US6858233B2 - Simmondsin processing methods and products - Google Patents

Simmondsin processing methods and products Download PDF

Info

Publication number
US6858233B2
US6858233B2 US10/614,506 US61450603A US6858233B2 US 6858233 B2 US6858233 B2 US 6858233B2 US 61450603 A US61450603 A US 61450603A US 6858233 B2 US6858233 B2 US 6858233B2
Authority
US
United States
Prior art keywords
simmondsins
extract
solvent
simmondsin
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/614,506
Other versions
US20040037908A1 (en
Inventor
Qingnong Tang
James Howard Brown
Wenhui Fu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Flora Technologies Ltd
Original Assignee
International Flora Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Flora Technologies Ltd filed Critical International Flora Technologies Ltd
Priority to US10/614,506 priority Critical patent/US6858233B2/en
Assigned to INTERNATIONAL FLORA TECHNOLOGIES, LTD. reassignment INTERNATIONAL FLORA TECHNOLOGIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROWN, JAMES HOWARD, FU, WENHUI, TANG, QINGNONG
Publication of US20040037908A1 publication Critical patent/US20040037908A1/en
Application granted granted Critical
Publication of US6858233B2 publication Critical patent/US6858233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)

Definitions

  • the invention relates to simmondsin extracts, and particularly, to a process of reducing odour, bitterness, astringency and pungency of a simmondsin extract.
  • Jojoba has a unique wax ester oil, which is widely used in cosmetics and lubricants. After oil extraction, the de-fatted and partially de-fatted jojoba meals contain several compounds such as simmondsin and its analogues, phytic acid, trypsin and tannin.
  • Simmondsins and its analogues are unique components of jojoba and have been the subject of scientific studies for about 30 years. The structures of simmondsins have been elucidated and their chemical properties defined. In this document, the term “Simmondsins” (capitalised, plural) is used to indicate three analogues of simmondsin, which include simmondsin, didemethyl simmondsin and simmondsin ferulate.
  • simmondsin and simmondsin ferulate An important property of simmondsin and simmondsin ferulate is their reported ability to cause a significant food intake reduction in animals. Didemethyl simmondsin is thought not to have such efficacy.
  • the reduction of food intake induced by simmondsin and simmondsin ferulate is attributed to the stimulation of satiation, probably through the stimulation of cholecystokinin production (Cokelaere, et al., Proceedings of the Ninth International Conference on Jojoba and Its Uses and of the Third International Conference on New Industrial Crops and Products, 135-136, 1996; Flo et al.
  • Simmondsin ferulate is reported to have about 67% efficacy compared to simmondsin in tests involving rats (Cokelaere, et al., 1996).
  • the food intake reduction induced by simmondsin and simmondsin ferulate may be useful in weight control of animals.
  • Simmondsin and simmondsin ferulate may be extracted from jojoba meal, or any other plant containing Simmondsins, and may be used for the purpose of weight control in animals and humans.
  • Simondsin and its analogues may be extracted with organic solvents (i.e. acetone, methanol, ethanol and ethyl acetate) from de-fatted jojoba meal and purified by chromatographic techniques such as high performance liquid chromatography (Booth et al., Life Science 15: 1115-1120, 1974; Verbiscar and Banigan, Journal of Agricultural and Food Chemistry 26: 1456-1459, 1987; Dangreau and Cokeraere, Duch Patent No. 8901639, 1994; Van.
  • organic solvents i.e. acetone, methanol, ethanol and ethyl acetate
  • simmondsin ferulate may be significantly responsible for the unpalatability of Simmondsins extracts that have been extracted using prior art processes. It has further been unexpectedly discovered that simmondsin ferulate may be selectively reduced or removed from the extracts during the extraction processes, or at any time thereafter, by treatment with a carbonaceous adsorbent, such activated carbon, in accordance with the processes of the present invention.
  • a process for reducing odour, bitterness, astringency or pungency of a Simmondsins extract by dissolving the Simmondsins extract in a solvent (if the Simmondsins extract is in a dry form), reacting the liquid Simmondsins extract with a carbonaceous adsorbent, for example activated carbon, to obtain a mixture, separating the adsorbent from the mixture to obtain a purified liquid extract, and drying the purified liquid extract.
  • a carbonaceous adsorbent is any adsorbent which is comprised of molecules that are made up substantially of carbon atoms and which exhibits adsorbent characteristics like activated carbon.
  • a process for preparing a Simmondsins extract having improved organoleptic characteristics comprising the steps of eluting plant material containing Simmondsins with a polar organic solvent to dissolve the Simmondsins, separating the eluent containing the Simmondsins and the solvent from the plant material to obtain a dilute crude Simmondsins extract, concentrating the crude Simmondsins extract, removing oils from the concentrated crude Simmondsins extract, reacting the concentrated crude Simmondsins extract with a carbonaceous adsorbent to obtain a mixture, separating the adsorbent from the mixture to obtain a purified liquid extract, and drying the purified liquid extract.
  • organoleptic characteristics for example, reduced odour, bitterness, astringency or pungency
  • the crude Simmondsins extract may be enriched to increase the total simmondsin content. This may be achieved by extraction with a solvent system of ethanol and ethyl acetate mixture at various ratios.
  • the invention provides a feed containing a Simmondsins extract of the invention.
  • the purified Simmondsins extract of the invention may be blended into feed as a food intake suppressant.
  • FIG. 1 is a schematic representation of the preparation of purified Simmondsins concentrate from plant materials containing simmondsin and its analogues.
  • FIG. 2 is a schematic representation of enrichment of crude Simmondsins extract.
  • FIG. 3 is an electropherogram of a concentrated crude Simmondsins extract.
  • FIG. 4 is a electropherogram of purified Simmondsins concentrate after treatment with activated carbon in accordance with the present invention.
  • Extraction of a crude Simmondsins extract from plant material containing simmondsin and its analogues may comprise the steps of: extracting Simmondsins from plant material containing Simmondsins with a polar organic solvent, separating insoluble solids from the Simmondsins to obtain a solvent extract, or concentrating and removing solvent from the solvent extract, for example through evaporation or distillation; or removing oil from the Simmondsins extract, for example by gravity separation or centrifugation.
  • the process may also comprise the step of enriching the crude Simmondsins extract by extraction with solvent system of ethanol and ethyl acetate mixture various ratios.
  • the process may also comprise the step of removing the adsorbent from the purified Simmondsins concentrate through filtration.
  • a crude extract of Simmondsins may be first obtained from plant material containing Simmondsins.
  • the starting material for use in the process of the invention may be any plant material containing Simmondsins.
  • the starting material may be jojoba meal obtained from the physical processing of jojoba plants.
  • the preferred starting material is de-fatted or partially de-fatted jojoba meal.
  • Partially de-fatted jojoba meal typically contains about 6-7% oil while de-fatted jojoba meal typically contains about 0.2-2% oil.
  • An organic solvent may be used in the extraction of crude Simmondsins extract from the starting material.
  • the organic solvent may, for example, be methanol, ethanol, iso-propanol, or another polar organic solvent with similar characteristics.
  • the organic solvent may be recovered from the crude Simmondsins extract, for example through evaporation or through distillation.
  • the extraction of crude Simmondsins extract with the organic solvent may for example be carried out at a temperature in the range of 4-78° C. for, 30-120 minutes. In some embodiments, the preferred temperature may be in the range of 20-40° C. for approximately 60 minutes.
  • Table 1 shows examples of the relationship between the solvent polarity, the purity of crude extracts and the recovery yields for Simmondsin.
  • the polarity of Simmondsins increases in the order of simmondsin 2-ferulate ⁇ simmondsin ⁇ didemethyl simmondsin. Because of the degree of their polarity, Simmondsins are typically soluble in polar solvents such as water, methanol and ethanol. The polarity of solvents may be a factor influencing extractability and the purity of the crude Simmondsins extract.
  • Simmondsins extraction Another factor affecting Simmondsins extraction may be attributed to the extent of hydrogen bonding between the solvent molecules and the strength of hydrogen bonding between the solvent and Simmondsins molecules.
  • the pH of protic solvents like water and ethanol may also effect extraction efficiencies.
  • the preferred solvents for simmondsins extraction may be polar solvents that are capable of hydrogen bonding.
  • Water, methanol at various concentrations, ethanol at various concentrations, and iso-propanol at a concentration of 95% or below may be suitable solvents for use in some embodiments of the processes of the invention.
  • Ethanol may be a preferred solvent for Simmondsins extraction in some embodiments of the invention based on the considerations of extraction efficiency, purity of the extract, economy, safety, and environmental impact.
  • FIG. 1 schematically illustrates the steps of an embodiment of the invention for extracting crude Simmondsins extract from the starting material and purifying the crude Simmondsins extract to remove odour and bitter components as well as simmondsin ferulate.
  • De-fatted or partially de-fatted jojoba meal may be subjected to extraction with various solvents of different concentrations at various temperatures for a varying amount of time.
  • the jojoba meal may be mixed with the solvent in an extraction vessel (e.g. tank or reactor) by stirring.
  • the preferred temperature may be room temperature and the preferred amount of contact time between the extract and the solvent may be approximately 120 minutes.
  • One or more extractions may be conducted on the starting material.
  • the number of extractions and the ratio of solvent to solids on a weight to volume basis may affect the recovery yield of Simmondsins.
  • the increase in extraction temperature from 24 to 100° C. and extraction time from 30 to 120 minutes may have little effect on the recovery yield of Simmondsins.
  • a recovery yield of Simmondsins in the range of 94-99% may be achieved with three extractions at a solvent to meal ratio of 6 to 1, at an extraction time of 30 minutes or longer, and at room temperature.
  • the number of extractions and extraction temperature may also affect the purity of the extract.
  • the increase in the number of extractions from 1 to 3 and the extraction temperature from 24 to 100° C. may for example reduce the purity of the extract.
  • the preferred extraction condition may be at room temperature, 30-120 minute extraction time, 1-3 extractions and a solvent to jojoba meal ratio of 3:1 to 10:1.
  • the solvent extract containing Simmondsins may be separated from the insoluble solids by conventional solid-liquid separation techniques such as centrifugation with a decanter centrifuge or a basket centrifuge, filtration with a vacuum or pressure filter and gravity separation.
  • the starting material may be contacted with the solvent in a batch, semi-continuous, or continuous extractor.
  • a counter-current or co-current extraction method may be applied.
  • the extraction of Simmondsins may be achieved by percolation and immersion.
  • Crown solvent extractors, basket extractors and belt extractors are typical extractors that may be used in the extraction of Simmondsins.
  • the contact time for extraction between the jojoba meal and the solvent may for example be in the range of 0.5 to 2 hours.
  • the extraction may be conducted at room temperature, but a higher or lower extraction temperature may also be suitable.
  • the insoluble solids recovered from the extraction process may be desolventized and dried in a desolventizer and dryer.
  • the dried solids may for example be used as animal feed or as the starting material for preparation of protein concentrate and isolate.
  • the recovered solvent from drying of the solids and concentration of the solvent extract may be re-used in the next batch of the extraction.
  • the solvent extract containing extracted Simmondsins may be concentrated and desolventized in an evaporator (e.g. rising or falling film evaporators) and/or a distillation unit to remove most of the solvent from the crude extract.
  • the solvent residue in the extract after concentration and desolventization may for example be reduced to the range of 0-5%, and in some embodiments to the range of 0-1%.
  • a phase separation may be conducted after concentration and desolventization.
  • an oil phase such as the jojoba oil phase, may be separated from the crude Simmondsins liquid extract, for example by centrifugation with a disc centrifuge or gravity separation.
  • crude Simmondsins extract generated from extraction with organic solvents contains 38-60% total Simmondsins. Such extracts may have a strong odor with bitter, astringent and pungent tastes. It may be possible to reduce the level of some of these impurities by selection of solvents with suitable polarities for use in techniques of solubilization and precipitation.
  • FIG. 2 schematically illustrates a method employed in one embodiment to enrich a crude Simmondsins extract in order to increase the simmondsin content in the extract.
  • the crude Simmondsins extract may for example be enriched by extracting the dried crude extract with a mixed solvent of ethanol and ethyl acetate at various ratios.
  • the simmondsin content in the extract can be increased to about 70-90% total Simmondsins.
  • the crude Simmondsins extract produced from the extraction with polar solvents may not be palatable because of its odor, bitterness, and astringent land pungent tastes. For example, in feeding trials, dogs refused to eat any form of dog foods (i.e. liquid, semi-dry and dry blends) formulated with a crude Simmondsins extract.
  • crude Simmondsins extract may be treated with a sufficient amount of a carbonaceous adsorbent, such as activated carbon, to remove impurities and some simmondsin ferulate.
  • a carbonaceous adsorbent such as activated carbon
  • the dosage level of the carbon may for example be 5-100% (w/w) based on the dried weight of the extracted solids in the crude extract, or 20-80% (w/w), or a dosage level of 30-60% (w/w).
  • the mixed slurry of activated carbon and crude extract may be vigorously agitated in a tank at 4-80° C. for 10-160 minutes and preferably at 40-60° C. for 30-90 minutes.
  • the liquid extract may be separated from the spent solids, for example by filtration or centrifugation. Filtration may be done with a filter press pre-coated with a layer of celite as filter aid.
  • the purified liquid concentrate may be dried by conventional drying methods such as spray drying with a spray dryer, vacuum drying with a vacuum dryer, freeze drying with a freeze dryer, or drum drying with a drum dryer.
  • the dried purified Simmondsins concentrate may be white, odorless, and with little bitterness, astringent or pungent tastes.
  • the simmondsin ferulate in the extract may be reduced by treatment with adsorbent, for example being reduced from an original 5-10% (7.94% in one example) to about 0-2% of total Simmondsins depending on the level of adsorbent dosage.
  • the astringent and pungent taste of the extract is reduced significantly by the adsorption of simmondsin ferulate on the adsorbent (such as activated carbon).
  • odor and bitter components are also removed from the extract through adsorption (for example with activated carbon).
  • FIGS. 3 and 4 there are shown electropherograms of a crude Simmondsins extract and a purified Simmondsins concentrate after treatment with activated carbon, respectively, obtained from capillary electrophoresis analyses conducted using gallic acid as the internal standard. Also shown below each graph is a table of the data obtained in the analysis, including: the measured migration time for each compound (in minutes) which is a measure of the time it takes the compound to move from the beginning of the capillary to the detector window; the response (mAU) for each compound which represents the peak area; and the calculated concentration ( ⁇ g/ml) of each compound.
  • the first peak in the electropherograms just prior to the simmondsin peak may be the solvent peak.
  • peaks for simmondsin, didemethyl simmondsin, simmondsin ferulate and gallic acid there are shown peaks for various impurities, distributed between didemethyl simmondsin and simmondsin ferulate, which may be responsible for some of the organoleptic characteristics of the crude Simmondsins extract.
  • peaks for simmondsin, didemethyl simmondsin, and gallic acid Noticeably absent are the impurity peaks between the 5 to 10 minute interval, and the peak for simmondsin ferulate.
  • an odorless and debittered Simmondsins extract is produced which contains Simmondsins in an amount such as 30%, 40%, 50%, 60%, 70%, 80% or 91% (or any number in between 30% and 91%) Simmondsins by weight of the extract, and in which the amount of simmondsin ferulate is not more than 3% by weight of the extract.
  • the invention provides purified Simmondsins concentrates made by the processes of the invention, such as: extracting crude Simmondsins extract from plant material containing simmondsin and its analogues; treating the crude Simmondsins extract with an adsorbent, for example at an elevated temperature, to obtain purified Simmondsins concentrate; and drying said purified Simmondsins concentrate.
  • the purified Simmondsins concentrate herein may also be obtained by alternative processes described.
  • the invention provides Simmondsins concentrate for use in the formulation of various foods.
  • the foods may be pet foods such as food for mammals, for example dog food or cat food.
  • the pet food may be dry, semi-dry or liquid pet food.
  • the use of the Simmondsins concentrate may be to influence or reduce the food intake of animals, such as mammals, including dogs or cats.
  • the invention provides various food formulations containing purified Simmondsins concentrate.
  • the food formulations may contain 0.1-5% purified Simmondsins concentrate (or simmondsin) based on the weight of pet food.
  • the preferred amount of purified Simmondsins concentrate may be 0.5-2%.
  • a slurry of jojoba meal was prepared by mixing 3.52 liters of 95% ethanol with 440 g of de-fatted jojoba meal.
  • the de-fatted jojoba meal containing about 0.5-2% residue oil was supplied by international Flora Technologies, Gilbert, Ariz.
  • the slurry was vigorously agitated at room temperature (23° C.) for 2 hours.
  • After extraction the crude extract was separated and recovered from the solids by filtration through a Whatman #4 filter paper.
  • the extraction and solid-liquid separation were repeated twice with 1.32 liters of 95% ethanol as the solvent in each extraction.
  • the crude liquid extracts were pooled together as the combined extract. Ethanol was removed from the combined crude extract by concentrating it to about 14% of its original weight with a laboratory rotary evaporator.
  • a layer of oil was formed on the top of crude extract after concentration, which is removed from the crude extract with a separating funnel.
  • the slurry was vigorously agitated at 60-65° C. for 1 hour.
  • the purified Simmondsins concentrate was separated from the spent carbon by filtering it through a Whatman #4 filter paper with 2.3 g of celite as filter aid.
  • the carbon treated extract was concentrated to 50% of its original weight, which was followed by drying with a vacuum tray dryer at 50° overnight. Approximately 76 g of the purified Simmondsins concentrate containing 5% moisture were produced.
  • the average recovery yield of simmondsin and its analogues obtained from three extractions as described was about 81.6% and the purity of the purified Simmondsins concentrate was about 58.52%.
  • the purified Simmondsins concentrate contained about 36.96% simmondsin, 20.60% didemethyl simmondsin and 0.96% simmondsin ferulate.
  • the purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
  • the processing procedure was the same as that of Example 1.
  • the starting material was the partially de-fatted jojoba meal, which was generated from the full pressing of jojoba seeds.
  • the composition of the purified Simmondsins concentrate and the total recovery yield of simmondsin and its analogues were similar to those of Example 1.
  • the purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
  • the processing procedure was the same as that of Example 1 except that methanol was used as the extraction solvent.
  • the average recovery yield of simmondsin and its analogues obtained from three extractions as described was about 92.5%.
  • the purity of Simmondsins concentrate was about 54.0%.
  • the purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
  • the processing procedure was the same as that of Example 1 except that 75% iso-propanol was used as the extraction solvent.
  • the average recovery yield of simmondsin and its analogues obtained from three extractions as described about 82.76%.
  • the purity of Simmondsins concentrate was about 54.6%.
  • the purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
  • the processing procedure was the same as that of Example 1 except that water was used as the extraction solvent.
  • the average recovery yield of simmondsin and its analogues obtained from three extractions as described was about 83.32%.
  • the purity of Simmondsins concentrate was about 43.5%.
  • the purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
  • Example 1 was repeated and the purified Simmondsins concentrate was enriched to increase its purity. Approximately 76 g of the purified Simmondsins concentrate containing 58.52% total Simmondsins were milled into powder with a laboratory pin mill. The milled Simmondsins concentrate was mixed with 760 ml of solvent containing ethyl acetate and absolute ethanol at a volume ratio of 4 to 1. The slurry was refluxed at the boiling point for 1 hour before cooling and filtering through Whatman #4 filter paper to separate the extract from the solid residues. The solid residues were further subjected to extraction by refluxing twice with 380 ml of the same solvent system. The extracts were recovered by solid-liquid separation through filtration with a Whatman #4 filter paper.
  • the combined extract was concentrated and dried by evaporation at a reduced pressure with a laboratory rotary evaporator.
  • the purity of the enriched Simmondsins concentrate was about 84.9%.
  • the enriched Simmondsins concentrate was odorless and without bitterness or astringent and pungent taste.
  • the enriched Simmondsins concentrate contained 69.4% simmondsin, 14.5% didemethyl simmondsin, 1% simmondsin 2-ferulate, and 2.6% moisture.
  • a semi-dry dog food was prepared by mixing canned dog food with other ingredients.
  • Half of the dog food was used as the control diet that was fed to a control group of 5 dogs once a day for a testing period of 4 weeks.
  • the other half of the dog food was formulated with purified Simmondsins concentrate powder at a simmondsin concentration in the dog food of about 1% by weight.
  • the Simmondsins formulated dog food was used as the test diet that was fed to a test group of 5 dogs once a day for a testing period of 4 weeks.
  • Initial feeding evaluation showed that the dogs did not have any preference between the control and test diet, indicating the test diet formulated with the purified Simmondsins concentrate was as palatable as the control diet.
  • the four week trial resulted in a statistically significantly decrease in food intake and weight loss in the test group when compared to the control group.
  • the Body Condition Score (BCS) changed and fat levels decreased in the dogs of test group when compared to the dogs of control group.

Abstract

The invention provides a process for reducing odour, bitterness, astringency and pungency of a Simmondsins extract by dissolving the Simmondsins extract in a solvent if the Simmondsins extract is in a dry form, reacting the liquid Simmondsins extract with a carbonaceous adsorbent, such as activated carbon, to obtain a mixture, separating the adsorbent from the mixture to obtain a purified liquid extract, and drying the purified liquid extract. The invention also provides a process for preparing a Simmondsins extract having reduced odour, bitterness, astringency and pungency by eluting plant material containing Simmondsins with a polar organic solvent to dissolve the Simmondsins, separating the eluent containing the Simmondsins and the solvent from the plant material to obtain a dilute crude Simmondsins extract, concentrating the crude Simmondsins extract, removing any oils from the concentrated crude Simmondsins extract, and then carrying out the steps for reducing odour, bitterness, astringency and pungency of extract as above. The invention also provides a feed containing a Simmondsins extract having reduced odour, bitterness, astringency and pungency.

Description

This application is a divisional of, and claims priority to, application Ser. No. 09/939,300 filed Aug. 24, 2001 now U.S. Pat. No. 6,620,442.
TECHNICAL FIELD
The invention relates to simmondsin extracts, and particularly, to a process of reducing odour, bitterness, astringency and pungency of a simmondsin extract.
BACKGROUND ART
Jojoba has a unique wax ester oil, which is widely used in cosmetics and lubricants. After oil extraction, the de-fatted and partially de-fatted jojoba meals contain several compounds such as simmondsin and its analogues, phytic acid, trypsin and tannin.
Simmondsins and its analogues are unique components of jojoba and have been the subject of scientific studies for about 30 years. The structures of simmondsins have been elucidated and their chemical properties defined. In this document, the term “Simmondsins” (capitalised, plural) is used to indicate three analogues of simmondsin, which include simmondsin, didemethyl simmondsin and simmondsin ferulate.
An important property of simmondsin and simmondsin ferulate is their reported ability to cause a significant food intake reduction in animals. Didemethyl simmondsin is thought not to have such efficacy. Currently, the reduction of food intake induced by simmondsin and simmondsin ferulate is attributed to the stimulation of satiation, probably through the stimulation of cholecystokinin production (Cokelaere, et al., Proceedings of the Ninth International Conference on Jojoba and Its Uses and of the Third International Conference on New Industrial Crops and Products, 135-136, 1996; Flo et al. Proceedings of the Ninth International Conference on Jojoba and Its Uses and of the Third International Conference on New Industrial Crops and Products, 135-136, 1996). Simmondsin ferulate is reported to have about 67% efficacy compared to simmondsin in tests involving rats (Cokelaere, et al., 1996). The food intake reduction induced by simmondsin and simmondsin ferulate may be useful in weight control of animals. Simmondsin and simmondsin ferulate may be extracted from jojoba meal, or any other plant containing Simmondsins, and may be used for the purpose of weight control in animals and humans.
Simondsin and its analogues may be extracted with organic solvents (i.e. acetone, methanol, ethanol and ethyl acetate) from de-fatted jojoba meal and purified by chromatographic techniques such as high performance liquid chromatography (Booth et al., Life Science 15: 1115-1120, 1974; Verbiscar and Banigan, Journal of Agricultural and Food Chemistry 26: 1456-1459, 1987; Dangreau and Cokeraere, Duch Patent No. 8901639, 1994; Van. Boven at al., Journal of Agricultural and Food Chemistry 41: 1606-1607, 1993; Van Boven at al., Journal of Agricultural and Food Chemistry 41: 1118-1121, 1994; Decuypere and Cokelaere, U.S. Pat. No. 9,425,035, 1994; Van Boven et. al., Proceedings of the Ninth International Conference on Jojoba and Its Uses and of the Third International Conference on New Industrial Crops and Products, 135-136, 1996; Abbot at al., U.S. Pat. No. 9,962,530, 1999). However, the technique of high performance liquid chromatography may be too costly to be economically feasible for industrial scale production of simmondsin products.
Erhan et al. (Industrial Crops and Products 6: 147-154, 1997) prepared a concentrate of Simmondsins in a pilot scale operation using the technique of water extraction, which was followed by ultrafiltration land spray drying. The final powdery concentrate reportedly contained about 41.3% Simmonsins.
Problematically, crude extracts or concentrates of Simmondsins generated through organic solvent or water extraction of de-fatted jojoba meal may contain odour and bitter components, and may have a strong astringent and pungent taste. Without further purification, the extract of Simmondsins may therefore not be palatable.
DISCLOSURE OF THE INVENTION
It has now been unexpectedly discovered that simmondsin ferulate may be significantly responsible for the unpalatability of Simmondsins extracts that have been extracted using prior art processes. It has further been unexpectedly discovered that simmondsin ferulate may be selectively reduced or removed from the extracts during the extraction processes, or at any time thereafter, by treatment with a carbonaceous adsorbent, such activated carbon, in accordance with the processes of the present invention.
In an embodiment of the present invention, there is provided a process for reducing odour, bitterness, astringency or pungency of a Simmondsins extract by dissolving the Simmondsins extract in a solvent (if the Simmondsins extract is in a dry form), reacting the liquid Simmondsins extract with a carbonaceous adsorbent, for example activated carbon, to obtain a mixture, separating the adsorbent from the mixture to obtain a purified liquid extract, and drying the purified liquid extract. A carbonaceous adsorbent is any adsorbent which is comprised of molecules that are made up substantially of carbon atoms and which exhibits adsorbent characteristics like activated carbon.
In another embodiment of the present invention there is provided a process for preparing a Simmondsins extract having improved organoleptic characteristics, for example, reduced odour, bitterness, astringency or pungency, comprising the steps of eluting plant material containing Simmondsins with a polar organic solvent to dissolve the Simmondsins, separating the eluent containing the Simmondsins and the solvent from the plant material to obtain a dilute crude Simmondsins extract, concentrating the crude Simmondsins extract, removing oils from the concentrated crude Simmondsins extract, reacting the concentrated crude Simmondsins extract with a carbonaceous adsorbent to obtain a mixture, separating the adsorbent from the mixture to obtain a purified liquid extract, and drying the purified liquid extract.
In some embodiments, the crude Simmondsins extract may be enriched to increase the total simmondsin content. This may be achieved by extraction with a solvent system of ethanol and ethyl acetate mixture at various ratios.
In an another embodiment, the invention provides a feed containing a Simmondsins extract of the invention.
In alternative embodiments, the purified Simmondsins extract of the invention may be blended into feed as a food intake suppressant.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic representation of the preparation of purified Simmondsins concentrate from plant materials containing simmondsin and its analogues.
FIG. 2 is a schematic representation of enrichment of crude Simmondsins extract.
FIG. 3 is an electropherogram of a concentrated crude Simmondsins extract.
FIG. 4 is a electropherogram of purified Simmondsins concentrate after treatment with activated carbon in accordance with the present invention.
BEST MODES FOR CARRYING OUT THE INVENTION
Extraction of a crude Simmondsins extract from plant material containing simmondsin and its analogues may comprise the steps of: extracting Simmondsins from plant material containing Simmondsins with a polar organic solvent, separating insoluble solids from the Simmondsins to obtain a solvent extract, or concentrating and removing solvent from the solvent extract, for example through evaporation or distillation; or removing oil from the Simmondsins extract, for example by gravity separation or centrifugation.
The process may also comprise the step of enriching the crude Simmondsins extract by extraction with solvent system of ethanol and ethyl acetate mixture various ratios. The process may also comprise the step of removing the adsorbent from the purified Simmondsins concentrate through filtration.
A crude extract of Simmondsins may be first obtained from plant material containing Simmondsins. The starting material for use in the process of the invention may be any plant material containing Simmondsins. For example, the starting material may be jojoba meal obtained from the physical processing of jojoba plants. The preferred starting material is de-fatted or partially de-fatted jojoba meal. Partially de-fatted jojoba meal typically contains about 6-7% oil while de-fatted jojoba meal typically contains about 0.2-2% oil.
An organic solvent may be used in the extraction of crude Simmondsins extract from the starting material. The organic solvent may, for example, be methanol, ethanol, iso-propanol, or another polar organic solvent with similar characteristics. The organic solvent may be recovered from the crude Simmondsins extract, for example through evaporation or through distillation. The extraction of crude Simmondsins extract with the organic solvent may for example be carried out at a temperature in the range of 4-78° C. for, 30-120 minutes. In some embodiments, the preferred temperature may be in the range of 20-40° C. for approximately 60 minutes.
Table 1 shows examples of the relationship between the solvent polarity, the purity of crude extracts and the recovery yields for Simmondsin. The polarity of Simmondsins increases in the order of simmondsin 2-ferulate<simmondsin<didemethyl simmondsin. Because of the degree of their polarity, Simmondsins are typically soluble in polar solvents such as water, methanol and ethanol. The polarity of solvents may be a factor influencing extractability and the purity of the crude Simmondsins extract.
TABLE 1
Effect of solvents on the purity of the crude extracts and the recovery
yield of Simmondsins.
Recovery Yield of
Polarity Simmondsins in the Simmondsinsd
Solventb Indexb Extractsc (%) (%)
Water 9.0a 36.7 74.0
20% Ethanol 8.2 38.9 71.2
50% Ethanol 7.1 38.6 71.6
75% Ethanol 6.2 43.3 77.8
95% Ethanol 5.4 49.4 74.6
Anhydrous Ethanol 5.2a 48.0 70.7
Methanol 6.6a 45.6 82.1
Acetone 5.4a 39.0 5.7
75% Iso-propanol 5.5 46.1 73.5
95% Iso-propanol 4.5 49.0 68.3
100% Iso-propanol 4.3a 32.6 6.8
aThe polarity index values for the indicated solvents are obtained from “Solvent Selection via Miscibility Number”, Godfrey, Norman B., Chemtech, 1972
bThe polarity index values of the mixed solvent, e.g. from solvents A & B, was calculated using the values designated as using the values designated with a, as follows: Polarity of Mixed Solvents A & B = % Solvent A × Polarity A + % Solvent B × Polarity B
cSimmondsins were used in this report to indicate simmondsin, didemethyl simmondsin and simmondsin ferulate.
dThe recovery yield of Simmondsins was calculated by dividing the Simmondsins in the extracts performed in one extraction with the Simmondsins in the starting material (jojoba meal).
Another factor affecting Simmondsins extraction may be attributed to the extent of hydrogen bonding between the solvent molecules and the strength of hydrogen bonding between the solvent and Simmondsins molecules. The pH of protic solvents like water and ethanol may also effect extraction efficiencies.
In some embodiments, the preferred solvents for simmondsins extraction may be polar solvents that are capable of hydrogen bonding. Water, methanol at various concentrations, ethanol at various concentrations, and iso-propanol at a concentration of 95% or below may be suitable solvents for use in some embodiments of the processes of the invention. Ethanol may be a preferred solvent for Simmondsins extraction in some embodiments of the invention based on the considerations of extraction efficiency, purity of the extract, economy, safety, and environmental impact.
FIG. 1 schematically illustrates the steps of an embodiment of the invention for extracting crude Simmondsins extract from the starting material and purifying the crude Simmondsins extract to remove odour and bitter components as well as simmondsin ferulate. De-fatted or partially de-fatted jojoba meal may be subjected to extraction with various solvents of different concentrations at various temperatures for a varying amount of time. In the extraction process, the jojoba meal may be mixed with the solvent in an extraction vessel (e.g. tank or reactor) by stirring. In some embodiments, the preferred temperature may be room temperature and the preferred amount of contact time between the extract and the solvent may be approximately 120 minutes. One or more extractions may be conducted on the starting material. The number of extractions and the ratio of solvent to solids on a weight to volume basis may affect the recovery yield of Simmondsins. In some embodiments, the increase in extraction temperature from 24 to 100° C. and extraction time from 30 to 120 minutes may have little effect on the recovery yield of Simmondsins. In some embodiments, a recovery yield of Simmondsins in the range of 94-99% may be achieved with three extractions at a solvent to meal ratio of 6 to 1, at an extraction time of 30 minutes or longer, and at room temperature.
The number of extractions and extraction temperature may also affect the purity of the extract. The increase in the number of extractions from 1 to 3 and the extraction temperature from 24 to 100° C. may for example reduce the purity of the extract. In some embodiments, the preferred extraction condition may be at room temperature, 30-120 minute extraction time, 1-3 extractions and a solvent to jojoba meal ratio of 3:1 to 10:1.
After each extraction, the solvent extract containing Simmondsins may be separated from the insoluble solids by conventional solid-liquid separation techniques such as centrifugation with a decanter centrifuge or a basket centrifuge, filtration with a vacuum or pressure filter and gravity separation.
The starting material may be contacted with the solvent in a batch, semi-continuous, or continuous extractor. For semi-continuous and continuous extraction processes, a counter-current or co-current extraction method may be applied. In some embodiments, the extraction of Simmondsins may be achieved by percolation and immersion. For example, Crown solvent extractors, basket extractors and belt extractors are typical extractors that may be used in the extraction of Simmondsins. The contact time for extraction between the jojoba meal and the solvent may for example be in the range of 0.5 to 2 hours. The extraction may be conducted at room temperature, but a higher or lower extraction temperature may also be suitable.
The insoluble solids recovered from the extraction process may be desolventized and dried in a desolventizer and dryer. The dried solids may for example be used as animal feed or as the starting material for preparation of protein concentrate and isolate. The recovered solvent from drying of the solids and concentration of the solvent extract may be re-used in the next batch of the extraction.
The solvent extract containing extracted Simmondsins may be concentrated and desolventized in an evaporator (e.g. rising or falling film evaporators) and/or a distillation unit to remove most of the solvent from the crude extract. The solvent residue in the extract after concentration and desolventization may for example be reduced to the range of 0-5%, and in some embodiments to the range of 0-1%. A phase separation may be conducted after concentration and desolventization. During the phase separation, an oil phase, such as the jojoba oil phase, may be separated from the crude Simmondsins liquid extract, for example by centrifugation with a disc centrifuge or gravity separation.
In some embodiments, crude Simmondsins extract generated from extraction with organic solvents contains 38-60% total Simmondsins. Such extracts may have a strong odor with bitter, astringent and pungent tastes. It may be possible to reduce the level of some of these impurities by selection of solvents with suitable polarities for use in techniques of solubilization and precipitation. FIG. 2 schematically illustrates a method employed in one embodiment to enrich a crude Simmondsins extract in order to increase the simmondsin content in the extract. The crude Simmondsins extract may for example be enriched by extracting the dried crude extract with a mixed solvent of ethanol and ethyl acetate at various ratios. In some embodiments, the simmondsin content in the extract can be increased to about 70-90% total Simmondsins.
The crude Simmondsins extract produced from the extraction with polar solvents may not be palatable because of its odor, bitterness, and astringent land pungent tastes. For example, in feeding trials, dogs refused to eat any form of dog foods (i.e. liquid, semi-dry and dry blends) formulated with a crude Simmondsins extract.
In some embodiments, crude Simmondsins extract may be treated with a sufficient amount of a carbonaceous adsorbent, such as activated carbon, to remove impurities and some simmondsin ferulate. For example, a crude jojoba extract prepared after removal of a jojoba oil phase may be mixed with activated carbon. The dosage level of the carbon may for example be 5-100% (w/w) based on the dried weight of the extracted solids in the crude extract, or 20-80% (w/w), or a dosage level of 30-60% (w/w). The mixed slurry of activated carbon and crude extract may be vigorously agitated in a tank at 4-80° C. for 10-160 minutes and preferably at 40-60° C. for 30-90 minutes. After carbon treatment, the liquid extract may be separated from the spent solids, for example by filtration or centrifugation. Filtration may be done with a filter press pre-coated with a layer of celite as filter aid. The purified liquid concentrate may be dried by conventional drying methods such as spray drying with a spray dryer, vacuum drying with a vacuum dryer, freeze drying with a freeze dryer, or drum drying with a drum dryer. The dried purified Simmondsins concentrate may be white, odorless, and with little bitterness, astringent or pungent tastes.
In some embodiments, the simmondsin ferulate in the extract may be reduced by treatment with adsorbent, for example being reduced from an original 5-10% (7.94% in one example) to about 0-2% of total Simmondsins depending on the level of adsorbent dosage. In accordance with one aspect of the invention, the astringent and pungent taste of the extract is reduced significantly by the adsorption of simmondsin ferulate on the adsorbent (such as activated carbon). In some embodiments, odor and bitter components are also removed from the extract through adsorption (for example with activated carbon).
Referring to FIGS. 3 and 4, there are shown electropherograms of a crude Simmondsins extract and a purified Simmondsins concentrate after treatment with activated carbon, respectively, obtained from capillary electrophoresis analyses conducted using gallic acid as the internal standard. Also shown below each graph is a table of the data obtained in the analysis, including: the measured migration time for each compound (in minutes) which is a measure of the time it takes the compound to move from the beginning of the capillary to the detector window; the response (mAU) for each compound which represents the peak area; and the calculated concentration (□g/ml) of each compound. The first peak in the electropherograms just prior to the simmondsin peak may be the solvent peak. Referring to the electropherogram of the crude Simmondsins extract in FIG. 3, there are shown peaks for simmondsin, didemethyl simmondsin, simmondsin ferulate and gallic acid. In addition, there are a number of peaks for various impurities, distributed between didemethyl simmondsin and simmondsin ferulate, which may be responsible for some of the organoleptic characteristics of the crude Simmondsins extract. Referring to the electropherogram of the purified Simmondsins concentrate after treatment with activated carbon in FIG. 4, there are shown peaks for simmondsin, didemethyl simmondsin, and gallic acid. Noticeably absent are the impurity peaks between the 5 to 10 minute interval, and the peak for simmondsin ferulate.
In some embodiments, an odorless and debittered Simmondsins extract is produced which contains Simmondsins in an amount such as 30%, 40%, 50%, 60%, 70%, 80% or 91% (or any number in between 30% and 91%) Simmondsins by weight of the extract, and in which the amount of simmondsin ferulate is not more than 3% by weight of the extract.
In other embodiments, the invention provides purified Simmondsins concentrates made by the processes of the invention, such as: extracting crude Simmondsins extract from plant material containing simmondsin and its analogues; treating the crude Simmondsins extract with an adsorbent, for example at an elevated temperature, to obtain purified Simmondsins concentrate; and drying said purified Simmondsins concentrate. The purified Simmondsins concentrate herein may also be obtained by alternative processes described.
In some embodiments, the invention provides Simmondsins concentrate for use in the formulation of various foods. The foods may be pet foods such as food for mammals, for example dog food or cat food. The pet food may be dry, semi-dry or liquid pet food. The use of the Simmondsins concentrate may be to influence or reduce the food intake of animals, such as mammals, including dogs or cats.
In another embodiment, the invention provides various food formulations containing purified Simmondsins concentrate. The food formulations may contain 0.1-5% purified Simmondsins concentrate (or simmondsin) based on the weight of pet food. The preferred amount of purified Simmondsins concentrate may be 0.5-2%.
Although various embodiments of the invention are disclosed herein, many adaptations and modifications may be made within the scope of the invention in accordance with the common general knowledge of those skilled in this art. Such modifications include the substitution of known equivalents for any aspect of the invention tin order to achieve the same result in substantially the same way. Numeric ranges are inclusive of the numbers defining the range. In the specification, the word “comprising” is used as an open-ended term, substantially equivalent to the phrase “including, but not limited to”, and the word “comprises” has a corresponding meaning. Citation of references herein shall not be construed as an admission that such references are prior art to the present invention. All publications, including but not limited to patents and patent applications, cited in this specification are incorporated herein by reference as if each individual publication were specifically land individually indicated to be incorporated by reference herein and as though fully set forth herein. The invention includes all embodiments and variations substantially as hereinbefore described and with reference to the examples and drawings.
EXAMPLES Example 1 Preparation of Purified Simmondsins Concentrate from De-fatted Jojoba Meal
A slurry of jojoba meal was prepared by mixing 3.52 liters of 95% ethanol with 440 g of de-fatted jojoba meal. The de-fatted jojoba meal containing about 0.5-2% residue oil was supplied by international Flora Technologies, Gilbert, Ariz. The slurry was vigorously agitated at room temperature (23° C.) for 2 hours. After extraction the crude extract was separated and recovered from the solids by filtration through a Whatman #4 filter paper. The extraction and solid-liquid separation were repeated twice with 1.32 liters of 95% ethanol as the solvent in each extraction. The crude liquid extracts were pooled together as the combined extract. Ethanol was removed from the combined crude extract by concentrating it to about 14% of its original weight with a laboratory rotary evaporator. A layer of oil was formed on the top of crude extract after concentration, which is removed from the crude extract with a separating funnel.
Approximately 29.3 g of activated carbon from Norit Americas Inc. and marketed under the trade-mark DARCO was added to the crude extract. The particular lot of the DARCO KB activated carbon used had the following properties as reported by Norit Americas Inc. in a Certificate of Analysis:
Moisture, % 26
Molasses decolorizing efficiency 230
Water Solubles, % 0.69
pH 6.2
Phosphate, % 0.4
Particle Size (volume %), d5, μ 2.7
Particle Size (volume %), d50, μ 32
Particle Size (volume %), d95, μ 100
The slurry was vigorously agitated at 60-65° C. for 1 hour. After carbon treatment the purified Simmondsins concentrate was separated from the spent carbon by filtering it through a Whatman #4 filter paper with 2.3 g of celite as filter aid. The carbon treated extract was concentrated to 50% of its original weight, which was followed by drying with a vacuum tray dryer at 50° overnight. Approximately 76 g of the purified Simmondsins concentrate containing 5% moisture were produced. The average recovery yield of simmondsin and its analogues obtained from three extractions as described was about 81.6% and the purity of the purified Simmondsins concentrate was about 58.52%. The purified Simmondsins concentrate contained about 36.96% simmondsin, 20.60% didemethyl simmondsin and 0.96% simmondsin ferulate. The purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
Example 2 Preparation of Purified Simmondsins Concentrate from Partially De-fatted Jojoba Meal
The processing procedure was the same as that of Example 1. The starting material was the partially de-fatted jojoba meal, which was generated from the full pressing of jojoba seeds. The composition of the purified Simmondsins concentrate and the total recovery yield of simmondsin and its analogues were similar to those of Example 1. The purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
Example 3 Preparation of Purified Simmondsins Concentrate from De-fatted Jojoba Meal
The processing procedure was the same as that of Example 1 except that methanol was used as the extraction solvent. The average recovery yield of simmondsin and its analogues obtained from three extractions as described was about 92.5%. The purity of Simmondsins concentrate was about 54.0%. The purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
Example 4 Preparation of Purified Simmondsins Concentrate from De-fatted Jojoba Meal
The processing procedure was the same as that of Example 1 except that 75% iso-propanol was used as the extraction solvent. The average recovery yield of simmondsin and its analogues obtained from three extractions as described about 82.76%. The purity of Simmondsins concentrate was about 54.6%. The purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
Example 5 Preparation of Purified Simmondsins Concentrate from De-fatted Jojoba Meal
The processing procedure was the same as that of Example 1 except that water was used as the extraction solvent. The average recovery yield of simmondsin and its analogues obtained from three extractions as described was about 83.32%. The purity of Simmondsins concentrate was about 43.5%. The purified Simmondsins concentrate had reduced odor, bitterness, astringency, and pungency.
Example 6 Enrichment of Purified Simmondsins Concentrate
Example 1 was repeated and the purified Simmondsins concentrate was enriched to increase its purity. Approximately 76 g of the purified Simmondsins concentrate containing 58.52% total Simmondsins were milled into powder with a laboratory pin mill. The milled Simmondsins concentrate was mixed with 760 ml of solvent containing ethyl acetate and absolute ethanol at a volume ratio of 4 to 1. The slurry was refluxed at the boiling point for 1 hour before cooling and filtering through Whatman #4 filter paper to separate the extract from the solid residues. The solid residues were further subjected to extraction by refluxing twice with 380 ml of the same solvent system. The extracts were recovered by solid-liquid separation through filtration with a Whatman #4 filter paper. The combined extract was concentrated and dried by evaporation at a reduced pressure with a laboratory rotary evaporator. The purity of the enriched Simmondsins concentrate was about 84.9%. The enriched Simmondsins concentrate was odorless and without bitterness or astringent and pungent taste. The enriched Simmondsins concentrate contained 69.4% simmondsin, 14.5% didemethyl simmondsin, 1% simmondsin 2-ferulate, and 2.6% moisture.
Example 7 Influence of Simmondsins Concentrate on the Food Intake Reduction and Body Weight Loss of Dogs
Ten health adult dogs, three females and seven males were individually identified, underwent physical examinations and were randomly divided into two groups. Physical examination included examination by a veterinarian, CBC, blood profile and electrolytes. Measurements of body weights, Body Condition Score (BCS), pelvic circumference and hock to stifle length were recorded. None of the animals were pregnant or lactating. All animals were residents of and provided by the Ontario Nutri-Lab (ONL) of Fergus, Ontario, Canada and were individually housed according to USDA standard practices. All animals were currently vaccinated.
A semi-dry dog food was prepared by mixing canned dog food with other ingredients. Half of the dog food was used as the control diet that was fed to a control group of 5 dogs once a day for a testing period of 4 weeks. The other half of the dog food was formulated with purified Simmondsins concentrate powder at a simmondsin concentration in the dog food of about 1% by weight. The Simmondsins formulated dog food was used as the test diet that was fed to a test group of 5 dogs once a day for a testing period of 4 weeks. Initial feeding evaluation showed that the dogs did not have any preference between the control and test diet, indicating the test diet formulated with the purified Simmondsins concentrate was as palatable as the control diet. The four week trial resulted in a statistically significantly decrease in food intake and weight loss in the test group when compared to the control group. The Body Condition Score (BCS) changed and fat levels decreased in the dogs of test group when compared to the dogs of control group.

Claims (6)

1. An odorless and debittered Simmondsins extract containing between 39% to 91% Simmondsins by weight of the extract, wherein the amount of simmondsin ferulate is not more than 3% by weight of the extract, and wherein the extract is produced in accordance with an industrial scale process comprising the steps of:
a) dissolving jojoba meal in a solvent to obtain a solvent extract containing simmondsins;
b) concentrating and desolventizing the solvent extract obtained in step (a) to obtain a crude extract;
c) reacting the crude extract obtained in step (b) with a carbonaceous adsorbant to obtain a mixture;
d) separating out the carbonaceous adsorbant from the mixture obtained in step (c) to obtain a purified liquid Simmondsins extract; and
e) drying the purified liquid Simmondsins extract,
wherein the solvent is water, methanol, ethanol or isopropanol.
2. An odorless and debittered Simmondsins extract containing between 39% to 91% Simmondsins by weight of the extract, wherein the amount of simmondsin ferulate is not more than 3% by weight of the extract, and wherein the extract is produced in accordance with an industrial scale process comprising the steps of:
a) eluting a plant material containing Simmondsins with a polar organic solvent to obtain an eluent containing Simmondsins;
b) concentrating and desolventizing the eluent obtained in step (a) to obtain a crude extract;
c) reacting the crude extract obtained in step (b) with a carbonaceous adsorbant to obtain a mixture;
d) separating out the carbonaceous adsorbant from the mixture obtained in step (c) to obtain a purified liquid Simmondsins extract; and
e) drying the purified liquid Simmondsins extract,
wherein the solvent is water, methanol, ethanol or isopropanol.
3. A food formulation containing an odorless and debittered Simmondsins extract containing between 39% to 91% Simmondsins by weight of the extract, wherein the amount of simmondsin ferulate is not more than 3% by weight of the extract, and wherein the extract is produced in accordance with an industrial scale process comprising the steps of:
a) dissolving jojoba meal in a solvent to obtain a solvent extract containing simmondsins;
b) reacting the solvent extract obtained in step (a) with a carbonaceous adsorbant to obtain a mixture;
c) separating out the carbonaceous adsorbent from the mixture obtained in step (b) to obtain a purified liquid Simmondsins extract; and
d) drying the purified liquid Simmondsins extract,
wherein the solvent is water, methanol, ethanol or isopropanol.
4. A food formulation according to claim 3, wherein the formulation is an animal feed.
5. A food formulation according to claim 3, wherein the amount of Simmondsins extract in the formulation is between 0.1% to 2% by weight of the formulation.
6. A food formulation according to claim 3, wherein the amount of Simmondsins extract in the formulation is between 0.5% to 2% by weight of the formulation.
US10/614,506 2001-08-24 2003-07-03 Simmondsin processing methods and products Expired - Lifetime US6858233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/614,506 US6858233B2 (en) 2001-08-24 2003-07-03 Simmondsin processing methods and products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/939,300 US6620442B2 (en) 2001-08-24 2001-08-24 Simmondsin processing methods and products
US10/614,506 US6858233B2 (en) 2001-08-24 2003-07-03 Simmondsin processing methods and products

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/939,300 Division US6620442B2 (en) 2001-08-24 2001-08-24 Simmondsin processing methods and products

Publications (2)

Publication Number Publication Date
US20040037908A1 US20040037908A1 (en) 2004-02-26
US6858233B2 true US6858233B2 (en) 2005-02-22

Family

ID=25472907

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/939,300 Expired - Lifetime US6620442B2 (en) 2001-08-24 2001-08-24 Simmondsin processing methods and products
US10/614,506 Expired - Lifetime US6858233B2 (en) 2001-08-24 2003-07-03 Simmondsin processing methods and products

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/939,300 Expired - Lifetime US6620442B2 (en) 2001-08-24 2001-08-24 Simmondsin processing methods and products

Country Status (4)

Country Link
US (2) US6620442B2 (en)
EP (1) EP1418929A4 (en)
AU (1) AU2002329792A1 (en)
WO (1) WO2003017931A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852342B2 (en) * 2002-03-26 2005-02-08 Avoca, Inc. Compounds for altering food intake in humans
US7025957B2 (en) * 2002-09-06 2006-04-11 Desert Whale Jojoba Company Composition and method to whiten skin
US20040265249A1 (en) * 2003-06-24 2004-12-30 Desert Whale Jojoba Company Composition for protecting skin from damaging effects of ultraviolet light

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209539A (en) * 1978-10-12 1980-06-24 Anver Bioscience Design, Inc. Detoxification of botanical foodstuffs
JPH0253896A (en) * 1988-08-17 1990-02-22 Nippon Oil & Fats Co Ltd Purification of jojoba oil
US5672371A (en) * 1994-11-17 1997-09-30 D'oosterlynck; Andre Method for separating the toxic resinous fraction from prepared whole jojoba seeds or jojoba seed press-cake
US5962043A (en) * 1996-02-29 1999-10-05 Seal Rock Technologies Incorporated Weight reduction method for dogs and other pets
US6007823A (en) * 1998-06-02 1999-12-28 The United States Of America As Represented By The Secretary Of Agriculture Simmondsin concentrate from jojoba

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1064709B (en) * 1976-07-02 1985-02-25 Snam Progetti EXTRACTION PROCESS OF UNDESIRABLE GLUCOSIDIC COMPOUNDS E. OR TOXIC PRESENT IN THE VEGETABLES
GR68361B (en) * 1978-03-14 1981-12-23 Unilever Nv
JPH06505959A (en) * 1990-05-07 1994-07-07 ボッコー バリー アイ Methods and formulations of stable deodorized oils and pharmaceutical compositions thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209539A (en) * 1978-10-12 1980-06-24 Anver Bioscience Design, Inc. Detoxification of botanical foodstuffs
JPH0253896A (en) * 1988-08-17 1990-02-22 Nippon Oil & Fats Co Ltd Purification of jojoba oil
US5672371A (en) * 1994-11-17 1997-09-30 D'oosterlynck; Andre Method for separating the toxic resinous fraction from prepared whole jojoba seeds or jojoba seed press-cake
US5962043A (en) * 1996-02-29 1999-10-05 Seal Rock Technologies Incorporated Weight reduction method for dogs and other pets
US6007823A (en) * 1998-06-02 1999-12-28 The United States Of America As Represented By The Secretary Of Agriculture Simmondsin concentrate from jojoba

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Van Boven et al. J. Agric. Food Chem. 1993. vol. 41, pp. 1605-1607.* *
Van Boven et al. J. Chromatogr. B: Biomed. Appl. 1994. vol. 655, pp. 281-285. *

Also Published As

Publication number Publication date
US20030044477A1 (en) 2003-03-06
US20040037908A1 (en) 2004-02-26
WO2003017931A3 (en) 2003-07-03
WO2003017931A2 (en) 2003-03-06
EP1418929A2 (en) 2004-05-19
EP1418929A4 (en) 2005-01-19
US6620442B2 (en) 2003-09-16
AU2002329792A1 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
US7579023B2 (en) Method of preparation and composition of a water soluble extract of the bioactive component of the plant species Uncaria for enhancing immune, anti-inflammatory, anti-tumor and DNA repair processes of warm blooded animals
JP2009501708A (en) Korean thistle extract, its use and formulations containing it
EP2779845B1 (en) Chicory extract and method of preparing
CZ363492A3 (en) Process for preparing a pharmaceutical preparation reducing lipids level in blood
EP0810222B1 (en) Process for extraction of polyphenolic compounds of catechin type from plants, the so obtained extract and its use
JPH07500127A (en) Antioxidant oleoresin composition and method for producing the same
US7132450B2 (en) Hepatic disorder suppressant
US6858233B2 (en) Simmondsin processing methods and products
EP1640016B1 (en) Saponin-free extracts of Asparagus Officinalis L., their preparation and their use
JP4693964B2 (en) New antifeedant
DE60308994T2 (en) PROCESS FOR EXTRACTION, CLEANING AND ENZYMATIC CHANGING OF SOYA 7S GLOBULIN ALPHA &#39;SUBMERCH FOR USE AS HYPOCHOLESTEROL MIXER ACTIVE
WO1999062530A1 (en) Simmondsin concentrate from jojoba
KR100498512B1 (en) Aqueous Ethanolic Extract of the Skin of Onion for Decreasing or Maintaining Body Weight and a Method for Preparing the Same
DE60200713T2 (en) Composition containing dried whole egg for the treatment of hepatitis
US8551540B1 (en) Stabilizing and antioxidant composition containing saw palmetto berry component and method of use
DE2421270A1 (en) PROCESS FOR PREPARING A BEET SEED PROTEIN CONCENTRATE FOR HUMAN CONSUMPTION
JP3142192B2 (en) Blood lipid improving agent and composition containing the same
JP5441433B2 (en) Liver function improving agent containing fruit juice
JP3183754B2 (en) Arteriosclerosis inhibitor and composition containing the same
JP2019026582A (en) Mitochondrial function improver
EP3253229B1 (en) Process for the fractionation of seeds from oleaginous plants.
JP4406503B2 (en) New liver disorder inhibitor
DE1492754C (en) Process for the production of soluble concentrates from tea leaves
JP3237767B2 (en) Stabilized vitamin B2 composition
JP2001010968A (en) Novel hepatopathy inhibitor

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL FLORA TECHNOLOGIES, LTD., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANG, QINGNONG;BROWN, JAMES HOWARD;FU, WENHUI;REEL/FRAME:014679/0931

Effective date: 20020424

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 12