Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS6769590 B2
Type de publicationOctroi
Numéro de demandeUS 10/114,421
Date de publication3 août 2004
Date de dépôt2 avr. 2002
Date de priorité2 avr. 2001
État de paiement des fraisCaduc
Autre référence de publicationUS7080769, US20020185517, US20050067454, US20070027473
Numéro de publication10114421, 114421, US 6769590 B2, US 6769590B2, US-B2-6769590, US6769590 B2, US6769590B2
InventeursSusan E. Vresh, Blynn L. Shideler, Krisanne Shideler, Kevin S. Vresh
Cessionnaire d'origineSusan E. Vresh, Blynn L. Shideler, Krisanne Shideler, Kevin S. Vresh
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Luminal anastomotic device and method
US 6769590 B2
Résumé
An end to end anastomotic stapling device connects two lumen sections avoiding constricture at the anastomotic ring. An intraluminal end to end anastomotic stapler includes an expanding head and anvil designed to fire an anastomotic ring having an inner diameter at least equal to the nominal inner diameter of the remaining lumen sections. An extraluminal end to end lumen stapler is described attaching the lumen sections with an exterior flange type connection having anastomotic rings with a diameter larger than the inner diameter of the lumen sections whereby the anastomotic site has a diameter at least as great as the adjacent lumen sections.
Images(13)
Previous page
Next page
Revendications(20)
What is claimed is:
1. A minimally invasive surgical stapler for end to end anastomosis that will assist in stapler placement, the stapler having an expanding head portion and an expanding anvil portion, wherein a diameter of the expanding stapler head portion and stapler anvil portion of the stapler is smaller during insertion and retraction than at firma of the surgical stapler, the surgical stapler further comprising:
an elongated body;
the expanding head portion at a first end of the elongated body, the expanding head portion including a plurality of segments, each segment having at least one staple, wherein the segments move from a first inward retracted position to at least a second position radially outward from the first position;
the expanding anvil portion coupled to the head portion, the staples being fired against the anvil portion, the expanding anvil portion including a plurality of segments, wherein the segments move from a first inward retracted position to at least a second position radially outward from the first position; and
a staple firing mechanism for firing the staples of each head segment against the anvil segments.
2. The surgical stapler of claim 1, further including an annular knife for trimming the anastomized tissue.
3. The surgical stapler of claim 2, wherein the knife is formed of radially moveable knife segments.
4. A minimally invasive surgical stapler for end to end anastomosis that will assist in stapler placement, the stapler having an expanding head portion and an expanding anvil portion, wherein a diameter of the expanding stapler head portion and stapler anvil portion of the stapler is smaller during insertion and retraction than at firing of the surgical stapler, the surgical stapler further comprising:
an elongated body;
the expanding head portion at a first end of the body, the expanding head portion including a plurality of segments, each segment having at least one staple, wherein the segments move from a first inward retracted position to at least a second position radially outward from the first position;
the expanding anvil portion coupled to the head portion, the staples being fired against the anvil portion, the expanding anvil portion including a plurality of segments, wherein the segments move from a first inward retracted position to at least a second position radially outward from the first position; and
a staple firing mechanism for firing the staples of each head segment against the anvil segments.
5. An anastomotic stapler for end to end anastomosis forming an anastomotic ring utilizing staples formed in a pair of offset annular arrays of staples to couple the end of a first lumen section to the end of a second lumen section, comprising:
a head portion including a stapling mechanism; and
an anvil portion; wherein both the head portion and the anvil portion can be moved from a retracted position having a first diameter to an expanded position having a second larger diameter, and back to a retracted position after firing.
6. The anastomotic stapler of claim 5, wherein the head portion comprises a plurality of wedge-shaped arc segments that move radially and align in the expanded position to form an annular head.
7. The anastomotic stapler of claim 6, wherein each arc segment has a separate, independent firing mechanism.
8. The anastomotic stapler of claim 6, wherein each arc segment has an arcuate knife portion that will overlap with knife portions of adjacent arc segments when in the expanded position.
9. The anastomotic stapler of claim 6, wherein each arc segment has a separate, independent knife actuating mechanism.
10. The anastomotic stapler of claim 5, wherein the head portion comprises a plurality of arc-shaped segments tat move rotationally from an overlapped formation in the retracted position to align in the expanded position forming an annular head.
11. The anastomotic stapler of claim 10, wherein each arc segment has a separate, independent firing mechanism.
12. The anastomotic stapler of claim 10, wherein each arc segment has an arcuate knife portion that will overlap with knife portions of adjacent arc segments when in the expanded position.
13. The anastomotic stapler of claim 10, wherein each arc segment has a separate, independent knife actuating mechanism.
14. An anastomotic surgical stapler for end to end anastomosis forming an anastomotic ring to couple the end of a first lumen section to the end of a second lumen section, comprising:
an elongated body;
operator controls at one end of the elongated body;
a head portion at an opposite end of the elongated body, the head portion including a stapling mechanism having an annular array of staples that forms the anastomotic ring coupling the end of a first lumen section to the end of a second lumen section; and
an anvil portion coupled to the head portion, the annular array of staples being fired against the anvil portion; and
means for maximizing at least at the time of firing the staples the inner diameter of the annular array of staples that form the anastomotic ring coupling the end of a first lumen section to the end of a second lumen section, wherein the inner diameter of the annular array of staples at least at the time of firing the staples is maximized relative to the outer diameter of the surgical stapler during insertion and withdrawal of the surgical stapler.
15. The anastomotic surgical stapler for end to end anastomosis according to claim 14 wherein the means for maximizing the inner diameter of the annular array of staples includes a mechanism radially expanding the head portion including the annular array of staples prior to firing of the annular array of staples.
16. The anastomotic surgical stapler for end to end anastomosis according to claim 14 further including an annular knife in the head portion; and wherein the annular knife is actuated with the firing of the annular array of staples.
17. The anastomotic surgical stapler for end to end anastomosis according to claim 14 wherein the annular array of staples includes at least two offset annular arrays of staples; and wherein the anvil portion is removably coupled to the head portion.
18. The anastomotic surgical stapler for end to end anastomosis according to claim 14 wherein the annular knife is actuated with the firing of the annular array of staples, and wherein the annular array of staples includes at least two offset annular arrays of staples; and wherein the anvil portion is removably coupled to the head portion.
19. An anastomotic surgical stapler for end to end anastomosis forming an anastomotic ring to couple the end of a first lumen section to the end of a second lumen section, comprising:
an elongated body;
operator controls at one end of the elongated body;
a head portion at an opposite end of the elongated body, the head portion including a stapling mechanism having an annular array of staples that forms the anastomotic ring coupling the end of a first lumen section to the end of a second lumen section, and an annular knife positioned radially inward of the annular array of staples; and
an anvil portion coupled to the head portion, the annular array of staples being fired against the anvil portion; and
means for maximizing the inner diameter of the annular knife at least at the time of firing of the staples, wherein the inner diameter of the annular knife at least at the time of the firing of the staples is maximized relative to the outer diameter of the surgical stapler during insertion and withdrawal of the surgical stapler.
20. The anastomotic surgical stapler for end to end anastomosis according to claim 19 wherein the means for maximizing the inner diameter of the annular knife includes a mechanism radially expanding the head portion including the knife elements which form the annular knife prior to firing of the annular array of staples.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of co-pending U.S. Provisional Patent Application Serial No. 60/280,785 entitled, “Luminal Anastomotic Device and Method” filed Apr. 2, 2001, which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to surgical anastomotic stapling devices. More particularly, the present invention relates to end to end anastomotic surgical staplers avoiding minimal constricture at the anastomosis site.

2. Background Information

Surgical staplers have been developed to assist and improve a wide variety of surgical procedures. Surgical staplers provide precision in the placement of staples as well as decrease the time of given surgical procedures. A wide variety of surgical staplers have been developed for vascular, gastric, esophageal and intestinal surgery, to name but a few. These known staplers are often used in anastomosis procedures. In performing surgical anastomotic stapling, generally the two pieces of lumen are attached by a ring of staples with a closed loop stapler. The anastomosis of the lumen may be performed in a side to side, side to end or end to end manner which describes the relative orientation of the lumen sections.

The surgical staplers for performing end to end anastomosis are generally intraluminal surgical staplers that fire a pair of staggered rings of staples. These types of surgical staplers are often referred to as EEA's, which stands for “End to End Anastomosis”. During this procedure, a circular knife blade is used to separate tissue which is held within the circular ring. The separated tissue is then removed with the stapler so that a circular opening within the lumen is completed along the surgical stapling line.

In performing these surgical procedures with EEA's it has become desirable to separate the anvil on which the staplers are clinched from the stapling head portion from which the staples are expelled. It has been typical in the past that the stapling head is attached to the anvil and the tissue is secured through a “purse stringed” gathering of tissue.

Generally, the tissue stapled together with an EEA leaves a smaller opening than the original lumen into which the anvil and stapler head were inserted. Frequently, it is desirable to provide an anvil which can be collapsed to introduce the anvil into the body through a relatively small incision. An example of a surgical stapler having a variable diameter anvil is illustrated in U.S. Pat. No. 4,505,414 disclosing an anvil, integral with a surgical stapler, which can be collapsed and inserted through a small incision in a patient's body and expanded outwardly after placement inside the patients body to staple the wall of an organ to the abdominal wall or an external tissue layer of the patient's body. The anvil is not detachable from the stapler and thus cannot provide a continuous stapler line, but rather applies a broken, discontinuous line to “tack” the tissue in a circular line. This patent also does not provide an anvil which can be placed remotely within the body for subsequent attachment to a stapler head.

Other examples of anvils which are capable of collapsing to a reduced diameter after stapling to facilitate removal from the body are shown in U.S. Pat. Nos. 4,752,024; 4,893,622; 4,700,703 and 4,903,697. These anvils are introduced into the body through a relatively large incision.

U.S. Pat. No. 5,239,639 also shows a collapsible anvil assembly and applicator instrument for a surgical stapler apparatus.

The retractable anvil EEA's discussed above do not address the fundamental problem of the constricture point formed after luminal anastomosis. These prior art devices simply address the problem of post operative tool removal.

It is the object of the present invention to avoid the drawbacks of the prior art by avoiding the minimal constriction formed at luminal anastomotic sites using anastomotic staplers (i.e., EEA's). It is a further object of the present invention to provide anastomotic staplers which are easy to manufacture and utilize. A further object of the present invention is to provide both intraluminal anastomotic end to end staplers and extraluminal anastomotic end to end staplers.

SUMMARY OF THE INVENTION

The above objects are achieved with the anastomotic device according to the present invention. The anastomotic device according to the present invention is a surgical stapler that will form an anastomosis between existing lumen sections in an end to end alignment forming the anastomosis site with a minimal diameter generally equal to or greater than the normal inner diameter of the anastomized lumen sections, with the lumen sections in a normal relaxed condition. The anastomotic device of the present invention will preferably utilize conventional staples formed in a pair of offset annular arrays of staples to couple the end of a first lumen section to the end of a second lumen section.

A first embodiment of the present invention forms the anastomotic device as an intraluminal end to end surgical stapler. The intraluminal surgical stapler fires staples, or other fastening devices, from a stapling head to an adjacent anvil. In accordance with the present invention, both the head and the anvil can be moved from a retracted position having a first relative diameter to an expanded position of a second larger diameter. The expansion of both the head and the anvil allows the anastomotic device to be positioned in the lumen to be attached with minimal interference and then expanded to an enlarged firing position, wherein when fired the anastomotic ring formed by the array of staples is positioned at a diameter preferably at least as large as the minimum diameter of the adjacent lumen sections. After firing, the head and anvil of the stapler of present invention can both be retracted to allow for easy withdrawal of the stapler from the anastomized lumen.

In one embodiment of the present invention, the head will be formed of a plurality of wedge-shaped arc segments which move radially and align in an expanded position to form the annular head. The arc segments may be in the form of inner wedge-shaped segments moved by an actuator and outer segments guided by the inner wedge-shaped segments. The wedge-shaped segments may be moved into the expanded or retracted positions by being coupled to the actuator in the form of axially movable wedges controlled by the user.

Another embodiment of the present invention will form the annular head as a plurality of arc segments that slide together with the segments formed in an overlapped position in the retracted state and rotate into contracted and expanded positions. A further embodiment of the present invention will hinge various arc segments together to allow the segments to pivot between a retracted position of a minimal diameter and an expanded position forming the annular head ready for firing.

Each individual arc segment of the head portion will include staples which combine to form the array of staples in the expanded position. One key aspect of the present invention is that each arc segment has a separate firing mechanism as well as a knife actuating mechanism independently associated with each segment. Each segment will have an arcuate knife portion which will combine and overlap with the knife portions of adjacent segments to form a continuous annular knife arrangement when the head is in the expanded position. In this manner, the knife portions and staples of each individual segment will combine to form the dual stapling array and annular knife well-known to those skilled in the art (except of a larger diameter relative to the body of the stapler). The firing mechanism of each individual segment is additionally coupled to the controller of the stapler in a manner which accommodates movement of the individual segments between the retracted and expanded positions. This construction of the segments allows for the segments to be formed in the hinged arrangements, spirally attached arrangements or wedge arrangements discussed above. Many other possible relatively movable combinations may be constructed with the individual segment construction of the stapler of the present invention.

Another aspect of the present invention is to form an external end to end anastomotic surgical stapler. The external stapler according to the present invention is designed to clamp around lumen sections to be attached. The extraluminal stapler according to the present invention is designed to form an anastomizing ring of sutures external to the connected lumen sections. The external stapler according to the present invention forms a pair of annular arrays of staples around an outwardly extending flange of the connected lumen sections.

In one embodiment according to the present invention, the extraluminal stapler is formed of two opposed stapler units with each stapler unit formed of two halves hinged together. The extraluminal stapler will include a mechanism for pulling the lumen to be attached around the stapling face of each stapling unit. The extraluminal stapler according to the present invention will additionally include a mechanism for aligning the stapling head and anvil portions of the opposed stapling units with each other as well as a firing mechanism for firing the arrays of staples in the stapling units. One embodiment of the present invention will form each stapling unit as an anvil and head portion hinged together which couples with an adjacent hinged anvil and head portion of the opposed stapling unit.

The present invention would be particularly applicable for bowel resections as will be understood by those of ordinary skill in the art, but is not intended to be limited thereto. It can be used in many other applications such as, but not limited to, vascular anastomosis, gastrointestinal anastomosis, esophageal anastomosis and essentially any hollow lumen within the body. Further, the specific embodiments of the invention include a variety of unique features that can be incorporated separately or in various combinations into other stapling and surgical devices for improving those devices.

One advantage of the present invention is a minimally invasive surgical stapler that will assist in stapler placement because the diameter of the stapler (i.e. the largest diameter portion, specifically the head and anvil of the stapler) is smaller during insertion and retraction than at firing.

Another advantage of the present invention is having a closed loop EEA stapler with the trimming knife formed by individual knife segments. This feature of the present invention may be utilized for firing the knife segments individually, or in a given sequence, or simultaneously (as utilized in the illustrated embodiments of the present invention.

Another feature of the present invention is the accommodation of multiple anvil and multiple head controls in a surgical stapler. One present illustrated embodiments provide separate controls for expansion/retraction of the anvil and for axial movement of the anvil. This illustrated embodiment further provides independent control for expansion/retraction of the head and for firing of the knife blade and staples. This system of multiple independent control may be modified to perform a variety of separate control features for the anvil and head portions of an EEA stapler.

Another feature of the present invention is the provision of an EEA stapler with a staple and knife firing mechanism that accommodates relative motion of the head portion containing the staples and the firing mechanism.

Another feature of the present invention is the provision of an alignment mechanism that aligns and locks the anvil and head portion together prior to the firing of the staples or the knife.

Another feature of the present invention is the provision of a closed loop surgical stapler for end to end anastomosis in which the stapler extends around the outside of the lumen portions being anastomised.

These and other advantages of the present invention will be clarified in reviewing the detailed description of the preferred embodiments taken together with the attached figures wherein like reference numerals represent like elements throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a side view, partially in section, of a pair of lumen sections anastomized using existing intraluminal anastomotic staplers;

FIG. 1b is a side view, partially in section, of a pair of lumen sections anastomized with an anastomotic stapler according to a first embodiment of the present invention;

FIG. 1c is a side view, partially in section, of a pair of lumen sections anastomized using an anastomotic stapler according to a second embodiment of the present invention;

FIG. 2a is a schematic plan view of an intraluminal end to end anastomotic stapling head according to the first embodiment of the present invention with the head in the expanded, firing position;

FIG. 2b schematically illustrates the head illustrated in FIG. 2a in the retracted position;

FIG. 3a schematically illustrates an expandable anvil associated with the anastomotic stapler having the expandable head illustrated in FIGS. 2a and 2 b;

FIG. 3b schematically illustrates the anvil portion of FIG. 3a in a retracted position;

FIG. 4a schematically illustrates a spirally retracted and expandable head for an intraluminal end to end surgical stapler according to a second embodiment of the present invention;

FIG. 4b schematically illustrates a hinged expandable and retractable head for an intraluminal end to end surgical stapler according to a third embodiment of the present invention;

FIG. 5a is a plan view of an individual outer head segment of the head illustrated in FIGS. 2a and 2 b;

FIG. 5b is a radially inner side view of the head segment illustrated in FIG. 5a;

FIG. 5c is a sectional view of the head segment illustrated in FIG. 5a taken along line Vc—Vc;

FIG. 5d is a sectional view of the head segment illustrated in FIG. 5a taken along line Vd—Vd;

FIG. 5e is a top plan view of an inner head segment illustrated in FIGS. 2a and 2 b;

FIG. 5f is a radially inner side view of the inner head segment illustrated in FIG. 5e;

FIG. 5g is a sectional view of the inner head segment shown in FIG. 5e taken along line Vg—Vg;

FIG. 6a is a perspective view of an intraluminal anastomotic surgical stapler utilizing the expandible head illustrated in FIGS. 2a and 2 b and the expandible anvil illustrated in FIGS. 3a and 3 b;

FIG. 6b is a partial section of a portion of the stapler illustrated in FIG. 6a taken along line VIb—VIb in FIG. 6a;

FIG. 6c is a cross-sectional view of the stapler illustrated in FIG. 6b taken along line VIc—VIc;

FIG. 6d is a cross-sectional view of the stapler illustrated in FIG. 6b taken along line VId—VId;

FIG. 6e is a side view partially in section of a distal end of the stapler illustrated in FIG. 6a;

FIG. 7a is a perspective view partially in section of a first half of an extraluminal end to end surgical stapler according to the present invention;

FIG. 7b is a side view of the complete extraluminal surgical stapler illustrated in FIG. 7a;

FIG. 8a is a perspective view of a lumen section to be anastomized utilizing flexible clips associated with the surgical stapler illustrated in FIGS. 7a and 7 b;

FIG. 8b is an end view of the lumen and clips illustrated in FIG. 8a;

FIG. 8c is a side view of the clips utilized in FIGS. 8a and 8 b in the open position;

FIG. 8d is a plan view with the clips in the open position of the clip illustrated in FIG. 8c;

FIG. 8e is a cross-section of the clips illustrated in FIGS. 8c and 8 d with the clip in a partially closed position;

FIG. 9 is a sectional schematic view of an alignment mechanism for use in a stapler of the present invention;

FIG. 10 is a sectional schematic view of a motion accommodation mechanism for the anvil expansion mechanism of a stapler according to the present invention; and

FIG. 11 is a schematic plan view of a lock and release transmission for an anvil stem and an anvil expansion rod of a stapler according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The objects and advantages of the present invention can be best clarified in reviewing the surgical results illustrated in FIGS. 1a, 1 b and 1 c with the prior art surgical staplers (FIG. 1a) and various embodiments of surgical staplers (FIGS. 1b and 1 c) of the present invention, respectively. FIG. 1a illustrates lumen sections 10 and 12 anastomized with a conventional intraluminal anastomotic stapler (i.e. an EEA). The first lumen section 10 and second lumen section 12 will have a nominal diameter d1. With existing end to end anastomotic staplers, the anastomosis site, sometimes referred to as an anastomosis ring, formed by an array of staples 14 will have a smaller diameter d2 than the nominal luminal diameter d1. In addition to the constricture point formed by the smaller diameter d2, with the existence of (1) the array of staples 14, (2) the additional tissue formed by the coupled lumen sections at the anastomosis site, and (3) the scar tissue forming around the anastomotic ring, this constricture will have greater rigidity, i.e., less flexibility, than the associated lumen tissue. As discussed above, the object of the present invention is to avoid this constricture point and the possible detrimental effects associated therewith. Of course, the detrimental effects associated with a more rigid constricture in an anastomized lumen would depend on the particular lumen which is coupled together. However, whether connecting together a bowel in vascular anastomosis, or connecting any lumen within the body such constrictures are universally undesirable.

FIG. 1b illustrates the anastomosis of lumen sections 10 and 12 with a surgical stapler 100 according to a first embodiment of the present invention. The anastomotic stapler 100 of the invention associated with the results shown in FIG. 1b is described in detail in FIGS. 2a and 2 b, 3 a and 3 b, 4 a and 4 b, 5 a-5 g, and 6 a-6 e. As illustrated in FIG. 1b, the anastomotic ring or suture site formed by the array of staples 14 has an inner diameter d3, which is relatively larger than the diameter d2 associated with conventional staplers. The diameter d3 is preferable formed at least as great as diameter d1 of the adjacent lumen sections. In this manner, the detrimental effects of the constricture site can be minimized. It should be appreciated that the inner area of the anastomized lumen is associated with the square of the diameter such that minimal improvements in the diameter of d3 over d2 of the prior art will result in substantial increases in the area of the lumen. It is preferred that in the present invention, the diameter d3 at the anastomotic ring be at least as great, or greater than the nominal diameter d1 of the associated lumens to avoid any problems with constricture. The relative increase or expansion of the anastomotic ring possible with the device according to the present invention will be associated with the tissue flexibility of the lumen sections for which the particular stapler is designed. For example, tissue forming a bowel (relatively flexible) and tissue forming vascular lumens (less flexible compared to the bowel) would accommodate different relative dimensions for d3 compared to d1 at the anastomotic site. However, the general operative concepts of an intraluminal bowel stapler according to the present invention is the same as an intraluminal vascular stapler according to the present invention.

FIG. 1c illustrates an end to end anastomosis of two lumens 10 and 12 with an array of staples 14 utilizing an extraluminal surgical stapler according to a second embodiment of the present invention. The stapler according to the second embodiment of the present invention forms an outer anastomotic ring with the array of staples having a diameter greater than d1, the normal diameter of the lumen, such that the anastomosis site forms no constricture. The relative positioning of the array of staples 14 will again depend on the particular lumen being anastomized. Examples of the stapler forming this anastomosis are illustrated in FIGS. 7a, 7 b, and 8 a-8 e below.

FIGS. 2a and 2 b schematically illustrate an expandable head 90 for the intraluminal anastomotic stapler 100 according a first embodiment of the present invention. The expandable head 90 is formed of a plurality of arc segments which interconnect in an outer firing position to form the annular expanded head 90 as shown in FIG. 2a. The individual segments shown in the embodiment illustrated in FIGS. 2a and 2 b comprise outer wedge-shaped segments 102 and inner wedge-shaped segments 104. The inner segments 104 are moved radially inwardly and outwardly by individually associated wedge elements 106. The side wedge-shaped engaging surfaces of the inner segments 104 will force the outer segments 102 into the expanded condition. The inner segments 104 can be pinned to the outer segments 102 in a manner to be described later such that retraction of the inner segments 104 to the retracted position shown in FIG. 2b will also pull the outer segments 102 toward the retracted position.

The structure of the individual segments 102, 104 be discussed later in greater detail. Generally speaking, each segment 102, 104 includes a plurality of staple receiving slots 108 in a staggered annular array consisting of both an outer ring and an inner ring of staples receiving slots 108. As clearly evident in the figures, it is an important aspect of the present invention that the division between adjacent segments 102, 104 needs to be accomplished between the staple receiving slots 108. As can be seen in the figures, in the expanded position, the segments 102, 104 combine to form a standard annular array of staples 14 in an offsetting overlapping arrangement. Additionally, each segment 102, 104 includes, at a radial inner side thereof, with knife portions 110 which combine in the expanded position to form an annular knife which provides a trimmed inner edge to the anastomized lumen as is conventional. In order to ensure a complete annular knife in the firing position, and therefore a complete annular smooth cut to the lumen, knife portions 110 of the inner segments 104 overlap with the knife portions of the adjacent outer segments 102 as generally illustrated in the figures. As can be seen in FIGS. 2a and 2 b, the wedge-shaped interacting arc segments 102, 104 of the head 90 will allow it to be moved between retracted and expanded positions. It should be evident that the present invention is not intended to be limited to the specific number of segments illustrated in FIGS. 2a and 2 b. A minimization of the diameter in the retracted position can be obtained with as little as three inner wedge-shaped segments 104 spaced about the periphery of the head 90. The number, positioning and specific shape of the segments 102, 104 can be changed as desired in order to allow for the desired degree of expansion. Other factors affecting the number and shape of the individual segments 102, 104 will be the number and length of the specific staples 14 utilized in the inner and outer rings. All of these factors can be considered in designing a specific expanding head 90 which expands to the degree desired.

FIGS. 3a and 3 b illustrate the expanding anvil 120 utilized with the stapler 100 according to the present invention. These figures illustrate that the anvil 120 is formed of inner segments 122 and outer segments 124 similar to the inner segments 104 and outer segments 102 of the head 90. The anvil 120 in the expanded position forms an annular ring with conventional staple engaging grooves 126 which will correspond to the staple receiving slots 108 of the head 90 for cinching the fired staples 14 as known in the art. The inner and outer segments 122, 124 can be pinned together and the inner segments 122 can be moved by a wedge 128 similar to the mechanism for the head 90. The anvil 120 construction is significantly simpler than the head 90 construction for a variety of reasons. First, the anvil 120 construction is not limited to forming the staple engaging grooves 126 entirely on one segment 122 or 124. These expanding anvil segments 122, 124 can be formed essentially in any position even dividing a staple receiving groove 126. This provides significantly greater flexibility in deciding where to put the inner and outer segments 122, 124. An additional aspect to making the anvil 120 significantly easier to design and operate is that there is no knife or staple firing mechanisms which needs to be incorporated into the expanding and retracting anvil 120. In fact, the prior art illustrates that expanding anvils have been well-known in the art, and many of these constructions can also be incorporated into the design of the present invention. For the sake of simplicity, however, the design of the anvil 120 is essentially the same as the design of the expanding head 90 illustrated in FIGS. 2a and 2 b.

FIGS. 4a and 4 b are intended to illustrate alternative expanding head mechanisms according to the present invention. FIG. 4a illustrates an expanding head 140 according to one embodiment of the present invention in which the head 140 is formed of individual segments 142 which can slide past each other in an overlapping arrangement to contract in a spiral fashion as illustrated by the arrows. In place of an actuating wedge, the actuating mechanism may be a rotating cam type operator, although a variety of segment 142 moving mechanisms can be envisioned.

FIG. 4b illustrates yet another embodiment for an expanding head 150 for a stapler 100 of the present invention in which individual segments 152 of the head 150 are hinged together by hinges 154 to move between expanded and contracted positions. This embodiment illustrates three hinges 154 and one open connection which can have these segments 152 snap together to form the continuous ring. The number of individual segments 152 may be selected as desired. The hinges 154 may include spring-biasing to help move the segment 152 to either the expanded or retracted positions. A mechanical actuator linearly moving along the length of the stapler 100 would be used to move the segments 152.

FIGS. 5a-5 g illustrate the details of the individual arc segments 102, 104 forming the expandable head 90 illustrated in FIGS. 2a and 2 b. The segments 102, 104 are discussed in detail and illustrated associated with the specific expanding head 90 illustrated in FIGS. 2a and 2 b. However, the general concepts of these individual segments 102, 104 can be easily extrapolated for many different embodiments, such as those illustrated in FIGS. 4a and 4 b. The key features of the arc segments 102, 104 for the expanding head 90 according to the present invention is that the individual segments 102, 104 have independent firing mechanisms for the staples 14 and the knife portions 110 that are associated with that segment 102, 104. Additionally, the firing mechanism accommodates the relative motion of the segments 102, 104 between the retracted and expanded positions. As will be evident in the description of FIGS. 5a-5 g, these components utilized in the segments 102, 104 of the present invention can be utilized in the expanding heads 140 and 150 illustrated in FIGS. 4a and 4 b as well as a wide variety of other configurations for an expanding head having separate segments the user may contemplate.

FIG. 5a illustrates a plan view of the outer segment 102 of the expanding head 90 illustrated in FIG. 2a. The outer segment 102 includes a plurality of slots 108 for receiving staples 14 therein as shown in FIGS. 5c and 5 d. On the radial inner side of the segment 102 is a groove 160 extending across the entire segment 102. The arcuate knife portion 110 is positioned in the groove 160. The knife portion 110 and staples 14 are all fired through a common firing mechanism which can be best seen in FIGS. 5c and 5 d. Essentially, a base plate 162 is positioned in a recess 164 extending along the length of the segment 102. The base plate 162 includes a plurality of pusher bars 166 extending into the individual staple receiving slots 108 for supporting and firing the staples 14. As illustrated in FIG. 5c, the base plate 162 is positioned in the recess 164 with enough room for movement (longitudinally of the stapler 100) for allowing the firing of the staples 14 and the knife portion 110. Additionally, the knife portion 110 is attached to the base plate 162 through a series of L-shaped arms 168 at spaced locations along the base plate 162. The L-shaped arms 168 extend through slots 170 in the segment 102. The base plate 162 is secured to an actuation rod 172 at the bottom thereof for moving the base plate 162 in the segment 102 for firing of the staples 14 and actuation of the individual knife portion 110.

As discussed previously, the individual knife portions of the various segments 102, 104 will overlap to assure that a complete annular circle is formed and cut by the combined knife portions 110. In order to easily accommodate the overlapping of the outer edges of the segments 102 near the groove 160 are cut out at recess 174 to allow the overlapping portions of the knife portions 110 of the inner segments 104 discussed below to easily overlap the knife portions 110 of the outer segments 102 when the inner segments 104 are pushed into position. Additionally, the outer segments 102 are provided with pin receiving grooves 176 for pinning the outer segments 102 to the inner segments 104. The grooves 176 will allow the inner segments 104 to follow a defined path of movement during the expansion and contraction as well as pull the outer segments 102 towards the retracted position when the inner segment pin 178 reaches the radially inner extent of the groove 176 during the retraction of the expandable head 90.

In view of the complex shape, it is expected that the segments 102, 104 may most easily be formed of an injection molded plastic design, however, any construction technique and material is contemplated.

FIG. 5e illustrates a plan view of the inner segments 104 for the expandable head 90 in FIGS. 2a and 2 b. The inner segment 104 additionally includes staple receiving slots 108 in two annular arrays similar to the staple receiving slots 108 formed in the outer segment 102. Furthermore, the inner segment 104 includes a groove 160 on the radially inner edge thereof receiving an annular knife portion. As illustrated in FIGS. 5e and 5 f, the annular knife portion 110 of the inner segment 104 extends beyond the edges of the segment 104 to provide on overlapping blade section which would be received in the recess 174 of the outer segments 102 shown in FIG. 5a. As discussed above, this construction ensures the overlapping of the knife portions 110 to form a complete annular knife blade ring 178. The inner segments 102 will additionally include the pins on the sides thereof for engaging with grooves 160 formed on the sides of the outer segment 102 thereby keying the segments 102, 104 together.

As shown in FIG. 5g, the inner segment 104 will additionally include a firing mechanism comprised of a base plate 162 with staple projections extending vertically upward into the staple receiving slots 108. The base plate 162 will also be coupled to the knife portion 110 at spaced locations by L-shaped arms (not shown) extending through slots (not shown) in the same manner as in the outer segments 102 disclosed above in FIGS. 5a and 5 c.

The inner segments 104 additionally include a beveled T-shaped slot 180 receiving a wedge rod 182 and wedge element 106 therein which operates to move the inner segments 104 and the outer segments 102 for expanding and contracting the head 90. The T-shaped slot 180 is intended to be just one configuration for tying the movement of the segments 102, 104, both in the expansion and retraction mode, to the movement of the controlling wedge rod 182 and attached wedge element 106. Other mechanical connections and actuation mechanisms are contemplated within the scope of the present invention. However, it is believed that the simple mechanical coupling of the components as illustrated is generally preferable to a spring-biasing operation which may not be successful if the forces of the operating spring do not overcome friction or other forces in the stapling environment. Consequently, it is believed that the operating mechanism of the present invention provides a mechanically simple and highly reliable method for actuating and moving the expandable head 90.

It will be appreciated that the specific construction of the inner and outer segments 102, 104 are not limited to the shapes illustrated. The general construction can be expanded to any segment shape such as those illustrated in FIGS. 4a, 4 b or many other shapes that can be contemplated for forming an expandable head 90 for a stapler 100.

FIGS. 6a-6 e illustrate the details of an intraluminal anastomotic stapler 100 with an expanding head 90 illustrated in FIGS. 2a and 2 b as well as an expanding anvil 120 illustrated in FIGS. 3a and 3 b. The stapler 100 looks essentially like a conventional EEA stapler having an elongated body 190 of generally circular cross-section further including the expanding head 90 and anvil 120 at a distal end thereof. The expanding anvil 120 will have a length slightly longer than an anvil of a conventional EEA to accommodate the expanding anvil mechanism. At the opposite end of the body 190, the stapler 100 will have generally conventionally shaped controls 192, 194 for advancing and retracting the anvil 120 relative to the head 90 and for firing of the staples 14. Specifically, a rotatable controller 192 is utilized for expanding and contracting the anvil 120 and clamping the lumen sections 10 and 12 together and a pair of pivoted firing grips 194 are utilized for firing the staples 14. Additionally, the stapler 100 may include a known safety release (not shown) which does not allow the staples 14 to be fired unless the anvil 120 is in an acceptable proximity of the head 90. This safety mechanism may also be tied to the expanding mechanism, to be described, such that the firing of the staples 14 would not be possible unless the head 90 and anvil 120 are also expanded to the appropriate expanded, firing positions.

With regard to the expansion control, a pair of finger grip controllers 196 extend from opposite sides of the housing or body 190 extending from a Z-shaped slot 198. When desired to expand, the user can grip one or both expansion controllers 196, pivot them slightly out of the retracted position (i.e., one leg of the z-shaped slot 198) moving axially along the length of the housing in a axial portion of the Z-shaped slot 198 and then when fully expanded move the controllers 196 into the upper leg of the Z-shaped slot 198 to hold the anvil 120 and head 90 in the fully expanded position. After firing, the process can be reversed for retracting both the anvil 120 and head 90. It will be appreciated that within this construction, the outer diameter of the body 190 can be formed approximately equal with the diameter d1 of the lumen sections 10 and 12 to be anastomized. It will be understood that the expanded head 90 and anvil 120 will expand the lumen sections to a stretched condition such that the anastomized ring will be formed at a diameter d3, preferably at least as great as the normal unstretched diameter d1 of the lumen sections 10 and 12 to be anastomized.

FIG. 6b is a sectional view of the controlling portion taken along two radial sections offset 90 degrees to best illustrate the expansion, clamping and firing controls (196, 192, 194) of the present invention.

As shown in FIGS. 6b and 6 c, for at least a portion of the housing or body 190, the operating mechanisms are formed of a series of concentric independently operated sleeves for controlling the various functions of the stapler 100 of the present invention. It should be understood that the sleeves are intended for limited axial motion along the length of the body 190 and may be formed of either a rigid or slightly flexible material. In other words, the body 190 may have a certain curvature along its length, as is known in the art, and the operating mechanism can be made of a material to accommodate such curvature.

Beginning next to the annular housing or body 190 is a firing ring 200 which is utilized for actuating the firing mechanisms in the individual head segments 102, 104. At one end of the axially movable firing ring 200, a series of the firing or actuation rods 172 are attached which extend from the firing ring 200 to each individual base plate 162 of each individual segment 102, 104. The firing rods 172 can be pivotally attached to the firing ring 200 and segments 102, 104 or the rods 172 can be formed sufficiently flexible to accommodate the outward movement of the associated segments 102, 104. The opposite end of the firing ring 200 includes a pair of L-shaped legs 202, only one of which is shown in FIG. 6b, attached to the individual firing grips 194. As can be easily understood by viewing FIG. 6b, when the firing grips 194 are pulled, the legs 202 in the firing ring 200 will be moved axially along the body 190 moving the rods 172, axially along the body thereby pushing the associated base plates 162, firing the individual staples 14 and actuating the individual knife portions 110. It should be appreciated by those of ordinary skill in the art that a wide variety of changes to the firing mechanism can be envisioned. For example, a pull trigger could easily replace the firing grips 194. The firing grips 194 are illustrated since this represents a known acceptable operating mechanism. As discussed above, a safety latch mechanism can be incorporated, if desired, to avoid premature firing of the staples 14. The construction of such safety devices is certainly known to those of ordinary skill in the art.

Radially adjacent the firing ring 200 is an independently movable wedge ring 210 for moving the head segments 102, 104 as will be discussed. At a forward end of the wedge ring 210 are a series of the longitudinally extending wedge rods 182. The wedge rods 182 and wedge elements 206 combined have a beveled T-shape which is engaged in the T-shaped slot 180 of the inner segments 104 for radially moving the segments 102, 104 as the associated wedge rod 182 and wedge element 106 are moved longitudinally back and forth along the body 190. As illustrated in FIG. 6d, there is one wedge element 106 associated with each inner segment 104. On the opposite end of the wedge ring 210 the wedge ring 210 is secured to the pair of opposite extending controllers 196, only one of which is shown in FIG. 6b, by an arm 212 or a linkage, again only one of which is shown in FIG. 6b. As can be most apparent in FIG. 6b, longitudinal movement of the controller 196 will move the connecting linkage arm 212, the wedge ring 210 and the associated wedge rod 182 and wedge element 106 for radially moving the head segments 102, 104 between the fully extended position shown in FIG. 2a and the fully retracted position illustrated in FIG. 2b.

Radially adjacent the wedge ring 210 is an anvil stem rod 220 moving linearly in the body 190 for moving the anvil 120 into and out of a clamping position relative to the head 90. At one end of the anvil stem rod 220 is a generally disc-shaped actuator 222 threadedly engaging inner threads 224 on the rotatable controller 192. The rotatable controller 192 is attached to the housing in a manner that allows for rotation such that rotation of the controller 192 will axially move the actuator 222 and the anvil stem rod 220 for moving the anvil 120 essentially in a conventional fashion. As shown in FIG. 6e, a distal end of the anvil stem rod 220 has a snap fit connection 226 with an annular anvil connector 228 allowing the anvil 120 to be released from the body as known in the art.

Finally, returning to FIG. 6b, the innermost control mechanism is an anvil expanding rod 230 axially movable in the body 90 and adapted for expanding the anvil segments 102, 104 between the retracted and expanded positions. The control end of the anvil rod 230 is connected to the expanding controller 196 through a pivoting linkage 232 and a connecting arm 234. This mechanism allows the axial movement of the controller 196 to be associated with an opposite movement of the expanding anvil rod 230. A distal end of the expanding anvil rod 230 includes a connector 236 having a bayonet type connection with an anvil wedge rod 238 as shown in FIG. 6e. The anvil wedge rod 238 is associated with four wedge rod elements 240 which support the wedges 128 received in grooves in the inner anvil expanding segments 122 as shown in FIG. 6e. It will be appreciated that in the illustrated embodiment the expanding anvil rod 230 and the anvil wedge rod 238 will only be in a secure fitting relationship when the anvil 120 is appropriately clamped against the head 90. With this construction, it may be helpful to have the anvil wedge rod 238 and the associated segments 102, 104 be spring-biased to the retracted position so that there is a retracting biasing force when the expanding anvil rod 230 is not engaged with the anvil wedge rod 238.

It should be appreciated that other constructions are certainly anticipated, such as having the wedge rod 238 and the expanding anvil rod 230 always coupled when the anvil stem rod 220 and annular anvil connector 228 are connected. In this modification, the anvil expanding rod 230 and the anvil stem rod 220 will need to be moved together. The anvil stem rod 220 is moved relative to the body 190 by rotation of the controller 192. In this modification, the movement of the anvil stem rod 220 can be accommodated by moving the pivoting linkage 232 and the expanding anvil rod 230 with the anvil stem rod 220 and having a lost motion or motion accommodating mechanism be added to the connecting arm 234 to accommodate the change in relative position. One simple example of such a mechanism is illustrated in FIGS. 10 and 11 and essentially includes forming the connecting arm 234 as a telescoping rod having first and second portions 234A and 234B, respectively. The first and second portions 234A and 234B are releasably pinned together with a spring-biased release pin 235 being released by a button 237 (upon which the spring 241 acts) on the body 190 when the controller 192 is desired to be rotated. With such a spring-biased release button 237 and pin 235, the pin 235 is automatically reinserted to connect the first and second telescoping portions 234A and 234B of the arm 234 such that the connecting arm 234 would accommodate the changed length. This embodiment additionally illustrates the use of a releasable lock or transmission between the expanding anvil rod 230 and the anvil stem rod 220. The releasable transmission or lock is in the form of a mating pin 247 extending from the lower end of the controller 196. The mating pin 247 extends into generally identically shaped slots 249 formed in both the expanding anvil rod 230 and the anvil stem rod 220. As shown in FIG. 11 the edges of the slot 249 include mating surfaces that will engage and mechanically lock with the mating pin 247. The slots are designed such that the locking or mating will occur when the controller 196 is in the far left or right radial positions in the z-shaped slot (e.g. when the controller 196 is in the top or bottom leg portions of the z shaped slot) as shown in positions A and B in FIG. 11. When the controller 196 is in the center of the Z-shaped slot for longitudinal movement the pin 247 will be disengaged from the edges of the slot 249 as shown in position C allowing for the relative movement between the expanding anvil rod 230 and the anvil stem rod 220. It will be understood that this transmission will require modification of the Z-shaped slot to accommodate movement of the controller due to axial movement of the anvil, such as increasing the width of the bottom leg of the z in the z shaped slot. This will additionally provide a visual indicator of the relative axial position of the stem prior to expansion of the anvil. This embodiment could utilize the motion accommodating mechanism without the mechanical lock or transmission or the mechanical lock may be used in other EEA staplers as merely a stem position indicating mechanism. This embodiment is described to show the possibility of such a construction.

It should be appreciated that the intraluminal end to end anastomotic surgical stapler 100 illustrated in FIG. 6a is utilized in essentially the same manner as existing anastomotic devices with the addition of an expansion and retraction step. Specifically, the stapler 100 is inserted into one lumen section 10 or 12 to be anastomized with the anvil 120 and head 90 either spaced apart or separated as desired by the user. Purse strings attached to the lumen sections 10 and 12 can secure the segments 10 and 12 around the anvil stem rod 220 and/or the anvil connector 228. The controller 196 is rotated to move the anvil 120 and head 90 into at least an initial clamped position. At this point, the anvil 120 and head 90 can be expanded to their extended positions and the staples 14 fired. Following firing, the staples 14 will form a enlarged anastomotic ring in the connected lumen sections 10 and 12 with the knife portions 110 trimming off the inner diameter of the lumen sections 10 and 12 secured to the stapler 100 with the purse strings. The head 90 and anvil 120 can be returned to the retracted position following the loosening of the clamped sections to allow the removal of the stapler 100.

The present invention operates essentially the same as existing end to end anastomotic devices with a significantly enlarged anastomosis ring. Specifically, the area at the anastomosis site is not decreased or reduced relative to the normal diameter of the anastomized sections.

FIGS. 7a and 7 b illustrate an extraluminal end to end surgical stapler 300 according to the present invention. The stapler 300 is intended to form anastomized lumen sections with an externally located anastomosis ring relative to the lumen sections 10 and 12 illustrated in FIG. 1c.

The stapler 300 according to the present invention includes two separate stapling units 310, with each stapling unit 310 generally including two semi-circular sections 320, 322 hinged together by a hinge 324 extending along the length of the stapling unit. One stapling unit 310 is shown in FIG. 7a. In a preferred embodiment of the present invention, one half of each stapling unit 310 is formed as an anvil 320 having conventionally positioned staple receiving grooves 126 staggered thereon. The other semi-circular section 322 includes staples 14 and knife portion 110. The section 322 includes a series of staple receiving slots 108 for the staples 14 and a knife receiving groove 160 with the semi-circular knife portion 110 received in the groove 160. The staples 14 and knife portions 110 can be fired with a firing mechanism essentially the same as illustrated in the segments 102, 104 shown in FIGS. 5a-5 g and therefore need not be discussed in detail. One difference is that the groove 160 is at the radially outer edge rather than on the radially inner edge. A firing rod 172 is attached to a base plate 162, not shown, and can be directly connected through the housing 333 to a linkage (not shown) associated with a firing trigger. The anvil and head sections 320 and 322 shown in FIG. 7a form one entire stapling unit 310 which forms one-half of the stapler 300. Another identical stapling unit 310 would be attached in an opposite face to face engagement (as shown in FIG. 7b.). Each staple and knife firing head section 322 is associated with the anvil section 320 of the opposite stapling unit 310, and vice versa. In other words, half of the staples 14 of the complete anastomosis ring would be fired from one direction and the other half would be fired by the other stapling unit 310 in the opposite direction. Each stapling unit 310 includes alignment mechanisms for combining with the opposite stapling unit 310 to complete the pair of the stapler 300. The alignment mechanisms can be easily constructed as a rod 330 extending from one section 320 which is received in a locking projection 332 formed on an opposite section 322. This construction will allow for easy alignment and attachment of the opposed stapling units 310.

Another key aspect of the present invention is a tissue holding mechanism for pulling the tissue of the lumen sections 10 or 12 to be attached over the operating face of the stapling units 310. As will be appreciated by those of ordinary skill in the art, with such an extraluminal stapler 300 as disclosed, purse strings would not be very efficient for positioning of the lumen sections 10 and 12 to be attached on the stapler 300. To accomplish the positioning of the tissue, each stapling unit 310 includes a plurality of tissue retraction members 340 spaced around the periphery of each stapling unit 310. The tissue retraction members 340 are in the form of hooks 342 formed at the end of cables 344 at circumferentially spaced locations. The cables 344 extend along grooves formed in the body 190 back to a central controlling structure 350 in the form of an axially movable stud 352 controlled by a rotatable controller 354 journaled to the body 190. It should be evident that rotation of the controller 354 will axially move the stud 352 allowing the cables 344 to be pulled out of the body 190 or retracted back into the body 190. With this construction, the hooks 342 can be pulled out and clipped onto the tissues at circumferentially spaced locations around the lumen section 10 or 12 and the controller 354 can be rotated to pull the hooks 342 and the associated tissue back until tissue is surrounding the operating face of the one stapling unit 310.

It is anticipated that certain tissue may not be efficiently stretched by a hook 342 attached at a single location (i.e., it may tear). To eliminate this, the present invention contemplates flexible clips 360 attached to the edge of the lumen sections 10 or 12 such as shown in FIGS. 8a-8 e. The clips 360 are formed of a flexible hinged strip of material that can be secured around the edge of the resected lumen section. As shown in FIGS. 8c-8 e, one simple construction for forming the clips 360 is to provide a series of piercing projections 362 on one side of the clip 360 which engage in snap fit receiving holes 364 on the opposite side of the clips 360 such that the clips 360 can be easily press fit in position in a fast and secure manner. The clips 360 include a pair of eyelets 366 at spaced locations thereon with the eyelets 366 forming a connection point for the associated hooks 342 of each stapling unit 310. The purpose of the clips 360 is to provide rigidity to the end of the lumen sections 10 or 12 being pulled and to distribute the stresses of pulling on the lumen section 10 or 12 across a greater area to avoid damaging the lumen section 10 or 12 and to easily pull the lumen section 10 or 12 into the extended position around the face of a stapling unit 310.

In operation, the extraluminal stapler 300 illustrated in FIGS. 7a and 7 b operates as follows. After the resected portion of the lumen is removed and the two remaining lumen sections 10 and 12 are to be attached, two separate stapling units 310 forming a combined stapler 300 are attached with one unit 310 around each lumen section 10 or 12. Clips 360 are positioned around the edge of each lumen section 10 or 12 as illustrated in FIG. 8a and the controller 354 is rotated to release the cables 344 to allow enough slack to attach the hooks 342 to the eyelets 366 of the clips 360. Once the eyelets 366 are attached to the associated clips 360, the controller 354 can be rotated retract the cables 344, the hooks 342 and the associate clips 360 properly positioning the lumen section 10 or 12 over the operating face of the associated stapling unit 310. Following this, the stapler 300 of the present invention allows for visual inspection to assure that the lumen is properly positioned prior to snapping the two stapling units 310 together using the alignment mechanisms formed by rod 330 and locking projection 332. The alignment mechanisms will preferably snap or hold the two stapling units 310 together at a position sufficient for firing. It will be understood that an appropriate safety mechanism can be associated so that the staples 14 could not be fired until the opposing stapling unit 310 is secured thereto. Once the opposing stapling unit 310 is secured, the staplers 14 on both halves (i.e., in both stapling units 310) can be fired performing the anastomosis. Following this, the two stapling units 310 can be removed from each other and each independently opened and the external stapler is removed from the anastomized lumen.

The use of an alignment mechanism for aligning the head and anvil portions of EEA staplers such as shown in staplers units 310 would also be beneficial for internal EEA staplers such as shown in FIGS. 6a-e. The present invention contemplates an alignment mechanism 400 associated with such an EEA stapler as schematically shown in FIG. 9. The alignment mechanism 400 essentially includes a plurality of locking pins 402 associated with each head segment 102 and 104. The locking pins 402 are received in mating holes 404 on the associated anvil segments 122 or 124. The holes 404 preferably have a beveled outer surface to receive and guide the locking pins 402 into the holes 404. With the locking pins 402 received in the holes 404 the head and anvil portion of the stapler will be properly aligned. The pins 402 may be moved by the same firing mechanism as the staples and the blade as shown in FIG. 9. A separate pin movement mechanism may also be provided. It is important that the pins 402 be engaged with the holes 404 prior to the engagement of the staples or the knife blade with the lumen tissue, since it is the pins 402 which are assuring the alignment of the head and anvil portions. Consequently where a single firing mechanism is utilized the pins 402 should be axially ahead of the staple and knife blade portions as shown in an exagerated fashion in FIG. 9. Another feature of the present invention is to offset the anvil segments and the head segments such that the pins 402 of each head segment will lock the head segment to two corresponding overlapping anvil segments. This will effectively interlock all of the head and anvil segments during firing to provide a conventional solid hoop structure for these components during the staple firing and knife trimming operation. It should be apparent that this alignment mechanism 400 will be applicable to EEA devices that do not have separate head and anvil segments.

Various modifications to this invention are contemplated within the scope of the present invention. For example, additional clamping between the stapling units 310 may be accomplished by having the alignment mechanism on each stapling unit 310 (i.e., the rod 330 and locking projection 332) be independently axially movable such that when the two stapling units 310 are clamped together, axial movement of the associated alignment mechanism will move the two stapling units 310 closer together (or farther apart) to accommodate the desired clamping. Another modification of the present invention would be to connect the firing of one stapling unit 310 to the firing of the other stapling unit 310, such as through the associated alignment mechanism, so that the user need only pull one trigger 334 to fire the two halves of staples 14. Another modification to the present invention would be to form the separate units as having an entire array of staples on one stapling unit 310 and two anvil portions on the other stapling unit 310. However, the present invention simplifies the manufacturing of the stapler 300 by forming an entire stapler 300 of two identical stapling units 310. Regardless, these and other modifications make it clear that various changes to the present invention can be accomplished without departing from the spirit and scope thereof. For example, the staples 14 could be replaced with another type of fastener. The described embodiments are merely intended to be illustrative of the present invention and not restrictive thereof. The scope of the present invention is intended to be defined by the appended claims and equivalents thereof.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US4505414 *12 oct. 198319 mars 1985Filipi Charles JExpandable anvil surgical stapler
US4752024 *17 oct. 198621 juin 1988Green David TSurgical fastener and surgical stapling apparatus
US5219111 *15 juin 199215 juin 1993Ethicon, Inc.Pneumatically actuated linear stapling device
US5669918 *18 mars 199623 sept. 1997Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V.Surgical instrument for preparing an anastomosis in minimally invasive surgery
US5732872 *6 févr. 199631 mars 1998Heartport, Inc.Surgical stapling instrument
US5855312 *25 juil. 19965 janv. 1999Toledano; HavivFlexible annular stapler for closed surgery of hollow organs
US5951576 *2 mars 199814 sept. 1999Wakabayashi; AkioEnd-to-side vascular anastomosing stapling device
US6117148 *16 oct. 199812 sept. 2000Ravo; BiagioIntraluminal anastomotic device
US6503259 *27 déc. 20007 janv. 2003Ethicon, Inc.Expandable anastomotic device
Citations hors brevets
Référence
1 *Blatter et al, Paired Expandable Anastomosis Devices, May 16, 2002, US 2002/0058955 A1.
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US70807692 août 200425 juil. 2006Vresh Susan ELuminal anastomotic device
US7674271 *9 janv. 20069 mars 2010InTailor Surgical, Inc.Endoluminal gastric ring and method
US780271220 mars 200928 sept. 2010Tyco Healthcare Group, LpSurgical stapling device
US785718718 juin 200928 déc. 2010Tyco Healthcare Group LpSurgical stapler with tiltable anvil assembly
US794230211 juil. 200817 mai 2011Tyco Healthcare Group LpSurgical stapling device with coated knife blade
US797589530 avr. 201012 juil. 2011Tyco Healthcare Group L.P.Tissue tensioner assembly and approximation mechanism for surgical stapling device
US80115546 janv. 20096 sept. 2011Tyco Healthcare Group, LpRaised boss for staple guide
US812310329 nov. 201028 févr. 2012Tyco Healthcare Group LpAdaptor for anvil delivery
US814176327 mars 200727 mars 2012Tyco Healthcare Group LpAnvil assembly with improved cut ring
US8146790 *17 mai 20103 avr. 2012Tyco Healthcare Group LpSurgical instrument with safety mechanism
US818183831 août 200922 mai 2012Tyco Healthcare Group LpSurgical stapling device
US818184016 mars 200522 mai 2012Tyco Healthcare Group LpTissue tensioner assembly and approximation mechanism for surgical stapling device
US823104220 oct. 200931 juil. 2012Tyco Healthcare Group LpSurgical stapler
US826730121 juin 201018 sept. 2012Tyco Healthcare Group LpSurgical stapler
US82725557 mars 200725 sept. 2012Tyco Healthcare Group LpStapler for mucosectomy
US82819747 janv. 20109 oct. 2012Tyco Healthcare, Group LPSurgical stapler with suture locator
US83170751 août 201127 nov. 2012Covidien LpRaised boss for staple guide
US83225906 oct. 20104 déc. 2012Covidien LpSurgical stapling instrument
US83431852 mai 20121 janv. 2013Covidien LpSurgical stapling device
US83481225 sept. 20068 janv. 2013Tyco Healthcare Group LpSurgical stapling device
US8353441 *10 nov. 201115 janv. 2013Covidien LpSurgical instrument with pivotable jaw member
US836029521 mai 201229 janv. 2013Covidien LpSurgical stapling device
US836597426 janv. 20125 févr. 2013Covidien LpSurgical stapling device
US84245355 juil. 201223 avr. 2013Covidien LpCircular surgical stapler with mating anvil and shell assembly
US8424742 *31 mars 201123 avr. 2013Covidien LpSupport structures and methods of using the same
US84302927 oct. 201030 avr. 2013Covidien LpSurgical fastening apparatus
US845391118 août 20124 juin 2013Covidien LpSurgical stapler
US845391316 janv. 20104 juin 2013Covidien LpAnvil for surgical stapler
US852960030 sept. 201010 sept. 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix
US854012811 janv. 200724 sept. 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US854012926 juil. 201024 sept. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US85401308 févr. 201124 sept. 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US854013216 mai 200624 sept. 2013Covidien LpTilt anvil assembly
US854013317 mars 201024 sept. 2013Ethicon Endo-Surgery, Inc.Staple cartridge
US856187028 févr. 201122 oct. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US85734659 févr. 20125 nov. 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US857993731 juil. 200312 nov. 2013Covidien LpTool member cover and cover deployment device
US858491914 févr. 200819 nov. 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 juin 200726 nov. 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US85907634 janv. 201326 nov. 2013Covidien LpSurgical stapling device
US86022889 févr. 201210 déc. 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804510 oct. 200817 déc. 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86080467 janv. 201017 déc. 2013Ethicon Endo-Surgery, Inc.Test device for a surgical tool
US86164319 févr. 201231 déc. 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227519 nov. 20097 janv. 2014Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid distal end portion
US863246213 juil. 201121 janv. 2014Ethicon Endo-Surgery, Inc.Trans-rectum universal ports
US865717414 févr. 200825 févr. 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US866813024 mai 201211 mars 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US86722085 mars 201018 mars 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US868424829 févr. 20121 avr. 2014Covidien LpSurgical instrument with safety mechanism
US868425124 août 20121 avr. 2014Covidien AgStapler for mucosectomy
US86842522 nov. 20121 avr. 2014Covidien LpSurgical stapling instrument
US868425327 mai 20111 avr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US870821218 oct. 201129 avr. 2014Covidien LpTilt top anvil with torsion spring
US873447813 juil. 201127 mai 2014Ethicon Endo-Surgery, Inc.Rectal manipulation devices
US874003829 avr. 20113 juin 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising a releasable portion
US87465292 déc. 201110 juin 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 sept. 201210 juin 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874723828 juin 201210 juin 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US875269930 sept. 201017 juin 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising bioabsorbable layers
US875274720 mars 201217 juin 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 mai 201117 juin 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US87638756 mars 20131 juil. 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US876387730 sept. 20101 juil. 2014Ethicon Endo-Surgery, Inc.Surgical instruments with reconfigurable shaft segments
US87638791 mars 20111 juil. 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US877700429 avr. 201115 juil. 2014Ethicon Endo-Surgery, Inc.Compressible staple cartridge comprising alignment members
US878354230 sept. 201022 juil. 2014Ethicon Endo-Surgery, Inc.Fasteners supported by a fastener cartridge support
US87897396 sept. 201129 juil. 2014Ethicon Endo-Surgery, Inc.Continuous stapling instrument
US878974123 sept. 201129 juil. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US879449718 déc. 20125 août 2014Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US880084115 mars 201112 août 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges
US880173430 juil. 201012 août 2014Ethicon Endo-Surgery, Inc.Circular stapling instruments with secondary cutting arrangements and methods of using same
US880173530 juil. 201012 août 2014Ethicon Endo-Surgery, Inc.Surgical circular stapler with tissue retention arrangements
US881402430 sept. 201026 août 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of connected retention matrix elements
US88206031 mars 20112 sept. 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US8827903 *13 juil. 20119 sept. 2014Ethicon Endo-Surgery, Inc.Modular tool heads for use with circular surgical instruments
US883363014 févr. 201416 sept. 2014Covidien LpSurgical instrument with safety mechanism
US88336326 sept. 201116 sept. 2014Ethicon Endo-Surgery, Inc.Firing member displacement system for a stapling instrument
US884000330 sept. 201023 sept. 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with compact articulation control arrangement
US88447899 févr. 201230 sept. 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US885859013 juil. 201114 oct. 2014Ethicon Endo-Surgery, Inc.Tissue manipulation devices
US886400730 sept. 201021 oct. 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge having a non-uniform arrangement
US886400929 avr. 201121 oct. 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US887597421 févr. 20144 nov. 2014Covidien AgStapler for mucosectomy
US889394813 mars 201425 nov. 2014Covidien LpTilt top anvil with torsion spring
US889394923 sept. 201125 nov. 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US889946330 sept. 20102 déc. 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
US88994655 mars 20132 déc. 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US890528917 févr. 20149 déc. 2014Covidien LpSurgical stapling instrument
US891147114 sept. 201216 déc. 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US892578230 sept. 20106 janv. 2015Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising multiple layers
US89257883 mars 20146 janv. 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US893168013 août 201413 janv. 2015Covidien LpSurgical instrument with safety mechanism
US893168227 mai 201113 janv. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US897380418 mars 201410 mars 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US897895429 avr. 201117 mars 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US897895513 juil. 201117 mars 2015Ethicon Endo-Surgery, Inc.Anvil assemblies with collapsible frames for circular staplers
US899167721 mai 201431 mars 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899254721 mars 201231 mars 2015Ethicon Endo-Surgery, Inc.Methods and devices for creating tissue plications
US899805820 mai 20147 avr. 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US900523018 janv. 201314 avr. 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US901060512 janv. 201221 avr. 2015Covidien LpSliding sleeve for circular stapling instrument reloads
US901654726 oct. 201128 avr. 2015Covidien LpEEA tilt top anvil with ratchet/locking mechanism
US902227415 févr. 20125 mai 2015Covidien LpCircular stapler with increased lumen diameter
US902849428 juin 201212 mai 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 févr. 201112 mai 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US903320330 sept. 201019 mai 2015Ethicon Endo-Surgery, Inc.Fastening instrument for deploying a fastener system comprising a retention matrix
US9033204 *13 juil. 201119 mai 2015Ethicon Endo-Surgery, Inc.Circular stapling devices with tissue-puncturing anvil features
US904422830 sept. 20102 juin 2015Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of fastener cartridges
US904423013 févr. 20122 juin 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US905008323 sept. 20089 juin 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 sept. 20119 juin 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 sept. 201116 juin 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 mai 201123 juin 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 juin 20147 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907253527 mai 20117 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 juin 20127 juil. 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US907865326 mars 201214 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US908460115 mars 201321 juil. 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US908933013 juil. 201128 juil. 2015Ethicon Endo-Surgery, Inc.Surgical bowel retractor devices
US909533919 mai 20144 août 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US910135815 juin 201211 août 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 juin 201211 août 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US91076636 sept. 201118 août 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising resettable staple drivers
US911386230 sept. 201025 août 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a variable staple forming system
US911386430 sept. 201025 août 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
US911386529 avr. 201125 août 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a layer
US911386615 déc. 201125 août 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911386715 déc. 201125 août 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911386815 déc. 201125 août 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911387118 déc. 201225 août 2015Covidien LpSurgical stapling device
US911387424 juin 201425 août 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US911387915 déc. 201125 août 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911388313 juil. 201125 août 2015Ethicon Endo-Surgery, Inc.Collapsible anvil plate assemblies for circular surgical stapling devices
US911388413 juil. 201125 août 2015Ethicon Endo-Surgery, Inc.Modular surgical tool systems
US911388627 oct. 201425 août 2015Covidien LpTilt top anvil with torsion spring
US911960429 mai 20131 sept. 2015Covidien LpTool member cover and cover deployment device
US911961515 déc. 20111 sept. 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US911962129 sept. 20141 sept. 2015Covidien AgStapler for mucosectomy
US911965728 juin 20121 sept. 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912565413 juil. 20118 sept. 2015Ethicon Endo-Surgery, Inc.Multiple part anvil assemblies for circular surgical stapling devices
US912566228 juin 20128 sept. 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913822526 févr. 201322 sept. 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US917365715 déc. 20113 nov. 2015Ethicon Endo-Surgery, Inc.Devices and methods for endoluminal plication
US917991123 mai 201410 nov. 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 mai 201110 nov. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 juin 201417 nov. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US919238218 déc. 201224 nov. 2015Covidien LpSurgical instrument with pivotable jaw member
US91986616 sept. 20111 déc. 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising a plurality of staple cartridges stored therein
US919866226 juin 20121 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US920487814 août 20148 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 juin 20128 déc. 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 mars 20128 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 mars 201215 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 janv. 201515 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921112213 juil. 201115 déc. 2015Ethicon Endo-Surgery, Inc.Surgical access devices with anvil introduction and specimen retrieval structures
US921601923 sept. 201122 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 mars 201229 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 mars 201229 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 juin 20125 janv. 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 mars 201212 janv. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US92329457 juil. 201412 janv. 2016Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US923789127 mai 201119 janv. 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 mars 201226 janv. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US927179925 juin 20141 mars 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 févr. 20131 mars 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 mars 20128 mars 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US92829628 févr. 201315 mars 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 févr. 201415 mars 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 juin 201215 mars 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 août 201315 mars 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 déc. 201422 mars 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928921021 mai 201222 mars 2016Ethicon Endo-Surgery, LlcSurgical stapler with apparatus for adjusting staple height
US928925628 juin 201222 mars 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US929546429 avr. 201129 mars 2016Ethicon Endo-Surgery, Inc.Surgical stapler anvil comprising a plurality of forming pockets
US930175228 mars 20125 avr. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 mars 20125 avr. 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US930175529 avr. 20115 avr. 2016Ethicon Endo-Surgery, LlcCompressible staple cartridge assembly
US93017599 févr. 20125 avr. 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930796525 juin 201212 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US93079861 mars 201312 avr. 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798828 oct. 201312 avr. 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 juin 201212 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 juin 201219 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 juin 201219 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 juin 201226 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932052019 août 201526 avr. 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 oct. 201226 avr. 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 mars 201226 avr. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93267671 mars 20133 mai 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 mars 20133 mai 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 mars 20133 mai 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 mars 20133 mai 2016Ethicon Endo-Surgery, LlcSurgical instrument
US933297428 mars 201210 mai 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 mars 201310 mai 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 mars 201310 mai 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US934547725 juin 201224 mai 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934548113 mars 201324 mai 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US93454826 avr. 201524 mai 2016Covidien LpSliding sleeve for circular stapling instrument reloads
US935172411 janv. 201331 mai 2016Covidien LpCircular stapling instrument
US935172614 mars 201331 mai 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 mars 201331 mai 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 mars 201231 mai 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US935173426 avr. 201331 mai 2016Covidien LpSpring loaded anvil retainer
US93580031 mars 20137 juin 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 juin 20157 juin 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US935800627 juil. 20157 juin 2016Covidien LpSurgical stapling device
US936423028 juin 201214 juin 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 mars 201214 juin 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US937035819 oct. 201221 juin 2016Ethicon Endo-Surgery, LlcMotor-driven surgical cutting and fastening instrument with tactile position feedback
US9370362 *2 mars 201221 juin 2016Wake Forest University Health SciencesSurgical staplers with tissue protection and related methods
US93703645 mars 201321 juin 2016Ethicon Endo-Surgery, LlcPowered surgical cutting and stapling apparatus with manually retractable firing system
US938698327 mai 201112 juil. 2016Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US93869848 févr. 201312 juil. 2016Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US938698828 mars 201212 juil. 2016Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US939301510 mai 201319 juil. 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with cutting member reversing mechanism
US93989111 mars 201326 juil. 2016Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US940262618 juil. 20122 août 2016Ethicon Endo-Surgery, LlcRotary actuatable surgical fastener and cutter
US940860428 févr. 20149 août 2016Ethicon Endo-Surgery, LlcSurgical instrument comprising a firing system including a compliant portion
US940860628 juin 20129 août 2016Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US941483828 mars 201216 août 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprised of a plurality of materials
US94210131 avr. 201323 août 2016Covidien LpSurgical Fastening Apparatus
US943341928 mars 20126 sept. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of layers
US943964912 déc. 201213 sept. 2016Ethicon Endo-Surgery, LlcSurgical instrument having force feedback capabilities
US944581323 août 201320 sept. 2016Ethicon Endo-Surgery, LlcClosure indicator systems for surgical instruments
US94519585 août 201327 sept. 2016Ethicon Endo-Surgery, LlcSurgical instrument with firing actuator lockout
US946301820 mai 201311 oct. 2016Covidien LpAnvil for surgical stapler
US946302122 oct. 201511 oct. 2016Covidien LpSurgical instrument with pivotable jaw member
US94684381 mars 201318 oct. 2016Eticon Endo-Surgery, LLCSensor straightened end effector during removal through trocar
US948047628 mars 20121 nov. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising resilient members
US948621420 mai 20138 nov. 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US949216714 mars 201315 nov. 2016Ethicon Endo-Surgery, LlcArticulatable surgical device with rotary driven cutting member
US949216823 oct. 201315 nov. 2016Covidien LpSurgical stapling device
US949821930 juin 201522 nov. 2016Ethicon Endo-Surgery, LlcDetachable motor powered surgical instrument
US949822229 nov. 201222 nov. 2016Ethicon Endo-Surgery, LlcPivoting anvil for surgical circular stapler
US951082823 août 20136 déc. 2016Ethicon Endo-Surgery, LlcConductor arrangements for electrically powered surgical instruments with rotatable end effectors
US951083023 oct. 20146 déc. 2016Ethicon Endo-Surgery, LlcStaple cartridge
US951706328 mars 201213 déc. 2016Ethicon Endo-Surgery, LlcMovable member for use with a tissue thickness compensator
US95170685 août 201313 déc. 2016Ethicon Endo-Surgery, LlcSurgical instrument with automatically-returned firing member
US951707013 nov. 201313 déc. 2016Covidien LpAnvil assembly and delivery system
US952202912 mars 201320 déc. 2016Ethicon Endo-Surgery, LlcMotorized surgical cutting and fastening instrument having handle based power source
US953278012 juin 20133 janv. 2017Covidien LpEEA anvil snap ring activator
US95497325 mars 201324 janv. 2017Ethicon Endo-Surgery, LlcMotor-driven surgical cutting instrument
US95547941 mars 201331 janv. 2017Ethicon Endo-Surgery, LlcMultiple processor motor control for modular surgical instruments
US955480213 nov. 201331 janv. 2017Covidien LpAnvil assembly with frangible retaining member
US956103213 août 20137 févr. 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising a staple driver arrangement
US956103828 juin 20127 févr. 2017Ethicon Endo-Surgery, LlcInterchangeable clip applier
US95660618 févr. 201314 févr. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasably attached tissue thickness compensator
US95725729 nov. 201221 févr. 2017Covidien LpCircular stapler mechanical lockout
US957257422 juin 201521 févr. 2017Ethicon Endo-Surgery, LlcTissue thickness compensators comprising therapeutic agents
US957257727 mars 201321 févr. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a tissue thickness compensator including openings therein
US957464430 mai 201321 févr. 2017Ethicon Endo-Surgery, LlcPower module for use with a surgical instrument
US95856578 févr. 20137 mars 2017Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US95856587 avr. 20167 mars 2017Ethicon Endo-Surgery, LlcStapling systems
US958566011 nov. 20137 mars 2017Ethicon Endo-Surgery, LlcMethod for testing a surgical tool
US95856638 mars 20167 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument configured to apply a compressive pressure to tissue
US95920508 févr. 201314 mars 2017Ethicon Endo-Surgery, LlcEnd effector comprising a distal tissue abutment member
US95920517 nov. 201414 mars 2017Covidien LpSurgical stapling instrument
US959205212 mars 201414 mars 2017Ethicon Endo-Surgery, LlcStapling assembly for forming different formed staple heights
US959205322 mai 201414 mars 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising multiple regions
US95920544 nov. 201514 mars 2017Ethicon Endo-Surgery, LlcSurgical stapler with stationary staple drivers
US95920558 sept. 201014 mars 2017Covidien LpSurgical stapling device
US95920565 mars 201414 mars 2017Covidien LpPowered stapling apparatus
US95970759 juin 201421 mars 2017Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US95970833 mai 201621 mars 2017Covidien LpCircular stapling instrument
US960359528 févr. 201428 mars 2017Ethicon Endo-Surgery, LlcSurgical instrument comprising an adjustable system configured to accommodate different jaw heights
US960359830 août 201328 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling device with a curved end effector
US960399129 juil. 201328 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument having a medical substance dispenser
US96158268 févr. 201311 avr. 2017Ethicon Endo-Surgery, LlcMultiple thickness implantable layers for surgical stapling devices
US962962314 mars 201325 avr. 2017Ethicon Endo-Surgery, LlcDrive system lockout arrangements for modular surgical instruments
US962962421 mars 201325 avr. 2017Covidien LpCircular surgical stapler with mating anvil and shell assembly
US96296297 mars 201425 avr. 2017Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US962981420 mars 201425 avr. 2017Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US96491109 avr. 201416 mai 2017Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US964911128 juin 201216 mai 2017Ethicon Endo-Surgery, LlcReplaceable clip cartridge for a clip applier
US965561411 mars 201323 mai 2017Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US965562430 août 201323 mai 2017Ethicon LlcSurgical stapling device with a curved end effector
US966211015 sept. 201530 mai 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument with an articulatable end effector
US966874014 juin 20136 juin 2017Covidien LpAnvil assembly with sliding sleeve
US967535530 août 201313 juin 2017Ethicon LlcSurgical stapling device with a curved end effector
US967535910 oct. 201213 juin 2017Covidien LpSurgical instrument with preload assembly
US968187113 janv. 201720 juin 2017Covidien LpCircular stapler mechanical lockout
US968723014 mars 201327 juin 2017Ethicon LlcArticulatable surgical instrument comprising a firing drive
US968723121 oct. 201327 juin 2017Ethicon LlcSurgical stapling instrument
US96872378 juin 201527 juin 2017Ethicon Endo-Surgery, LlcStaple cartridge including collapsible deck arrangement
US969036226 mars 201427 juin 2017Ethicon LlcSurgical instrument control circuit having a safety processor
US969377311 sept. 20134 juil. 2017Covidien LpAnvil assembly with sliding sleeve
US969377724 févr. 20144 juil. 2017Ethicon LlcImplantable layers comprising a pressed region
US97003091 mars 201311 juil. 2017Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US970031023 août 201311 juil. 2017Ethicon LlcFiring member retraction devices for powered surgical instruments
US97003178 févr. 201311 juil. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasable tissue thickness compensator
US970032128 mai 201411 juil. 2017Ethicon LlcSurgical stapling device having supports for a flexible drive mechanism
US970699119 févr. 201418 juil. 2017Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples including a lateral base
US972409129 août 20138 août 2017Ethicon LlcSurgical stapling device
US97240945 sept. 20148 août 2017Ethicon LlcAdjunct with integrated sensors to quantify tissue compression
US972409813 nov. 20148 août 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising an implantable layer
US973069212 mars 201315 août 2017Ethicon LlcSurgical stapling device with a curved staple cartridge
US973069517 sept. 201515 août 2017Ethicon Endo-Surgery, LlcPower management through segmented circuit
US973069723 avr. 201515 août 2017Ethicon Endo-Surgery, LlcSurgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US973366326 mars 201415 août 2017Ethicon LlcPower management through segmented circuit and variable voltage protection
US97373015 sept. 201422 août 2017Ethicon LlcMonitoring device degradation based on component evaluation
US97373028 mars 201622 août 2017Ethicon LlcSurgical stapling instrument having a restraining member
US973730310 sept. 201522 août 2017Ethicon LlcArticulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US974392825 mars 201429 août 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US974392926 mars 201429 août 2017Ethicon LlcModular powered surgical instrument with detachable shaft assemblies
US975049828 sept. 20155 sept. 2017Ethicon Endo Surgery, LlcDrive systems for surgical instruments
US975049926 mars 20145 sept. 2017Ethicon LlcSurgical stapling instrument system
US975050124 mai 20165 sept. 2017Ethicon Endo-Surgery, LlcSurgical stapling devices having laterally movable anvils
US975050311 juil. 20135 sept. 2017Covidien LpMethods and devices for performing a surgical anastomosis
US97571237 mars 201312 sept. 2017Ethicon LlcPowered surgical instrument having a transmission system
US975712424 févr. 201412 sept. 2017Ethicon LlcImplantable layer assemblies
US97571285 sept. 201412 sept. 2017Ethicon LlcMultiple sensors with one sensor affecting a second sensor's output or interpretation
US975713012 mars 201412 sept. 2017Ethicon LlcStapling assembly for forming different formed staple heights
US97571339 juil. 201412 sept. 2017Covidien LpMethods and devices for performing a surgical anastomosis
US97702458 févr. 201326 sept. 2017Ethicon LlcLayer arrangements for surgical staple cartridges
US977560824 févr. 20143 oct. 2017Ethicon LlcFastening system comprising a firing member lockout
US977560923 août 20133 oct. 2017Ethicon LlcTamper proof circuit for surgical instrument battery pack
US977561330 août 20133 oct. 2017Ethicon LlcSurgical stapling device with a curved end effector
US977561425 janv. 20163 oct. 2017Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotatable staple deployment arrangements
US97821691 mars 201310 oct. 2017Ethicon LlcRotary powered articulation joints for surgical instruments
US97888348 févr. 201317 oct. 2017Ethicon LlcLayer comprising deployable attachment members
US97888365 sept. 201417 oct. 2017Ethicon LlcMultiple motor control for powered medical device
US97953817 avr. 201624 oct. 2017Ethicon Endo-Surgery, LlcRobotically-controlled shaft based rotary drive systems for surgical instruments
US979538220 août 201324 oct. 2017Ethicon LlcFastener cartridge assembly comprising a cam and driver arrangement
US979538322 sept. 201624 oct. 2017Ethicon LlcTissue thickness compensator comprising resilient members
US979538427 mars 201324 oct. 2017Ethicon LlcFastener cartridge comprising a tissue thickness compensator and a gap setting element
US98016269 avr. 201431 oct. 2017Ethicon LlcModular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US980162726 sept. 201431 oct. 2017Ethicon LlcFastener cartridge for creating a flexible staple line
US980162826 sept. 201431 oct. 2017Ethicon LlcSurgical staple and driver arrangements for staple cartridges
US980163420 oct. 201431 oct. 2017Ethicon LlcTissue thickness compensator for a surgical stapler
US980461826 mars 201431 oct. 2017Ethicon LlcSystems and methods for controlling a segmented circuit
US980824414 mars 20137 nov. 2017Ethicon LlcSensor arrangements for absolute positioning system for surgical instruments
US98082466 mars 20157 nov. 2017Ethicon Endo-Surgery, LlcMethod of operating a powered surgical instrument
US980824730 juin 20157 nov. 2017Ethicon LlcStapling system comprising implantable layers
US980824923 août 20137 nov. 2017Ethicon LlcAttachment portions for surgical instrument assemblies
US98144609 avr. 201414 nov. 2017Ethicon LlcModular motor driven surgical instruments with status indication arrangements
US981446223 juin 201414 nov. 2017Ethicon LlcAssembly for fastening tissue comprising a compressible layer
US20050067454 *2 août 200431 mars 2005Vresh Susan E.Luminal anastomotic device and method
US20060201989 *13 mars 200614 sept. 2006Ojeda Herminio FSurgical anvil and system for deploying the same
US20060253142 *9 janv. 20069 nov. 2006Bernard Medical, LlcEndoluminal gastric ring and method
US20070027473 *18 juil. 20061 févr. 2007Vresh Susan ELuminal anastomotic device and method
US20070272722 *18 mai 200729 nov. 2007Ernest AranyiTilt top anvil for a surgical fastener device
US20090242609 *31 mars 20081 oct. 2009Medtronic Vascular, Inc.Vascular Puncture Closure Staple With Tip Protection
US20100191263 *6 juin 200729 juil. 2010Luiz Gonzaga Granja FilhoProsthesis for laparoscopic anastomosis
US20100327041 *8 sept. 201030 déc. 2010Tyco Healthcare Gropu LpSurgical stapling device
US20110006100 *17 mai 201013 janv. 2011Keith MilliamSurgical instrument with safety mechanism
US20110011916 *9 juil. 201020 janv. 2011New York UniversityAnastomosis device
US20110230901 *31 mars 201122 sept. 2011Tyco Healthcare Group LpSupport structures and methods of using the same
US20120055973 *10 nov. 20118 mars 2012Stanislaw KostrzewskiSurgical Instrument With Pivotable Jaw Member
US20120234898 *13 juil. 201120 sept. 2012Ethicon Endo-Surgery, Inc.Circular stapling devices with tissue-puncturing anvil features
US20120238829 *13 juil. 201120 sept. 2012Ethicon Endo-Surgery, Inc.Modular tool heads for use with circular surgical instruments
US20120255986 *2 mars 201211 oct. 2012Petty John KSurgical staplers with tissue protection and related methods
US20150122869 *8 janv. 20157 mai 2015Ethicon Endo-Surgery, Inc.Anvil assemblies with collapsible frames for circular staplers
CN100506172C24 mai 20051 juil. 2009苏州天臣国际医疗科技有限公司Round tube type external binding apparatus
Classifications
Classification aux États-Unis227/19, 227/176.1, 227/175.1, 227/179.1, 227/180.1, 227/20
Classification internationaleA61B17/115, A61B17/11
Classification coopérativeA61B17/1155, A61B2017/00349, A61B17/1114, A61B17/1152, A61B17/115, A61B2017/1132
Classification européenneA61B17/115, A61B17/11D
Événements juridiques
DateCodeÉvénementDescription
11 févr. 2008REMIMaintenance fee reminder mailed
3 août 2008LAPSLapse for failure to pay maintenance fees
23 sept. 2008FPExpired due to failure to pay maintenance fee
Effective date: 20080803