hyun Sam Doubled-sided and multi-layered PCD and PCBN abrasive articles
US20050079804A1 (en) * 2003-10-09 2005-04-14 Taylor Theodore M. Planarizing solutions including abrasive elements, and methods for manufacturing and using such planarizing solutions
US20050136667A1 (en) * 1997-04-04 2005-06-23 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US20050210755A1 (en) * 2003-09-05 2005-09-29 Cho Hyun S Doubled-sided and multi-layered PCBN and PCD abrasive articles
US20060016127A1 (en) * 1997-04-04 2006-01-26 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US20060042172A1 (en) * 2004-08-24 2006-03-02 Chien-Min Sung Polycrystalline grits and associated methods
US20060272571A1 (en) * 2005-06-07 2006-12-07 Cho Hyun S Shaped thermally stable polycrystalline material and associated methods of manufacture
US20080052223A1 (en) * 2003-03-10 2008-02-28 Chicago Mercantile Exchange, Inc. Derivatives trading methods that use a variable order price and a hedge transaction
US7435296B1 (en) * 2006-04-18 2008-10-14 Chien-Min Sung Diamond bodies grown on SiC substrates and associated methods
US20090120009A1 (en) * 2007-11-08 2009-05-14 Chien-Min Sung Polycrystalline Grits and Associated Methods
US7567932B1 (en) 2003-03-10 2009-07-28 Chicago Mercantile Exchange, Inc. Derivatives trading methods that use a variable order price
US20090257942A1 (en) * 2008-04-14 2009-10-15 Chien-Min Sung Device and method for growing diamond in a liquid phase
US20090286352A1 (en) * 2006-04-18 2009-11-19 Chien-Min Sung Diamond Bodies Grown on SIC Substrates and Associated Methods
US20100050536A1 (en) * 2006-11-21 2010-03-04 Charles Stephan Montross Material containing diamond and an intermetallic compound
US20120125976A1 (en) * 2007-11-09 2012-05-24 Schunk Sonosystems Gmbh Process for reducing aluminium pick-up, and ultrasonic welding device
US8327958B2 (en) 2009-03-31 2012-12-11 Diamond Innovations, Inc. Abrasive compact of superhard material and chromium and cutting element including same
US8393938B2 (en) 2007-11-13 2013-03-12 Chien-Min Sung CMP pad dressers
US8393934B2 (en) 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US8398466B2 (en) 2006-11-16 2013-03-19 Chien-Min Sung CMP pad conditioners with mosaic abrasive segments and associated methods
US8622787B2 (en) 2006-11-16 2014-01-07 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US8777699B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Superabrasive tools having substantially leveled particle tips and associated methods
US20140325915A1 (en) * 2011-05-27 2014-11-06 Element Six Limited Super-hard structure, tool element and method of making same
US8974270B2 (en) 2011-05-23 2015-03-10 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US9011563B2 (en) 2007-12-06 2015-04-21 Chien-Min Sung Methods for orienting superabrasive particles on a surface and associated tools
US9138862B2 (en) 2011-05-23 2015-09-22 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
US9475169B2 (en) 2009-09-29 2016-10-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US10147139B2 (en) 2003-03-10 2018-12-04 Chicago Mercantile Exchange Inc. Order risk management for derivative products
US11208358B2 (en) * 2018-09-19 2021-12-28 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and cutting tool including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251986B2 (en) * 2001-11-09 2009-04-08 住友電工ハードメタル株式会社 High thermal conductive diamond sintered body and method for producing the same
US8652226B2 (en) * 2008-09-16 2014-02-18 Diamond Innovations, Inc. Abrasive particles having a unique morphology
JP5518871B2 (en) * 2008-09-16 2014-06-11 ダイヤモンド イノベイションズ インコーポレーテッド Abrasive grains with unique morphology
CN106312074B (en) * 2016-08-25 2018-02-02 苏州赛特锐精密机械配件有限公司 A kind of preparation method of the preforming cutter groove solid tool base substrate of ultra-fine cemented carbide
CN107584439B (en) * 2017-10-19 2019-08-13 南京固华机电科技有限公司 A kind of preparation method of Nano diamond grinding tool
JP2022517276A (en) * 2019-01-16 2022-03-07 シュルンベルジェ テクノロジー ビー ブイ Luminous diamond
CN113601875B (en) * 2021-07-29 2022-12-27 杭州盛得新材料有限公司 Scratch-resistant composite preparation system and process based on RPVB composite material adhesive surface

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947609A (en) 1958-01-06 1960-08-02 Gen Electric Diamond synthesis
US4287168A (en) 1975-01-27 1981-09-01 General Electric Company Apparatus and method for isolation of diamond seeds for growing diamonds
US4927619A (en) 1982-06-25 1990-05-22 Sumitomo Electric Industries, Ltd. Diamond single crystal
US4944772A (en) * 1988-11-30 1990-07-31 General Electric Company Fabrication of supported polycrystalline abrasive compacts
US5011514A (en) * 1988-07-29 1991-04-30 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
US5114696A (en) 1990-08-06 1992-05-19 Texas Instruments Incorporated Diamond growth method
US5130111A (en) 1989-08-25 1992-07-14 Wayne State University, Board Of Governors Synthetic diamond articles and their method of manufacture
US5151107A (en) * 1988-07-29 1992-09-29 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
US5273730A (en) 1988-03-08 1993-12-28 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
US5385715A (en) 1987-04-24 1995-01-31 Fish; Michael L. Synthesis of ultra-hard abrasive particles
US5454343A (en) 1994-01-18 1995-10-03 Korea Institute Of Science And Technology Method for production of diamond particles
US5466269A (en) 1991-07-25 1995-11-14 General Electric Company Polycrystalline cubic boron nitride abrasive particles and abrasive tools made therefrom
US5560241A (en) 1989-04-06 1996-10-01 Sumitomo Electric Industries, Ltd. Synthetic single crystal diamond for wire drawing dies
US5603070A (en) 1994-10-13 1997-02-11 General Electric Company Supported polycrystalline diamond compact having a cubic boron nitride interlayer for improved physical properties
US5772756A (en) 1995-12-21 1998-06-30 Davies; Geoffrey John Diamond synthesis
US5980982A (en) * 1995-04-13 1999-11-09 Sunitomo Electric Industries, Ltd. Coated particles for synthesizing diamond and process for production of diamond abrasive for sawing

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947609A (en) 1958-01-06 1960-08-02 Gen Electric Diamond synthesis
US4287168A (en) 1975-01-27 1981-09-01 General Electric Company Apparatus and method for isolation of diamond seeds for growing diamonds
US4927619A (en) 1982-06-25 1990-05-22 Sumitomo Electric Industries, Ltd. Diamond single crystal
US5385715A (en) 1987-04-24 1995-01-31 Fish; Michael L. Synthesis of ultra-hard abrasive particles
US5273730A (en) 1988-03-08 1993-12-28 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
US5011514A (en) * 1988-07-29 1991-04-30 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
US5151107A (en) * 1988-07-29 1992-09-29 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
US4944772A (en) * 1988-11-30 1990-07-31 General Electric Company Fabrication of supported polycrystalline abrasive compacts
US5560241A (en) 1989-04-06 1996-10-01 Sumitomo Electric Industries, Ltd. Synthetic single crystal diamond for wire drawing dies
US5130111A (en) 1989-08-25 1992-07-14 Wayne State University, Board Of Governors Synthetic diamond articles and their method of manufacture
US5114696A (en) 1990-08-06 1992-05-19 Texas Instruments Incorporated Diamond growth method
US5466269A (en) 1991-07-25 1995-11-14 General Electric Company Polycrystalline cubic boron nitride abrasive particles and abrasive tools made therefrom
US5454343A (en) 1994-01-18 1995-10-03 Korea Institute Of Science And Technology Method for production of diamond particles
US5603070A (en) 1994-10-13 1997-02-11 General Electric Company Supported polycrystalline diamond compact having a cubic boron nitride interlayer for improved physical properties
US5980982A (en) * 1995-04-13 1999-11-09 Sunitomo Electric Industries, Ltd. Coated particles for synthesizing diamond and process for production of diamond abrasive for sawing
US5772756A (en) 1995-12-21 1998-06-30 Davies; Geoffrey John Diamond synthesis

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368013B2 (en) 1997-04-04 2008-05-06 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US20050136667A1 (en) * 1997-04-04 2005-06-23 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US20060016127A1 (en) * 1997-04-04 2006-01-26 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US20040194689A1 (en) * 1997-04-04 2004-10-07 Chien-Min Sung High pressure superabrasive particle synthesis
US20080248305A1 (en) * 1997-04-04 2008-10-09 Chien-Min Sung Superabrasive Particle Synthesis with Controlled Placement of Crystalline Seeds
US20070157917A1 (en) * 1997-04-04 2007-07-12 Chien-Min Sung High pressure superabrasive particle synthesis
US20070295267A1 (en) * 1997-04-04 2007-12-27 Chien-Min Sung High pressure superabrasive particle synthesis
US7323049B2 (en) 1997-04-04 2008-01-29 Chien-Min Sung High pressure superabrasive particle synthesis
US7404857B2 (en) 1997-04-04 2008-07-29 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US20080047484A1 (en) * 1997-04-04 2008-02-28 Chien-Min Sung Superabrasive particle synthesis with growth control
US20120192499A1 (en) * 2001-08-22 2012-08-02 Chien-Min Sung Brazed Diamond Tools and Methods for Making the Same
US10147139B2 (en) 2003-03-10 2018-12-04 Chicago Mercantile Exchange Inc. Order risk management for derivative products
US10217165B2 (en) 2003-03-10 2019-02-26 Chicago Mercantile Exchange Inc. Derivatives trading methods that use a variable order price
US8630941B2 (en) 2003-03-10 2014-01-14 Chicago Mercantile Exchange, Inc. Derivatives trading methods that use a variable order price and a hedge transaction
US8374947B2 (en) 2003-03-10 2013-02-12 Chicago Mercantile Exchange, Inc. Derivatives trading methods that use a variable order price and a hedge transaction
US9911157B2 (en) 2003-03-10 2018-03-06 Chicago Mercantile Exchange Inc. Derivatives trading methods that use a variable order price
US20080052223A1 (en) * 2003-03-10 2008-02-28 Chicago Mercantile Exchange, Inc. Derivatives trading methods that use a variable order price and a hedge transaction
US7567932B1 (en) 2003-03-10 2009-07-28 Chicago Mercantile Exchange, Inc. Derivatives trading methods that use a variable order price
US10366454B2 (en) 2003-03-10 2019-07-30 Chicago Mercantile Exchange Inc. Order risk management for derivative products
US20090265267A1 (en) * 2003-03-10 2009-10-22 Chicago Mercantile Exchange Inc. Derivatives trading methods that use a variable order price
US20050050801A1 (en) * 2003-09-05 2005-03-10 Cho Hyun Sam Doubled-sided and multi-layered PCD and PCBN abrasive articles
US20050210755A1 (en) * 2003-09-05 2005-09-29 Cho Hyun S Doubled-sided and multi-layered PCBN and PCD abrasive articles
US20050079804A1 (en) * 2003-10-09 2005-04-14 Taylor Theodore M. Planarizing solutions including abrasive elements, and methods for manufacturing and using such planarizing solutions
US6939211B2 (en) * 2003-10-09 2005-09-06 Micron Technology, Inc. Planarizing solutions including abrasive elements, and methods for manufacturing and using such planarizing solutions
US20060042172A1 (en) * 2004-08-24 2006-03-02 Chien-Min Sung Polycrystalline grits and associated methods
US7384436B2 (en) 2004-08-24 2008-06-10 Chien-Min Sung Polycrystalline grits and associated methods
US9067301B2 (en) 2005-05-16 2015-06-30 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US20060272571A1 (en) * 2005-06-07 2006-12-07 Cho Hyun S Shaped thermally stable polycrystalline material and associated methods of manufacture
US7553344B2 (en) 2005-06-07 2009-06-30 Adico, Asia Polydiamond Company, Ltd. Shaped thermally stable polycrystalline material and associated methods of manufacture
US20090286352A1 (en) * 2006-04-18 2009-11-19 Chien-Min Sung Diamond Bodies Grown on SIC Substrates and Associated Methods
US7435296B1 (en) * 2006-04-18 2008-10-14 Chien-Min Sung Diamond bodies grown on SiC substrates and associated methods
US8398466B2 (en) 2006-11-16 2013-03-19 Chien-Min Sung CMP pad conditioners with mosaic abrasive segments and associated methods
US8622787B2 (en) 2006-11-16 2014-01-07 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US8393934B2 (en) 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US20100050536A1 (en) * 2006-11-21 2010-03-04 Charles Stephan Montross Material containing diamond and an intermetallic compound
US8147574B2 (en) * 2006-11-21 2012-04-03 Charles Stephan Montross Material containing diamond and an intermetallic compound
US20090120009A1 (en) * 2007-11-08 2009-05-14 Chien-Min Sung Polycrystalline Grits and Associated Methods
US20120125976A1 (en) * 2007-11-09 2012-05-24 Schunk Sonosystems Gmbh Process for reducing aluminium pick-up, and ultrasonic welding device
US8684258B2 (en) * 2007-11-09 2014-04-01 Schunk Sonosystems Gmbh Process for reducing aluminium pick-up, and ultrasonic welding device
US8393938B2 (en) 2007-11-13 2013-03-12 Chien-Min Sung CMP pad dressers
US9011563B2 (en) 2007-12-06 2015-04-21 Chien-Min Sung Methods for orienting superabrasive particles on a surface and associated tools
US20090257942A1 (en) * 2008-04-14 2009-10-15 Chien-Min Sung Device and method for growing diamond in a liquid phase
US8252263B2 (en) 2008-04-14 2012-08-28 Chien-Min Sung Device and method for growing diamond in a liquid phase
WO2010062419A2 (en) * 2008-08-04 2010-06-03 Chien-Min Sung Diamond bodies grown on sic substrates and associated methods
WO2010062419A3 (en) * 2008-08-04 2010-07-29 Chien-Min Sung Diamond bodies grown on sic substrates and associated methods
US8327958B2 (en) 2009-03-31 2012-12-11 Diamond Innovations, Inc. Abrasive compact of superhard material and chromium and cutting element including same
US9475169B2 (en) 2009-09-29 2016-10-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
US8777699B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Superabrasive tools having substantially leveled particle tips and associated methods
US9138862B2 (en) 2011-05-23 2015-09-22 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US8974270B2 (en) 2011-05-23 2015-03-10 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US10053755B2 (en) * 2011-05-27 2018-08-21 Element Six Limited Super-hard structure, tool element and method of making same
US20140325915A1 (en) * 2011-05-27 2014-11-06 Element Six Limited Super-hard structure, tool element and method of making same
US11208358B2 (en) * 2018-09-19 2021-12-28 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and cutting tool including the same

Also Published As

Publication number Publication date
US20030044613A1 (en) 2003-03-06

Similar Documents

Publication Publication Date Title
US6616725B2 (en) Self-grown monopoly compact grit
US4931068A (en) Method for fabricating fracture-resistant diamond and diamond composite articles
US5468268A (en) Method of making an abrasive compact
US7404857B2 (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
US7368013B2 (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
EP1341865B1 (en) Method for the production of polycrystalline abrasive grit
US7585366B2 (en) High pressure superabrasive particle synthesis
USRE32380E (en) Diamond tools for machining
US4793828A (en) Abrasive products
US4534773A (en) Abrasive product and method for manufacturing
CA1321885C (en) Diamond compacts
US5009673A (en) Method for making polycrystalline sandwich compacts
EP2101903B1 (en) Abrasive compacts with improved machinability
JPH0456790B2 (en)
GB2486973A (en) A polycrystalline superhard material
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
CA1139111A (en) Supported diamond
US20070009374A1 (en) Heat-resistant composite diamond sintered product and method for production thereof
JPS5828230B2 (en) High hardness polycrystalline material and its manufacturing method
IE860862L (en) Wire drawing die
US20150013234A1 (en) Use of surface modified diamond to manufacture polycrystalline diamond
EP0198653B1 (en) Abrasive products
EP0024757A1 (en) Diamond compacts and tools containing them
Sung Handbook of Industrial Diamonds: Volume 1, Superabrasives and Diamond Syntheses
US10137557B2 (en) High-density polycrystalline diamond

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20110909