US6926658B2 - Radiation delivery catheter for use with an intraluminal radiation treatment system - Google Patents

Radiation delivery catheter for use with an intraluminal radiation treatment system Download PDF

Info

Publication number
US6926658B2
US6926658B2 US09/775,690 US77569001A US6926658B2 US 6926658 B2 US6926658 B2 US 6926658B2 US 77569001 A US77569001 A US 77569001A US 6926658 B2 US6926658 B2 US 6926658B2
Authority
US
United States
Prior art keywords
catheter
distal
lumen
proximal
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US09/775,690
Other versions
US20020161273A1 (en
Inventor
Robert C. Farnan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novoste Corp
Original Assignee
Novoste Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novoste Corp filed Critical Novoste Corp
Priority to US09/775,690 priority Critical patent/US6926658B2/en
Publication of US20020161273A1 publication Critical patent/US20020161273A1/en
Assigned to NOVOSTE CORPORATION reassignment NOVOSTE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FARNAN, ROBERT C.
Application granted granted Critical
Publication of US6926658B2 publication Critical patent/US6926658B2/en
Assigned to BEST VASCULAR, INC. reassignment BEST VASCULAR, INC. ASSET PURCHASE AGREEMENT Assignors: NOVOSTE CORPORATION
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/0071Multiple separate lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1002Intraluminal radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0004Catheters; Hollow probes having two or more concentrically arranged tubes for forming a concentric catheter system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/008Strength or flexibility characteristics of the catheter tip
    • A61M2025/0081Soft tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/008Strength or flexibility characteristics of the catheter tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0108Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers

Definitions

  • the overall outside diameter of the catheter 10 will determine how far the catheter 10 can successfully be advanced into the vasculature. Obviously, a smaller catheter can navigate smaller, more distal vessels. However, certain constraints, such as the size and the desired transit time of the radioactive treatment elements, and maximum pressure within the catheter, determine the effective catheter diameter. Considering all the constraints, the catheter 10 will most likely have an outer diameter in the range of 3.0 to 4.5 French. For a maximum catheter pressure of 120 psi and a desired transit time of no more than 5 seconds, the catheter 10 outside diameter will be approximately 3.5 French.
  • the radiopaque spring marker 24 resides within the distal end 22 of the inner member lumen 16 , or in the case of a two piece construction, within the distal inner member lumen 36 .
  • the spring marker 24 is made up of radiopaque materials, such as stainless steel, platinum, platinum-iridium or gold, that will provide clear visualization under fluoroscopic imagery.
  • the main purposes for having the distally placed internal marker 24 are to provide a stop for the treatment elements as they travel to the distal end 22 of the catheter 10 and to indicate to the user the distal most point of the radioactive treatment elements when placed for treatment.
  • This spring marker 24 is substituted for the intraluminal connector set forth in the patents and applications referenced herein.

Abstract

Apparatus includes an elongated flexible catheter having proximal and distal end portions, with fluidly connected coaxial lumens extending therebetween, and a diameter sufficiently small for insertion into a patient's intraluminal passageways. One or more treating elements are positionable within one of the lumens and movable between the proximal and distal portions by fluid flowing through the lumens. The distal portion includes a distal guide wire lumen having a proximal exit port distally located relative to the treatment elements positioned at the distal portion. To simultaneously achieve stiffness along the proximal portion and flexibility along the distal portion, the inner and/or outer coaxial members may be of more than one-piece construction. The inner and/or outer members may also be stepped or bumped in diameter to decrease the pressure and fluid transit times within the catheter. A balloon may be added to the distal portion for positioning the catheter or performing angioplasty.

Description

CROSS-REFERENCE TO RELATED PATENTS AND APPLICATIONS
This application claims the benefit of U.S. Provisional Application Ser. No. 60/178,962, filed Feb. 1, 2000. The disclosures of U.S. Pat. No. 5,683,345, issued Nov. 4, 1997; U.S. Pat. No. 5,899,882 issued May 4, 1999; U.S. Pat. No. 6,013,020 issued Jan. 11, 2000; U.S. patent applications Ser. Nos. 09/304,752, filed May 4, 1999; 09/679,950, filed Oct. 4, 2000; and U.S. provisional application serial No. 60/143,730, filed Jul. 14, 1999, are incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates generally to the delivery of treating elements by a catheter to a selected location within the intraluminal passageways of a patient. Intraluminal passageways are defined herein as all lumens, passageways, conduits, ducts, channels, canals, vessels, and cavities within the human body. More particularly, the present invention relates to the apparatus for delivery of a treating element, such as a radioactive source, through a catheter to a desired site, such as a coronary artery, for inhibiting wound healing response, such as restenosis following a balloon angioplasty, and also for inhibiting other occurrences of cell migration, proliferation, and enlargement, including that of cancerous cells, which may not result from wound healing response.
BACKGROUND OF THE INVENTION
The present invention consists of a radiation delivery catheter that is compatible with the transfer device described in the above-identified patents and patent applications that are referenced herein. The radiation delivery catheter is a component of a system designed to reduce the frequency of restenosis (re-blockage) in coronary arteries after balloon angioplasty or other interventional procedure. The catheter is inserted into the patient using a guide wire and guide catheter previously positioned in the patient for the balloon angioplasty procedure; the catheter is then connected to the transfer device and the distal tip of the catheter is guided to the treatment site in the artery. Radioactive treatment elements are hydraulically or pneumatically delivered from the transfer device to the treatment site, and after the appropriate dosage has been delivered, the sources are returned into the transfer device by reversing direction of the fluid flow.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a cross-sectional view of the elongated catheter tube of the present invention.
DETAILED DESCRIPTION OF INVENTION
As seen in FIG. 1, the catheter 10 of the present invention consists of coaxial inner and outer tubular members 12 and 14, each having a lumen extending along a major portion of the catheter's length. The inner tubular member 12 contains the radiation source lumen 16 for transitioning the radioactive treatment elements in and out of the catheter 10. The outer tubular member 14 contains the fluid return lumen 18 for fluid bypass and for retrieving the radioactive treatment elements. This coaxial design centers the radioactive elements within the catheter 10, which may be helpful in reducing “hot spots” along the tissue being treated. Also, having the inner member 12 centered within an outer member 14 protects the source lumen 16 from buckling or kinking under the force created when tightening a hemostasis valve that is commonly used for preventing blood backflow through the guiding catheter.
To facilitate passage of the catheter 10 through a guiding catheter, over a guide wire and across the treatment site and to prevent kinking of the source lumen 16 when manipulated through tortuous anatomy, the proximal segment 20 of the catheter 10 shall have sufficient column strength and the distal segment 22 of the catheter 10 shall have sufficient flexibility. At the very minimum, the catheter 10 shall be capable of attaining a bend radius of 0.25 inch without kinking and obstructing the source lumen passageway 16. Preferably, the catheter 10 would be able to maintain a 0.5 inch bend radius while allowing the sources to easily transit to and from said distal portion 22 of catheter 10. The catheter's column strength and flexibility shall be such that the catheter 10 can be guided to distal treatment sites within vessels of 2.0 to 2.5 mm minimum reference diameter.
In conjunction with the flexibility and stiffness of the catheter 10, the overall outside diameter of the catheter 10 will determine how far the catheter 10 can successfully be advanced into the vasculature. Obviously, a smaller catheter can navigate smaller, more distal vessels. However, certain constraints, such as the size and the desired transit time of the radioactive treatment elements, and maximum pressure within the catheter, determine the effective catheter diameter. Considering all the constraints, the catheter 10 will most likely have an outer diameter in the range of 3.0 to 4.5 French. For a maximum catheter pressure of 120 psi and a desired transit time of no more than 5 seconds, the catheter 10 outside diameter will be approximately 3.5 French.
The catheter 10 of the present invention consists of an inner tubular member 12, an outer tubular member 14, a radiopaque spring marker 24, a radiopaque distal tip 26, strain relief tubing 27 and a proprietary connector 28.
The inner and outer coaxial members 12 and 14 are elongated tubes, each having a lumen there through. The inner coaxial member 12 resides within the outer coaxial member 14 and has one or more openings 30 at its distal end 32 for providing fluid communication between the inner lumen 16 and the outer lumen 18. The inner coaxial member 12 may be made of nylon, PEBAX (polyetherblock amides), polyimide or other suitable materials for producing the needed catheter stiffness and flexibility. The outer coaxial member 14 may be made of nylon, polyimide or other suitable materials. Additionally, the interior wall of the inner member 12 may be lined with Teflon (PTFE or polytetraflouroethylene) to reduce the coefficient of friction for faster transit times of the radioactive treatment elements. To simultaneously achieve the needed stiffness along the proximal and intermediate segments 20 and 21 of the catheter 10 and the needed flexibility at the distal segment 22 of the catheter 10, the inner and/or outer coaxial members 12 and 14 may be of two piece construction. Therefore, different materials can be used at both ends to achieve the desired stiffness and flexibility. A two piece inner member comprises an inner member 12 and a distal inner member 32, and a two piece outer member comprises an outer member 14 and a distal outer member 34. The inner and outer members 12 and 14 may be made of polyimide for stiffness and the distal inner and distal outer members 32 and 34 may be made of PEBAX and nylon respectively to create a soft distal catheter segment 22. Other materials such as FEP may be sandwiched between layers of polyimide for tubing construction purposes. To enhance the bonding performance of the distal inner member 32 to the inner member 12 and the distal outer member 34 to the outer member 14, the exterior of the inner member 12 may be coated with urethane or other similar materials.
The radiopaque spring marker 24 resides within the distal end 22 of the inner member lumen 16, or in the case of a two piece construction, within the distal inner member lumen 36. The spring marker 24 is made up of radiopaque materials, such as stainless steel, platinum, platinum-iridium or gold, that will provide clear visualization under fluoroscopic imagery. The main purposes for having the distally placed internal marker 24 are to provide a stop for the treatment elements as they travel to the distal end 22 of the catheter 10 and to indicate to the user the distal most point of the radioactive treatment elements when placed for treatment. This spring marker 24 is substituted for the intraluminal connector set forth in the patents and applications referenced herein. Unlike a rigid marker, the spring marker 24 flexes as the distal segment 22 of the catheter 10 travels around bends, making it easier to advance the catheter 10 through tortuous anatomy. The spring 24 is preferably of variable pitch. The proximal portion 38 of the spring 24 has a closed pitch so as to reinforce the inner member 12 and prevent it from kinking or collapsing. The closed pitch portion 38 is adjacent to the one or more openings 30 within the inner member wall and allows fluid flow through the coils for fluid communication between the inner and outer members 12 and 14. The distal portion 40 of the spring 24 has an open pitch to distance the rest of the spring 24 and fluid communication openings 30 away from the soft plug or adhesive 42 that will be used to fuse the inner and outer members together 12 and 14.
A radiopaque tip 26 having a single operator exchange guide wire lumen 44 is fused to the distal ends of the inner and outer members 12 and 14. The distal guide wire lumen 44 has an opening 46 at its distal tip and has a proximal exit port 48 that is distal to the radioactive treatment elements. Preferably, the length of the guide wire lumen 44 is 5 cm or less; although, it shall be of sufficient length to facilitate placement of the catheter 10 across the treatment site. The distal guide wire lumen 44 shall pass a standard guide wire without significant resistance. The tip 26 shall be soft and flexible to minimize risk of vessel damage during use. Tungsten loaded PEBAX may be used to create a soft distal tip 26 that is radiopaque. PEBAX or other soft material may be layered over the tungsten loaded PEBAX.
The radiation delivery catheter 10 interfaces with a transfer device through a proprietary connector 28 as described in the above referenced patents and applications. The proprietary connector 28 is attached to the proximal end of the catheter and allows the sources to transition freely from the transfer device to the catheter and vice versa. The two piece construction of the proprietary connector 28 includes an external component having a lumen along its entire length and an internal component, referred to as the puck, residing therein. The proximal end of the outer tubular member 14 is positioned between the inner wall of the exterior component and the external wall of the puck. The proximal end of the inner tubular member 12 extends through a central lumen through the puck.
To improve the hydraulic efficiency of the above described catheter 10, the inner and or outer tubular members 12 and 14 may be stepped or “bumped” in diameter to decrease the pressure and fluid transit times within the catheter 10. If the inner tubular member 12 is bumped, the wall thickness of the inner member 12 increases at the distal segment 22, causing the inner diameter of the outer member 14 to decrease at the distal end 22. The inner diameter of the inner member 12 and the outer diameter of the outer member 14 stay constant, while the inner diameter of the outer member 14 steps down to a smaller diameter along the distal segment 22. If the outer tubular member 14 is bumped, the outer and inner diameters of the outer member 14 step down to a smaller diameter, while the inner and outer diameters of the inner tubular 12 member remain constant. If both the inner and outer tubular members 12 and 14 are bumped, the distal segment 22 of the inner member 12 has an increased wall thickness in addition to the distal segment 22 of the outer member 14 being stepped down to smaller internal and external diameters.
Any of the above described embodiments of the present invention may also include an angioplasty or centering balloon attached to the distal portion 22 of the outer tubular member 14. The balloon is in fluid communication with the fluid return lumen 18 (outer member lumen) so that the balloon expands as the fluid flows through the catheter 10. Most likely to deflate the balloon, suction will be applied to the outer member lumen 18.
Any of the catheter embodiments of the present invention may be used with the injury sizing tool described in U.S. patent application Ser. No. 09/679,950, which is referenced herein.

Claims (6)

1. A catheter for delivering treatment elements to a selected site within the intraluminal passageways of a body, the catheter comprising:
elongated inner and outer tubular members, said inner member having a first lumen therein and positioned coaxially within said outer member having a second lumen therein and each said members having a proximal segment and a distal segment, said first and second lumens being in fluid-tight communication with each other at said distal segments of said tubular members;
a radiopaque spring residing within said distal segment of said inner member;
a distal tip formed at the distal segments of said inner and outer tubular members, said distal tip having a first opening and a second opening, said second opening proximal to said first opening, and a third lumen for receiving a guide wire extending between said openings.
2. The catheter of claim 1 further comprising an outside diameter of approximately 3.5 French.
3. The catheter of claim 1 wherein said radiopaque spring member consists of stainless steel, platinum, platinum-iridium or gold.
4. The catheter of claim 1 wherein said radiopaque spring member consists of stainless steel, platinum, platinum-iridium or gold.
5. A catheter for delivering treatment elements to a selected site within the intraluminal passageways of a body, the catheter comprising:
elongated inner and outer tubular members, said inner member having a first lumen and positioned coaxially within said outer member having a second lumen therein and each said members having a proximal segment and a distal segment, said first and second lumens being in fluid-tight communication with each other at said distal segments of said tubular members; and
a radiopaque spring member residing within said distal segment of said first lumen.
6. The catheter of claim 5 further comprising an outside diameter of approximately 3.5 French.
US09/775,690 2000-02-01 2001-02-01 Radiation delivery catheter for use with an intraluminal radiation treatment system Expired - Lifetime US6926658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/775,690 US6926658B2 (en) 2000-02-01 2001-02-01 Radiation delivery catheter for use with an intraluminal radiation treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17896200P 2000-02-01 2000-02-01
US09/775,690 US6926658B2 (en) 2000-02-01 2001-02-01 Radiation delivery catheter for use with an intraluminal radiation treatment system

Publications (2)

Publication Number Publication Date
US20020161273A1 US20020161273A1 (en) 2002-10-31
US6926658B2 true US6926658B2 (en) 2005-08-09

Family

ID=22654631

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/775,690 Expired - Lifetime US6926658B2 (en) 2000-02-01 2001-02-01 Radiation delivery catheter for use with an intraluminal radiation treatment system

Country Status (12)

Country Link
US (1) US6926658B2 (en)
EP (1) EP1169079B1 (en)
JP (1) JP2003523270A (en)
KR (1) KR20020008388A (en)
CN (1) CN1380831A (en)
AT (1) ATE329645T1 (en)
AU (2) AU3801401A (en)
CA (1) CA2368397C (en)
DE (1) DE60120569T2 (en)
MX (1) MXPA01009898A (en)
NO (1) NO20014731L (en)
WO (1) WO2001062331A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070185367A1 (en) * 2006-02-02 2007-08-09 Abdou M S Treatment of Pain, Neurological Dysfunction and Neoplasms Using Radiation Delivery Catheters
US20120184967A1 (en) * 2002-12-02 2012-07-19 Gi Dynamics, Inc. Anti-obesity devices
US20130150875A1 (en) * 2011-12-08 2013-06-13 Brian W. McDonell Optimized Pneumatic Drive Lines
US9155609B2 (en) 2002-12-02 2015-10-13 Gi Dynamics, Inc. Bariatric sleeve
US9237944B2 (en) 2003-12-09 2016-01-19 Gi Dynamics, Inc. Intestinal sleeve
US10543107B2 (en) 2009-12-07 2020-01-28 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10548740B1 (en) 2016-10-25 2020-02-04 Samy Abdou Devices and methods for vertebral bone realignment
US10575961B1 (en) 2011-09-23 2020-03-03 Samy Abdou Spinal fixation devices and methods of use
US10695105B2 (en) 2012-08-28 2020-06-30 Samy Abdou Spinal fixation devices and methods of use
US10799669B2 (en) 2017-01-20 2020-10-13 Route 92 Medical, Inc. Single operator intracranial medical device delivery systems and methods of use
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10918498B2 (en) 2004-11-24 2021-02-16 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US11006982B2 (en) 2012-02-22 2021-05-18 Samy Abdou Spinous process fixation devices and methods of use
US11020133B2 (en) 2017-01-10 2021-06-01 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11173040B2 (en) 2012-10-22 2021-11-16 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11633571B2 (en) 2015-02-04 2023-04-25 Route 92 Medical, Inc. Rapid aspiration thrombectomy system and method
US11871944B2 (en) 2011-08-05 2024-01-16 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US11925770B2 (en) 2018-05-17 2024-03-12 Route 92 Medical, Inc. Aspiration catheter systems and methods of use

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471671B1 (en) 2000-08-23 2002-10-29 Scimed Life Systems, Inc. Preloaded gas inflation device for balloon catheter
CN102470233B (en) * 2009-09-15 2014-09-17 泰尔茂株式会社 Catheter
EP3056238B1 (en) 2015-02-13 2019-08-28 Asahi Intecc Co., Ltd. Catheter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135487A (en) 1988-11-10 1992-08-04 C. R. Bard, Inc. Balloon dilatation catheter with integral guidewire
US5683345A (en) * 1994-10-27 1997-11-04 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
US5693015A (en) 1991-04-24 1997-12-02 Advanced Cardiovascular Systems, Inc. Exchangeable integrated-wire balloon catheter
US5785685A (en) 1994-09-16 1998-07-28 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
US6203485B1 (en) * 1999-10-07 2001-03-20 Scimed Life Systems, Inc. Low attenuation guide wire for intravascular radiation delivery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443457A (en) * 1994-02-24 1995-08-22 Cardiovascular Imaging Systems, Incorporated Tracking tip for a short lumen rapid exchange catheter
US6491662B1 (en) * 1997-09-23 2002-12-10 Interventional Therapies Llc Catheter with stand-off structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135487A (en) 1988-11-10 1992-08-04 C. R. Bard, Inc. Balloon dilatation catheter with integral guidewire
US5693015A (en) 1991-04-24 1997-12-02 Advanced Cardiovascular Systems, Inc. Exchangeable integrated-wire balloon catheter
US5785685A (en) 1994-09-16 1998-07-28 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
US5683345A (en) * 1994-10-27 1997-11-04 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
US6203485B1 (en) * 1999-10-07 2001-03-20 Scimed Life Systems, Inc. Low attenuation guide wire for intravascular radiation delivery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report dated Apr. 18, 2001.

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9155609B2 (en) 2002-12-02 2015-10-13 Gi Dynamics, Inc. Bariatric sleeve
US20120184967A1 (en) * 2002-12-02 2012-07-19 Gi Dynamics, Inc. Anti-obesity devices
US9901474B2 (en) * 2002-12-02 2018-02-27 Gi Dynamics, Inc. Anti-obesity devices
US9750596B2 (en) 2002-12-02 2017-09-05 Gi Dynamics, Inc. Bariatric sleeve
US20140194805A1 (en) * 2002-12-02 2014-07-10 Gi Dynamics, Inc. Anti-Obesity Devices
US8882698B2 (en) * 2002-12-02 2014-11-11 Gi Dynamics, Inc. Anti-obesity devices
US9744061B2 (en) 2003-12-09 2017-08-29 Gi Dynamics, Inc. Intestinal sleeve
US9237944B2 (en) 2003-12-09 2016-01-19 Gi Dynamics, Inc. Intestinal sleeve
US11096799B2 (en) 2004-11-24 2021-08-24 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US10918498B2 (en) 2004-11-24 2021-02-16 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US8273005B2 (en) 2006-02-02 2012-09-25 Samy Abdou Treatment of pain, neurological dysfunction and neoplasms using radiation delivery catheters
US20070185367A1 (en) * 2006-02-02 2007-08-09 Abdou M S Treatment of Pain, Neurological Dysfunction and Neoplasms Using Radiation Delivery Catheters
US11918486B2 (en) 2009-12-07 2024-03-05 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10543107B2 (en) 2009-12-07 2020-01-28 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10945861B2 (en) 2009-12-07 2021-03-16 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10610380B2 (en) 2009-12-07 2020-04-07 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10857004B2 (en) 2009-12-07 2020-12-08 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US11871944B2 (en) 2011-08-05 2024-01-16 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10575961B1 (en) 2011-09-23 2020-03-03 Samy Abdou Spinal fixation devices and methods of use
US11324608B2 (en) 2011-09-23 2022-05-10 Samy Abdou Spinal fixation devices and methods of use
US11517449B2 (en) 2011-09-23 2022-12-06 Samy Abdou Spinal fixation devices and methods of use
US20130150875A1 (en) * 2011-12-08 2013-06-13 Brian W. McDonell Optimized Pneumatic Drive Lines
US10070990B2 (en) * 2011-12-08 2018-09-11 Alcon Research, Ltd. Optimized pneumatic drive lines
US11839413B2 (en) 2012-02-22 2023-12-12 Samy Abdou Spinous process fixation devices and methods of use
US11006982B2 (en) 2012-02-22 2021-05-18 Samy Abdou Spinous process fixation devices and methods of use
US10695105B2 (en) 2012-08-28 2020-06-30 Samy Abdou Spinal fixation devices and methods of use
US11559336B2 (en) 2012-08-28 2023-01-24 Samy Abdou Spinal fixation devices and methods of use
US11173040B2 (en) 2012-10-22 2021-11-16 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US11918483B2 (en) 2012-10-22 2024-03-05 Cogent Spine Llc Devices and methods for spinal stabilization and instrumentation
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11793529B2 (en) 2015-02-04 2023-10-24 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11806032B2 (en) 2015-02-04 2023-11-07 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11633571B2 (en) 2015-02-04 2023-04-25 Route 92 Medical, Inc. Rapid aspiration thrombectomy system and method
US11224450B2 (en) 2015-02-04 2022-01-18 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11576691B2 (en) 2015-02-04 2023-02-14 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11246718B2 (en) 2015-10-14 2022-02-15 Samy Abdou Devices and methods for vertebral stabilization
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US11259935B1 (en) 2016-10-25 2022-03-01 Samy Abdou Devices and methods for vertebral bone realignment
US11752008B1 (en) 2016-10-25 2023-09-12 Samy Abdou Devices and methods for vertebral bone realignment
US11058548B1 (en) 2016-10-25 2021-07-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10548740B1 (en) 2016-10-25 2020-02-04 Samy Abdou Devices and methods for vertebral bone realignment
US11399852B2 (en) 2017-01-10 2022-08-02 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11020133B2 (en) 2017-01-10 2021-06-01 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US10864350B2 (en) 2017-01-20 2020-12-15 Route 92 Medical, Inc. Single operator intracranial medical device delivery systems and methods of use
US10799669B2 (en) 2017-01-20 2020-10-13 Route 92 Medical, Inc. Single operator intracranial medical device delivery systems and methods of use
US11925770B2 (en) 2018-05-17 2024-03-12 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation

Also Published As

Publication number Publication date
NO20014731L (en) 2001-10-10
US20020161273A1 (en) 2002-10-31
KR20020008388A (en) 2002-01-30
JP2003523270A (en) 2003-08-05
EP1169079A1 (en) 2002-01-09
CA2368397C (en) 2008-06-03
AU2005229736A1 (en) 2005-12-01
EP1169079B1 (en) 2006-06-14
EP1169079A4 (en) 2005-09-28
DE60120569D1 (en) 2006-07-27
ATE329645T1 (en) 2006-07-15
NO20014731D0 (en) 2001-09-28
MXPA01009898A (en) 2002-04-24
DE60120569T2 (en) 2007-05-16
AU3801401A (en) 2001-09-03
CA2368397A1 (en) 2001-08-30
WO2001062331A1 (en) 2001-08-30
CN1380831A (en) 2002-11-20

Similar Documents

Publication Publication Date Title
US6926658B2 (en) Radiation delivery catheter for use with an intraluminal radiation treatment system
US5556382A (en) Balloon perfusion catheter
US5882290A (en) Intravascular radiation delivery system
US6679860B2 (en) Intraluminal therapy catheter with inflatable helical member and methods of use
CA2089493C (en) Balloon catheter with distal guide wire lumen
EP0403555B1 (en) Non-over-the-wire balloon catheter
US5833706A (en) Single operator exchange perfusion catheter having a distal catheter shaft section
US5899882A (en) Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5921958A (en) Intravascular catheter with distal tip guide wire lumen
US5700243A (en) Balloon perfusion catheter
US5522818A (en) Balloon catheter with distal guide wire lumen
US5395332A (en) Intravascualr catheter with distal tip guide wire lumen
US6210312B1 (en) Catheter and guide wire assembly for delivery of a radiation source
US5207229A (en) Flexibility steerable guidewire with inflatable balloon
US5059176A (en) Vascular system steerable guidewire with inflatable balloon
US5527292A (en) Intravascular device for coronary heart treatment
US5114414A (en) Low profile steerable catheter
US7169162B2 (en) Balloon catheter
US20050070879A1 (en) Transition section for a catheter
JP3509913B2 (en) Catheter and catheter sheath assembly
JP2004209300A (en) Over-the-wire type catheter and production method therefor
US6117386A (en) Centering perfusion delivery catheter and method of manufacture
EP0176865A1 (en) Steerable soft-tip catheter and method of using same

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVOSTE CORPORATION, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FARNAN, ROBERT C.;REEL/FRAME:014771/0659

Effective date: 20021011

AS Assignment

Owner name: BEST VASCULAR, INC., VIRGINIA

Free format text: ASSET PURCHASE AGREEMENT;ASSIGNOR:NOVOSTE CORPORATION;REEL/FRAME:017696/0077

Effective date: 20060309

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
REIN Reinstatement after maintenance fee payment confirmed
FP Lapsed due to failure to pay maintenance fee

Effective date: 20130809

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20140109

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 12