US7215714B2 - Robust digital communication system - Google Patents

Robust digital communication system Download PDF

Info

Publication number
US7215714B2
US7215714B2 US10/763,488 US76348804A US7215714B2 US 7215714 B2 US7215714 B2 US 7215714B2 US 76348804 A US76348804 A US 76348804A US 7215714 B2 US7215714 B2 US 7215714B2
Authority
US
United States
Prior art keywords
data
frame
robust vsb
atsc
interleaver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/763,488
Other versions
US20040160991A1 (en
Inventor
Wayne E. Bretl
Richard W. Citta
Mark Fimoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zenith Electronics LLC
Original Assignee
Zenith Electronics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenith Electronics LLC filed Critical Zenith Electronics LLC
Priority to US10/763,488 priority Critical patent/US7215714B2/en
Publication of US20040160991A1 publication Critical patent/US20040160991A1/en
Application granted granted Critical
Publication of US7215714B2 publication Critical patent/US7215714B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03312Arrangements specific to the provision of output signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/015High-definition television systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/253Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with concatenated codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/256Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with trellis coding, e.g. with convolutional codes and TCM
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2732Convolutional interleaver; Interleavers using shift-registers or delay lines like, e.g. Ramsey type interleaver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2933Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using a block and a convolutional code
    • H03M13/2936Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using a block and a convolutional code comprising an outer Reed-Solomon code and an inner convolutional code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • H04L1/006Trellis-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • H04L25/063Setting decision thresholds using feedback techniques only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/497Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems by correlative coding, e.g. partial response coding or echo modulation coding transmitters and receivers for partial response systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits
    • H04L27/066Carrier recovery circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/23614Multiplexing of additional data and video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • H04N21/4348Demultiplexing of additional data and video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving MPEG packets from an IP network
    • H04N21/4382Demodulation or channel decoding, e.g. QPSK demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/455Demodulation-circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6331Error control coding in combination with equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03382Single of vestigal sideband
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03254Operation with other circuitry for removing intersymbol interference
    • H04L25/03267Operation with other circuitry for removing intersymbol interference with decision feedback equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03312Arrangements specific to the provision of output signals
    • H04L25/03318Provision of soft decisions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof

Definitions

  • the present invention relates to the transmission and/or reception of digital data.
  • 8 VSB data ATSC Digital Television Standard A/53
  • This 8 VSB data has a constellation consisting of eight possible symbol levels.
  • the eight possible symbol levels are all in the same phase.
  • the symbols are transmitted in phase quadrature relationship.
  • the standard referred to above specifies the formatting and modulation of digital video and audio data.
  • the transmitted data is in the form of symbols with each symbol representing two bits of data that are trellis encoded into three bits of trellis encoded data. Each three bits of trellis encoded data are mapped into a symbol having a corresponding one of eight levels. Reed/Solomon encoding and interleaving are also provided to increase the robustness of the transmitted information.
  • Auxiliary data (data other than digital video or audio data) are also permitted to be transmitted in a digital television channel. These data are formatted and modulated according to the standard in the same manner as video and audio data. Receivers made in accordance with the 8 VSB standard are able to read packet identifications (PIDs) which allow the receivers to differentiate between audio, video, and auxiliary data.
  • PIDs packet identifications
  • auxiliary data in a VSB format with outer encoding for added robustness.
  • RVSB robust VSB data
  • a method for transmitting a digital signal comprises the following: providing first and second streams of digital data; reordering the digital data of the first stream of digital data in accordance with a first interleave to provide a third stream of digital data; and, reordering the digital data of the second and third streams of digital data in accordance with a second interleave comprising an inverse of the first interleave to provide a time multiplexed output comprising the second stream of digital data reordered according to the second interleave and the third stream of digital data reordered to reflect the order of the first stream of digital data.
  • a transmitter for transmitting robust VSB data comprises an outer coder and first and second interleaves.
  • the outer coder receives input data and codes the input data as first robust VSB data such that the first robust VSB data is normally ordered.
  • the first interleave reorders the first robust VSB data to provide reordered first robust VSB data.
  • the second interleave reorders the reordered first robust VSB data to provide second robust VSB data.
  • the second robust VSB data is normally ordered, and the first and second interleaves are inversely related.
  • a system comprises a receiver, an inner decoder, a data discarder, and an outer decoder.
  • the receiver receives data.
  • the received data comprises normally ordered first data and reordered second data, the normally ordered first data results from inner and outer coding of first input data and two interleaving operations, and the reordered second data results from inner coding of second input data and one interleaving operation.
  • the inner decoder inner decodes the received data to recover the normally ordered first data and the reordered second data.
  • the data discarder is downstream of the inner decoder and discards the reordered second data.
  • the outer decoder is downstream of the data discarder and outer decodes the normally ordered first data.
  • a method of processing received data comprises the following: receiving data, wherein the received data comprises normally ordered first data and reordered second data, wherein the normally ordered first data results from inner and outer coding of first input data and two interleaving operations, wherein the reordered second data results from inner coding of second input data and one interleaving operation; inner decoding the received data to recover the normally ordered first data and the reordered second data; and, discarding the recovered normally ordered first data.
  • a system comprises a receiver, a decoder, and a data discarder.
  • the receiver receives data.
  • the received data comprises normally ordered first data and reordered second data, the normally ordered first data results from two interleaving operations, and the reordered second data results from one interleaving operation.
  • the decoder decodes the received data to recover the normally ordered first data and the reordered second data.
  • the data discarder is downstream of the decoder and discards the recovered reordered second data.
  • a method of processing received data comprises the following: receiving data, wherein the received data comprises normally ordered first data and reordered second data, wherein the normally ordered first data results from inner and outer coding of first input data and two interleaving operations, wherein the reordered second data results from inner coding of second input data and one interleaving operation; decoding the received data to recover the normally ordered first data and the reordered second data; and, upon a user selection, either reordering the recovered normally ordered first data and reordered second data and subsequently discarding the reordered normally ordered first data or discarding the recovered reordered second data and subsequently reordering the recovered normally ordered first data.
  • a receiver supplying method comprises the following: supplying first receivers, wherein each of the first receivers processes received robust N level VSB data and discards N level ATSC data; and, supplying second receivers, wherein each of the second receivers processes received N level ATSC data and discards robust N level VSB data.
  • an electrical signal contains first and second data symbols having the same constellation, and the first and second data symbols have different bit rates.
  • the first and second symbols are intermixed in a data frame
  • an apparatus comprises a receiver and a data discarder.
  • the receiver receives an electrical signal containing first and second 8 VSB data.
  • the first and second 8 VSB data have different bit rates.
  • the data discarder discards one of the first and second 8 VSB data.
  • a receiver receives an ATSC frame containing a plurality of ATSC segments.
  • the ATSC segments comprises a non-outer coded ATSC transport header, non-outer coded ATSC Reed/Solomon parity data, and outer coded data.
  • FIG. 1 shows a robust VSB transmitter for transmitting robust VSB data and ATSC data in accordance with the present invention
  • FIG. 2 shows a standard ATSC receiver for receiving the ATSC data transmitted by the robust VSB transmitter of FIG. 1 ;
  • FIG. 3 shows a robust VSB receiver for receiving the robust VSB data transmitted by the robust VSB transmitter of FIG. 1 ;
  • FIG. 4 shows the 2/3 rate encoder of FIG. 1 in additional detail
  • FIG. 5 shows the mapping function performed by the mapper of FIG. 4 ;
  • FIG. 6 shows the operation of the 2/3 rate decoders of FIGS. 2 and 3 ;
  • FIG. 7 shows another robust VSB transmitter for transmitting robust VSB data and ATSC data in accordance with the present invention
  • FIG. 8 shows a standard ATSC receiver for receiving the ATSC data transmitted by the robust VSB transmitter of FIG. 7 ;
  • FIG. 9 shows a robust VSB receiver for receiving the robust VSB data transmitted by the robust VSB transmitter of FIG. 7 ;
  • FIG. 10 shows a circuit for generating the appropriate control signal on the discard control line of FIG. 9 ;
  • FIG. 11 shows yet another robust VSB transmitter for transmitting robust VSB data and ATSC data in accordance with the present invention
  • FIG. 12 shows an example of four data segments containing 1/2 rate outer coded data that may be transmitted by a robust VSB transmitter according to the present invention
  • FIG. 13 shows an example of four data segments containing 1/4 rate outer coded data that may be transmitted by a robust VSB transmitter according to the present invention
  • FIG. 14 shows an example of four data segments containing 3/4 rate outer coded data that may be transmitted by a robust VSB transmitter according to the present invention
  • FIG. 15 shows the interleavers (I r ) of FIGS. 1 , 9 , and 11 in more detail;
  • FIG. 16 shows the deinterleavers (D r ) of FIGS. 3 and 9 in more detail
  • FIG. 17 shows a map definition structure of a first robust VSB data packet of a frame
  • FIG. 18 shows a portion of the frame sync segment of a frame that carries a map indicating where in the frame robust VSB data can be found
  • FIG. 19 illustrates an enhanced slice predictor according to one embodiment of the present invention
  • FIG. 20 shows the trellis for the inner decoder of FIG. 19 ;
  • FIG. 21 shows possible state transitions for the outer decoder of FIG. 19 ;
  • FIG. 22 illustrates an enhanced slice predictor according to another embodiment of the present invention.
  • FIG. 1 shows a robust VSB transmitter 10 that transmits both ATSC data and robust VSB data in accordance with one embodiment of the present invention.
  • FIG. 2 shows a standard ATSC receiver 12 that receives the ATSC data transmitted by the robust VSB transmitter 10
  • FIG. 3 shows a robust VSB receiver 14 that receives the robust VSB data transmitted by the robust VSB transmitter 10 .
  • the robust VSB transmitter 10 includes a Reed/Solomon encoder 16 that encodes uncoded auxiliary data bytes by adding Reed/Solomon parity bytes to the uncoded auxiliary data bytes.
  • the uncoded auxiliary data bytes and the Reed/Solomon parity bytes are interleaved by an interleaver 18 .
  • the interleaved uncoded auxiliary data bytes and the Reed/Solomon parity bytes are bitwise encoded by an outer coder 20 using either a convolutional code or other error correcting code.
  • the outer coder 20 improves the robustness of the uncoded auxiliary data bytes and the Reed/Solomon parity bytes, converting them to robust data bytes (hereinafter referred to as robust VSB data bytes) and Reed/Solomon parity bytes.
  • the outer coder 20 may be a 1/2 rate coder which produces two output bits for every input bit, a 1/4 rate coder which produces four output bits for every input bit, or a 3/4 rate coder which produces four output bits for every three input bits. Other coders could instead be used.
  • a three byte transport (tx) header is added to each group of 184 coded robust VSB data and Reed/Solomon bytes to form robust VSB data packets.
  • a multiplexer 24 multiplexes these robust VSB data packets with ATSC data packets (typically, video and audio) each comprising a three byte transport header and 184 bytes of ATSC data. Either input to the multiplexer 24 may be selected on a packet by packet basis and each selected input is supplied to an ATSC transmitter 26 . The selection by the multiplexer 24 of which input to pass to the ATSC transmitter 26 is based on a robust VSB map to be described hereinafter.
  • the ATSC transmitter 26 includes a Reed/Solomon encoder 28 , an interleaver 30 , and a 2/3 rate inner encoder 32 all operating in accordance with the ATSC standard.
  • a standard ATSC receiver such as the standard ATSC receiver 12 shown in FIG. 2 receives and processes the ATSC data and discards the robust VSB data.
  • the standard ATSC receiver 12 includes a 2/3 rate inner decoder 34 , a deinterleaver 36 , and a Reed/Solomon decoder 38 , all operating in accordance with the ATSC standard.
  • the standard ATSC receiver 12 is programmed to decode both the ATSC data and the robust VSB data transport headers (which include the packet identifications or PID's and which have not been coded by the outer coder 20 ).
  • the standard ATSC receiver 12 reads the PID's of all packets and, at 40 , discards those packets having the PID's of robust VSB data.
  • the standard ATSC receiver 12 also includes a slice predictor 42 (such as the slice predictor disclosed in U.S. Pat. No. 5,923,711) which is responsive to the inner decoded data and which provides an output back to a phase tracker and/or equalizer, as is known in the art.
  • the robust VSB data packets can be received, decoded, and processed by a robust VSB receiver such as the robust VSB receiver 14 shown in FIG. 3 .
  • the 2/3 rate inner encoder 32 of the ATSC transmitter 26 includes a precoder 44 and a four state trellis encoder 46 .
  • the precoder 44 and the four state trellis encoder 46 may be viewed as an eight state coder that produces three trellis encoded output bits (Z 0 Z 1 Z 2 ) for every two input bits (X 1 X 2 ).
  • a mapper 48 maps the three trellis encoded output bits to a symbol having one of eight levels as shown in FIG. 5 .
  • the operation of the precoder 44 and the four state trellis encoder 46 may be viewed as an eight state 4-ary trellis.
  • a 2/3 rate inner decoder 50 may operate on an eight state 4-ary trellis which views the precoder 44 and the four state trellis encoder 46 of the 2/3 rate inner encoder 32 in combination as shown in FIG. 6 to produce a soft output decision (using, for example, the SSA algorithm as described in “Optimum Soft Output Detection for Channels with Intersymbol Interference,” Li, Vucetic, and Sato, IEEE Transactions on Information Theory, May, 1995).
  • This soft decision making operation is more complicated than the widely used Viterbi algorithm, which produces a hard decision output, but the soft decision making operation more fully takes advantage of the coding gain provided by the outer coder 20 .
  • the output of the 2/3 rate inner decoder 50 is deinterleaved by a deinterleaver 52 .
  • the robust VSB receiver 14 reads the PID's of all packets at the output of the deinterleaver 52 . Based upon these PID's, the robust VSB receiver 14 discards those packets at 54 which have the PID's of ATSC data and also discards the transport headers added following the outer coder 20 and the parity bytes added by the Reed/Solomon encoder 28 . Thus, the robust VSB receiver 14 , at 54 , passes only the robust VSB data packets containing the robust VSB data coded by the outer coder 20 .
  • the robust VSB data packets are decoded by an outer decoder 56 , deinterleaved by a deinterleaver 58 (which is the inverse of the interleaver 18 ), and Reed/Solomon decoded by a Reed/Solomon decoder 60 in order to reconstruct the original uncoded auxiliary data supplied to the Reed/Solomon encoder 16 of FIG. 1 .
  • the reliable output of the outer decoder 56 is interleaved by an interleaver 62 (corresponding to the interleaver 30 ) in a feedback path 64 in order to restore the ordering of the outer decoded data to the order of the data in the channel.
  • This interleaved outer decoded data can be used, for example, by a slice predictor 66 to create reliable feedback to a phase tracker and/or equalizer.
  • the overall feedback delay introduced by the deinterleaver 52 and the interleaver 62 in the robust VSB receiver 14 is generally too long to provide useful feedback to the phase tracker and/or equalizer.
  • FIG. 7 shows a robust VSB transmitter 80 in which uncoded auxiliary data bytes are encoded by a Reed/Solomon encoder 82 which adds Reed/Solomon parity bytes to the uncoded auxiliary data bytes.
  • the uncoded auxiliary data bytes and the Reed/Solomon parity bytes are interleaved by an interleaver 84 .
  • the interleaved uncoded auxiliary data bytes and Reed/Solomon parity bytes are bitwise encoded by an outer coder 86 using either a convolutional code or a turbo product code, as discussed above.
  • the bitwise output of the outer coder 86 is small block interleaved by a small block interleaver 88 in order to reduce the impact of channel burst errors on the outer decoding.
  • the data provided by the small block interleaver 88 may be referred to as Rdata(n.o.) which stands for normally ordered robust VSB data.
  • One input of a first multiplexer 92 receives ATSC formatted packets each comprising (i) a valid three byte transport header with a PID number for robust VSB data, (ii) 184 placeholder bytes of dummy robust VSB data, and (iii) twenty placeholder bytes for dummy ATSC Reed/Solomon parity data.
  • the other input of the first multiplexer 92 receives ATSC formatted dummy packets each comprising 207 bytes of dummy ATSC data. These ATSC formatted dummy packets serve as placeholders for the real ATSC packets to be added downstream.
  • the inputs of the first multiplexer 92 may be selected on a packet by packet basis, and this selection is based on the robust VSB map to be described later.
  • the selected output of the first multiplexer 92 is interleaved by an interleaver 94 according to the ATSC Standard for the convolutional byte interleave.
  • a data replacer 96 receives both the output of the interleaver 94 and the output of the small block interleaver 88 .
  • the data replacer 96 replaces each dummy robust VSB data placeholder byte from the interleaver 94 with the next normally ordered robust VSB data byte from the small block interleaver 88 .
  • the output of the data replacer 96 contains normally ordered robust VSB data with interspersed transport headers, dummy ATSC Reed/Solomon parity bytes, and dummy ATSC data packet bytes.
  • a deinterleaver 98 which operates according to the ATSC Standard for byte deinterleaving, deinterleaves the output of the data replacer 96 to thus effectively “repacketize” the data as packets of transport headers, reordered robust VSB data (Rdata(r.o.)), dummy ATSC Reed/Solomon parity bytes, and dummy ATSC data.
  • the reordering of the normally reordered robust VSB data results from the deinterleaving of the deinterleaver 98 and the reordered data may be referred to as reordered robust VSB data.
  • the dummy ATSC Reed/Solomon parity bytes (20 per packet) of the robust VSB packets and the dummy ATSC data packets (207 bytes per packet) are discarded at 100 .
  • the remaining robust VSB packets, each including a transport header and reordered robust VSB data are multiplexed by a second multiplexer 102 with real ATSC data packets each containing 187 bytes of a transport header and ATSC data. Either input to the second multiplexer 102 may be selected on a packet by packet basis and is supplied to an ATSC transmitter 104 .
  • the selection by the second multiplexer 102 of which input to pass to the ATSC transmitter 104 is based on the robust VSB map to be described hereinafter.
  • the ATSC transmitter 104 typically includes a Reed/Solomon encoder 106 , an interleaver 108 , and a twelve way 2/3 rate inner encoder 110 all operating in accordance with the ATSC standard.
  • the Reed/Solomon encoder 106 outputs packets of transport headers, reordered robust VSB data, and ATSC Reed/Solomon parity bytes multiplexed with packets of transport headers, ATSC data, and ATSC Reed/Solomon parity bytes.
  • the ATSC Reed/Solomon parity bytes for the robust VSB data are calculated based on the reordered robust VSB data.
  • the interleaver 108 changes the ordering of the robust VSB data so that the robust VSB data at the output of the interleaver 108 is again normally ordered robust VSB data. Also, the interleaver 108 disperses the transport headers, the ATSC Reed/Solomon parity bytes, and the ATSC data. This data is 2/3 rate coded by the twelve way 2/3 rate inner encoder 110 and is transmitted. The transmitted robust VSB data is in normal order, i.e., the order provided at the output of the small block interleaver 88 . This normal order permits the robust VSB receiver to avoid the delay caused by the deinterleaver 52 and the interleaver 62 of the robust VSB receiver 14 .
  • a standard ATSC receiver 120 includes a twelve way 2/3 inner decoder 122 which decodes the transmitted data to provide an output data stream comprising normally ordered robust data with interspersed transport headers, ATSC data, and ATSC Reed/Solomon parity bytes located according to the ATSC convolutional byte interleave provided by the interleaver 108 .
  • An ATSC deinterleaver 124 restores the transport headers, ATSC data, and ATSC Reed/Solomon parity bytes to their transport “packetized” positions. Also, the ATSC deinterleaver 124 converts the normally ordered robust VSB data into reordered robust VSB data.
  • This reordered form permits an ATSC Reed/Solomon decoder 126 of the standard ATSC receiver 120 to correctly test parity for the robust VSB data packets.
  • the standard ATSC receiver 120 can then read the robust VSB data packet transport headers and gracefully discard the robust VSB data packets at 128 based on their PIDs.
  • a robust VSB receiver 130 includes a soft output twelve way 2/3 rate inner decoder 132 .
  • the output of the soft output twelve way 2/3 rate inner decoder 132 comprises normally ordered robust VSB data, with reordered ATSC data, transport headers, and ATSC Reed/Solomon parity symbols dispersed within the robust VSB data at locations indicated by a discard control line 134 discussed below.
  • a discard block 136 under control of the discard control line 134 , discards the reordered ATSC data, transport headers, and ATSC Reed/Solomon parity symbols.
  • a small block deinterleaver 138 deinterleaves the robust VSB data.
  • the small block deinterleaver 138 has a relatively low delay time. This deinterleaving disperses possible burst errors in the robust VSB data at the output of the soft output twelve way 2/3 rate inner decoder 132 .
  • the normally ordered robust VSB data is bitwise decoded by an outer decoder 140 which also packs the robust VSB data into bytes.
  • the map information telling the outer decoder 140 what decoding rate to use on what data is provided to the outer decoder 140 at an R MAP Data input.
  • the outer decoded data can be used, for example, by an enhanced slice predictor 142 to generate feedback to the phase tracker and/or equalizer. If desired, the feedback may be gated, or the step size of the equalizer gradient algorithm adjusted proportionally to the reliability of the decoded data.
  • the robust VSB data packet payload decoded by the outer decoder 140 is deinterleaved by a deinterleaver 144 (which is the inverse of the interleaver 84 ) and is Reed/Solomon decoded by a Reed/Solomon decoder 146 (corresponding to the Reed/Solomon encoder 82 ) in order to reconstruct the original uncoded auxiliary data supplied to the Reed/Solomon encoder 82 of FIG. 7 .
  • a frame comprises a plurality of segments each containing a predetermined number of bytes.
  • the first segment of a frame is a frame sync segment, and the remaining segments in the frame are data segments.
  • robust VSB data can be transmitted in segments or in partial segments, it is convenient to transmit robust VSB data in segment pairs.
  • the robust VSB map discussed above indicates which segment pairs contain robust VSB data so that the discard block 136 can correctly discard the reordered ATSC data before the reordered ATSC data can get to the outer decoder 140 .
  • the transport headers and the ATSC Reed/Solomon parity data for all segments must also be discarded by the discard block 136 .
  • FIG. 10 A conceptually simple circuit to generate the appropriate control signal on the discard control line 134 to control this discarding function is shown in FIG. 10 , together with the relevant portion of the robust VSB receiver 130 .
  • the robust VSB receiver 130 uses received map information (the method for transmission and reception of this map information is described below) to instruct a dummy segment generator 150 when to construct dummy 207 byte segments.
  • the dummy segment generator 150 also uses the frame sync signal. For each ATSC dummy segment, the dummy segment generator 150 sets all bytes to FF. For each robust VSB data dummy segment, the dummy segment generator 150 sets the transport header and ATSC Reed/Solomon parity bytes to FF. The dummy segment generator 150 sets the rest of the bytes of each robust VSB data dummy segment to 00.
  • These dummy segments are fed by the dummy segment generator 150 to an ATSC convolutional byte interleaver 152 whose output is then used to control the discard block 136 which then responds to the FF and 00 codes to correctly discard the reordered ATSC data, the transport headers, and the ATSC Reed/Solomon parity data which are interleaved within the received data stream.
  • the discard block 136 thus, passes only the robust VSB data.
  • FIG. 11 shows a multiple outer code robust VSB transmitter 160 .
  • the robust VSB transmitter 160 operates similarly to the robust VSB transmitter 80 of FIG. 7 .
  • the robust VSB transmitter 160 has a first Reed/Solomon encoder 162 which encodes first uncoded auxiliary data by adding Reed/Solomon parity bytes to the first uncoded auxiliary data, a second Reed/Solomon encoder 164 which encodes second uncoded auxiliary data by adding Reed/Solomon parity bytes to the second uncoded auxiliary data, and a third Reed/Solomon encoder 166 which encodes third uncoded auxiliary data bytes by adding Reed/Solomon parity bytes to the third uncoded auxiliary data.
  • the Reed/Solomon encoded first uncoded auxiliary data are interleaved by a first interleaver 168
  • the Reed/Solomon encoded second uncoded auxiliary data are interleaved by a second interleaver 170
  • the Reed/Solomon encoded third uncoded auxiliary data are interleaved by a third interleaver 172 .
  • the interleaved Reed/Solomon encoded first uncoded auxiliary data are bitwise encoded by a first outer coder 174
  • the interleaved Reed/Solomon encoded second uncoded auxiliary data are bitwise encoded by a second outer coder 176
  • the interleaved Reed/Solomon encoded third uncoded auxiliary data are bitwise encoded by a third outer coder 178 .
  • the bitwise output of the first outer coder 174 is interleaved by a first small block interleaver 180
  • the bitwise output of the second outer coder 176 is interleaved by a second small block interleaver 182
  • the bitwise output of the third outer coder 178 is interleaved by a third small block interleaver 184 .
  • the first outer coder 174 is a 1/4 rate coder
  • the second outer coder 176 is a 1/2 rate coder
  • the third outer coder 178 is a 3/4 rate coder, although any other combination of these or other outer coders using different coding rates could be used.
  • the data outputs of the first, second, and third small block interleavers 180 , 182 , and 184 are selected by a multiplexer 186 under control of a select input which determines the order in which the differently outer coded data are inserted into the frame to be transmitted.
  • the data at the output of the multiplexer 186 may be referred to as Rdata(n.o.) which, as before, stands for normally ordered robust VSB data.
  • the top three inputs of a multiplexer 190 receive ATSC format packets each having of a valid three byte transport header with a PID number for robust VSB data, 184 placeholder bytes of dummy robust VSB data, and twenty dummy placeholder bytes for ATSC Reed/Solomon parity data.
  • the robust VSB data at the topmost input of the multiplexer 190 correspond to 1/4 rate coded data from the first outer coder 174
  • the robust VSB data at the next input of the multiplexer 190 correspond to 1/2 rate coded data from the second outer coder 176
  • the robust VSB data at the next input of the multiplexer 190 correspond to 3/4 rate coded data from the third outer coder 178 .
  • the data supplied to the bottommost input of the multiplexer 190 comprises ATSC format dummy packets each having 207 bytes of dummy ATSC data. These dummy ATSC data packets serve as placeholders for the real ATSC data packets to be added downstream of the multiplexer 190 .
  • the inputs to the multiplexer 190 may be selected on a packet by packet basis in accordance with the input on a select line. This selection is based on the robust VSB data map to be described below.
  • the output of the multiplexer 190 is interleaved by an interleaver 192 in order to achieve a correct ATSC convolutional interleave.
  • a data replacer 194 receives both the output of the interleaver 192 and the output of the multiplexer 186 .
  • the data replacer 194 replaces each dummy robust VSB data placeholder byte from the multiplexer 190 with the next corresponding normally ordered robust VSB data byte from the multiplexer 186 .
  • the output of the data replacer 194 contains normally ordered robust VSB data (which is 1/4 rate coded, 1/2 rate coded, and/or 3/4 rate coded, as appropriate) with interspersed transport headers, dummy ATSC Reed/Solomon parity bytes, and dummy ATSC data packet bytes.
  • a convolutional byte deinterleaver 196 deinterleaves the output of the data replacer 194 to thus effectively “repacketize” the data as packets of transport headers, reordered robust VSB data (1/4, 1/2, and/or 3/4 rate coded), dummy ATSC Reed/Solomon parity bytes, and dummy packets of ATSC data.
  • the reordering of the normally ordered robust VSB data results from the deinterleaving of the deinterleaver 196 .
  • the dummy ATSC Reed/Solomon parity bytes (20 per packet) and the dummy ATSC data packets (207 bytes per packet) are discarded at 198 in a manner similar to that provided by the discard control line 134 and the discard block 136 of FIG. 9 .
  • the remaining robust VSB packets are multiplexed by a multiplexer 200 with real ATSC data packets each containing 187 bytes of a transport header and ATSC data. Either input to the multiplexer 200 may be selected on a packet by packet basis and is supplied to an ATSC transmitter 202 .
  • the selection by the multiplexer 200 of which input to pass to the ATSC transmitter 202 is based on the robust VSB map to be described hereinafter.
  • the ATSC transmitter 202 typically includes a Reed/Solomon encoder 204 , an interleaver 206 , and a twelve way 2/3 rate inner encoder 208 all operating in accordance with the ATSC standard.
  • the Reed/Solomon encoder 204 outputs packets of transport headers, reordered robust VSB data, and ATSC Reed/Solomon parity bytes multiplexed with packets of transport headers, ATSC data, and ATSC Reed/Solomon parity bytes.
  • the ATSC Reed/Solomon parity bytes for the robust VSB data are calculated based on the reordered robust VSB data.
  • the interleaver 206 changes the ordering of the robust VSB data so that the robust VSB data at the output of the interleaver 206 are again normally ordered robust VSB data. Also, the interleaver 206 disperses the transport header bytes, the ATSC Reed/Solomon parity bytes, and the ATSC data. These data are 2/3 rate Coded by the twelve way 2/3 rate inner encoder 208 and are transmitted. The transmitted robust VSB data are in normal order, i.e., the order provided at the output of the multiplexer 186 . This normal data order permits the robust VSB receiver to avoid the delay caused by the deinterleaver 52 and the interleaver 62 .
  • an ATSC frame comprises a frame sync segment and a plurality of data segments and, for convenience, robust VSB data are packed into groups of four segments. More specifically, FIG. 12 shows an example of four data segments that may be used in a frame to transmit robust VSB data that is 1/2 rate coded, FIG. 13 shows an example of four data segments that may be used in a frame to transmit robust VSB data that is 1/4 rate coded, and FIG. 14 shows an example of four data segments that may be used in a frame to transmit robust VSB data that is 3/4 rate coded. These examples represent the frame prior to the interleaver 108 and assume that each group of four robust VSB data segments contains an integral number of robust Reed/Solomon encoded blocks each of which is 184 bytes long, of which twenty bytes are parity bytes.
  • FIG. 12 shows that the outer coder outputs two bits for each input bit.
  • a robust VSB data packet is packed as one RVSB Reed-Solomon block to a pair of data segments (one bit per symbol) so that, for a 1/2 rate outer code, four segments contain two robust Reed/Solomon encoded blocks.
  • the outer coder outputs four bits for each input bit.
  • Robust VSB data is packed as one RVSB Reed-Solomon block for every four data segments (1/2 bit per symbol) so that, for a 1/4 rate outer code, four segments contain one robust Reed/Solomon encoded block.
  • FIG. 12 shows that the outer coder outputs two bits for each input bit.
  • the outer coder outputs four bits for each three input bits.
  • transmitted symbol and byte boundaries do not always match.
  • three complete RVSB Reed-Solomon blocks will pack exactly into four data segments (1.5 bits per symbol) so that, for a 3/4 rate outer code, four segments contain three robust Reed/Solomon encoded blocks.
  • FIGS. 12 , 13 , and 14 can be represented by the following table:
  • the interleavers 18 , 84 , 168 , 170 , and 172 are shown in more detail in FIG. 15 , and the deinterleavers 58 and 144 are shown in more detail in FIG. 16 , assuming that a robust Reed/Solomon encoded block is chosen to be 184 bytes long.
  • This interleaving scheme is the same as the ATSC interleaver scheme described in the ATSC Digital Television Standard A/53 and the Guide to the Use of the ATSC digital Television Standard A/54, except that the B parameter for the robust interleaver is 46 instead of 52 and the parameter N is 184 instead of 208.
  • This interleaver is needed so that a robust VSB receiver can cope with long bursts of noise on the channel even though the ATSC deinterleaver (D a ) is bypassed as shown in FIG. 9 .
  • This deinterleaving scheme is also the same as the ATSC deinterleaver scheme described in the ATSC Digital Television Standard A/53 and the Guide to the Use of the ATSC digital Television Standard A/54, except that the B parameter for the robust deinterleaver is 46 instead of 52 and the parameter N is 184 instead of 208.
  • a robust VSB Reed/Solomon block comprises 184 bytes, and because an integral number of robust VSB Reed/Solomon blocks are in a data frame, the number of robust VSB data bytes plus robust VSB Reed/Solomon parity bytes in a data frame is always evenly divisible by 46. Therefore, the frame sync segment can be used as a synchronizer for the deinterleavers 58 and 144 (D r ) in the receiver, regardless of the value of G (to be described below). At frame sync, the deinterleaver commutators are forced to the top positions. The deinterleavers 58 and 144 are byte wise deinterleavers.
  • each data frame may contain a mix of robust VSB data segments and ATSC (non-robustly coded) data segments.
  • the robust VSB data may contain data coded with a mix of coding rates.
  • the robust VSB receiver 14 or 130 must have a robust VSB map that indicates which segments are robust VSB coded and which outer code is used for the robust VSB coding so that the robust VSB receiver 14 or 130 can correctly process the robust VSB data and discard the ATSC data.
  • the robust VSB transmitters 10 , 80 , and 160 also use the robust VSB map to control their corresponding multiplexing and discard functions. This robust VSB map is transmitted by the robust VSB transmitter 10 , 80 , or 160 to the robust VSB receiver 14 or 130 along with all the other data in a manner described below.
  • the presence, amount, and location of the robust VSB data in a data frame encoded with a particular outer code are indicated by one or more numbers S c that appear as two level data in the frame sync segment of the data frame.
  • the frame sync segment is the first segment in a frame. So, for the outer codes described above (1/4 rate, 1/2 rate, and 3/4 rate), the frame sync segment should preferably contain [S 1/4 S 1/2 S 3/4 ].
  • the twelve preceding bits are for comb filter compensation (see the Guide to the Use of the ATSC digital Television Standard A/54). Accordingly, as shown in FIG. 18 , bits b 6 . . . b 1 represent the number G, bits b 18 . . . b 13 are the complement of bits b 6 . . . b 1 , and bits b 12 . . . b 7 can be alternating +1 and ⁇ 1 (or any other pattern).
  • each S C may have a value of 0 . . . 39, as long as their sum S is ⁇ 39.
  • a frame contains robust VSB data provided by three outer coders operating at 1/4 rate, 1/2 rate, and 3/4 rate
  • the data from these three outer coders may be divided in a frame such that, as to RVSB segments, the first 8 ⁇ S 1/4 segments contain the 1/4 rate outer coded data, the next 8 ⁇ S 1/2 segments contain the 1/2 rate outer coded data, and the last 8 ⁇ S 3/4 segments contain the 3/4 rate outer coded data.
  • RVSB segments the first 8 ⁇ S 1/4 segments contain the 1/4 rate outer coded data
  • the next 8 ⁇ S 1/2 segments contain the 1/2 rate outer coded data
  • the last 8 ⁇ S 3/4 segments contain the 3/4 rate outer coded data.
  • other robust VSB data segment organizations are possible for these three outer coders or for any number of other types of outer coders.
  • the robust VSB map does not enjoy the same level of coding gain as the robust VSB data.
  • the robust VSB map may still be reliably acquired by a robust VSB receiver by correlating the robust VSB map over some number of frames. Therefore, the robust VSB map should not change too often (for example, not more often than every ⁇ 60 frames).
  • the above mapping method allows a receiver to reliably and simply acquire the robust VSB map by correlation. Once a receiver has acquired the map, it is desirable for the receiver to instantly and reliably track changes in the map.
  • the definition in the robust VSB map for each outer code, excluding the comb compensation bits is duplicated in the first robust VSB Reed/Solomon encoded block of the frame.
  • the first robust VSB data packet of a frame for an outer coder therefore, has the structure shown in FIG.
  • the robust VSB map definition data is given by the following: eight bits designating the current map (only six of these bits are used); eight bits designating the number of frames until the map changes (1–125; if 0, then no change coming); and, eight bits designating the next map (again, only six of these bits are used).
  • the remaining portion of the first robust VSB data packet is data.
  • the first RVSB segment in a frame for a respective outer coder has the arrangement shown FIG. 17 .
  • a receiver can track map changes using reliable robust VSB data. Even if a burst error destroys a number of the frames, the receiver can keep its own frame countdown using the number of frames read from a previously received frame. If the receiver finds at any time that the definition for an outer code previously acquired by the frame sync correlation does not match the definition for that outer code in the first robust VSB data segment, the receiver should restart its map acquisition process.
  • RVSB Enhanced Slice Prediction and Equalizer Feedback
  • ATSC 8 VSB receivers make important use of adaptive equalization and phase tracking as explained in the ATSC Digital Television Standard A/53 published by the Advanced Television Systems Committee, in the Guide to the Use of the ATSC Digital Television Standard A/54, also published by the Advanced Television Systems Committee.
  • RVSB as described above has features that allow for improvements in adaptive equalization and phase tracking.
  • One such improvement results from feeding back delayed reliable estimates of the input symbol level to the adaptive equalizer and/or phase tracker based on a sequence estimation from an enhanced Viterbi Algorithm. (See “The Viterbi Algorithm,” G. D. Forney, Jr., Proc. IEEE, vol 61, pp. 268–278, March, 1973). This type of feedback avoids the need for “re-encoding,” which has a state initialization problem.
  • U.S. Pat. No. 5,923,711 entitled “Slice Predictor for a Signal Receiver,” discloses an ATSC 8 VSB receiver which utilizes a slice predictor in order to provide more reliable feedback to the phase tracker or adaptive equalizer. This feedback can be made even more reliable by a enhanced slice predictor system 300 shown in FIG. 19 .
  • the enhanced slice predictor system 300 has an inner decoder 302 and an outer decoder 304 which operate similarly to the inner decoders and outer decoders described above.
  • the slice prediction output from the inner decoder 302 works in a manner similar to that described in the aforementioned U.S. Pat. No. 5,923,711.
  • the inner decoder 302 is based on an 8 state 4-ary trellis that includes a precoder. Based on the best path metric at the current time t, the slice predictor of the inner decoder 302 decides a most likely state at time t. Then, based on the next possible pair of states, four possible predicted input levels (out of eight) for the next symbol at time t+1 are selected. For example, as shown by the inner decoder trellis in FIG. 20 , if the most likely state at time t is state one, the next state is ⁇ [1 5 2 6]. Therefore, the next input level at time t+1 may be ⁇ 7, +1, ⁇ 3, or +5. These next input levels correspond to decoded bit pairs 00, 10, 01, and 11, respectively.
  • the outer decoder 304 also finds the best path metric for the current time t for the respective trellis. A portion of this trellis is shown in FIG. 21 for an exemplary outer decoder and may be applied generally to all three outer codes. As shown in FIG. 21 , two possible outer decoder input bit pairs are selected for the time t+1 based on the next possible pair of states. By way of example, the two possible outer decoder input bit pairs may be 11 or 01.
  • the bit pair chosen by the outer decoder 304 is sent to a prediction enhancer 306 which selects amplitude levels +5 or ⁇ 3 from the set of four levels previously selected by the slice predictor of the inner decoder 302 as the enhanced slice prediction for time t+1.
  • a delay module 308 provides a delay time slightly greater than the traceback delay time of the inner decoder 302 .
  • the slice prediction provided by the prediction enhancer 306 may be supplied as feedback to an equalizer of phase tracker 310 .
  • the outer decoder 304 can make a final hard decision and select a single most likely input bit pair for time t+1. For example, if 11 is found to be the most likely input bit pair to the outer decoder 304 as determined by its Viterbi Algorithm, this information is sent by the outer decoder 304 to the predict on enhancer 306 which then chooses +5 from the set of four levels and corresponding bit pairs already selected by the slice predictor of the inner decoder 302 .
  • the outer code can be a convolutional code or other type of error correction code.
  • the predictor enhancer 306 is disabled during the periods of time when ATSC data is being received.
  • a feedback enhanced maximum likelihood sequence estimator (MLSE) slice predictor system 320 uses the Viterbi Algorithm and is shown in FIG. 22 along with other relevant parts of an RVSB receiver.
  • the feedback enhanced MLSE slice predictor system 320 has an inner decoder 322 and an outer decoder 324 which operate similarly to the inner decoder 302 and the outer decoder 304 described above.
  • an enhanced MLSE module 326 is configured to execute the usual Viterbi Algorithm on the received signal by operating the eight state 2/3 rate code trellis (the same trellis used by the inner decoder 322 , including the precoder).
  • the enhanced MLSE module 326 selects as its next input either (i) the noisy eight level received signal as delayed by a delay module 328 if the next input is a non-RVSB symbol or (ii) the bit pair decision output of the outer decoder 324 (hard or soft) if the next input is a RVSB symbol.
  • the enhanced MLSE module 326 makes this selection according to the symbol by symbol information in the RVSB map.
  • the enhanced MLSE module 326 outputs one of eight possible symbols as its slice prediction, and this slice prediction (symbol decision) is provided by the enhanced MLSE module 326 as feedback to an equalizer or phase tracker 330 .
  • the enhanced MLSE module 326 should follow a more correct path through the eight state trellis than does the inner decoder 322 because the enhanced MLSE module 326 gets more reliable input from the outer decoder 324 when an RVSB symbol is available.
  • the output of the enhanced MLSE module 326 may be a hard slice decision or a soft level. Also, any symbol reliability indication from the inner decoder 322 or the outer decoder 324 may be used to change the step size of the equalizer LMS algorithm. (See the Guide to the Use of the ATSC Digital Television Standard A/54.)
  • An optional predetermined coded training sequence may be included in a specified portion of the first RVSB segment of a data field. This sequence is known in advance by both the transmitter and receiver. During the time the decoded training sequence is output from the outer decoder 324 , the input to the enhanced MLSE module 326 is switched to a stored version of the decoded training sequence.

Abstract

Normally ordered robust VSB data are reordered in accordance with a first interleave to produce reordered robust VSB data. The reordered robust VSB data and ATSC data are reordered in accordance with a second interleave to produce normally ordered robust VSB data and reordered ATSC data. The normally ordered robust VSB data and reordered ATSC data are time multiplexed for transmission to a receiver. The receiver discards the reordered ATSC data or the normally ordered robust VSB data depending upon receiver type or user selection. A robust VSB receiver is able to process the normally ordered robust VSB data upstream of an outer decoder without an interleave thereby avoiding the delay associated with an interleave.

Description

RELATED APPLICATION
This application is a continuation of U.S. application Ser. No. 09/804,261 filed Mar. 13, 2001 now U.S. Pat. No. 6,996,133 which claims benefit of Ser. No. 60/198,014 filed Apr. 18, 2000 and claims benefit of Ser. No. 60/255,476 filed Dec. 13, 2000.
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the transmission and/or reception of digital data.
BACKGROUND OF THE INVENTION
The standard in the United States for the transmission of digital television signals is known as 8 VSB data (ATSC Digital Television Standard A/53). This 8 VSB data has a constellation consisting of eight possible symbol levels. In a VSB system, the eight possible symbol levels are all in the same phase. In a QAM system, however, the symbols are transmitted in phase quadrature relationship.
The standard referred to above specifies the formatting and modulation of digital video and audio data. The transmitted data is in the form of symbols with each symbol representing two bits of data that are trellis encoded into three bits of trellis encoded data. Each three bits of trellis encoded data are mapped into a symbol having a corresponding one of eight levels. Reed/Solomon encoding and interleaving are also provided to increase the robustness of the transmitted information.
Auxiliary data (data other than digital video or audio data) are also permitted to be transmitted in a digital television channel. These data are formatted and modulated according to the standard in the same manner as video and audio data. Receivers made in accordance with the 8 VSB standard are able to read packet identifications (PIDs) which allow the receivers to differentiate between audio, video, and auxiliary data.
However, while the robustness of the transmitted digital television signals is sufficient for digital television reception, this robustness may not be sufficient for the transmission of auxiliary data, particularly where the auxiliary data are critical. Accordingly, one of the applications of the present invention is the transmission of auxiliary data in a VSB format with outer encoding for added robustness. The auxiliary data transmitted in accordance with the application of the present invention are referred to herein as robust VSB data (RVSB).
SUMMARY OF THE INVENTION
In one aspect of the present invention, a method for transmitting a digital signal comprises the following: providing first and second streams of digital data; reordering the digital data of the first stream of digital data in accordance with a first interleave to provide a third stream of digital data; and, reordering the digital data of the second and third streams of digital data in accordance with a second interleave comprising an inverse of the first interleave to provide a time multiplexed output comprising the second stream of digital data reordered according to the second interleave and the third stream of digital data reordered to reflect the order of the first stream of digital data.
In another aspect of the present invention, a transmitter for transmitting robust VSB data comprises an outer coder and first and second interleaves. The outer coder receives input data and codes the input data as first robust VSB data such that the first robust VSB data is normally ordered. The first interleave reorders the first robust VSB data to provide reordered first robust VSB data. The second interleave reorders the reordered first robust VSB data to provide second robust VSB data. The second robust VSB data is normally ordered, and the first and second interleaves are inversely related.
In yet another aspect of the present invention, a system comprises a receiver, an inner decoder, a data discarder, and an outer decoder. The receiver receives data. The received data comprises normally ordered first data and reordered second data, the normally ordered first data results from inner and outer coding of first input data and two interleaving operations, and the reordered second data results from inner coding of second input data and one interleaving operation. The inner decoder inner decodes the received data to recover the normally ordered first data and the reordered second data. The data discarder is downstream of the inner decoder and discards the reordered second data. The outer decoder is downstream of the data discarder and outer decodes the normally ordered first data.
In still another aspect of the present invention, a method of processing received data comprises the following: receiving data, wherein the received data comprises normally ordered first data and reordered second data, wherein the normally ordered first data results from inner and outer coding of first input data and two interleaving operations, wherein the reordered second data results from inner coding of second input data and one interleaving operation; inner decoding the received data to recover the normally ordered first data and the reordered second data; and, discarding the recovered normally ordered first data.
In a further aspect of the present invention, a system comprises a receiver, a decoder, and a data discarder. The receiver receives data. The received data comprises normally ordered first data and reordered second data, the normally ordered first data results from two interleaving operations, and the reordered second data results from one interleaving operation. The decoder decodes the received data to recover the normally ordered first data and the reordered second data. The data discarder is downstream of the decoder and discards the recovered reordered second data.
In yet a further aspect of the present invention, a method of processing received data comprises the following: receiving data, wherein the received data comprises normally ordered first data and reordered second data, wherein the normally ordered first data results from inner and outer coding of first input data and two interleaving operations, wherein the reordered second data results from inner coding of second input data and one interleaving operation; decoding the received data to recover the normally ordered first data and the reordered second data; and, upon a user selection, either reordering the recovered normally ordered first data and reordered second data and subsequently discarding the reordered normally ordered first data or discarding the recovered reordered second data and subsequently reordering the recovered normally ordered first data.
In a still further aspect of the present invention, a receiver supplying method comprises the following: supplying first receivers, wherein each of the first receivers processes received robust N level VSB data and discards N level ATSC data; and, supplying second receivers, wherein each of the second receivers processes received N level ATSC data and discards robust N level VSB data.
In another aspect of the present invention, an electrical signal contains first and second data symbols having the same constellation, and the first and second data symbols have different bit rates. The first and second symbols are intermixed in a data frame
In still another aspect of the present invention, an apparatus comprises a receiver and a data discarder. The receiver receives an electrical signal containing first and second 8 VSB data. The first and second 8 VSB data have different bit rates. The data discarder discards one of the first and second 8 VSB data.
In still another aspect of the present invention, a receiver receives an ATSC frame containing a plurality of ATSC segments. The ATSC segments comprises a non-outer coded ATSC transport header, non-outer coded ATSC Reed/Solomon parity data, and outer coded data.
BRIEF DESCRIPTION OF THE DRAWING
These and other features and advantages will become more apparent from a detailed consideration of the invention when taken in conjunction with the drawing in which:
FIG. 1 shows a robust VSB transmitter for transmitting robust VSB data and ATSC data in accordance with the present invention;
FIG. 2 shows a standard ATSC receiver for receiving the ATSC data transmitted by the robust VSB transmitter of FIG. 1;
FIG. 3 shows a robust VSB receiver for receiving the robust VSB data transmitted by the robust VSB transmitter of FIG. 1;
FIG. 4 shows the 2/3 rate encoder of FIG. 1 in additional detail;
FIG. 5 shows the mapping function performed by the mapper of FIG. 4;
FIG. 6 shows the operation of the 2/3 rate decoders of FIGS. 2 and 3;
FIG. 7 shows another robust VSB transmitter for transmitting robust VSB data and ATSC data in accordance with the present invention;
FIG. 8 shows a standard ATSC receiver for receiving the ATSC data transmitted by the robust VSB transmitter of FIG. 7;
FIG. 9 shows a robust VSB receiver for receiving the robust VSB data transmitted by the robust VSB transmitter of FIG. 7;
FIG. 10 shows a circuit for generating the appropriate control signal on the discard control line of FIG. 9;
FIG. 11 shows yet another robust VSB transmitter for transmitting robust VSB data and ATSC data in accordance with the present invention;
FIG. 12 shows an example of four data segments containing 1/2 rate outer coded data that may be transmitted by a robust VSB transmitter according to the present invention;
FIG. 13 shows an example of four data segments containing 1/4 rate outer coded data that may be transmitted by a robust VSB transmitter according to the present invention;
FIG. 14 shows an example of four data segments containing 3/4 rate outer coded data that may be transmitted by a robust VSB transmitter according to the present invention;
FIG. 15 shows the interleavers (Ir) of FIGS. 1, 9, and 11 in more detail;
FIG. 16 shows the deinterleavers (Dr) of FIGS. 3 and 9 in more detail;
FIG. 17 shows a map definition structure of a first robust VSB data packet of a frame;
FIG. 18 shows a portion of the frame sync segment of a frame that carries a map indicating where in the frame robust VSB data can be found;
FIG. 19 illustrates an enhanced slice predictor according to one embodiment of the present invention;
FIG. 20 shows the trellis for the inner decoder of FIG. 19;
FIG. 21 shows possible state transitions for the outer decoder of FIG. 19; and,
FIG. 22 illustrates an enhanced slice predictor according to another embodiment of the present invention.
DETAILED DESCRIPTION
RVSB and ATSC Data Transmission and Reception
FIG. 1 shows a robust VSB transmitter 10 that transmits both ATSC data and robust VSB data in accordance with one embodiment of the present invention. FIG. 2 shows a standard ATSC receiver 12 that receives the ATSC data transmitted by the robust VSB transmitter 10, and FIG. 3 shows a robust VSB receiver 14 that receives the robust VSB data transmitted by the robust VSB transmitter 10.
The robust VSB transmitter 10 includes a Reed/Solomon encoder 16 that encodes uncoded auxiliary data bytes by adding Reed/Solomon parity bytes to the uncoded auxiliary data bytes. The uncoded auxiliary data bytes and the Reed/Solomon parity bytes are interleaved by an interleaver 18. Then, the interleaved uncoded auxiliary data bytes and the Reed/Solomon parity bytes are bitwise encoded by an outer coder 20 using either a convolutional code or other error correcting code. The outer coder 20 improves the robustness of the uncoded auxiliary data bytes and the Reed/Solomon parity bytes, converting them to robust data bytes (hereinafter referred to as robust VSB data bytes) and Reed/Solomon parity bytes.
The outer coder 20, for example, may be a 1/2 rate coder which produces two output bits for every input bit, a 1/4 rate coder which produces four output bits for every input bit, or a 3/4 rate coder which produces four output bits for every three input bits. Other coders could instead be used.
At the output of the outer coder 20, a three byte transport (tx) header is added to each group of 184 coded robust VSB data and Reed/Solomon bytes to form robust VSB data packets. A multiplexer 24 multiplexes these robust VSB data packets with ATSC data packets (typically, video and audio) each comprising a three byte transport header and 184 bytes of ATSC data. Either input to the multiplexer 24 may be selected on a packet by packet basis and each selected input is supplied to an ATSC transmitter 26. The selection by the multiplexer 24 of which input to pass to the ATSC transmitter 26 is based on a robust VSB map to be described hereinafter.
The ATSC transmitter 26, as is typical, includes a Reed/Solomon encoder 28, an interleaver 30, and a 2/3 rate inner encoder 32 all operating in accordance with the ATSC standard.
A standard ATSC receiver, such as the standard ATSC receiver 12 shown in FIG. 2, receives and processes the ATSC data and discards the robust VSB data. Accordingly, the standard ATSC receiver 12 includes a 2/3 rate inner decoder 34, a deinterleaver 36, and a Reed/Solomon decoder 38, all operating in accordance with the ATSC standard. The standard ATSC receiver 12, however, is programmed to decode both the ATSC data and the robust VSB data transport headers (which include the packet identifications or PID's and which have not been coded by the outer coder 20). The standard ATSC receiver 12 reads the PID's of all packets and, at 40, discards those packets having the PID's of robust VSB data. The standard ATSC receiver 12 also includes a slice predictor 42 (such as the slice predictor disclosed in U.S. Pat. No. 5,923,711) which is responsive to the inner decoded data and which provides an output back to a phase tracker and/or equalizer, as is known in the art.
The robust VSB data packets can be received, decoded, and processed by a robust VSB receiver such as the robust VSB receiver 14 shown in FIG. 3. As is known, and as shown in FIG. 4, the 2/3 rate inner encoder 32 of the ATSC transmitter 26 includes a precoder 44 and a four state trellis encoder 46. In combination, the precoder 44 and the four state trellis encoder 46 may be viewed as an eight state coder that produces three trellis encoded output bits (Z0 Z1 Z2) for every two input bits (X1 X2). A mapper 48 maps the three trellis encoded output bits to a symbol having one of eight levels as shown in FIG. 5. As is well known from convolutional code theory, the operation of the precoder 44 and the four state trellis encoder 46 may be viewed as an eight state 4-ary trellis.
Therefore, in the robust VSB receiver 14, a 2/3 rate inner decoder 50 may operate on an eight state 4-ary trellis which views the precoder 44 and the four state trellis encoder 46 of the 2/3 rate inner encoder 32 in combination as shown in FIG. 6 to produce a soft output decision (using, for example, the SSA algorithm as described in “Optimum Soft Output Detection for Channels with Intersymbol Interference,” Li, Vucetic, and Sato, IEEE Transactions on Information Theory, May, 1995). This soft decision making operation is more complicated than the widely used Viterbi algorithm, which produces a hard decision output, but the soft decision making operation more fully takes advantage of the coding gain provided by the outer coder 20.
The output of the 2/3 rate inner decoder 50 is deinterleaved by a deinterleaver 52. The robust VSB receiver 14 reads the PID's of all packets at the output of the deinterleaver 52. Based upon these PID's, the robust VSB receiver 14 discards those packets at 54 which have the PID's of ATSC data and also discards the transport headers added following the outer coder 20 and the parity bytes added by the Reed/Solomon encoder 28. Thus, the robust VSB receiver 14, at 54, passes only the robust VSB data packets containing the robust VSB data coded by the outer coder 20. The robust VSB data packets are decoded by an outer decoder 56, deinterleaved by a deinterleaver 58 (which is the inverse of the interleaver 18), and Reed/Solomon decoded by a Reed/Solomon decoder 60 in order to reconstruct the original uncoded auxiliary data supplied to the Reed/Solomon encoder 16 of FIG. 1.
The reliable output of the outer decoder 56 (either soft or hard output may be used) is interleaved by an interleaver 62 (corresponding to the interleaver 30) in a feedback path 64 in order to restore the ordering of the outer decoded data to the order of the data in the channel. This interleaved outer decoded data can be used, for example, by a slice predictor 66 to create reliable feedback to a phase tracker and/or equalizer. However, the overall feedback delay introduced by the deinterleaver 52 and the interleaver 62 in the robust VSB receiver 14 is generally too long to provide useful feedback to the phase tracker and/or equalizer.
The arrangement shown in FIGS. 7, 8, and 9 avoids the feedback delay introduced by the deinterleaver 52 and the interleaver 62 of the robust VSB receiver 14. FIG. 7 shows a robust VSB transmitter 80 in which uncoded auxiliary data bytes are encoded by a Reed/Solomon encoder 82 which adds Reed/Solomon parity bytes to the uncoded auxiliary data bytes. The uncoded auxiliary data bytes and the Reed/Solomon parity bytes are interleaved by an interleaver 84. Then, the interleaved uncoded auxiliary data bytes and Reed/Solomon parity bytes are bitwise encoded by an outer coder 86 using either a convolutional code or a turbo product code, as discussed above. The bitwise output of the outer coder 86 is small block interleaved by a small block interleaver 88 in order to reduce the impact of channel burst errors on the outer decoding. The data provided by the small block interleaver 88 may be referred to as Rdata(n.o.) which stands for normally ordered robust VSB data.
One input of a first multiplexer 92 receives ATSC formatted packets each comprising (i) a valid three byte transport header with a PID number for robust VSB data, (ii) 184 placeholder bytes of dummy robust VSB data, and (iii) twenty placeholder bytes for dummy ATSC Reed/Solomon parity data. The other input of the first multiplexer 92 receives ATSC formatted dummy packets each comprising 207 bytes of dummy ATSC data. These ATSC formatted dummy packets serve as placeholders for the real ATSC packets to be added downstream. The inputs of the first multiplexer 92 may be selected on a packet by packet basis, and this selection is based on the robust VSB map to be described later.
The selected output of the first multiplexer 92 is interleaved by an interleaver 94 according to the ATSC Standard for the convolutional byte interleave. A data replacer 96 receives both the output of the interleaver 94 and the output of the small block interleaver 88. The data replacer 96 replaces each dummy robust VSB data placeholder byte from the interleaver 94 with the next normally ordered robust VSB data byte from the small block interleaver 88.
The output of the data replacer 96 contains normally ordered robust VSB data with interspersed transport headers, dummy ATSC Reed/Solomon parity bytes, and dummy ATSC data packet bytes. A deinterleaver 98, which operates according to the ATSC Standard for byte deinterleaving, deinterleaves the output of the data replacer 96 to thus effectively “repacketize” the data as packets of transport headers, reordered robust VSB data (Rdata(r.o.)), dummy ATSC Reed/Solomon parity bytes, and dummy ATSC data. The reordering of the normally reordered robust VSB data results from the deinterleaving of the deinterleaver 98 and the reordered data may be referred to as reordered robust VSB data.
The dummy ATSC Reed/Solomon parity bytes (20 per packet) of the robust VSB packets and the dummy ATSC data packets (207 bytes per packet) are discarded at 100. The remaining robust VSB packets, each including a transport header and reordered robust VSB data, are multiplexed by a second multiplexer 102 with real ATSC data packets each containing 187 bytes of a transport header and ATSC data. Either input to the second multiplexer 102 may be selected on a packet by packet basis and is supplied to an ATSC transmitter 104. The selection by the second multiplexer 102 of which input to pass to the ATSC transmitter 104 is based on the robust VSB map to be described hereinafter.
The ATSC transmitter 104 typically includes a Reed/Solomon encoder 106, an interleaver 108, and a twelve way 2/3 rate inner encoder 110 all operating in accordance with the ATSC standard. The Reed/Solomon encoder 106 outputs packets of transport headers, reordered robust VSB data, and ATSC Reed/Solomon parity bytes multiplexed with packets of transport headers, ATSC data, and ATSC Reed/Solomon parity bytes. The ATSC Reed/Solomon parity bytes for the robust VSB data are calculated based on the reordered robust VSB data. Moreover, the interleaver 108 changes the ordering of the robust VSB data so that the robust VSB data at the output of the interleaver 108 is again normally ordered robust VSB data. Also, the interleaver 108 disperses the transport headers, the ATSC Reed/Solomon parity bytes, and the ATSC data. This data is 2/3 rate coded by the twelve way 2/3 rate inner encoder 110 and is transmitted. The transmitted robust VSB data is in normal order, i.e., the order provided at the output of the small block interleaver 88. This normal order permits the robust VSB receiver to avoid the delay caused by the deinterleaver 52 and the interleaver 62 of the robust VSB receiver 14.
As shown in FIG. 8, a standard ATSC receiver 120 includes a twelve way 2/3 inner decoder 122 which decodes the transmitted data to provide an output data stream comprising normally ordered robust data with interspersed transport headers, ATSC data, and ATSC Reed/Solomon parity bytes located according to the ATSC convolutional byte interleave provided by the interleaver 108. An ATSC deinterleaver 124 restores the transport headers, ATSC data, and ATSC Reed/Solomon parity bytes to their transport “packetized” positions. Also, the ATSC deinterleaver 124 converts the normally ordered robust VSB data into reordered robust VSB data. This reordered form permits an ATSC Reed/Solomon decoder 126 of the standard ATSC receiver 120 to correctly test parity for the robust VSB data packets. The standard ATSC receiver 120 can then read the robust VSB data packet transport headers and gracefully discard the robust VSB data packets at 128 based on their PIDs.
As shown in FIG. 9, a robust VSB receiver 130 includes a soft output twelve way 2/3 rate inner decoder 132. (A hard output 2/3 decoder would result in a considerable loss of coding gain). The output of the soft output twelve way 2/3 rate inner decoder 132 comprises normally ordered robust VSB data, with reordered ATSC data, transport headers, and ATSC Reed/Solomon parity symbols dispersed within the robust VSB data at locations indicated by a discard control line 134 discussed below. A discard block 136, under control of the discard control line 134, discards the reordered ATSC data, transport headers, and ATSC Reed/Solomon parity symbols.
A small block deinterleaver 138 deinterleaves the robust VSB data. The small block deinterleaver 138 has a relatively low delay time. This deinterleaving disperses possible burst errors in the robust VSB data at the output of the soft output twelve way 2/3 rate inner decoder 132. The normally ordered robust VSB data is bitwise decoded by an outer decoder 140 which also packs the robust VSB data into bytes. The map information telling the outer decoder 140 what decoding rate to use on what data is provided to the outer decoder 140 at an RMAP Data input. Neither the deinterleaver 52 nor the interleaver 62 is needed in the robust VSB receiver 130 allowing for lower overall feedback delay to the phase tracker and/or equalizer. The outer decoded data can be used, for example, by an enhanced slice predictor 142 to generate feedback to the phase tracker and/or equalizer. If desired, the feedback may be gated, or the step size of the equalizer gradient algorithm adjusted proportionally to the reliability of the decoded data.
The robust VSB data packet payload decoded by the outer decoder 140 is deinterleaved by a deinterleaver 144 (which is the inverse of the interleaver 84) and is Reed/Solomon decoded by a Reed/Solomon decoder 146 (corresponding to the Reed/Solomon encoder 82) in order to reconstruct the original uncoded auxiliary data supplied to the Reed/Solomon encoder 82 of FIG. 7.
As provided in the ATSC standard, a frame comprises a plurality of segments each containing a predetermined number of bytes. The first segment of a frame is a frame sync segment, and the remaining segments in the frame are data segments. Although robust VSB data can be transmitted in segments or in partial segments, it is convenient to transmit robust VSB data in segment pairs. The robust VSB map discussed above indicates which segment pairs contain robust VSB data so that the discard block 136 can correctly discard the reordered ATSC data before the reordered ATSC data can get to the outer decoder 140. The transport headers and the ATSC Reed/Solomon parity data for all segments (robust VSB and ATSC) must also be discarded by the discard block 136.
A conceptually simple circuit to generate the appropriate control signal on the discard control line 134 to control this discarding function is shown in FIG. 10, together with the relevant portion of the robust VSB receiver 130. The robust VSB receiver 130 uses received map information (the method for transmission and reception of this map information is described below) to instruct a dummy segment generator 150 when to construct dummy 207 byte segments. The dummy segment generator 150 also uses the frame sync signal. For each ATSC dummy segment, the dummy segment generator 150 sets all bytes to FF. For each robust VSB data dummy segment, the dummy segment generator 150 sets the transport header and ATSC Reed/Solomon parity bytes to FF. The dummy segment generator 150 sets the rest of the bytes of each robust VSB data dummy segment to 00.
These dummy segments are fed by the dummy segment generator 150 to an ATSC convolutional byte interleaver 152 whose output is then used to control the discard block 136 which then responds to the FF and 00 codes to correctly discard the reordered ATSC data, the transport headers, and the ATSC Reed/Solomon parity data which are interleaved within the received data stream. The discard block 136, thus, passes only the robust VSB data.
FIG. 11 shows a multiple outer code robust VSB transmitter 160. The robust VSB transmitter 160 operates similarly to the robust VSB transmitter 80 of FIG. 7. The robust VSB transmitter 160 has a first Reed/Solomon encoder 162 which encodes first uncoded auxiliary data by adding Reed/Solomon parity bytes to the first uncoded auxiliary data, a second Reed/Solomon encoder 164 which encodes second uncoded auxiliary data by adding Reed/Solomon parity bytes to the second uncoded auxiliary data, and a third Reed/Solomon encoder 166 which encodes third uncoded auxiliary data bytes by adding Reed/Solomon parity bytes to the third uncoded auxiliary data. The Reed/Solomon encoded first uncoded auxiliary data are interleaved by a first interleaver 168, the Reed/Solomon encoded second uncoded auxiliary data are interleaved by a second interleaver 170, and the Reed/Solomon encoded third uncoded auxiliary data are interleaved by a third interleaver 172. Then, the interleaved Reed/Solomon encoded first uncoded auxiliary data are bitwise encoded by a first outer coder 174, the interleaved Reed/Solomon encoded second uncoded auxiliary data are bitwise encoded by a second outer coder 176, and the interleaved Reed/Solomon encoded third uncoded auxiliary data are bitwise encoded by a third outer coder 178. The bitwise output of the first outer coder 174 is interleaved by a first small block interleaver 180, the bitwise output of the second outer coder 176 is interleaved by a second small block interleaver 182, and the bitwise output of the third outer coder 178 is interleaved by a third small block interleaver 184.
The first outer coder 174 is a 1/4 rate coder, the second outer coder 176 is a 1/2 rate coder, and the third outer coder 178 is a 3/4 rate coder, although any other combination of these or other outer coders using different coding rates could be used. The data outputs of the first, second, and third small block interleavers 180, 182, and 184 are selected by a multiplexer 186 under control of a select input which determines the order in which the differently outer coded data are inserted into the frame to be transmitted. The data at the output of the multiplexer 186 may be referred to as Rdata(n.o.) which, as before, stands for normally ordered robust VSB data.
The top three inputs of a multiplexer 190 receive ATSC format packets each having of a valid three byte transport header with a PID number for robust VSB data, 184 placeholder bytes of dummy robust VSB data, and twenty dummy placeholder bytes for ATSC Reed/Solomon parity data. The robust VSB data at the topmost input of the multiplexer 190 correspond to 1/4 rate coded data from the first outer coder 174, the robust VSB data at the next input of the multiplexer 190 correspond to 1/2 rate coded data from the second outer coder 176, and the robust VSB data at the next input of the multiplexer 190 correspond to 3/4 rate coded data from the third outer coder 178. The data supplied to the bottommost input of the multiplexer 190 comprises ATSC format dummy packets each having 207 bytes of dummy ATSC data. These dummy ATSC data packets serve as placeholders for the real ATSC data packets to be added downstream of the multiplexer 190. The inputs to the multiplexer 190 may be selected on a packet by packet basis in accordance with the input on a select line. This selection is based on the robust VSB data map to be described below.
The output of the multiplexer 190 is interleaved by an interleaver 192 in order to achieve a correct ATSC convolutional interleave. A data replacer 194 receives both the output of the interleaver 192 and the output of the multiplexer 186. The data replacer 194 replaces each dummy robust VSB data placeholder byte from the multiplexer 190 with the next corresponding normally ordered robust VSB data byte from the multiplexer 186.
The output of the data replacer 194 contains normally ordered robust VSB data (which is 1/4 rate coded, 1/2 rate coded, and/or 3/4 rate coded, as appropriate) with interspersed transport headers, dummy ATSC Reed/Solomon parity bytes, and dummy ATSC data packet bytes. A convolutional byte deinterleaver 196 (as described in the ATSC Standard) deinterleaves the output of the data replacer 194 to thus effectively “repacketize” the data as packets of transport headers, reordered robust VSB data (1/4, 1/2, and/or 3/4 rate coded), dummy ATSC Reed/Solomon parity bytes, and dummy packets of ATSC data. The reordering of the normally ordered robust VSB data results from the deinterleaving of the deinterleaver 196.
The dummy ATSC Reed/Solomon parity bytes (20 per packet) and the dummy ATSC data packets (207 bytes per packet) are discarded at 198 in a manner similar to that provided by the discard control line 134 and the discard block 136 of FIG. 9. The remaining robust VSB packets, each including a transport header and reordered-robust VSB data, are multiplexed by a multiplexer 200 with real ATSC data packets each containing 187 bytes of a transport header and ATSC data. Either input to the multiplexer 200 may be selected on a packet by packet basis and is supplied to an ATSC transmitter 202. The selection by the multiplexer 200 of which input to pass to the ATSC transmitter 202 is based on the robust VSB map to be described hereinafter.
The ATSC transmitter 202 typically includes a Reed/Solomon encoder 204, an interleaver 206, and a twelve way 2/3 rate inner encoder 208 all operating in accordance with the ATSC standard. The Reed/Solomon encoder 204 outputs packets of transport headers, reordered robust VSB data, and ATSC Reed/Solomon parity bytes multiplexed with packets of transport headers, ATSC data, and ATSC Reed/Solomon parity bytes. The ATSC Reed/Solomon parity bytes for the robust VSB data are calculated based on the reordered robust VSB data. Moreover, the interleaver 206 changes the ordering of the robust VSB data so that the robust VSB data at the output of the interleaver 206 are again normally ordered robust VSB data. Also, the interleaver 206 disperses the transport header bytes, the ATSC Reed/Solomon parity bytes, and the ATSC data. These data are 2/3 rate Coded by the twelve way 2/3 rate inner encoder 208 and are transmitted. The transmitted robust VSB data are in normal order, i.e., the order provided at the output of the multiplexer 186. This normal data order permits the robust VSB receiver to avoid the delay caused by the deinterleaver 52 and the interleaver 62.
As discussed above, an ATSC frame comprises a frame sync segment and a plurality of data segments and, for convenience, robust VSB data are packed into groups of four segments. More specifically, FIG. 12 shows an example of four data segments that may be used in a frame to transmit robust VSB data that is 1/2 rate coded, FIG. 13 shows an example of four data segments that may be used in a frame to transmit robust VSB data that is 1/4 rate coded, and FIG. 14 shows an example of four data segments that may be used in a frame to transmit robust VSB data that is 3/4 rate coded. These examples represent the frame prior to the interleaver 108 and assume that each group of four robust VSB data segments contains an integral number of robust Reed/Solomon encoded blocks each of which is 184 bytes long, of which twenty bytes are parity bytes.
For the case of a 1/2 rate outer code, FIG. 12 shows that the outer coder outputs two bits for each input bit. A robust VSB data packet is packed as one RVSB Reed-Solomon block to a pair of data segments (one bit per symbol) so that, for a 1/2 rate outer code, four segments contain two robust Reed/Solomon encoded blocks. As shown in FIG. 13, for the case of a 1/4 rate outer code, the outer coder outputs four bits for each input bit. Robust VSB data is packed as one RVSB Reed-Solomon block for every four data segments (1/2 bit per symbol) so that, for a 1/4 rate outer code, four segments contain one robust Reed/Solomon encoded block. As shown in FIG. 14, for the case of a 3/4 rate outer code, the outer coder outputs four bits for each three input bits. In this case, transmitted symbol and byte boundaries do not always match. However, three complete RVSB Reed-Solomon blocks will pack exactly into four data segments (1.5 bits per symbol) so that, for a 3/4 rate outer code, four segments contain three robust Reed/Solomon encoded blocks.
Accordingly, FIGS. 12, 13, and 14 can be represented by the following table:
S X Y
1/2 1 2
1/4 1 4
3/4 3 4

where X represents the number of complete robust Reed/Solomon encoded blocks and Y represents the number of frame segments required to contain the corresponding number X of robust Reed/Solomon encoded blocks.
However, it should be understood that other coding rates can be used in conjunction with the present invention and, therefore, the above table will change depending upon the particular coding rates that are used.
The interleavers 18, 84, 168, 170, and 172 are shown in more detail in FIG. 15, and the deinterleavers 58 and 144 are shown in more detail in FIG. 16, assuming that a robust Reed/Solomon encoded block is chosen to be 184 bytes long. The interleavers 18, 84, 168, 170, and 172 are B=46, M=4, N=184 convolutional interleavers that byte wise interleave the robust VSB data. This interleaving scheme is the same as the ATSC interleaver scheme described in the ATSC Digital Television Standard A/53 and the Guide to the Use of the ATSC digital Television Standard A/54, except that the B parameter for the robust interleaver is 46 instead of 52 and the parameter N is 184 instead of 208. This interleaver is needed so that a robust VSB receiver can cope with long bursts of noise on the channel even though the ATSC deinterleaver (Da) is bypassed as shown in FIG. 9.
As shown in FIG. 16, the deinterleavers 58 and 144 are B=46, M=4, N=184 convolutional deinterleavers that byte wise deinterleave the robust VSB data. This deinterleaving scheme is also the same as the ATSC deinterleaver scheme described in the ATSC Digital Television Standard A/53 and the Guide to the Use of the ATSC digital Television Standard A/54, except that the B parameter for the robust deinterleaver is 46 instead of 52 and the parameter N is 184 instead of 208.
Because a robust VSB Reed/Solomon block comprises 184 bytes, and because an integral number of robust VSB Reed/Solomon blocks are in a data frame, the number of robust VSB data bytes plus robust VSB Reed/Solomon parity bytes in a data frame is always evenly divisible by 46. Therefore, the frame sync segment can be used as a synchronizer for the deinterleavers 58 and 144 (Dr) in the receiver, regardless of the value of G (to be described below). At frame sync, the deinterleaver commutators are forced to the top positions. The deinterleavers 58 and 144 are byte wise deinterleavers.
Data Mapping
As discussed above, each data frame may contain a mix of robust VSB data segments and ATSC (non-robustly coded) data segments. Moreover, the robust VSB data may contain data coded with a mix of coding rates. The robust VSB receiver 14 or 130 must have a robust VSB map that indicates which segments are robust VSB coded and which outer code is used for the robust VSB coding so that the robust VSB receiver 14 or 130 can correctly process the robust VSB data and discard the ATSC data. The robust VSB transmitters 10, 80, and 160 also use the robust VSB map to control their corresponding multiplexing and discard functions. This robust VSB map is transmitted by the robust VSB transmitter 10, 80, or 160 to the robust VSB receiver 14 or 130 along with all the other data in a manner described below.
The presence, amount, and location of the robust VSB data in a data frame encoded with a particular outer code are indicated by one or more numbers Sc that appear as two level data in the frame sync segment of the data frame. As is known, the frame sync segment is the first segment in a frame. So, for the outer codes described above (1/4 rate, 1/2 rate, and 3/4 rate), the frame sync segment should preferably contain [S1/4 S1/2 S3/4]. Each Sc (such as S1/4 or S1/2 or S3/4) is encoded as eighteen symbols (bits) of two level data. For all three codes, a total of 3×18=54 symbols are needed as a definition of the robust VSB map. These symbols are inserted into the reserved area near the end of each frame sync segment (just before the twelve preceding bits). For each group of eighteen bits (b18 . . . b1), the last six bits (b6 . . . b1) represent the number G of groups of eight segments (8 segments=2, 4 or 6 robust VSB data packets depending on the outer code) mapped as robust VSB data in the current frame. The twelve preceding bits are for comb filter compensation (see the Guide to the Use of the ATSC digital Television Standard A/54). Accordingly, as shown in FIG. 18, bits b6 . . . b1 represent the number G, bits b18 . . . b13 are the complement of bits b6 . . . b1, and bits b12 . . . b7 can be alternating +1 and −1 (or any other pattern).
Let it be assumed that S=S1/4+S1/2+S3/4. Because 312/8=39, 0–39 groups of eight segments can be mapped as robust VSB data or 8 VSB data (ATSC data). Therefore, each SC may have a value of 0 . . . 39, as long as their sum S is ≦39.
The robust VSB data segments are preferably distributed as uniformly as possible over the data frame. For example, if S=1, then the following eight segments are mapped as robust VSB data segments and all other segments are mapped as ATSC data segments: 1, 40, 79, 118, 157, 196, 235, and 274. If S=2, then the following sixteen segments are mapped as robust VSB data segments and all other segments are mapped as ATSC data segments: 1, 20, 39, 58, 77, 96, 115, 134, 153, 172, 191, 210, 229, 248, 267, and 286. These examples continue until S=39, where the whole data frame is mapped as robust VSB data segments. For some values of S, the spacing between robust VSB data segment pairs is not perfectly uniform. However, for any value of S, the spacing is fixed in advanced and, therefore, known to all receivers.
If a frame contains robust VSB data provided by three outer coders operating at 1/4 rate, 1/2 rate, and 3/4 rate, then the data from these three outer coders may be divided in a frame such that, as to RVSB segments, the first 8×S1/4 segments contain the 1/4 rate outer coded data, the next 8×S1/2 segments contain the 1/2 rate outer coded data, and the last 8×S3/4 segments contain the 3/4 rate outer coded data. However, other robust VSB data segment organizations are possible for these three outer coders or for any number of other types of outer coders.
Because this robust VSB map is contained in the frame sync segment, as discussed above, the robust VSB map does not enjoy the same level of coding gain as the robust VSB data. However, the robust VSB map may still be reliably acquired by a robust VSB receiver by correlating the robust VSB map over some number of frames. Therefore, the robust VSB map should not change too often (for example, not more often than every −60 frames).
The above mapping method allows a receiver to reliably and simply acquire the robust VSB map by correlation. Once a receiver has acquired the map, it is desirable for the receiver to instantly and reliably track changes in the map. In order to instantly and reliably track changes in the map, the definition in the robust VSB map for each outer code, excluding the comb compensation bits, is duplicated in the first robust VSB Reed/Solomon encoded block of the frame. In addition, there is data indicating (i) when in the future the map will change and (ii) the future new map definition. The first robust VSB data packet of a frame for an outer coder, therefore, has the structure shown in FIG. 17, where the robust VSB map definition data is given by the following: eight bits designating the current map (only six of these bits are used); eight bits designating the number of frames until the map changes (1–125; if 0, then no change coming); and, eight bits designating the next map (again, only six of these bits are used). The remaining portion of the first robust VSB data packet is data. The first RVSB segment in a frame for a respective outer coder has the arrangement shown FIG. 17.
In this way, a receiver can track map changes using reliable robust VSB data. Even if a burst error destroys a number of the frames, the receiver can keep its own frame countdown using the number of frames read from a previously received frame. If the receiver finds at any time that the definition for an outer code previously acquired by the frame sync correlation does not match the definition for that outer code in the first robust VSB data segment, the receiver should restart its map acquisition process.
RVSB Enhanced Slice Prediction and Equalizer Feedback
ATSC 8 VSB receivers make important use of adaptive equalization and phase tracking as explained in the ATSC Digital Television Standard A/53 published by the Advanced Television Systems Committee, in the Guide to the Use of the ATSC Digital Television Standard A/54, also published by the Advanced Television Systems Committee. RVSB as described above has features that allow for improvements in adaptive equalization and phase tracking.
One such improvement results from feeding back delayed reliable estimates of the input symbol level to the adaptive equalizer and/or phase tracker based on a sequence estimation from an enhanced Viterbi Algorithm. (See “The Viterbi Algorithm,” G. D. Forney, Jr., Proc. IEEE, vol 61, pp. 268–278, March, 1973). This type of feedback avoids the need for “re-encoding,” which has a state initialization problem.
U.S. Pat. No. 5,923,711, entitled “Slice Predictor for a Signal Receiver,” discloses an ATSC 8 VSB receiver which utilizes a slice predictor in order to provide more reliable feedback to the phase tracker or adaptive equalizer. This feedback can be made even more reliable by a enhanced slice predictor system 300 shown in FIG. 19. The enhanced slice predictor system 300 has an inner decoder 302 and an outer decoder 304 which operate similarly to the inner decoders and outer decoders described above.
The slice prediction output from the inner decoder 302 works in a manner similar to that described in the aforementioned U.S. Pat. No. 5,923,711. As explained above, the inner decoder 302 is based on an 8 state 4-ary trellis that includes a precoder. Based on the best path metric at the current time t, the slice predictor of the inner decoder 302 decides a most likely state at time t. Then, based on the next possible pair of states, four possible predicted input levels (out of eight) for the next symbol at time t+1 are selected. For example, as shown by the inner decoder trellis in FIG. 20, if the most likely state at time t is state one, the next state is ε[1 5 2 6]. Therefore, the next input level at time t+1 may be −7, +1, −3, or +5. These next input levels correspond to decoded bit pairs 00, 10, 01, and 11, respectively.
Similarly, the outer decoder 304 also finds the best path metric for the current time t for the respective trellis. A portion of this trellis is shown in FIG. 21 for an exemplary outer decoder and may be applied generally to all three outer codes. As shown in FIG. 21, two possible outer decoder input bit pairs are selected for the time t+1 based on the next possible pair of states. By way of example, the two possible outer decoder input bit pairs may be 11 or 01. The bit pair chosen by the outer decoder 304 is sent to a prediction enhancer 306 which selects amplitude levels +5 or −3 from the set of four levels previously selected by the slice predictor of the inner decoder 302 as the enhanced slice prediction for time t+1. Because the slice prediction of the inner decoder 302 is near zero delay, but because the outer decoder 304 cannot operate on the same symbol until after the inner decoder 302 has provided a decoded soft output, a delay module 308 provides a delay time slightly greater than the traceback delay time of the inner decoder 302. The slice prediction provided by the prediction enhancer 306 may be supplied as feedback to an equalizer of phase tracker 310.
With some additional delay time, the outer decoder 304 can make a final hard decision and select a single most likely input bit pair for time t+1. For example, if 11 is found to be the most likely input bit pair to the outer decoder 304 as determined by its Viterbi Algorithm, this information is sent by the outer decoder 304 to the predict on enhancer 306 which then chooses +5 from the set of four levels and corresponding bit pairs already selected by the slice predictor of the inner decoder 302. The outer code can be a convolutional code or other type of error correction code. The predictor enhancer 306 is disabled during the periods of time when ATSC data is being received.
A feedback enhanced maximum likelihood sequence estimator (MLSE) slice predictor system 320 uses the Viterbi Algorithm and is shown in FIG. 22 along with other relevant parts of an RVSB receiver. The feedback enhanced MLSE slice predictor system 320 has an inner decoder 322 and an outer decoder 324 which operate similarly to the inner decoder 302 and the outer decoder 304 described above. However, instead of using the slice prediction output of the inner decoder 302, an enhanced MLSE module 326 is configured to execute the usual Viterbi Algorithm on the received signal by operating the eight state 2/3 rate code trellis (the same trellis used by the inner decoder 322, including the precoder).
The enhanced MLSE module 326 selects as its next input either (i) the noisy eight level received signal as delayed by a delay module 328 if the next input is a non-RVSB symbol or (ii) the bit pair decision output of the outer decoder 324 (hard or soft) if the next input is a RVSB symbol. The enhanced MLSE module 326 makes this selection according to the symbol by symbol information in the RVSB map.
The enhanced MLSE module 326 outputs one of eight possible symbols as its slice prediction, and this slice prediction (symbol decision) is provided by the enhanced MLSE module 326 as feedback to an equalizer or phase tracker 330.
The enhanced MLSE module 326 should follow a more correct path through the eight state trellis than does the inner decoder 322 because the enhanced MLSE module 326 gets more reliable input from the outer decoder 324 when an RVSB symbol is available.
The output of the enhanced MLSE module 326 may be a hard slice decision or a soft level. Also, any symbol reliability indication from the inner decoder 322 or the outer decoder 324 may be used to change the step size of the equalizer LMS algorithm. (See the Guide to the Use of the ATSC Digital Television Standard A/54.)
An optional predetermined coded training sequence may be included in a specified portion of the first RVSB segment of a data field. This sequence is known in advance by both the transmitter and receiver. During the time the decoded training sequence is output from the outer decoder 324, the input to the enhanced MLSE module 326 is switched to a stored version of the decoded training sequence.
Certain modifications of the present invention have been discussed above. Other modifications will occur to those practicing in the art of the present invention. For example, although the standard ATSC receiver 12 and the robust VSB receiver 14 are shown above as separate receivers, the functions of the standard ATSC receiver 12 and the robust VSB receiver 14 can be combined in two data paths of a single receiver capable of decoding both types of data (ATSC data and robust VSB data).
Accordingly, the description of the present invention is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which are within the scope of the appended claims is reserved.

Claims (26)

1. An apparatus comprising:
an input arranged to provide a received signal having a frame structure in which a frame comprises a plurality of data segments and a frame synch segment;
a first convolutional deinterleaver characterized by deinterleave parameters B(1), M(1) and N(1), wherein the first convolutional deinterleaver is arranged to convolutionally deinterleave the received signal in accordance with the deinterleave parameters B(1), M(1) and N(1) to produce a first deinterleaved signal, wherein the first convolutional deinterleaver comprises B(1) paths, wherein M(1) is a unit delay through a path, and wherein N(1)=M(1)B(1); and,
a second convolutional deinterleaver characterized by deinterleave parameters B(2), M(2) and N(2), wherein the second convolutional deinterleaver is arranged to convolutionally deinterleave the first deinterleaved signal in accordance with the deinterleave parameters B(2), M(2) and N(2) to produce a second deinterleaved signal, wherein the second convolutional deinterleaver comprises B(2) paths, wherein M(2) is a unit delay through a path, wherein N(2)=M(2)B(2), and wherein each of the first and second convolutional deinterleavers is synchronized to the frame synch segment.
2. The apparatus of claim 1 wherein B(1)=52, wherein M(1)=4, wherein N(1)=208, wherein B(2)=46, wherein M(2)=4, and wherein N(2)=184.
3. The apparatus of claim 1 wherein B(2) is an integer, is constant from frame to frame, and is equal to the number of bytes BY in a frame of the second deinterleaved signal divided by an integer I, and wherein both BY and I can vary from frame to frame.
4. The apparatus of claim 3 wherein B(2)=46.
5. The apparatus of claim 1 wherein each of M(2) and B(2) is a constant integer, wherein M(2)B(2) is equal to the number of bytes BY in a frame of the second deinterleaved signal divided by an integer I, and wherein both BY and I can vary, from frame to frame.
6. The apparatus of claim 5 wherein M(2)=4, and wherein B(2)=46.
7. The apparatus of claim 1 wherein MCi)=M(2).
8. The apparatus of claim 1 wherein the deinterleave parameters B(1) and B(2) have different values.
9. The apparatus of claim 1 further comprising a decoder arrangement operating to effectively decode the received signal at a decoding rate of 2/3 times K/L, wherein K/L<1.
10. The apparatus of claim 9 wherein K/L=1/2.
11. The apparatus of claim 9 wherein K/L=1/4.
12. The apparatus of claim 1 further comprising a decoder arrangement operating to effectively decode the received signal at decoding rates of 2/3 times K/L and of 2/3 times P/Q, wherein K/L≠P/Q, wherein K/L<1, and wherein P/Q<1.
13. The apparatus of claim 12 wherein K/L=1/2, and wherein P/Q=1/4.
14. An apparatus comprising:
a first convolutional interleaver characterized by interleave parameters B(1), M(1) and N(1), wherein the first convolutional interleaver is arranged to convolutionally interleave data to be transmitted in accordance with the interleave parameters B(1), M(1) and N(1) to produce a first interleaved signal, wherein the first convolutional interleaver comprises B(1) paths, wherein M(1) is a unit delay through a path, and wherein N(1)=M(1)B(1);
a second convolutional interleaver characterized by interleave parameters B(2), M(2) and N(2), wherein the second convolutional interleaver is arranged to convolutionally interleave the first interleaved signal in accordance with the interleave parameters B(2), M(2) and N(2) to produce a second interleaved signal, wherein the second convolutional interleaver comprises B(2) paths, wherein M(2) is a unit delay through a path, and wherein N(2)=M(2)B(2), and wherein each of the first and second convolutional interleavers is synchronized to a frame synch segment; and,
a transmitter arranged to transmit the second interleaved signal in a frame structure in which a frame comprises a plurality of data segments and the frame synch segment.
15. The apparatus of claim 14 wherein B(1)=46, wherein M(1)=4, wherein N(1)=184, wherein B(2)=52, wherein M(2)=4, and wherein N(2)=208.
16. The apparatus of claim 14 wherein B(1) is an integer, is constant from frame to frame, and is equal to the number of bytes BY in a frame interleaved by the first interleaver divided by an integer I, and wherein both BY and I can vary from frame to frame.
17. The apparatus of claim 16 wherein B(1)=46.
18. The apparatus of claim 14 wherein each of M(1) and B(1) is an integer and is constant from frame to frame, wherein M(1)B(1) is equal to the number of bytes BY in a frame interleaved by the first interleaver divided by an integer I, and wherein both BY and I can vary from frame to frame.
19. The apparatus of claim 18 wherein M(1)=4, and wherein B(1)=46.
20. The apparatus of claim 14 wherein M(1)=M(2).
21. The apparatus of claim 14 wherein the interleave parameters B(1) and B(2) have different values.
22. The apparatus of claim 14 wherein the second convolutional interleaver includes an encoder arrangement operating to effectively encode the first interleaved signal at an encoding rate of 2/3 times K/L, wherein K/L<1.
23. The apparatus of claim 22 wherein K/L=1/2.
24. The apparatus of claim 22 wherein K/L=1/4.
25. The apparatus of claim 14 wherein the second convolutional interleaver includes an encoder arrangement operating to effectively encode the first interleaved signal at encoding rates of 2/3 times K/L and of 2/3 times P/Q, wherein K/L≠P/Q, wherein K/L<1, and wherein P/Q<1.
26. The apparatus of claim 25 wherein K/L=1/2, and wherein P/Q=1/4.
US10/763,488 2000-04-18 2004-01-23 Robust digital communication system Expired - Lifetime US7215714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/763,488 US7215714B2 (en) 2000-04-18 2004-01-23 Robust digital communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US19801400P 2000-04-18 2000-04-18
US25547600P 2000-12-13 2000-12-13
US09/804,261 US6996133B2 (en) 2000-04-18 2001-03-13 Digital communication system for transmitting and receiving robustly encoded data
US10/763,488 US7215714B2 (en) 2000-04-18 2004-01-23 Robust digital communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/804,261 Continuation US6996133B2 (en) 2000-04-18 2001-03-13 Digital communication system for transmitting and receiving robustly encoded data

Publications (2)

Publication Number Publication Date
US20040160991A1 US20040160991A1 (en) 2004-08-19
US7215714B2 true US7215714B2 (en) 2007-05-08

Family

ID=27393818

Family Applications (11)

Application Number Title Priority Date Filing Date
US09/804,261 Expired - Lifetime US6996133B2 (en) 2000-04-18 2001-03-13 Digital communication system for transmitting and receiving robustly encoded data
US10/763,488 Expired - Lifetime US7215714B2 (en) 2000-04-18 2004-01-23 Robust digital communication system
US11/076,560 Expired - Lifetime US7519088B2 (en) 2000-04-18 2005-03-09 Robust digital communication system
US11/930,746 Expired - Fee Related US8213464B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,257 Expired - Lifetime US7975204B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,269 Active 2024-07-13 US8213465B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,323 Active 2024-06-24 US8184666B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,224 Expired - Lifetime US8238381B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,104 Expired - Lifetime US7558297B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,357 Active 2024-09-25 US8640001B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US12/371,688 Expired - Fee Related US8081666B2 (en) 2000-04-18 2009-02-16 Robust digital communication system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/804,261 Expired - Lifetime US6996133B2 (en) 2000-04-18 2001-03-13 Digital communication system for transmitting and receiving robustly encoded data

Family Applications After (9)

Application Number Title Priority Date Filing Date
US11/076,560 Expired - Lifetime US7519088B2 (en) 2000-04-18 2005-03-09 Robust digital communication system
US11/930,746 Expired - Fee Related US8213464B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,257 Expired - Lifetime US7975204B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,269 Active 2024-07-13 US8213465B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,323 Active 2024-06-24 US8184666B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,224 Expired - Lifetime US8238381B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,104 Expired - Lifetime US7558297B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US11/931,357 Active 2024-09-25 US8640001B2 (en) 2000-04-18 2007-10-31 Robust digital communication system
US12/371,688 Expired - Fee Related US8081666B2 (en) 2000-04-18 2009-02-16 Robust digital communication system

Country Status (11)

Country Link
US (11) US6996133B2 (en)
KR (1) KR100773448B1 (en)
CN (1) CN1275444C (en)
AR (1) AR029062A1 (en)
AU (1) AU2001249484A1 (en)
BR (1) BR0110135A (en)
CA (1) CA2406136C (en)
HK (1) HK1055862A1 (en)
MX (1) MXPA02010200A (en)
TW (1) TW508948B (en)
WO (1) WO2001078496A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050041748A1 (en) * 2000-09-26 2005-02-24 Lg Electronics Inc. Digital television system
US20060002464A1 (en) * 2001-04-18 2006-01-05 Lg Electronics Inc. VSB communication system
US20070217499A1 (en) * 2006-03-15 2007-09-20 Limberg Allen Leroy Robust DTV signals that can overcome burst errors up to 1040 bytes or more in length
US20080222485A1 (en) * 2007-02-27 2008-09-11 Jian Cheng Error correction methods and apparatus for mobile broadcast services
US7613246B2 (en) 2000-10-02 2009-11-03 Lg Electronics Inc. VSB transmission system
US7616688B2 (en) 2000-12-28 2009-11-10 Lg Electronics Inc. VSB transmission system for processing supplemental transmission data
US7619690B2 (en) 2001-01-19 2009-11-17 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US7631340B2 (en) 2001-04-18 2009-12-08 Lg Electronics Inc. VSB communication system
US20100232495A1 (en) * 2007-05-16 2010-09-16 Citta Richard W Apparatus and method for encoding and decoding signals
US20100232544A1 (en) * 2009-03-12 2010-09-16 Samsung Electronics Co., Ltd. Method for encoding control information in a communication system, and method and apparatus for transmitting and receiving the control information
US20100296576A1 (en) * 2007-10-15 2010-11-25 Thomson Licensing Preamble for a digital television system
US8908773B2 (en) 2007-10-15 2014-12-09 Thomson Licensing Apparatus and method for encoding and decoding signals

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996133B2 (en) * 2000-04-18 2006-02-07 Zenith Electronics Corporation Digital communication system for transmitting and receiving robustly encoded data
US7187698B2 (en) * 2001-03-13 2007-03-06 Zenith Electronics Corporation Robust digital communication system
US7675994B2 (en) * 2001-04-02 2010-03-09 Koninklijke Philips Electronics N.V. Packet identification mechanism at the transmitter and receiver for an enhanced ATSC 8-VSB system
US7206352B2 (en) * 2001-04-02 2007-04-17 Koninklijke Philips Electronics N.V. ATSC digital television system
KR100734351B1 (en) * 2001-04-20 2007-07-03 엘지전자 주식회사 Digital broadcasting transmit system
KR100510679B1 (en) 2003-03-21 2005-08-31 엘지전자 주식회사 Digital VSB transmitting system and enhanced data multiplexing method in a VSB transmitting system
JP4322210B2 (en) * 2002-09-06 2009-08-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Packet insertion mechanism for improved ATSC digital television system
WO2004043073A1 (en) * 2002-11-04 2004-05-21 Koninklijke Philips Electronics N.V. Configuration for implementing enhanced vsb on the studio side
US7197685B2 (en) * 2003-01-02 2007-03-27 Samsung Electronics, Co., Ltd. Robust signal transmission in digital television broadcasting
US7324565B2 (en) * 2003-05-14 2008-01-29 Nokia Corporation Method and device for channel multiplexing or demultiplexing
US7599348B2 (en) 2003-11-04 2009-10-06 Lg Electronics Inc. Digital E8-VSB reception system and E8-VSB data demultiplexing method
KR101050570B1 (en) * 2003-12-03 2011-07-19 삼성전자주식회사 Apparatus and method for data transmission and reception for performance improvement in mobile communication system using space-time trellis code
US7991056B2 (en) 2004-02-13 2011-08-02 Broadcom Corporation Method and system for encoding a signal for wireless communications
KR100657819B1 (en) * 2004-04-01 2006-12-14 한국전자통신연구원 Double Stream Structure Digital Television Transmission and Receiving Method using Hybrid of E-8VSB, E-4VSB and P-2VSB
KR100757469B1 (en) * 2004-06-07 2007-09-11 삼성전자주식회사 Digital broadcasting transmission/reception system utilizing null packet and TRS code to improve receiving performance and signal processing method thereof
KR101165379B1 (en) 2004-07-15 2012-07-17 삼성전자주식회사 Digital broadcasting transmission/reception system having improved receiving performance and signal processing method thereof
WO2006031077A1 (en) * 2004-09-15 2006-03-23 Electronics And Telecommunications Research Institute Digital television transmission and receiving apparatus and method using 1/4 rate coded robust data
US7733972B2 (en) * 2004-10-26 2010-06-08 Broadcom Corporation Trellis decoder for decoding data stream including symbols coded with multiple convolutional codes
US7532677B2 (en) * 2005-03-02 2009-05-12 Rohde & Schwarz Gmbh & Co., Kg Apparatus, systems and methods for producing coherent symbols in a single frequency network
US7822139B2 (en) * 2005-03-02 2010-10-26 Rohde & Schwarz Gmbh & Co. Kg Apparatus, systems, methods and computer products for providing a virtual enhanced training sequence
US7532857B2 (en) * 2005-03-02 2009-05-12 Rohde & Schwarz Gmbh & Co. Kg Apparatus, systems and methods for providing time diversity for mobile broadcast services
MX2007010579A (en) * 2005-03-02 2007-11-06 Rohde & Schwarz Apparatus, systems and methods for providing enhancements to atsc networks using synchronous vestigial sideband (vsb) frame slicing.
US20060245516A1 (en) * 2005-03-02 2006-11-02 Rohde & Schwarz, Inc. Apparatus, systems and methods for providing in-band atsc vestigial sideband signaling or out-of-band signaling
CA2605969C (en) * 2005-04-20 2014-12-02 Rohde & Schwarz Gmbh & Co. Kg Apparatus, systems and methods for providing in-band atsc vestigial sideband signaling or out-of-band signaling
US8042188B2 (en) * 2005-07-15 2011-10-18 Sony Corporation Information processing apparatus, information recording medium manufacturing apparatus, information recording medium, method and computer program
US7804860B2 (en) * 2005-10-05 2010-09-28 Lg Electronics Inc. Method of processing traffic information and digital broadcast system
US7840868B2 (en) * 2005-10-05 2010-11-23 Lg Electronics Inc. Method of processing traffic information and digital broadcast system
KR100740202B1 (en) * 2005-10-21 2007-07-18 삼성전자주식회사 Dual transmission stream generating device and method thereof
KR100797176B1 (en) * 2005-10-21 2008-01-23 삼성전자주식회사 Digital broadcasting system and method thereof
CN101702776A (en) * 2005-12-22 2010-05-05 三星电子株式会社 Digital broadcasting transmitter, turbo stream processing method thereof, and digital broadcasting system having the same
KR101208509B1 (en) * 2006-01-20 2012-12-05 엘지전자 주식회사 Digital broadcasting system and processing method
US7620102B2 (en) * 2006-02-06 2009-11-17 Samsung Electronics Co., Ltd. Digital broadcasting transmission and reception system
WO2007091779A1 (en) 2006-02-10 2007-08-16 Lg Electronics Inc. Digital broadcasting receiver and method of processing data
US7664281B2 (en) * 2006-03-04 2010-02-16 Starkey Laboratories, Inc. Method and apparatus for measurement of gain margin of a hearing assistance device
US7876750B2 (en) * 2006-04-04 2011-01-25 Samsung Electronics Co., Ltd. Digital broadcasting system and data processing method thereof
WO2007126196A1 (en) 2006-04-29 2007-11-08 Lg Electronics Inc. Digital broadcasting system and method of processing data
WO2007136166A1 (en) 2006-05-23 2007-11-29 Lg Electronics Inc. Digital broadcasting system and method of processing data
WO2008007846A1 (en) * 2006-07-11 2008-01-17 Lg Electronics Inc. Channel equarlizing method and apparatus, and receiving system
US7873104B2 (en) 2006-10-12 2011-01-18 Lg Electronics Inc. Digital television transmitting system and receiving system and method of processing broadcasting data
CA2667991C (en) 2007-02-01 2018-05-01 Rohde & Schwarz Gmbh & Co. Kg Systems, apparatus, methods and computer program products for providing atsc interoperability
KR101414472B1 (en) * 2007-02-02 2014-07-04 삼성전자주식회사 Multi transport stream generating device and method, digital broadcasting transmission/receiption device and method
KR101285887B1 (en) 2007-03-26 2013-07-11 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
KR101253185B1 (en) 2007-03-26 2013-04-10 엘지전자 주식회사 Digital broadcasting system and data processing method
KR101285888B1 (en) 2007-03-30 2013-07-11 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
KR20080090784A (en) * 2007-04-06 2008-10-09 엘지전자 주식회사 A controlling method and a receiving apparatus for electronic program information
KR20080092501A (en) * 2007-04-12 2008-10-16 엘지전자 주식회사 A controlling method and a receiving apparatus for mobile service data
KR101405966B1 (en) * 2007-06-26 2014-06-20 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
KR101456002B1 (en) 2007-06-26 2014-11-03 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
KR101496346B1 (en) * 2007-06-28 2015-03-02 삼성전자주식회사 Response to ATSC Mobile/Handheld RFP A-VSB MCAST, Physical Layer for ATSC-M/HH
BRPI0813991A2 (en) * 2007-06-28 2017-08-08 Samsung Electronics Co Ltd ATSC MOBILE / PORTABLE RFP A-VSB MCAST RESPONSE AND A-VSB PHYSICAL AND LINK LAYERS WITH SINGLE FREQUENCY NETWORK
US8065594B2 (en) * 2007-06-29 2011-11-22 Limberg Allen Leroy 8VSB DTV signals with PCCC and subsequent trellis coding
US8433973B2 (en) 2007-07-04 2013-04-30 Lg Electronics Inc. Digital broadcasting system and method of processing data
WO2009005326A2 (en) 2007-07-04 2009-01-08 Lg Electronics Inc. Digital broadcasting system and method of processing data
KR20090012180A (en) * 2007-07-28 2009-02-02 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
WO2009028857A2 (en) 2007-08-24 2009-03-05 Lg Electronics Inc. Digital broadcasting system and method of processing data in digital broadcasting system
CN101785302B (en) 2007-08-24 2013-07-17 Lg电子株式会社 Digital broadcasting system and method of processing data in digital broadcasting system
US7965778B2 (en) 2007-08-24 2011-06-21 Lg Electronics Inc. Digital broadcasting system and method of processing data in digital broadcasting system
CN101785301B (en) 2007-08-24 2012-06-20 Lg电子株式会社 Digital broadcasting system and method of processing data in digital broadcasting system
DE102008017290A1 (en) * 2007-12-11 2009-06-18 Rohde & Schwarz Gmbh & Co. Kg Method and device for forming a common data stream, in particular according to the ATSC standard
DE102007059959B4 (en) * 2007-12-12 2020-01-02 Rohde & Schwarz Gmbh & Co. Kg Method and system for transmitting data between a central radio station and at least one transmitter
US8237863B2 (en) * 2008-01-12 2012-08-07 Huaya Microelectronics Adaptive gain and offset control in a digital video decoder
US8355458B2 (en) * 2008-06-25 2013-01-15 Rohde & Schwarz Gmbh & Co. Kg Apparatus, systems, methods and computer program products for producing a single frequency network for ATSC mobile / handheld services
DE102008056703A1 (en) * 2008-07-04 2010-01-07 Rohde & Schwarz Gmbh & Co. Kg Method and system for time synchronization between a central office and multiple transmitters
DE102008059028B4 (en) * 2008-10-02 2021-12-02 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Method and device for generating a transport data stream with image data
US8121232B2 (en) * 2008-11-06 2012-02-21 Lg Electronics Inc. Transmitting/receiving system and method of processing broadcast signal in transmitting/receiving system
EP2342854B1 (en) * 2008-11-06 2013-01-30 Rohde & Schwarz GmbH & Co. KG Method and system for synchronized mapping of data packets in an atsc data stream
WO2010107259A2 (en) * 2009-03-18 2010-09-23 엘지전자 주식회사 Transmitting/receiving system and broadcast signal processing method
EP2234357B1 (en) * 2009-03-21 2016-07-27 Rohde & Schwarz GmbH & Co. KG Method for improving the data rate of mobile data and the quality of channel estimation in an ATSC-M/H transport data stream
DE102009025219A1 (en) * 2009-04-07 2010-10-14 Rohde & Schwarz Gmbh & Co. Kg Method and device for continuously adapting coding parameters to a variable payload data rate
DE102009057363B4 (en) 2009-10-16 2013-04-18 Rohde & Schwarz Gmbh & Co. Kg Method and device for the efficient transmission of nationwide and regionally broadcast program and service data
US8677209B2 (en) * 2009-11-19 2014-03-18 Lsi Corporation Subwords coding using different encoding/decoding matrices
US8621289B2 (en) 2010-07-14 2013-12-31 Lsi Corporation Local and global interleaving/de-interleaving on values in an information word
US8402324B2 (en) * 2010-09-27 2013-03-19 Lsi Corporation Communications system employing local and global interleaving/de-interleaving
US8976876B2 (en) 2010-10-25 2015-03-10 Lsi Corporation Communications system supporting multiple sector sizes
US8782320B2 (en) 2010-11-09 2014-07-15 Lsi Corporation Multi-stage interconnection networks having fixed mappings
US8588223B2 (en) 2010-11-09 2013-11-19 Lsi Corporation Multi-stage interconnection networks having smaller memory requirements
US8989021B2 (en) 2011-01-20 2015-03-24 Rohde & Schwarz Gmbh & Co. Kg Universal broadband broadcasting
US20120248001A1 (en) 2011-03-29 2012-10-04 Nashner Michael S Marking of Fabric Carrying Case for Portable Electronic Device
US9203757B2 (en) 2012-03-22 2015-12-01 Texas Instruments Incorporated Network throughput using multiple reed-solomon blocks
US10402232B2 (en) * 2013-02-11 2019-09-03 Wind River Systems, Inc. Method and system for deterministic multicore execution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740474A2 (en) 1995-04-27 1996-10-30 Oki Electric Industry Co., Ltd. Video coding and decoding method and system with teletext capability
EP0748124A2 (en) 1995-06-07 1996-12-11 Discovision Associates Signal processing apparatus and method
US5940863A (en) 1996-07-26 1999-08-17 Zenith Electronics Corporation Apparatus for de-rotating and de-interleaving data including plural memory devices and plural modulo memory address generators
US5946357A (en) * 1997-01-17 1999-08-31 Telefonaktiebolaget L M Ericsson Apparatus, and associated method, for transmitting and receiving a multi-stage, encoded and interleaved digital communication signal
US6404360B1 (en) * 1999-11-04 2002-06-11 Canon Kabushiki Kaisha Interleaving method for the turbocoding of data
US6608870B1 (en) * 1999-05-27 2003-08-19 Zenith Electronics Corporation Data frame for 8 MHZ channels
US20040261002A1 (en) * 2000-01-28 2004-12-23 Eidson Donald Brian Iterative decoder employing multiple external code error checks to lower the error floor

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US540248A (en) * 1895-06-04 Car-brake
EP0156440B1 (en) 1984-03-24 1990-01-24 Koninklijke Philips Electronics N.V. An information transmission method with error correction for user words, an error correcting decoding method for such user words, an apparatus for information transmission for use with the method, a device for information decoding for use with the method and an apparatus for use with such device
JP3356442B2 (en) * 1991-06-04 2002-12-16 株式会社東芝 Data recording / reproducing device
US5263051A (en) 1991-07-05 1993-11-16 Codex Corporation Device and method of interleaving for a trellis precoding system
US5373511A (en) * 1992-05-04 1994-12-13 Motorola, Inc. Method for decoding a reed solomon encoded signal with inner code and apparatus for doing same
US5475716A (en) * 1994-01-18 1995-12-12 Gi Corporation Method for communicating block coded digital data with associated synchronization/control data
US5511096A (en) 1994-01-18 1996-04-23 Gi Corporation Quadrature amplitude modulated data for standard bandwidth television channel
US5489947A (en) 1994-06-17 1996-02-06 Thomson Consumer Electronics, Inc. On screen display arrangement for a digital video signal processing system
US5903324A (en) 1994-06-30 1999-05-11 Thomson Multimedia S.A. Transport processor interface for a digital television system
FR2725257B1 (en) 1994-10-04 1996-11-29 Valeo TORSION DAMPING DEVICE WITH PRE-DAMPING CASSETTE
US6112324A (en) * 1996-02-02 2000-08-29 The Arizona Board Of Regents Acting On Behalf Of The University Of Arizona Direct access compact disc, writing and reading method and device for same
US5923711A (en) * 1996-04-02 1999-07-13 Zenith Electronics Corporation Slice predictor for a signal receiver
ATE216168T1 (en) * 1996-07-30 2002-04-15 Tiernan Communications Inc SYSTEM AND METHOD FOR ENCODING AND COMPRESSING DIGITAL VERTICAL BLANKING TIME SIGNALS
GB9622539D0 (en) * 1996-10-30 1997-01-08 Discovision Ass Galois field multiplier for reed-solomon decoder
CA2220740C (en) * 1996-11-12 2002-03-19 Samsung Electronics Co., Ltd. Symbol decoding apparatus with plural data slicers and an adaptive ntsc co-channel interference filter
US5831690A (en) * 1996-12-06 1998-11-03 Rca Thomson Licensing Corporation Apparatus for formatting a packetized digital datastream suitable for conveying television information
US6490243B1 (en) * 1997-06-19 2002-12-03 Kabushiki Kaisha Toshiba Information data multiplex transmission system, its multiplexer and demultiplexer and error correction encoder and decoder
US6549242B1 (en) * 1997-04-04 2003-04-15 Harris Corporation Combining adjacent TV channels for transmission by a common antenna
US6118825A (en) 1997-08-11 2000-09-12 Sony Corporation Digital data transmission device and method, digital data demodulation device and method, and transmission medium
US6057877A (en) * 1997-09-19 2000-05-02 Samsung Electronics Co., Ltd. NTSC interference detectors using pairs of comb filters with zero-frequency responses, as for DTV receivers
US5991337A (en) * 1997-11-24 1999-11-23 3Com Corporation Method and apparatus for improving the signal-to-noise ratio of low-magnitude input signals in modems
US6519304B1 (en) 1998-03-13 2003-02-11 Samsung Electronics Co., Ltd. Circuitry operative on selected symbol slicing results for synchronizing data fields in a digital television receiver
US6108049A (en) * 1998-03-13 2000-08-22 Samsung Electronics Co., Ltd. Circuitry operative on symbol decoding results for synchronizing data fields in a digital television receiver
US6449325B1 (en) 1998-03-13 2002-09-10 Samsung Electronics Co., Ltd. Circuitry operative on selected symbol slicing results for synchronizing data fields in a digital television receiver
US6788710B1 (en) * 1998-03-19 2004-09-07 Thomson Licensing S.A. Auxiliary data insertion in a transport datastream
US6865747B1 (en) * 1999-04-01 2005-03-08 Digital Video Express, L.P. High definition media storage structure and playback mechanism
US6681362B1 (en) 2000-03-06 2004-01-20 Sarnoff Corporation Forward error correction for video signals
US6996133B2 (en) * 2000-04-18 2006-02-07 Zenith Electronics Corporation Digital communication system for transmitting and receiving robustly encoded data
US7187698B2 (en) * 2001-03-13 2007-03-06 Zenith Electronics Corporation Robust digital communication system
US7206352B2 (en) * 2001-04-02 2007-04-17 Koninklijke Philips Electronics N.V. ATSC digital television system
US7675994B2 (en) 2001-04-02 2010-03-09 Koninklijke Philips Electronics N.V. Packet identification mechanism at the transmitter and receiver for an enhanced ATSC 8-VSB system
US20040028076A1 (en) * 2001-06-30 2004-02-12 Strolle Christopher H Robust data extension for 8vsb signaling
US6973137B2 (en) * 2001-12-03 2005-12-06 Koninklijke Philips Electronics N.V. Apparatus and method for generating robust ATSC 8-VSB bit streams

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740474A2 (en) 1995-04-27 1996-10-30 Oki Electric Industry Co., Ltd. Video coding and decoding method and system with teletext capability
US5796441A (en) 1995-04-27 1998-08-18 Oki Electric Industry Co., Ltd. Video coding and decoding system with teletext capability
EP0748124A2 (en) 1995-06-07 1996-12-11 Discovision Associates Signal processing apparatus and method
US5940863A (en) 1996-07-26 1999-08-17 Zenith Electronics Corporation Apparatus for de-rotating and de-interleaving data including plural memory devices and plural modulo memory address generators
US5946357A (en) * 1997-01-17 1999-08-31 Telefonaktiebolaget L M Ericsson Apparatus, and associated method, for transmitting and receiving a multi-stage, encoded and interleaved digital communication signal
US6608870B1 (en) * 1999-05-27 2003-08-19 Zenith Electronics Corporation Data frame for 8 MHZ channels
US6404360B1 (en) * 1999-11-04 2002-06-11 Canon Kabushiki Kaisha Interleaving method for the turbocoding of data
US20040261002A1 (en) * 2000-01-28 2004-12-23 Eidson Donald Brian Iterative decoder employing multiple external code error checks to lower the error floor

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050041748A1 (en) * 2000-09-26 2005-02-24 Lg Electronics Inc. Digital television system
US20050041749A1 (en) * 2000-09-26 2005-02-24 Lg Electronics Inc. Digital television system
US20050089103A1 (en) * 2000-09-26 2005-04-28 Lg Electronics Inc. Digital television system
US20050129132A1 (en) * 2000-09-26 2005-06-16 Lg Electronics Inc. Digital television system
US9756334B2 (en) 2000-09-26 2017-09-05 Lg Electronics Inc. Digital television system
US8743971B2 (en) 2000-09-26 2014-06-03 Lg Electronics Inc. Digital television system
US8428150B2 (en) 2000-09-26 2013-04-23 Lg Electronics Inc. Digital television system
US7474703B2 (en) * 2000-09-26 2009-01-06 Lg Electronics Inc. Digital television system
US7474702B2 (en) * 2000-09-26 2009-01-06 Lg Electronics Inc. Digital television system
US7706449B2 (en) * 2000-09-26 2010-04-27 Lg Electronics Inc. Digital television system
US7742530B2 (en) 2000-09-26 2010-06-22 Lg Electronics Inc. Digital television system
US20100275095A1 (en) * 2000-09-26 2010-10-28 In Hwan Choi Digital television system
US7894549B2 (en) 2000-10-02 2011-02-22 Lg Electronics Inc. VSB transmission system
US20100017689A1 (en) * 2000-10-02 2010-01-21 In Hwan Choi Vsb transmission system
US8320485B2 (en) 2000-10-02 2012-11-27 Lg Electronics Inc. VSB transmission system
US7613246B2 (en) 2000-10-02 2009-11-03 Lg Electronics Inc. VSB transmission system
US20100007785A1 (en) * 2000-10-02 2010-01-14 In Hwan Choi Vsb transmission system
US8059718B2 (en) 2000-12-28 2011-11-15 Lg Electronics Inc. VSB transmission system for processing supplemental transmission data
US8130833B2 (en) 2000-12-28 2012-03-06 Lg Electronics Inc. VSB transmission system for processing supplemental transmission data
US7616688B2 (en) 2000-12-28 2009-11-10 Lg Electronics Inc. VSB transmission system for processing supplemental transmission data
US7911539B2 (en) 2001-01-19 2011-03-22 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US20100278274A1 (en) * 2001-01-19 2010-11-04 Lg Electronics Inc. Vsb reception system with enhanced signal detection for processing supplemental data
US20100073571A1 (en) * 2001-01-19 2010-03-25 Lg Electronics Inc. Vsb reception system with enhanced signal detection for processing supplemental data
US7643093B2 (en) 2001-01-19 2010-01-05 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US20110129019A1 (en) * 2001-01-19 2011-06-02 In Hwan Choi Vsb reception system with enhanced signal detection for processing supplemental data
US7630019B2 (en) 2001-01-19 2009-12-08 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US7755704B2 (en) 2001-01-19 2010-07-13 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US7782404B2 (en) 2001-01-19 2010-08-24 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US7787053B2 (en) 2001-01-19 2010-08-31 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US7787054B2 (en) 2001-01-19 2010-08-31 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US8164691B2 (en) 2001-01-19 2012-04-24 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US7619689B2 (en) 2001-01-19 2009-11-17 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US7649572B2 (en) 2001-01-19 2010-01-19 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US7619690B2 (en) 2001-01-19 2009-11-17 Lg Electronics Inc. VSB reception system with enhanced signal detection for processing supplemental data
US7634006B2 (en) 2001-04-18 2009-12-15 Lg Electronics Inc. VSB communication system
US20060002464A1 (en) * 2001-04-18 2006-01-05 Lg Electronics Inc. VSB communication system
US7856651B2 (en) 2001-04-18 2010-12-21 Lg Electronics Inc. VSB communication system
US20110007822A1 (en) * 2001-04-18 2011-01-13 Lg Electronics Inc. Vsb communication system
US7634003B2 (en) 2001-04-18 2009-12-15 Lg Electronics Inc. VSB communication system
US7636391B2 (en) 2001-04-18 2009-12-22 Lg Electronics Inc. VSB communication system
US7712124B2 (en) 2001-04-18 2010-05-04 Lg Electronics Inc. VSB communication system
US7631340B2 (en) 2001-04-18 2009-12-08 Lg Electronics Inc. VSB communication system
US8179980B2 (en) * 2006-03-15 2012-05-15 Samsung Electronics Co., Ltd. Robust DTV signals that can overcome burst errors up to 1040 bytes or more in length
US20070217499A1 (en) * 2006-03-15 2007-09-20 Limberg Allen Leroy Robust DTV signals that can overcome burst errors up to 1040 bytes or more in length
US8347188B2 (en) * 2007-02-27 2013-01-01 Spreadtrum Communication (Shanghai) Co. Ltd. Error correction methods and apparatus for mobile broadcast services
US20080222485A1 (en) * 2007-02-27 2008-09-11 Jian Cheng Error correction methods and apparatus for mobile broadcast services
US8848781B2 (en) 2007-05-16 2014-09-30 Thomson Licensing Apparatus and method for encoding and decoding signals
US20100246664A1 (en) * 2007-05-16 2010-09-30 Citta Richard W Apparatus and method for encoding and decoding signals
US20100238995A1 (en) * 2007-05-16 2010-09-23 Citta Richard W Apparatus and method for encoding and decoding signals
US20100246663A1 (en) * 2007-05-16 2010-09-30 Thomson Licensing, LLC Apparatus and method for encoding and decoding signals
US8873620B2 (en) 2007-05-16 2014-10-28 Thomson Licensing Apparatus and method for encoding and decoding signals
US8964831B2 (en) 2007-05-16 2015-02-24 Thomson Licensing Apparatus and method for encoding and decoding signals
US20100232495A1 (en) * 2007-05-16 2010-09-16 Citta Richard W Apparatus and method for encoding and decoding signals
US20100296576A1 (en) * 2007-10-15 2010-11-25 Thomson Licensing Preamble for a digital television system
US8908773B2 (en) 2007-10-15 2014-12-09 Thomson Licensing Apparatus and method for encoding and decoding signals
US9414110B2 (en) 2007-10-15 2016-08-09 Thomson Licensing Preamble for a digital television system
US20100232544A1 (en) * 2009-03-12 2010-09-16 Samsung Electronics Co., Ltd. Method for encoding control information in a communication system, and method and apparatus for transmitting and receiving the control information
US9054849B2 (en) * 2009-03-12 2015-06-09 Samsung Electronics Co., Ltd Method for encoding control information in a communication system, and method and apparatus for transmitting and receiving the control information

Also Published As

Publication number Publication date
CA2406136C (en) 2015-01-20
CN1423883A (en) 2003-06-11
CN1275444C (en) 2006-09-13
WO2001078496A3 (en) 2002-03-28
US8184666B2 (en) 2012-05-22
BR0110135A (en) 2003-01-07
WO2001078496A2 (en) 2001-10-25
US8213464B2 (en) 2012-07-03
US6996133B2 (en) 2006-02-07
KR100773448B1 (en) 2007-11-05
AU2001249484A1 (en) 2001-10-30
AR029062A1 (en) 2003-06-04
US20080107171A1 (en) 2008-05-08
US20050152411A1 (en) 2005-07-14
US20080089365A1 (en) 2008-04-17
US20120033740A1 (en) 2012-02-09
US7558297B2 (en) 2009-07-07
US8213465B2 (en) 2012-07-03
US7519088B2 (en) 2009-04-14
KR20020093930A (en) 2002-12-16
US8081666B2 (en) 2011-12-20
TW508948B (en) 2002-11-01
MXPA02010200A (en) 2003-05-23
US20090180535A1 (en) 2009-07-16
US20090024897A1 (en) 2009-01-22
US8640001B2 (en) 2014-01-28
US20080092012A1 (en) 2008-04-17
US20040160991A1 (en) 2004-08-19
HK1055862A1 (en) 2004-01-21
US20020001349A1 (en) 2002-01-03
US7975204B2 (en) 2011-07-05
US20080089415A1 (en) 2008-04-17
US20080089430A1 (en) 2008-04-17
CA2406136A1 (en) 2001-10-25
US8238381B2 (en) 2012-08-07

Similar Documents

Publication Publication Date Title
US7215714B2 (en) Robust digital communication system
US7277505B2 (en) Mapping arrangement for digital communication system
US6963618B2 (en) Enhanced slice prediction feedback
JP5205269B2 (en) Digital broadcasting system and method
US8213466B2 (en) Robust digital communication system
US8385437B2 (en) Transport stream generating device, transmitting device, receiving device, and a digital broadcast system having the same, and method thereof
KR100891693B1 (en) Mapping arrangement for digital communication system
WO2001078494A2 (en) Mapping method for vsb and atsc in a receiver
KR101393016B1 (en) Digital broadcast receiver and method for processing stream thereof
KR101358292B1 (en) Digital broadcast receiver and method for processing stream thereof

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12