US6922214B1 - Video signal processing - Google Patents

Video signal processing Download PDF

Info

Publication number
US6922214B1
US6922214B1 US09/830,383 US83038301A US6922214B1 US 6922214 B1 US6922214 B1 US 6922214B1 US 83038301 A US83038301 A US 83038301A US 6922214 B1 US6922214 B1 US 6922214B1
Authority
US
United States
Prior art keywords
fields
difference signal
field
field difference
detail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/830,383
Inventor
Martin Weston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snell Advanced Media Ltd
Original Assignee
Snell and Wilcox Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snell and Wilcox Ltd filed Critical Snell and Wilcox Ltd
Assigned to SNELL & WILCOX LIMITED reassignment SNELL & WILCOX LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WESTON, MARTIN
Application granted granted Critical
Publication of US6922214B1 publication Critical patent/US6922214B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/147Scene change detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0112Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level one of the standards corresponding to a cinematograph film standard

Definitions

  • This invention relates to video signal processing and in an important example to improved methods of processing television signals which have been derived from cinema film, or other camera processes having a temporal sampling rate lower than the field rate of the television system.
  • the invention also relates more generally to the detection of motion in a video signal.
  • a particularly important example of the problem is the televising of film shot at 24 frames per second at a field rate of 60 fields per second. It is common practice to create a sequence of five television fields from two film frames by alternately generating two and three fields respectively from successive film frames. This is known as the “3:2 pull-down” technique. Techniques have been developed for identifying the duplicated fields by comparing fields one frame apart and analysing the resulting pattern to derive a film sequence signal. Reference is directed in this respect to U.S. Pat. Nos. 4,881,125; 4,982,280; 4,998,287 and 5,255,091.
  • a difficulty with prior art techniques is that they rely on analysing data from many frames of video to identify characteristic patterns. Unless there is considerable delay built into the system, it is difficult to react quickly to changes in temporal phase.
  • a signal formed by subtracting across a field delay is compared with a signal formed by subtracting across a delay of a field less one line. After filtering, rectifying and thresholding, the smaller of these two signals is taken as the field motion signal.
  • the present invention consists, in one aspect, in a method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail.
  • a component in the field difference signal which arises from vertical detail is removed by taking a measure of vertical detail from one or both of the fields and subtracting either all or a proportion of the detail measure from the field difference signal.
  • a component in the field difference signal which arises from vertical detail is removed by comparing a first field difference signal provided for a current field and the immediately preceding field with a second field difference provided for a current field and the immediately succeeding field.
  • the present invention consists in a method of creating a field difference signal by subtracting video signals from different fields characterised in that one or both of the fields are vertically interpolated prior to subtraction by taking weighted sums of lines from within the same field so as to obtain signals corresponding to similar vertical positions.
  • the present invention consists in a video filter process in which an output is created by taking a weighted sum of contributions over a filter aperture which defines the lines and fields from which a contribution is to be taken and the weighting of each contribution; comprising the steps of vertically interpolating one or more input fields to produce respective signals for at least two input fields which correspond in vertical position; subtracting the signals to provide a field difference signal for at least one pair of adjacent input fields; and utilising the or each field difference signal to select a filter aperture.
  • the present invention consists in a method of automatically changing the operation of a video process between a film mode in which adjacent fields are assumed to correspond to the same point in time and a video mode in which adjacent fields are assumed to correspond to different points in time, comprising the steps of vertically interpolating one or more fields to produce respective signals for at least three input fields which correspond in vertical position; subtracting the signals to provide a preceding field difference signal for the pair of fields comprising a current field and a preceding field and a succeeding field difference signal for the pair of fields comprising the current field and a succeeding field least one pair of adjacent input fields; comparing the preceding field difference signal with the succeeding field difference signal and changing the selection to film mode if the field difference signals are significantly different, and changing the selection to video mode if both signals are similar but not small.
  • FIG. 1 is a block diagram of a system according to one embodiment of the present invention for generating a film difference signal from a 625-line interlaced television signal.
  • FIG. 2 is a diagram similar to FIG. 1 illustrating a modification.
  • FIG. 3 a is a diagram showing how a signal from the previous field can be interpolated to give a signal corresponding to the vertical position of the current field.
  • FIG. 3 b is a diagram showing how signals from both the current and the previous fields can be interpolated to bring them into alignment with each other.
  • FIG. 4 is a block diagram of a system according to one embodiment of the present invention for generating an interpolation control signal.
  • FIG. 5 shows block diagram of a system according to one embodiment of the present invention for identifying film or video material.
  • FIG. 6 shows the generation of an alternative global detail signal.
  • FIG. 7 is a block diagram of a system according to a further embodiment of the present invention.
  • An interlaced, 625-line input video signal ( 1 ) is delayed by 312 lines to produce video signal ( 2 ) corresponding to the previous field.
  • This signal is interpolated by averaging ( 3 ) across a one-line delay so as to make a signal ( 4 ) corresponding to the same vertical position as the (interlaced) current input line.
  • This is subtracted from the input signal and the absolute value of the result taken to give an uncorrected field difference signal ( 5 ) having a magnitude which increases with the difference in content between the current and previous fields.
  • FIG. 3 a The vertical interpolation of the previous field to align it with the current field is shown diagrammatically in FIG. 3 a .
  • the lines of the current and previous fields are indicated by crosses, and their relative vertical positions are indicated by their vertical positions on the diagram.
  • the position of the interpolated line is shown by a circle.
  • a local measure of the vertical detail in the previous field ( 7 ) is taken by subtracting ( 6 ) across the one-line delay and taking the absolute value of the result. This is multiplied ( 8 ) by a constant k 1 , which is chosen to optimise the operation of the circuit.
  • a suitable value for k 1 may be in the region of 0.5.
  • the resulting local detail correction signal is subtracted ( 9 ) from the uncorrected field difference signal and clipped ( 10 ) in a threshold circuit which replaces values which are more negative than a predetermined threshold by the value of the threshold.
  • This corrected field difference signal ( 11 ) can be used to find cuts or changes in temporal phase of the incoming video.
  • the signal 11 can be further improved by integrating over all, or a substantial part, of the picture area ( 12 ) to make a global difference signal, and carrying out a similar process on the local detail signal ( 7 ) to make a global detail signal ( 13 ). This is multiplied ( 14 ) by a constant k 2 (which determined in a similar way as k 1 ) and subtracted from the global difference signal to generate an improved field difference signal 15 .
  • FIG. 2 Another way of generating the uncorrected field difference signal and the local detail signal is shown in FIG. 2 .
  • the input 625-line interlaced video signal ( 1 ) is interpolated ( 21 ) to produce a signal which is vertically shifted by half of one (picture) line pitch.
  • a second interpolator ( 22 ) applies an equal shift in the opposite direction to the signal from the previous field.
  • the two interpolated signals are subtracted ( 23 ) and the absolute value of the result taken to obtain an improved local difference signal 27 .
  • FIG. 3 b The interpolation of the two signals to bring them into vertical alignment is shown diagrammatically in FIG. 3 b.
  • the interpolation processes need signals from more than one line from the current and the preceding field (two from each in the example shown in FIG. 2 ), it is possible to generate local detail signals from each of these fields ( 24 and 25 ) by taking the absolute values of vertical difference signals.
  • the two local detail signals are averaged ( 26 ) and the result used to correct the improved local difference signal 27 .
  • the local detail signal 28 and the local difference signal 27 can replace the signals 7 and 5 respectively in FIG. 1 and be processed as shown on the right hand side of the figure to create an improved field difference signal.
  • FIG. 4 A video signal ( 41 ) is input to a film sequence signal generation process ( 42 ), which may, for example, be that shown in FIG. 1 , and a film sequence signal ( 43 ) obtained which gives a measure of the temporal difference between two fields. This signal is delayed by substantially one field in a suitable delay device ( 44 ) to obtain a measure of the temporal difference between the two previous fields ( 45 ).
  • a magnitude comparison is made ( 46 ) between the input and the output of the delay device and the resulting signal ( 47 ) is used to control an interpolation process as follows:
  • the film sequence signal ( 43 ) corresponds to the temporal difference between this field and the current field and the delayed sequence signal ( 45 ) corresponds to the temporal difference between the current field and the previous field.
  • the signal ( 47 ) indicates that the magnitude of the undelayed film sequence signal ( 43 ) is significantly greater that of the delayed film sequence signal ( 45 ) the interpolation process combines the current field with the previous field; otherwise the current field is combined with the next field.
  • a film sequence signal indicating the magnitude of the temporal difference between successive fields d 1 is delayed by substantially one field in the delay device ( 501 ) to produce a delayed film sequence signal d 2 .
  • the signals d 1 and d 2 are fed to amplifiers ( 502 ) and ( 503 ) respectively to obtain amplified film sequence signals ( 504 ) and ( 505 ).
  • the gains of the amplifiers are substantially equal at a value chosen to optimise the operation of the system; a gain of approximately two times has been found to be satisfactory.
  • the delayed and amplified signal ( 505 ) has a first DC threshold value subtracted from it in the subtractor ( 506 ) and d 1 is compared with the result in the comparator ( 507 ) to produce a logic signal ( 508 ) which is active when d 1 is the greater.
  • the comparator ( 509 ) performs an equivalent process, but with the roles of d 1 and d 2 reversed, to produce a logic signal ( 510 ). These two logic signals are combined in an OR-gate ( 511 ) and the result fed to the SET input of a latch ( 512 ).
  • the effect of this processing is to set the latch whenever there are significant differences between the delayed and undelayed film sequence signals.
  • the delayed and amplified film sequence signal ( 505 ) has a second DC threshold subtracted from it in the subtractor ( 513 ) and the result is compared with d 1 in the comparator ( 514 ) to produce a logic signal ( 515 ) which is active when d 1 is the smaller.
  • the comparator ( 516 ) performs an equivalent process, but with the roles of d 1 and d 2 reversed, to produce a logic signal ( 517 ). These two logic signals are combined In an AND-gate ( 518 ) and the result fed to the RESET input of the latch ( 512 ).
  • the effect of this processing is to reset the latch whenever the delayed and undelayed film sequence signals are of similar magnitude and greater than the magnitude of the second DC threshold.
  • the output ( 519 ) from the latch is used to put a video process into film mode when it is active, and to change to video mode when it is not.
  • An input video signal ( 61 ) is delayed a total of two fields by the delay elements ( 62 ), ( 63 ) and ( 64 ) and the undelayed and the two-field-delayed signals are averaged ( 65 ).
  • An interpolator ( 66 ) uses two or more contributions from the line delays ( 63 ) to create an interpolated field signal ( 67 ) which is aligned with the average signal.
  • the subtractor ( 68 ) subtracts the interpolated signal from the average signal to create a detail signal which is integrated ( 69 ) over all, or a substantial part, of the picture area to create an improved global detail signal ( 70 ).
  • This improved global detail signal can replace the signal ( 13 ) In FIG. 1 , or a combination of the improved signal and the signal ( 13 ) can be used to correct the global difference signal.
  • FIG. 7 there is shown an arrangement in which an input interlaced 625 line video signal is passed through a 312 line delay ( 80 ), a 1 line delay ( 82 ) and a further 312 line delay ( 84 ).
  • Signals taken across the line delay ( 82 ) are added at ( 86 ) and halved at ( 88 ) to provided an interpolated signal which correspond in vertical position with lines from the succeeding and preceding fields.
  • Preceding and succeeding field differences are taken in subtractors ( 90 ) and ( 92 ) and the absolute values taken in blocks ( 94 ) and ( 96 ).
  • the resulting signals are made available to processor ( 98 ) which as described above can determine which of the preceding or succeeding fields has the lowest field difference. This determination can be made pixel by pixel or signals can be appropriately aggregated over a region of a field or an entire field.
  • a signal can be taken from subtractor ( 100 ) across the line delay ( 82 ) providing a local measure of vertical detail.
  • the absolute value of this detail signal from block ( 102 ) is then subtracted at ( 104 ) and ( 106 ) from the respective field difference signals.
  • a determination can then be made of whether a multiple (which may be 2) of one detail corrected difference signal exceeds the other by a predetermined threshold.
  • the field difference signals that this invention provides can be used to controls a wide variety of video processes, including standards conversion, up or down conversion, aspect ratio conversion, special effects generators, composite decoders and compression encoders and decoders.

Abstract

Motion between adjacent fields of an interlaced video signal is analyzed by vertically interpolating the current field to produce a line signal which corresponds in vertical position with lines from the succeeding and preceding fields; and subtracting the signals to provide a field difference. The effect of vertical detail is reduced by comparing two field differences or by subtracting a local or global detail signal from the field difference.

Description

BACKGROUND OF THE INVENTION
This invention relates to video signal processing and in an important example to improved methods of processing television signals which have been derived from cinema film, or other camera processes having a temporal sampling rate lower than the field rate of the television system. The invention also relates more generally to the detection of motion in a video signal.
There are several processes in which two or more fields of a television signal are arithmetically combined to provide a filtered or interpolated output signal. Examples include geometric transformation of the picture for special effects, aspect-ratio conversion, composite decoding and standards conversion. These processes can give rise to undesirable artefacts when the fields that are combined differ significantly because of motion, or cuts between different scenes. When the temporal sampling rate of the camera is less than the field rate of the television system the opportunity arises to modify the processing so that only fields corresponding to the same instant in time are combined.
A particularly important example of the problem is the televising of film shot at 24 frames per second at a field rate of 60 fields per second. It is common practice to create a sequence of five television fields from two film frames by alternately generating two and three fields respectively from successive film frames. This is known as the “3:2 pull-down” technique. Techniques have been developed for identifying the duplicated fields by comparing fields one frame apart and analysing the resulting pattern to derive a film sequence signal. Reference is directed in this respect to U.S. Pat. Nos. 4,881,125; 4,982,280; 4,998,287 and 5,255,091.
A difficulty with prior art techniques is that they rely on analysing data from many frames of video to identify characteristic patterns. Unless there is considerable delay built into the system, it is difficult to react quickly to changes in temporal phase.
When film shot at 24 frames per second is televised at a field rate of 50 fields per second, the so-called 2:2 technique is employed. Here, every film frame is used to provide two video fields and the tape or film transport speed is modified to change the resulting 48 fields per second signal into the required 50 fields per second. There remains a need to identify in the video signal, which fields originate from the same film frame.
Many processes which combine fields are arranged to operate either in a “video mode” where each field is assumed to correspond to a different moment in time, or a “film-mode” where successive fields may correspond to the same moment in time. It is therefore useful to create a film/video control signal and, in order to modify processes which combine fields inappropriately, it is helpful to derive a signal which indicates when a change in the “temporal phase” of the picture, or a cut to a new scene, occurs.
A proposal has been made to detect motion between interlaced video fields to provide a field motion signal: see U.S. Pat. No. 5,291,280. In this proposal, a signal formed by subtracting across a field delay is compared with a signal formed by subtracting across a delay of a field less one line. After filtering, rectifying and thresholding, the smaller of these two signals is taken as the field motion signal.
Interpreting a difference taken across a field delay is complicated by the common practice of interlaced television scanning. The lines of successive fields are vertically misaligned by one line pitch and so, where vertical detail exists, the magnitude of the difference signal will not fall to zero, even if the fields correspond to the same scene and temporal phase.
It is an object of this invention to provide improved method and apparatus that overcome certain shortcomings of the prior art.
SUMMARY OF THE INVENTION
Accordingly, the present invention consists, in one aspect, in a method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail.
Preferably, a component in the field difference signal which arises from vertical detail is removed by taking a measure of vertical detail from one or both of the fields and subtracting either all or a proportion of the detail measure from the field difference signal.
Suitably, a component in the field difference signal which arises from vertical detail is removed by comparing a first field difference signal provided for a current field and the immediately preceding field with a second field difference provided for a current field and the immediately succeeding field.
In another aspect, the present invention consists in a method of creating a field difference signal by subtracting video signals from different fields characterised in that one or both of the fields are vertically interpolated prior to subtraction by taking weighted sums of lines from within the same field so as to obtain signals corresponding to similar vertical positions.
In yet another aspect, the present invention consists in a video filter process in which an output is created by taking a weighted sum of contributions over a filter aperture which defines the lines and fields from which a contribution is to be taken and the weighting of each contribution; comprising the steps of vertically interpolating one or more input fields to produce respective signals for at least two input fields which correspond in vertical position; subtracting the signals to provide a field difference signal for at least one pair of adjacent input fields; and utilising the or each field difference signal to select a filter aperture.
In still a further aspect, the present invention consists in a method of automatically changing the operation of a video process between a film mode in which adjacent fields are assumed to correspond to the same point in time and a video mode in which adjacent fields are assumed to correspond to different points in time, comprising the steps of vertically interpolating one or more fields to produce respective signals for at least three input fields which correspond in vertical position; subtracting the signals to provide a preceding field difference signal for the pair of fields comprising a current field and a preceding field and a succeeding field difference signal for the pair of fields comprising the current field and a succeeding field least one pair of adjacent input fields; comparing the preceding field difference signal with the succeeding field difference signal and changing the selection to film mode if the field difference signals are significantly different, and changing the selection to video mode if both signals are similar but not small.
The invention will now be described by way of example with reference to the accompanying drawings in which:
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of a system according to one embodiment of the present invention for generating a film difference signal from a 625-line interlaced television signal.
FIG. 2 is a diagram similar to FIG. 1 illustrating a modification.
FIG. 3 a is a diagram showing how a signal from the previous field can be interpolated to give a signal corresponding to the vertical position of the current field.
FIG. 3 b is a diagram showing how signals from both the current and the previous fields can be interpolated to bring them into alignment with each other.
FIG. 4 is a block diagram of a system according to one embodiment of the present invention for generating an interpolation control signal.
FIG. 5 shows block diagram of a system according to one embodiment of the present invention for identifying film or video material.
FIG. 6 shows the generation of an alternative global detail signal.
FIG. 7 is a block diagram of a system according to a further embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1: An interlaced, 625-line input video signal (1) is delayed by 312 lines to produce video signal (2) corresponding to the previous field. This signal is interpolated by averaging (3) across a one-line delay so as to make a signal (4) corresponding to the same vertical position as the (interlaced) current input line. This is subtracted from the input signal and the absolute value of the result taken to give an uncorrected field difference signal (5) having a magnitude which increases with the difference in content between the current and previous fields.
The vertical interpolation of the previous field to align it with the current field is shown diagrammatically in FIG. 3 a. The lines of the current and previous fields are indicated by crosses, and their relative vertical positions are indicated by their vertical positions on the diagram. The position of the interpolated line is shown by a circle.
Returning to FIG. 1, a local measure of the vertical detail in the previous field (7) is taken by subtracting (6) across the one-line delay and taking the absolute value of the result. This is multiplied (8) by a constant k1, which is chosen to optimise the operation of the circuit. A suitable value for k1 may be in the region of 0.5.
The resulting local detail correction signal is subtracted (9) from the uncorrected field difference signal and clipped (10) in a threshold circuit which replaces values which are more negative than a predetermined threshold by the value of the threshold. This corrected field difference signal (11) can be used to find cuts or changes in temporal phase of the incoming video.
The signal 11 can be further improved by integrating over all, or a substantial part, of the picture area (12) to make a global difference signal, and carrying out a similar process on the local detail signal (7) to make a global detail signal (13). This is multiplied (14) by a constant k2 (which determined in a similar way as k1) and subtracted from the global difference signal to generate an improved field difference signal 15.
Another way of generating the uncorrected field difference signal and the local detail signal is shown in FIG. 2.
The input 625-line interlaced video signal (1) is interpolated (21) to produce a signal which is vertically shifted by half of one (picture) line pitch. A second interpolator (22) applies an equal shift in the opposite direction to the signal from the previous field. The two interpolated signals are subtracted (23) and the absolute value of the result taken to obtain an improved local difference signal 27.
The interpolation of the two signals to bring them into vertical alignment is shown diagrammatically in FIG. 3 b.
Because the interpolation processes need signals from more than one line from the current and the preceding field (two from each in the example shown in FIG. 2), it is possible to generate local detail signals from each of these fields (24 and 25) by taking the absolute values of vertical difference signals. The two local detail signals are averaged (26) and the result used to correct the improved local difference signal 27.
The local detail signal 28 and the local difference signal 27 can replace the signals 7 and 5 respectively in FIG. 1 and be processed as shown on the right hand side of the figure to create an improved field difference signal.
Although the detail correction which has been described above considerably reduces the adverse effect of detail on the field difference signal, it does not eliminate it completely and further processing will now be described making use of the film sequence signals from more than one field at a time.
In many applications there is a need to use a field difference signal to control whether the current field is combined with the previous field or with the next field. The generation of a suitable control signal is shown in FIG. 4. A video signal (41) is input to a film sequence signal generation process (42), which may, for example, be that shown in FIG. 1, and a film sequence signal (43) obtained which gives a measure of the temporal difference between two fields. This signal is delayed by substantially one field in a suitable delay device (44) to obtain a measure of the temporal difference between the two previous fields (45). A magnitude comparison is made (46) between the input and the output of the delay device and the resulting signal (47) is used to control an interpolation process as follows:
Let us describe the field which is being input to the block (42) as the next field. The film sequence signal (43) corresponds to the temporal difference between this field and the current field and the delayed sequence signal (45) corresponds to the temporal difference between the current field and the previous field. When the signal (47) indicates that the magnitude of the undelayed film sequence signal (43) is significantly greater that of the delayed film sequence signal (45) the interpolation process combines the current field with the previous field; otherwise the current field is combined with the next field.
Most applications which make use of film sequence information also have a video mode and it is helpful for the mode selection to be automatic. This may be achieved by processing a film sequence signal as shown in FIG. 5.
A film sequence signal indicating the magnitude of the temporal difference between successive fields d1 is delayed by substantially one field in the delay device (501) to produce a delayed film sequence signal d2. The signals d1 and d2 are fed to amplifiers (502) and (503) respectively to obtain amplified film sequence signals (504) and (505). The gains of the amplifiers are substantially equal at a value chosen to optimise the operation of the system; a gain of approximately two times has been found to be satisfactory.
The delayed and amplified signal (505) has a first DC threshold value subtracted from it in the subtractor (506) and d1 is compared with the result in the comparator (507) to produce a logic signal (508) which is active when d1 is the greater. The comparator (509) performs an equivalent process, but with the roles of d1 and d2 reversed, to produce a logic signal (510). These two logic signals are combined in an OR-gate (511) and the result fed to the SET input of a latch (512).
The effect of this processing is to set the latch whenever there are significant differences between the delayed and undelayed film sequence signals.
The delayed and amplified film sequence signal (505) has a second DC threshold subtracted from it in the subtractor (513) and the result is compared with d1 in the comparator (514) to produce a logic signal (515) which is active when d1 is the smaller. The comparator (516) performs an equivalent process, but with the roles of d1 and d2 reversed, to produce a logic signal (517). These two logic signals are combined In an AND-gate (518) and the result fed to the RESET input of the latch (512).
The effect of this processing is to reset the latch whenever the delayed and undelayed film sequence signals are of similar magnitude and greater than the magnitude of the second DC threshold.
The output (519) from the latch is used to put a video process into film mode when it is active, and to change to video mode when it is not.
Experience has shown that for some, very sharp pictures the methods of detail correction described above are insufficient to prevent stationary film images from being falsely detected as video. This difficulty can be overcome by generating an improved detail signal as shown in FIG. 6.
An input video signal (61) is delayed a total of two fields by the delay elements (62), (63) and (64) and the undelayed and the two-field-delayed signals are averaged (65). An interpolator (66) uses two or more contributions from the line delays (63) to create an interpolated field signal (67) which is aligned with the average signal. The subtractor (68) subtracts the interpolated signal from the average signal to create a detail signal which is integrated (69) over all, or a substantial part, of the picture area to create an improved global detail signal (70).
This improved global detail signal can replace the signal (13) In FIG. 1, or a combination of the improved signal and the signal (13) can be used to correct the global difference signal.
It has been recognised by the inventor that a component in a field difference signal which arises from vertical detail can be removed, not only by subtracting an explicit detail signal but also by comparing field difference signals from neighbouring pairs of fields which can be assumed to have similar amounts of vertical detail.
Thus, turning to FIG. 7, there is shown an arrangement in which an input interlaced 625 line video signal is passed through a 312 line delay (80), a 1 line delay (82) and a further 312 line delay (84).
Signals taken across the line delay (82) are added at (86) and halved at (88) to provided an interpolated signal which correspond in vertical position with lines from the succeeding and preceding fields. Preceding and succeeding field differences are taken in subtractors (90) and (92) and the absolute values taken in blocks (94) and (96). The resulting signals are made available to processor (98) which as described above can determine which of the preceding or succeeding fields has the lowest field difference. This determination can be made pixel by pixel or signals can be appropriately aggregated over a region of a field or an entire field.
If it is desired also to distinguish between “true” video and film originating video, a signal can be taken from subtractor (100) across the line delay (82) providing a local measure of vertical detail. The absolute value of this detail signal from block (102) is then subtracted at (104) and (106) from the respective field difference signals. A determination can then be made of whether a multiple (which may be 2) of one detail corrected difference signal exceeds the other by a predetermined threshold.
Although the invention has been described in terms of 625-line, interlaced signals, it will be appreciated by those skilled in the art that it is applicable to other formats, including 525-line and high-definition formats.
The field difference signals that this invention provides can be used to controls a wide variety of video processes, including standards conversion, up or down conversion, aspect ratio conversion, special effects generators, composite decoders and compression encoders and decoders.

Claims (25)

1. A method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail.
2. A method according to claim 1 in which a component in the field difference signal which arises from vertical detail is removed by taking a measure of vertical detail from one or both of the fields and subtracting either all or a proportion of the detail measure from the field difference signal.
3. A method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail by taking a measure of vertical detail from one or both of the fields and subtracting either all or a proportion of the detail measure from the field difference signal, in which a measure of local detail is used to correct the field difference signal.
4. A method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail by taking a measure of vertical detail from one or both of the fields and subtracting either all or a proportion of the detail measure from the field difference signal, in which a measure of global detail is derived by summing the local detail from one or both fields over all or a substantial part of the picture and all or a proportion of the global detail signal is used to correct the field difference signal.
5. A method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail, in which a component in the field difference signal which arises from vertical detail is removed by comparing a first field difference signal provided for a current field and the immediately preceding field with a second field difference provided for a current field and the immediately succeeding field.
6. A method of creating a field difference signal by subtracting video signals from different fields characterised in that one or both of the fields are vertically interpolated prior to subtraction by taking weighted sums of lines from within the same field so as to obtain signals corresponding to similar vertical positions.
7. A method according to claim 6 in which the result of subtraction is corrected by taking a measure of vertical detail from one or both of the fields and either all or a proportion of the detail measure is subtracted from the field difference signal.
8. A method of creating a field difference signal by subtracting video signals from different fields characterised in that one or both of the fields are vertically interpolated prior to subtraction by taking weighted sums of lines from within the same field so as to obtain signals corresponding to similar vertical positions, and correcting the result of subtraction by taking a measure of vertical detail from one or both of the fields and either all or a proportion of the detail measure is subtracted from the field difference signal, in which a measure of local detail is used to correct the field difference signal.
9. A method of creating a field difference signal by subtracting video signals from different fields characterised in that one or both of the fields are vertically interpolated prior to subtraction by taking weighted sums of lines from within the same field so as to obtain signals corresponding to similar vertical positions, and correcting the result of subtraction by taking a measure of vertical detail from one or both of the fields and either all or a proportion of the detail measure is subtracted from the field difference signal in which a measure of global detail is derived by summing the local detail from one or both fields over all or a substantial part of the picture and all or a proportion of the global detail signal is used to correct the field difference signal.
10. A method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail in which the field difference signal is summed over all or a substantial part of the picture to create a global difference signal and the local detail from one or both fields is summed over all or a substantial part of the picture to create a global detail signal and a corrected field difference signal is obtained by subtracting all or a proportion of the global detail signal from the global field difference signal.
11. A method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail in which a field difference signal is output for each pixel of the current field.
12. A method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail in which a field difference signal is output for each of a number of regions of the current field.
13. A method of analysing motion between adjacent fields of an interlaced video signal, comprising the steps of vertically interpolating one or both of the fields to produce respective signals for the two fields which correspond in vertical position; subtracting the signals to provide a field difference signal; and removing a component in the field difference signal which arises from vertical detail, in which a single field difference signal is output for the current field.
14. An interpolation process in which an output is created by taking a weighted sum of contributions from one or more selected input fields; comprising the steps of vertically interpolating one or more input fields to produce respective signals for at least two input fields which correspond in vertical position; subtracting the signals to provide a field difference signal for at least one pair of adjacent input fields; and utilising the or each field difference signal to select input fields for interpolation.
15. A process according to claim 14 in which field difference signals are provided for the pair of input fields comprising a current input field and a preceding input field and the pair of input fields comprising the current input field and a succeeding input field.
16. An interpolation process in which an output is created by taking a weighted sum of contributions from one or more selected input fields; comprising the steps of vertically interpolating one or more input fields to produce respective signals for at least two input fields which correspond in vertical position; subtracting the signals to provide a field difference signal for at least one pair of adjacent input fields; and utilising the or each field difference signal to select input fields for interpolation, in which a component in the or each field difference signal which arises from vertical detail is removed by taking a measure of vertical detail from one or more input fields and subtracting either all or a proportion of the detail measure from the or each field difference signal.
17. A video filter process in which an output is created by taking a weighted sum of contributions over a filter aperture which defines the lines and fields from which a contribution is to be taken and the weighting of each contribution; comprising the steps of vertically interpolating one or more input fields to produce respective signals for at least two input fields which correspond in vertical position; subtracting the signals to provide a field difference signal for at least one pair of adjacent input fields; and utilising the or each field difference signal to select a filter aperture.
18. A process according to claim 17 in which field difference signals are provided for the pair of input fields comprising a current input field and a preceding input field and the pair of input fields comprising the current input field and a succeeding input field.
19. A process according to claim 17 in which a component in the or each field difference signal which arises from vertical detail is removed by taking a measure of vertical detail from one or more input fields and subtracting either all or a proportion of the detail measure from the or each field difference signal.
20. A method of automatically changing the operation of a video process between a film mode in which adjacent fields are assumed to correspond to the same point in time and a video mode in which adjacent fields are assumed to correspond to different points in time, comprising the steps of vertically interpolating one or more fields to produce respective signals for at least three input fields which correspond in vertical position; subtracting the signals to provide a preceding field difference signal for the pair of fields comprising a current field and a preceding field and a succeeding field difference signal for the pair of fields comprising the current field and a succeeding field; comparing the preceding field difference signal with the succeeding field difference signal and changing the selection to film mode if the field difference signals are significantly different, and changing the selection to video mode if both signals are similar but not small.
21. A method of video process control according to claim 20 in which the film difference signals are considered to be significantly different if one differs from a multiple of the other by more than a predetermined threshold.
22. A method according to claim 6 in which the field difference signal is summed over all or a substantial part of the picture to create a global difference signal and the local detail from one or both fields is summed over all or a substantial part of the picture to create a global detail signal and a corrected field difference signal is obtained by subtracting all or a proportion of the global signal detail from the global field difference signal.
23. A method according to claim 6 in which a field difference signal is output for each pixel of the current field.
24. A method according to claim 6 in which a field difference signal is output for each of a number of regions of the current field.
25. A method according to claim 6 in which a single field difference signal is output for the current field.
US09/830,383 1998-11-03 1999-11-03 Video signal processing Expired - Lifetime US6922214B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9824061.7A GB9824061D0 (en) 1998-11-03 1998-11-03 Film sequence detection (nt4)
PCT/GB1999/003641 WO2000027109A1 (en) 1998-11-03 1999-11-03 Video signal processing

Publications (1)

Publication Number Publication Date
US6922214B1 true US6922214B1 (en) 2005-07-26

Family

ID=10841766

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/830,383 Expired - Lifetime US6922214B1 (en) 1998-11-03 1999-11-03 Video signal processing

Country Status (7)

Country Link
US (1) US6922214B1 (en)
EP (1) EP1127455B1 (en)
AT (1) ATE262762T1 (en)
AU (1) AU1057800A (en)
DE (1) DE69915857T2 (en)
GB (1) GB9824061D0 (en)
WO (1) WO2000027109A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040263685A1 (en) * 2003-06-27 2004-12-30 Samsung Electronics Co., Ltd. De-interlacing method and apparatus, and video decoder and reproducing apparatus using the same
US20070103588A1 (en) * 2005-11-10 2007-05-10 Alexander Maclnnis System and method for adjacent field comparison in video processing
US20100225823A1 (en) * 2009-03-06 2010-09-09 Snell Limited Regional film cadence detection
US8284307B1 (en) * 2010-11-01 2012-10-09 Marseille Networks, Inc. Method for processing digital video fields

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9824061D0 (en) 1998-11-03 1998-12-30 Snell & Wilcox Ltd Film sequence detection (nt4)
GB2358309A (en) * 2000-01-11 2001-07-18 Snell & Wilcox Ltd Analysing motion between adjacent fields using weighted field difference
DE10318620A1 (en) 2003-04-24 2004-11-25 Micronas Gmbh Method and device for determining a distance between a first and second signal sequence
CN1957614B (en) * 2004-05-25 2010-04-14 Nxp股份有限公司 Motion estimation in interlaced scan video images
EP1841205A1 (en) 2006-03-29 2007-10-03 Sony Deutschland Gmbh Motion detection in an interlaced field sequence
CN100459694C (en) * 2006-10-25 2009-02-04 北京中星微电子有限公司 Foldable field sequence detecting method and digital video deinterleaving device and method

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733297A (en) 1986-04-09 1988-03-22 Hitachi Ltd. & Hitachi Video Eng. Video signal processing circuit of motion adaptive type
US4789893A (en) * 1986-10-31 1988-12-06 British Broadcasting Corporation Interpolating lines of video signals
EP0343728A1 (en) 1988-05-26 1989-11-29 Koninklijke Philips Electronics N.V. Method of and arrangement for motion detection in an interlaced television picture obtained after film-to-television conversion
US5086488A (en) 1989-08-19 1992-02-04 Mitsubishi Denki Kabushiki Kaisha Transform coding apparatus
US5142380A (en) 1989-10-23 1992-08-25 Ricoh Company, Ltd. Image data processing apparatus
US5249053A (en) 1991-02-05 1993-09-28 Dycam Inc. Filmless digital camera with selective image compression
US5291280A (en) 1992-05-05 1994-03-01 Faroudja Y C Motion detection between even and odd fields within 2:1 interlaced television standard
US5317398A (en) 1992-08-17 1994-05-31 Rca Thomson Licensing Corporation Video/film-mode (3:2 pulldown) detector using patterns of two-field differences
US5365273A (en) 1992-04-24 1994-11-15 Deutsche Thomson-Brandt Gmbh Method and device for film-mode detection
US5406333A (en) 1994-03-14 1995-04-11 Thomson Consumer Electronics, Inc. Method and device for film-mode detection
US5438625A (en) 1991-04-09 1995-08-01 Jbl, Incorporated Arrangement to correct the linear and nonlinear transfer behavior or electro-acoustical transducers
US5444493A (en) * 1992-06-22 1995-08-22 Deutsche Thomson-Brandt Gmbh Method and apparatus for providing intra-field interpolation of video signals with adaptive weighting based on gradients of temporally adjacent fields
US5473383A (en) * 1994-06-15 1995-12-05 Eastman Kodak Company Mechanism for controllably deinterlacing sequential lines of video data field based upon pixel signals associated with three successive interlaced video fields
EP0685968A2 (en) 1994-05-31 1995-12-06 Victor Company Of Japan, Limited Frame-frequency converting apparatus
US5512956A (en) 1994-02-04 1996-04-30 At&T Corp. Adaptive spatial-temporal postprocessing for low bit-rate coded image sequences
EP0720367A2 (en) 1994-12-30 1996-07-03 Thomson Consumer Electronics, Inc. Method and apparatus for identifying video fields produced by film sources
US5606464A (en) * 1995-01-31 1997-02-25 Lucent Technologies Inc. Cancellation of precursor intersymbol interference in magnetic recording channels
US5629779A (en) 1994-01-12 1997-05-13 Samsung Electronics Co., Ltd. Image coding method and apparatus therefor
US5642115A (en) 1993-12-08 1997-06-24 Industrial Technology Research Institute Variable length coding system
US5671298A (en) 1994-08-30 1997-09-23 Texas Instruments Incorporated Image scaling using cubic filters
US5748245A (en) 1993-03-29 1998-05-05 Canon Kabushiki Kaisha Encoding apparatus for encoding input information data while controlling a code quantity of encoded information data
US5802218A (en) 1994-11-04 1998-09-01 Motorola, Inc. Method, post-processing filter, and video compression system for suppressing mosquito and blocking atrifacts
US5812197A (en) 1995-05-08 1998-09-22 Thomson Consumer Electronics, Inc. System using data correlation for predictive encoding of video image data subject to luminance gradients and motion
US5831688A (en) 1994-10-31 1998-11-03 Mitsubishi Denki Kabushiki Kaisha Image coded data re-encoding apparatus
WO1999020046A1 (en) 1997-10-10 1999-04-22 Faroudja Laboratories, Inc. High-definition television signal processing for transmitting and receiving a television signal in a manner compatible with the present system
US5930398A (en) 1991-04-18 1999-07-27 Ampex Corporation Method and apparatus for determining a quantizing factor for multi-generation data compression/decompression processes
WO1999051028A1 (en) 1998-03-31 1999-10-07 Electro Scientific Industries, Inc. System for deinterlacing television signals from camera video or film
US5982444A (en) 1995-02-28 1999-11-09 Sony Corporation Encoding method and apparatus for encoding edited picture signals, signal recording medium and picture signal decoding method and apparatus
US5991456A (en) 1996-05-29 1999-11-23 Science And Technology Corporation Method of improving a digital image
WO1999063747A2 (en) 1998-06-04 1999-12-09 Koninklijke Philips Electronics N.V. System for detecting redundant images in a video sequence
US6005952A (en) 1995-04-05 1999-12-21 Klippel; Wolfgang Active attenuation of nonlinear sound
WO2000027109A1 (en) 1998-11-03 2000-05-11 Snell & Wilcox Limited Video signal processing
US6151362A (en) 1998-10-30 2000-11-21 Motorola, Inc. Joint rate control for stereoscopic video coding
US6163573A (en) 1996-12-12 2000-12-19 Sony Corporation Equipment and method for compressing picture data
US6233018B1 (en) * 1996-10-09 2001-05-15 British Broadcasting Corporation Video signal processing
US6266092B1 (en) * 1998-05-12 2001-07-24 Genesis Microchip Inc. Method and apparatus for video line multiplication with enhanced sharpness
US6269120B1 (en) 1998-03-23 2001-07-31 International Business Machines Corporation Method of precise buffer management for MPEG video splicing
US6278735B1 (en) 1998-03-19 2001-08-21 International Business Machines Corporation Real-time single pass variable bit rate control strategy and encoder
US6285716B1 (en) 1994-06-17 2001-09-04 Snell & Wilcox Limited Video compression
US6437827B1 (en) 1998-04-03 2002-08-20 Tandberg Television Asa Filtering video signals containing chrominance information
US6539120B1 (en) 1997-03-12 2003-03-25 Matsushita Electric Industrial Co., Ltd. MPEG decoder providing multiple standard output signals
US6570922B1 (en) 1998-11-24 2003-05-27 General Instrument Corporation Rate control for an MPEG transcoder without a priori knowledge of picture type

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850863A (en) * 1981-09-21 1983-03-25 Matsushita Electric Ind Co Ltd Vertical interpolating device

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733297A (en) 1986-04-09 1988-03-22 Hitachi Ltd. & Hitachi Video Eng. Video signal processing circuit of motion adaptive type
US4789893A (en) * 1986-10-31 1988-12-06 British Broadcasting Corporation Interpolating lines of video signals
EP0343728A1 (en) 1988-05-26 1989-11-29 Koninklijke Philips Electronics N.V. Method of and arrangement for motion detection in an interlaced television picture obtained after film-to-television conversion
US5086488A (en) 1989-08-19 1992-02-04 Mitsubishi Denki Kabushiki Kaisha Transform coding apparatus
US5142380A (en) 1989-10-23 1992-08-25 Ricoh Company, Ltd. Image data processing apparatus
US5249053A (en) 1991-02-05 1993-09-28 Dycam Inc. Filmless digital camera with selective image compression
US5438625A (en) 1991-04-09 1995-08-01 Jbl, Incorporated Arrangement to correct the linear and nonlinear transfer behavior or electro-acoustical transducers
US5930398A (en) 1991-04-18 1999-07-27 Ampex Corporation Method and apparatus for determining a quantizing factor for multi-generation data compression/decompression processes
US5365273A (en) 1992-04-24 1994-11-15 Deutsche Thomson-Brandt Gmbh Method and device for film-mode detection
US5291280A (en) 1992-05-05 1994-03-01 Faroudja Y C Motion detection between even and odd fields within 2:1 interlaced television standard
US5444493A (en) * 1992-06-22 1995-08-22 Deutsche Thomson-Brandt Gmbh Method and apparatus for providing intra-field interpolation of video signals with adaptive weighting based on gradients of temporally adjacent fields
US5317398A (en) 1992-08-17 1994-05-31 Rca Thomson Licensing Corporation Video/film-mode (3:2 pulldown) detector using patterns of two-field differences
US5748245A (en) 1993-03-29 1998-05-05 Canon Kabushiki Kaisha Encoding apparatus for encoding input information data while controlling a code quantity of encoded information data
US5642115A (en) 1993-12-08 1997-06-24 Industrial Technology Research Institute Variable length coding system
US5629779A (en) 1994-01-12 1997-05-13 Samsung Electronics Co., Ltd. Image coding method and apparatus therefor
US5512956A (en) 1994-02-04 1996-04-30 At&T Corp. Adaptive spatial-temporal postprocessing for low bit-rate coded image sequences
US5406333A (en) 1994-03-14 1995-04-11 Thomson Consumer Electronics, Inc. Method and device for film-mode detection
EP0685968A2 (en) 1994-05-31 1995-12-06 Victor Company Of Japan, Limited Frame-frequency converting apparatus
US5473383A (en) * 1994-06-15 1995-12-05 Eastman Kodak Company Mechanism for controllably deinterlacing sequential lines of video data field based upon pixel signals associated with three successive interlaced video fields
US20010031009A1 (en) 1994-06-17 2001-10-18 Knee Michael James Video compression
US6285716B1 (en) 1994-06-17 2001-09-04 Snell & Wilcox Limited Video compression
US5671298A (en) 1994-08-30 1997-09-23 Texas Instruments Incorporated Image scaling using cubic filters
US5831688A (en) 1994-10-31 1998-11-03 Mitsubishi Denki Kabushiki Kaisha Image coded data re-encoding apparatus
US5802218A (en) 1994-11-04 1998-09-01 Motorola, Inc. Method, post-processing filter, and video compression system for suppressing mosquito and blocking atrifacts
EP0720367A2 (en) 1994-12-30 1996-07-03 Thomson Consumer Electronics, Inc. Method and apparatus for identifying video fields produced by film sources
US5606464A (en) * 1995-01-31 1997-02-25 Lucent Technologies Inc. Cancellation of precursor intersymbol interference in magnetic recording channels
US5982444A (en) 1995-02-28 1999-11-09 Sony Corporation Encoding method and apparatus for encoding edited picture signals, signal recording medium and picture signal decoding method and apparatus
US6005952A (en) 1995-04-05 1999-12-21 Klippel; Wolfgang Active attenuation of nonlinear sound
US5812197A (en) 1995-05-08 1998-09-22 Thomson Consumer Electronics, Inc. System using data correlation for predictive encoding of video image data subject to luminance gradients and motion
US5991456A (en) 1996-05-29 1999-11-23 Science And Technology Corporation Method of improving a digital image
US6233018B1 (en) * 1996-10-09 2001-05-15 British Broadcasting Corporation Video signal processing
US6163573A (en) 1996-12-12 2000-12-19 Sony Corporation Equipment and method for compressing picture data
US6539120B1 (en) 1997-03-12 2003-03-25 Matsushita Electric Industrial Co., Ltd. MPEG decoder providing multiple standard output signals
WO1999020046A1 (en) 1997-10-10 1999-04-22 Faroudja Laboratories, Inc. High-definition television signal processing for transmitting and receiving a television signal in a manner compatible with the present system
US6278735B1 (en) 1998-03-19 2001-08-21 International Business Machines Corporation Real-time single pass variable bit rate control strategy and encoder
US6269120B1 (en) 1998-03-23 2001-07-31 International Business Machines Corporation Method of precise buffer management for MPEG video splicing
WO1999051028A1 (en) 1998-03-31 1999-10-07 Electro Scientific Industries, Inc. System for deinterlacing television signals from camera video or film
US6437827B1 (en) 1998-04-03 2002-08-20 Tandberg Television Asa Filtering video signals containing chrominance information
US6266092B1 (en) * 1998-05-12 2001-07-24 Genesis Microchip Inc. Method and apparatus for video line multiplication with enhanced sharpness
WO1999063747A2 (en) 1998-06-04 1999-12-09 Koninklijke Philips Electronics N.V. System for detecting redundant images in a video sequence
US6151362A (en) 1998-10-30 2000-11-21 Motorola, Inc. Joint rate control for stereoscopic video coding
WO2000027109A1 (en) 1998-11-03 2000-05-11 Snell & Wilcox Limited Video signal processing
US6570922B1 (en) 1998-11-24 2003-05-27 General Instrument Corporation Rate control for an MPEG transcoder without a priori knowledge of picture type

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Publication No. 58050863, Publication Date Mar. 25, 1983, Applicant Matsushita Electric Inc Co Ltd.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040263685A1 (en) * 2003-06-27 2004-12-30 Samsung Electronics Co., Ltd. De-interlacing method and apparatus, and video decoder and reproducing apparatus using the same
US7224399B2 (en) * 2003-06-27 2007-05-29 Samsung Electronics Co., Ltd. De-interlacing method and apparatus, and video decoder and reproducing apparatus using the same
US20070103588A1 (en) * 2005-11-10 2007-05-10 Alexander Maclnnis System and method for adjacent field comparison in video processing
US8274605B2 (en) * 2005-11-10 2012-09-25 Broadcom Corporation System and method for adjacent field comparison in video processing
US20100225823A1 (en) * 2009-03-06 2010-09-09 Snell Limited Regional film cadence detection
US8964837B2 (en) 2009-03-06 2015-02-24 Snell Limited Regional film cadence detection
US8284307B1 (en) * 2010-11-01 2012-10-09 Marseille Networks, Inc. Method for processing digital video fields
US20130004088A1 (en) * 2010-11-01 2013-01-03 Marseille Networks, Inc. Method for processing digital video images
US8848102B2 (en) * 2010-11-01 2014-09-30 Marseille Networks, Inc. Method for processing digital video images

Also Published As

Publication number Publication date
EP1127455B1 (en) 2004-03-24
WO2000027109A1 (en) 2000-05-11
ATE262762T1 (en) 2004-04-15
AU1057800A (en) 2000-05-22
DE69915857T2 (en) 2005-02-10
GB9824061D0 (en) 1998-12-30
EP1127455A1 (en) 2001-08-29
DE69915857D1 (en) 2004-04-29

Similar Documents

Publication Publication Date Title
US7440033B2 (en) Vector based motion compensation at image borders
JP4633108B2 (en) Film source video detection
US5291280A (en) Motion detection between even and odd fields within 2:1 interlaced television standard
US8218083B2 (en) Noise reducer, noise reducing method, and video signal display apparatus that distinguishes between motion and noise
US9185431B2 (en) Motion detection device and method, video signal processing device and method and video display device
US7907209B2 (en) Content adaptive de-interlacing algorithm
US20050249282A1 (en) Film-mode detection in video sequences
JPH08307820A (en) System and method for generating high image quality still picture from interlaced video
CA2171779A1 (en) Method and apparatus for converting an interlaced video frame sequence into a progressively-scanned sequence
EP2107521B1 (en) Detecting a border region in an image
US20020008785A1 (en) Motion detecting apparatus
US6922214B1 (en) Video signal processing
US6509933B1 (en) Video signal converting apparatus
US7035481B2 (en) Apparatus and method for line interpolating of image signal
EP0556501B1 (en) Video motion detectors
KR100398882B1 (en) Film mode detecting apparatus and method of the same
JP2837925B2 (en) Motion vector detection method of TV converter
JPH06339124A (en) Motion detector
KR100698266B1 (en) Apparatus and method for 3 dimension de-interlacing
JP3389984B2 (en) Progressive scan conversion device and method
JPS6390988A (en) Moving signal generating circuit
JPH0720238B2 (en) Motion vector detection circuit
GB2358309A (en) Analysing motion between adjacent fields using weighted field difference
JPH027553B2 (en)
JP2519526B2 (en) Signal processor

Legal Events

Date Code Title Description
AS Assignment

Owner name: SNELL & WILCOX LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WESTON, MARTIN;REEL/FRAME:011878/0434

Effective date: 20010406

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12