US7432728B2 - Blade probe and blade probe card - Google Patents

Blade probe and blade probe card Download PDF

Info

Publication number
US7432728B2
US7432728B2 US11/711,319 US71131907A US7432728B2 US 7432728 B2 US7432728 B2 US 7432728B2 US 71131907 A US71131907 A US 71131907A US 7432728 B2 US7432728 B2 US 7432728B2
Authority
US
United States
Prior art keywords
blade
blades
ground
probe
probe card
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US11/711,319
Other versions
US20070210815A1 (en
Inventor
Habib Kilicaslan
David F. McDevitt
Bahadir Tunaboylu
David T. Beatson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SV PROBE Inc
Original Assignee
SV Probe Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SV Probe Pte Ltd filed Critical SV Probe Pte Ltd
Priority to US11/711,319 priority Critical patent/US7432728B2/en
Priority to PCT/US2007/005198 priority patent/WO2007098293A2/en
Priority to TW096106736A priority patent/TW200809213A/en
Publication of US20070210815A1 publication Critical patent/US20070210815A1/en
Application granted granted Critical
Publication of US7432728B2 publication Critical patent/US7432728B2/en
Assigned to SV PROBE, INC. reassignment SV PROBE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SV PROBE PTE. LTD.
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06772High frequency probes

Definitions

  • This invention relates generally to blade probes and blade probe cards used in the testing of wafer-based semiconductor devices.
  • probe cards In the testing of wafer based semiconductor devices, probe cards are typically used to provide electrical interconnection between a testing system and the semiconductor wafer.
  • An exemplary type of probe card often used in high speed applications is a blade probe card.
  • blades In such probe cards, “blades” (which are typically coupled to, and supported by, a printed circuit board) carry signal and ground paths.
  • FIG. 1A depicts a conventional blade 100
  • FIG. 1B depicts two blades 100 connected to printed circuit board 102
  • blade 100 comprises a ceramic material, e.g., 96% alumina, with a microstripline on surface 100 a .
  • signal path 100 c and ground path 100 b are provided on surface 100 a .
  • Ground path 100 b is electrically connected to ground plane 102 a at interface “I.”
  • Signal path 100 c is electrically connected, e.g., soldered, to probe needle 100 d .
  • Probe needle 100 d is configured to probe a contact pad of a semiconductor device during testing thereof.
  • probe needle 100 d may comprise tungsten, beryllium copper, or paliney 7.
  • a plurality of blades 100 are placed on PCB in circular form.
  • blades 100 are depicted in FIG. 1B , but the approach is applicable to probe cards having any number of blades.
  • FIG. 3 depicts a table that summarizes the results for a conventional blade card in the 7.5 degree, 90 degree, and 180 degree configuration with a conventional blade supplying the ground. As depicted in FIG. 3 , with 90 degrees between the blades, the bandwidth at ⁇ 1 dB is 3.3 GHz.
  • FIG. 1A depicts a conventional blade connected to printed circuit board.
  • FIG. 1B depicts two conventional blades connected to a printed circuit board.
  • FIGS. 2A-2C depict blades (and a blade probe card) configured according to an embodiment of the invention.
  • FIG. 3 depicts a table that summarizes the results for a conventional blade card in the 7.5 degree, 90 degree, and 180 degree configuration with a conventional blade supplying the ground.
  • FIG. 4 depicts a table that includes data for two blades similar to those depicted in FIGS. 2A-2C separated by 90 degrees.
  • FIG. 5 is a graph that depicts the performance, with the frequency (in GHz) on the X-axis versus at various dB values on the Y-axis, of a conventional blade card and a blade card configured in accordance with an embodiment of the invention.
  • FIG. 6 depicts a portion of a blade probe card including a printed circuit board and a plurality of blades configured according to one embodiment of the invention.
  • FIGS. 2A-2C depict blades (and a blade probe card) configured according to an embodiment of the invention.
  • FIG. 2A depicts a portion of probe card 200 including PCB 202 and two blades 204 separated by 90 degrees.
  • Blade 204 includes surface 204 a and 204 b , and comprises, for example, a ceramic material, e.g., an alumina-based material.
  • a coplanar wave guide having the signal trace surrounded by impedance matched ground traces, is defined for blade 204 .
  • blade 204 includes conductive traces 206 a , 206 b , and 206 c that are formed on surface 204 a .
  • Conductive traces 206 a , 206 b , and 206 c are separated electrically by portions of ceramic, i.e., clear portions 208 a and 208 b . All, or substantially all, of surface 204 b may be covered with the same conductive material. Alternatively, different conductive materials may be used.
  • Conductive traces 206 a , 206 b , and 206 c may be formed, and separated from one another, by an additive process, e.g., plating the traces on the ceramic material, or a subtractive process, e.g., removing portions of a conductive layer covering the surface 204 a .
  • Conductive traces 206 a and 206 c are ground traces, and conductive trace 206 b is a signal trace which is electrically connected, e.g., soldered or brazed, to probe needle 210 .
  • Conductive trace 206 a is electrically connected to ground member 212 .
  • FIGS. 2B and 2C depict details of blade 204 .
  • FIG. 2B depicts the connection between probe needle 210 and conductive trace 206 b .
  • FIG. 2B also depicts the interface “I” portion of conductive trace 206 b which is configured to be electrically connected to an appropriate area of PCB 202 (See FIG. 2A ).
  • FIG. 2C depicts the connection between ground member 212 and the majority conductive material on surface 204 b , as well as non-conductive portions, i.e., 208 c and 208 d , of surface 204 b , e.g., portions 208 c and 208 d are not covered by a conductive material in contrast to the rest of surface 204 b .
  • the ground member 212 is substantially parallel to probe needle 210 , as depicted in FIGS. 2A-2C .
  • FIG. 4 depicts a table that includes data for two blades similar to those depicted in FIGS. 2A-2C separated by 90 degrees.
  • a bandwidth of 20.9 GHz at ⁇ 1 dB has been achieved using a blade probe card configured in accordance with an embodiment of the invention.
  • FIG. 5 is a graph that depicts the performance, with the frequency (in GHz) on the X-axis versus at various dB values on the Y-axis, of a conventional blade card and a blade card configured in accordance with an embodiment of the invention.
  • the conventional blade card measurements are depicted in the graph marked “Conventional” which includes the data point previously recited at m 2 (3.3 GHz at ⁇ 1 dB), and the blade measurements for a blade card configured in accordance with an embodiment of the invention are marked “Present Invention” and includes the data point previously recited at m 1 (20.9 GHz at ⁇ 1 dB).
  • FIG. 6 depicts a portion of probe card 300 including PCB 302 and a plurality of blades 304 configured according to one embodiment of the invention.
  • Blade 304 includes surfaces 304 a and 304 b .
  • probe needles 310 and ground members 312 are provided on opposite sides of the blade, as opposed to in substantial vertical alignment (as in FIG. 2A ).
  • Conductive traces 306 a , 306 b , and 306 c are provided on surface 304 a , while substantially all of surface 304 b is covered with conductive material 306 d .
  • Conductive traces 306 a and 306 c are ground traces, and conductive trace 306 b is a signal trace.
  • Signal trace 306 b is electrically coupled to probe needle 310
  • ground conductive material 306 d is electrically connected to ground member 312 .
  • Ground member 312 is electrically connected to ground ring 314 .
  • ground traces 306 a and 306 c are depicted in the figures.
  • end portions of ground members 312 are raised in relation to corresponding probe needles 310 , facilitating contact with ground ring 314 .
  • a blade may be modified to short a signal probe, e.g., probe needle 310 , and a raised ground probe, e.g., ground member 312 .
  • the signal probe may then be used to apply ground from the PCB to the DUT's ground pad and short ground to the ground ring.
  • This raised ground ring provides a much shorter path for the return current and enables a further increase in bandwidth.
  • the ground path loop goes through the ground ring, or other appropriate ground structure, as opposed to conventional blade probe cards, where the ground loop runs from one blade to the next. More specifically, in conventional blade probe cards, the ground loop tends to pass through the PCB structure so the electrical fields and magnetic fields are radiated all over the board.
  • the ground loop length is reduced by using a ground member, e.g., ground member 212 depicted in FIG. 2A , between the blade and a ground ring.
  • the injected signal passes through the IC being tested, and from the ground probe and shorted to the ground member. This reduces the ground loop length and the amount of energy that is radiated, thus providing for higher bandwidth and less impedance variations.
  • the ground member may have a “U” shape such that it may rest on top of the blade for ease of installation.
  • the ground member may be mechanically bonded to both the blade and the ground ring, and in certain exemplary embodiments of the present invention, the ground member may be integrated as part of the blade or the ground ring, e.g., unitary with the blade or the ground ring.
  • high frequency traces are changed to a coplanar wave guide configuration (as opposed to a microstripline configuration), where the coplanar waveguide configuration provides less dielectric loss compared to microstripline configuration, and reduced crosstalk between probes.
  • additional desirable results may include, without limitation, (a) reduced probe needle length, and (b) reduced probe height, where the reduced length and height tend to result in less dielectric and conductor losses.
  • blade probe cards according to the present invention have less bandwidth variation, e.g., ⁇ 1 GHz, and are substantially independent from assembly angle for two blades.
  • the achieved bandwidth also depends on the circular loop size (or other structure not necessarily a circular loop), which may be defined by the die size being tested.
  • the circular loop size or other structure not necessarily a circular loop
  • a full plane conductor or any other shape may be used if practical in a given configuration.
  • a coplanar waveguide configuration is utilized rather than a conventional microstripline configuration.
  • the coplanar waveguide configuration may be used separate from or in combination with the depicted ground ring.
  • a ground ring (or other appropriate structure) may be used with either a coplanar wave guide as described herein, or with a microstripline configuration.
  • both of these features e.g., a coplanar waveguide configuration and the ground ring, are provided.
  • a strip line configuration blade is configured with a ground member coupled to another ground structure, e.g., a ground ring, in order to minimize deviations from a desired characteristic impedance, e.g., 50 ohm, all the way to the probe tip.
  • a desired characteristic impedance e.g., 50 ohm
  • a coplanar wave guide configuration blade is provided without the ground member and ground ring. This provides a reduction in crosstalk between adjacent blades.
  • a ground pad may be provided adjacent the signal pad on the PCB (as there is no ground ring/member).
  • While embodiments of the invention have been described primarily with reference to conductive traces deposited, e.g., plated, on ceramic blade probes, the invention is not limited to these examples.
  • the approach may be implemented using blades marketed by Rogers Corporation of Chandler, Ariz.
  • Rogers Corporation markets a RO4000 series hi-freq circuit material that may be machined or otherwise configured to define a coplanar waveguide.

Abstract

A blade probe card includes a plurality of blades that each includes a first end connected to a printed circuit board and a second end. A probe member is attached to the second end of each blade and extends outward to make contact with a device under test. A ground member is attached to the second end of each blade. The blade probe card also includes a common ground member that is separate from the printed circuit board and coupled to the ground member of each blade. Each blade may also include a first conductive signal trace and two or more conductive ground traces formed on a surface of each blade. The first conductive signal trace electrically connects the probe member to a contact on the printed circuit board. The two or more conductive ground traces are adjacent to the conductive signal trace and reduce crosstalk between the blades.

Description

RELATED APPLICATION DATA AND CLAIM OF PRIORITY
This application claims the benefit of, and priority to, U.S. Provisional Patent Application No. 60/777,187, entitled PLATING OF PROBE ELEMENTS ON A REUSABLE SUBSTRATE, filed Feb. 27, 2006, the contents of which are incorporated by reference for all purposes as if fully set forth herein.
FIELD OF THE INVENTION
This invention relates generally to blade probes and blade probe cards used in the testing of wafer-based semiconductor devices.
BACKGROUND
In the testing of wafer based semiconductor devices, probe cards are typically used to provide electrical interconnection between a testing system and the semiconductor wafer. An exemplary type of probe card often used in high speed applications is a blade probe card. In such probe cards, “blades” (which are typically coupled to, and supported by, a printed circuit board) carry signal and ground paths.
FIG. 1A depicts a conventional blade 100, and FIG. 1B depicts two blades 100 connected to printed circuit board 102. Referring specifically to FIG. 1A, blade 100 comprises a ceramic material, e.g., 96% alumina, with a microstripline on surface 100 a. More specifically, signal path 100 c and ground path 100 b are provided on surface 100 a. Ground path 100 b is electrically connected to ground plane 102 a at interface “I.” Signal path 100 c is electrically connected, e.g., soldered, to probe needle 100 d. Probe needle 100 d is configured to probe a contact pad of a semiconductor device during testing thereof. For example, probe needle 100 d may comprise tungsten, beryllium copper, or paliney 7.
As depicted in FIG. 1B, a plurality of blades 100 are placed on PCB in circular form. For purposes of explanation, only two blades 100 are depicted in FIG. 1B, but the approach is applicable to probe cards having any number of blades.
The bandwidth of such a system may be explained based on a complete closed circuit, and as such, the bandwidth of one single blade is not relevant in a practical application. As a result, three different angles, e.g., 7.5 degrees, 90 degrees, and 180 degrees, between the blades are simulated for existing structure of FIGS. 1A-1B. It is apparent that different angles will have different electric and magnetic field patterns that will result in different bandwidths. As expected, the 180 degree configuration has the lowest bandwidth and the case when the signal is closest to the ground (the 7.5 degree configuration) will have the widest bandwidth. FIG. 3 depicts a table that summarizes the results for a conventional blade card in the 7.5 degree, 90 degree, and 180 degree configuration with a conventional blade supplying the ground. As depicted in FIG. 3, with 90 degrees between the blades, the bandwidth at −1 dB is 3.3 GHz.
BRIEF DESCRIPTION OF THE DRAWINGS
In the figures of the accompanying drawings like reference numerals refer to similar elements.
FIG. 1A depicts a conventional blade connected to printed circuit board.
FIG. 1B depicts two conventional blades connected to a printed circuit board.
FIGS. 2A-2C depict blades (and a blade probe card) configured according to an embodiment of the invention.
FIG. 3 depicts a table that summarizes the results for a conventional blade card in the 7.5 degree, 90 degree, and 180 degree configuration with a conventional blade supplying the ground.
FIG. 4 depicts a table that includes data for two blades similar to those depicted in FIGS. 2A-2C separated by 90 degrees.
FIG. 5 is a graph that depicts the performance, with the frequency (in GHz) on the X-axis versus at various dB values on the Y-axis, of a conventional blade card and a blade card configured in accordance with an embodiment of the invention.
FIG. 6 depicts a portion of a blade probe card including a printed circuit board and a plurality of blades configured according to one embodiment of the invention.
DETAILED DESCRIPTION
FIGS. 2A-2C depict blades (and a blade probe card) configured according to an embodiment of the invention. FIG. 2A depicts a portion of probe card 200 including PCB 202 and two blades 204 separated by 90 degrees. Blade 204 includes surface 204 a and 204 b, and comprises, for example, a ceramic material, e.g., an alumina-based material. As described in more detail hereinafter, a coplanar wave guide, having the signal trace surrounded by impedance matched ground traces, is defined for blade 204.
More specifically, blade 204 includes conductive traces 206 a, 206 b, and 206 c that are formed on surface 204 a. Conductive traces 206 a, 206 b, and 206 c are separated electrically by portions of ceramic, i.e., clear portions 208 a and 208 b. All, or substantially all, of surface 204 b may be covered with the same conductive material. Alternatively, different conductive materials may be used.
Conductive traces 206 a, 206 b, and 206 c may be formed, and separated from one another, by an additive process, e.g., plating the traces on the ceramic material, or a subtractive process, e.g., removing portions of a conductive layer covering the surface 204 a. Conductive traces 206 a and 206 c are ground traces, and conductive trace 206 b is a signal trace which is electrically connected, e.g., soldered or brazed, to probe needle 210. Conductive trace 206 a is electrically connected to ground member 212.
FIGS. 2B and 2C depict details of blade 204. For example, FIG. 2B depicts the connection between probe needle 210 and conductive trace 206 b. FIG. 2B also depicts the interface “I” portion of conductive trace 206 b which is configured to be electrically connected to an appropriate area of PCB 202 (See FIG. 2A). Further, FIG. 2C depicts the connection between ground member 212 and the majority conductive material on surface 204 b, as well as non-conductive portions, i.e., 208 c and 208 d, of surface 204 b, e.g., portions 208 c and 208 d are not covered by a conductive material in contrast to the rest of surface 204 b. According to one embodiment of the invention, the ground member 212 is substantially parallel to probe needle 210, as depicted in FIGS. 2A-2C.
In contrast to the data provided for the conventional blades in the table depicted in FIG. 3, FIG. 4 depicts a table that includes data for two blades similar to those depicted in FIGS. 2A-2C separated by 90 degrees. Compared to a conventional bandwidth result of 3.3 GHz at −1 dB, a bandwidth of 20.9 GHz at −1 dB has been achieved using a blade probe card configured in accordance with an embodiment of the invention.
FIG. 5 is a graph that depicts the performance, with the frequency (in GHz) on the X-axis versus at various dB values on the Y-axis, of a conventional blade card and a blade card configured in accordance with an embodiment of the invention. The conventional blade card measurements are depicted in the graph marked “Conventional” which includes the data point previously recited at m2 (3.3 GHz at −1 dB), and the blade measurements for a blade card configured in accordance with an embodiment of the invention are marked “Present Invention” and includes the data point previously recited at m1 (20.9 GHz at −1 dB).
A similar result to that described above, e.g., a coplanar wave guide configuration with improved bandwidth, may be achieved by various different configurations of the conductive traces and the probe needles. For example, FIG. 6 depicts a portion of probe card 300 including PCB 302 and a plurality of blades 304 configured according to one embodiment of the invention. Blade 304 includes surfaces 304 a and 304 b. In this configuration, probe needles 310 and ground members 312 are provided on opposite sides of the blade, as opposed to in substantial vertical alignment (as in FIG. 2A). Conductive traces 306 a, 306 b, and 306 c are provided on surface 304 a, while substantially all of surface 304 b is covered with conductive material 306 d. Conductive traces 306 a and 306 c are ground traces, and conductive trace 306 b is a signal trace. Signal trace 306 b is electrically coupled to probe needle 310, and ground conductive material 306 d is electrically connected to ground member 312. Ground member 312 is electrically connected to ground ring 314. As with the other embodiments of the invention depicted herein, not all of the conductive connections, e.g., the connection between ground traces 306 a and 306 c to the rest of the ground system) are depicted in the figures. As depicted in FIG. 6, end portions of ground members 312 are raised in relation to corresponding probe needles 310, facilitating contact with ground ring 314.
According to one embodiment of the invention, a blade may be modified to short a signal probe, e.g., probe needle 310, and a raised ground probe, e.g., ground member 312. The signal probe may then be used to apply ground from the PCB to the DUT's ground pad and short ground to the ground ring. This raised ground ring provides a much shorter path for the return current and enables a further increase in bandwidth.
According to the invention, improvements in the bandwidth may be provided (at least in part) because of the reduced ground path. That is, the ground path loop goes through the ground ring, or other appropriate ground structure, as opposed to conventional blade probe cards, where the ground loop runs from one blade to the next. More specifically, in conventional blade probe cards, the ground loop tends to pass through the PCB structure so the electrical fields and magnetic fields are radiated all over the board. According to the one embodiment of the invention, the ground loop length is reduced by using a ground member, e.g., ground member 212 depicted in FIG. 2A, between the blade and a ground ring. Thus, the injected signal passes through the IC being tested, and from the ground probe and shorted to the ground member. This reduces the ground loop length and the amount of energy that is radiated, thus providing for higher bandwidth and less impedance variations.
The ground member may have a “U” shape such that it may rest on top of the blade for ease of installation. The ground member may be mechanically bonded to both the blade and the ground ring, and in certain exemplary embodiments of the present invention, the ground member may be integrated as part of the blade or the ground ring, e.g., unitary with the blade or the ground ring.
As provided herein, according to one embodiment of the invention, high frequency traces are changed to a coplanar wave guide configuration (as opposed to a microstripline configuration), where the coplanar waveguide configuration provides less dielectric loss compared to microstripline configuration, and reduced crosstalk between probes.
When optimizing a probe card using impedance matching, additional desirable results may include, without limitation, (a) reduced probe needle length, and (b) reduced probe height, where the reduced length and height tend to result in less dielectric and conductor losses.
In contrast to conventional blade cards having large bandwidth variation for different angles, e.g., 2-16 GHz, blade probe cards according to the present invention have less bandwidth variation, e.g., ˜1 GHz, and are substantially independent from assembly angle for two blades.
According to one embodiment of the invention, the achieved bandwidth also depends on the circular loop size (or other structure not necessarily a circular loop), which may be defined by the die size being tested. For example, rather than a circular wire loop, a full plane conductor (or any other shape) may be used if practical in a given configuration.
As depicted herein and described above, according to one embodiment of the invention, a coplanar waveguide configuration is utilized rather than a conventional microstripline configuration. The coplanar waveguide configuration may be used separate from or in combination with the depicted ground ring. According to another embodiment of the invention, a ground ring (or other appropriate structure) may be used with either a coplanar wave guide as described herein, or with a microstripline configuration. In the embodiments depicted in FIGS. 2A and 6, both of these features, e.g., a coplanar waveguide configuration and the ground ring, are provided.
Thus, according to one embodiment of the invention, a strip line configuration blade is configured with a ground member coupled to another ground structure, e.g., a ground ring, in order to minimize deviations from a desired characteristic impedance, e.g., 50 ohm, all the way to the probe tip.
According to certain exemplary embodiments of the present invention, a coplanar wave guide configuration blade is provided without the ground member and ground ring. This provides a reduction in crosstalk between adjacent blades. In such a configuration, a ground pad may be provided adjacent the signal pad on the PCB (as there is no ground ring/member).
While embodiments of the invention have been described primarily with reference to conductive traces deposited, e.g., plated, on ceramic blade probes, the invention is not limited to these examples. For example, the approach may be implemented using blades marketed by Rogers Corporation of Chandler, Ariz. For example, Rogers Corporation markets a RO4000 series hi-freq circuit material that may be machined or otherwise configured to define a coplanar waveguide.
Although the blade probe card is depicted and described herein with reference to specific embodiments, the invention is not intended to be limited to the details depicted. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.

Claims (17)

What is claimed is:
1. A blade probe card comprising:
a plurality of blades, wherein each blade from the plurality of blades includes:
a first end connected to a printed circuit board,
a second end,
a probe member attached to the second end and extending therefrom, wherein the probe member is configured to make contact with a device under test, and
a ground member attached to the second end and extending therefrom; and
a common ground member that is separate from the printed circuit board and coupled to the ground member of each blade from the plurality of blades.
2. The blade probe card as recited in claim 1, wherein for each blade from the plurality of blades, the probe member and the ground member are substantially parallel to each other.
3. The blade probe card as recited in claim 1, wherein for each blade from the plurality of blades includes a top edge and a bottom edge and the probe member and the ground member are mounted to the top edge and the bottom edge.
4. The blade probe card as recited in claim 3, wherein for each blade from the plurality of blades, the probe member and the ground member are substantially parallel to each other.
5. The blade probe card as recited in claim 3, wherein for each blade from the plurality of blades, the probe member and the ground member are in substantial vertical alignment to each other.
6. The blade probe card as recited in claim 1, wherein for each blade from the plurality of blades, the probe member and the ground member are mounted on opposite sides of the blade.
7. The blade probe card as recited in claim 6, wherein for each blade from the plurality of blades, the probe member and the ground member are mounted on opposite sides of the blade at different angles to allow the probe member to contact the device under test and to allow the ground member to contact the common ground member.
8. The blade probe card as recited in claim 1, wherein the common ground member is a ground ring.
9. The blade probe card as recited in claim 1, wherein the common ground member is a ground plane.
10. The blade probe card as recited in claim 1, wherein for each blade from the plurality of blades, the blade includes a top edge and a bottom edge, the ground member includes a u-shaped edge for mounting to the top edge and the probe member is mounted to the bottom edge.
11. The blade probe card as recited in claim 1, wherein for each blade from the plurality of blades, the probe member is attached to the second end of the blade at an angle to allow the probe member to contact the common ground member.
12. The blade probe card as recited in claim 1, wherein each blade from the plurality of blades has a surface that includes:
a first conductive signal trace formed on the surface and that electrically connects the probe member to a contact on the printed circuit board, and
two or more conductive ground traces formed on the surface and that are adjacent to and substantially surround the first conductive signal trace to reduce crosstalk between the plurality of blades.
13. The blade probe card as recited in claim 1, wherein the two or more conductive ground traces are substantially parallel to the first conductive signal trace.
14. The blade probe card as recited in claim 1, wherein:
the plurality of blades is a plurality of ceramic blades, and
the first conductive signal trace is a metallic signal trace and the two or more conductive ground traces are two or more metallic ground traces.
15. A blade probe card comprising:
a plurality of blades, wherein each blade from the plurality of blades has a surface that includes:
a first conductive signal trace formed on the surface and that electrically connects the probe member to a contact on the printed circuit board, and
two or more conductive ground traces formed on the surface and that are adjacent to and substantially surround the first conductive signal trace to reduce crosstalk between the plurality of blades.
16. The blade probe card as recited in claim 15, wherein:
each blade from the plurality of blades further includes:
a first end connected to a printed circuit board,
a second end,
a probe member attached to the second end and extending therefrom, wherein
the probe member is configured to make contact with a device under test, and
a ground member attached to the second end and extending therefrom; and
the blade probe card further includes a common ground member that is separate from the printed circuit board and coupled to the ground member of each blade from the plurality of blades.
17. The blade probe card as recited in claim 15, wherein:
the plurality of blades is a plurality of ceramic blades, and
the first conductive signal trace is a metallic signal trace and the two or more conductive ground traces are two or more metallic ground traces.
US11/711,319 2006-02-27 2007-02-26 Blade probe and blade probe card Expired - Fee Related US7432728B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/711,319 US7432728B2 (en) 2006-02-27 2007-02-26 Blade probe and blade probe card
PCT/US2007/005198 WO2007098293A2 (en) 2006-02-27 2007-02-27 Blade probe and blade probe card
TW096106736A TW200809213A (en) 2006-02-27 2007-02-27 Blade probe and blade probe card

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77718706P 2006-02-27 2006-02-27
US11/711,319 US7432728B2 (en) 2006-02-27 2007-02-26 Blade probe and blade probe card

Publications (2)

Publication Number Publication Date
US20070210815A1 US20070210815A1 (en) 2007-09-13
US7432728B2 true US7432728B2 (en) 2008-10-07

Family

ID=38438032

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/711,319 Expired - Fee Related US7432728B2 (en) 2006-02-27 2007-02-26 Blade probe and blade probe card

Country Status (3)

Country Link
US (1) US7432728B2 (en)
TW (1) TW200809213A (en)
WO (1) WO2007098293A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090284276A1 (en) * 2008-05-19 2009-11-19 Shinko Electric Industries Co., Ltd. Probe card

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791363A (en) 1987-09-28 1988-12-13 Logan John K Ceramic microstrip probe blade
US4983907A (en) * 1987-05-14 1991-01-08 Intel Corporation Driven guard probe card
WO1998026300A1 (en) 1996-12-12 1998-06-18 Ggb Industries, Inc. Probe card for high speed testing
US5959460A (en) 1994-06-27 1999-09-28 Motorola, Inc. High frequency stripline blade probe device and method of probing
US6232789B1 (en) * 1997-05-28 2001-05-15 Cascade Microtech, Inc. Probe holder for low current measurements
US6781396B2 (en) * 1995-12-01 2004-08-24 Cascade Microtech, Inc. Low-current probe card
US7170304B2 (en) * 2002-08-26 2007-01-30 Micron Technology, Inc. Selectively configurable probe structures, e.g., selectively configurable probe cards for testing microelectronic components

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983907A (en) * 1987-05-14 1991-01-08 Intel Corporation Driven guard probe card
US4791363A (en) 1987-09-28 1988-12-13 Logan John K Ceramic microstrip probe blade
US5959460A (en) 1994-06-27 1999-09-28 Motorola, Inc. High frequency stripline blade probe device and method of probing
US6781396B2 (en) * 1995-12-01 2004-08-24 Cascade Microtech, Inc. Low-current probe card
WO1998026300A1 (en) 1996-12-12 1998-06-18 Ggb Industries, Inc. Probe card for high speed testing
US6603322B1 (en) * 1996-12-12 2003-08-05 Ggb Industries, Inc. Probe card for high speed testing
US6232789B1 (en) * 1997-05-28 2001-05-15 Cascade Microtech, Inc. Probe holder for low current measurements
US7170304B2 (en) * 2002-08-26 2007-01-30 Micron Technology, Inc. Selectively configurable probe structures, e.g., selectively configurable probe cards for testing microelectronic components

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Claims, International Application No. PCT/US2007/005198, 4 pages.
Claims, PCT/US2007/005198, 4 pages.
European Patent Office, "Communication Relating to the Results of the Partial International Search", International Application No. PCT/US2007/005198, Sep. 21, 2007, 4 pages.
International Searching Authority, "Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration", PCT/US2007/005198, received Nov. 26, 2007, 16 pages.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090284276A1 (en) * 2008-05-19 2009-11-19 Shinko Electric Industries Co., Ltd. Probe card
US7888953B2 (en) * 2008-05-19 2011-02-15 Shinko Electric Industries Co., Ltd. Probe card

Also Published As

Publication number Publication date
WO2007098293A3 (en) 2008-01-10
TW200809213A (en) 2008-02-16
US20070210815A1 (en) 2007-09-13
WO2007098293A2 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
US6452407B2 (en) Probe contactor and production method thereof
US7449899B2 (en) Probe for high frequency signals
JP3396278B2 (en) Connection device
US6184576B1 (en) Packaging and interconnection of contact structure
US7034544B2 (en) Methods for minimizing the impedance discontinuity between a conductive trace and a component and structures formed thereby
US6232669B1 (en) Contact structure having silicon finger contactors and total stack-up structure using same
US4593243A (en) Coplanar and stripline probe card apparatus
US5477159A (en) Integrated circuit probe fixture with detachable high frequency probe carrier
US9433094B2 (en) Electronic substrate and structure for connector connection thereof
US20030117129A1 (en) Low-cost tester interface module
US5959460A (en) High frequency stripline blade probe device and method of probing
CA2589353C (en) Measuring tip for high-frequency measurement
US20230333150A1 (en) Antenna testing device for high frequency antennas
US20240021970A1 (en) Printed circuit boards and methods for manufacturing thereof for RF connectivity between electro-optic phase modulator and Digital Signal Processor
CN113078521B (en) Switching device for testing integrity of Gbit-level high-speed bus signals
US7432728B2 (en) Blade probe and blade probe card
US5734176A (en) Impedance controlled test fixture for multi-lead surface mounted integrated circuits
US4825155A (en) X-band logic test jig
CN111385964B (en) Circuit device and adapter card
US7196906B1 (en) Circuit board having segments with different signal speed characteristics
US20220236302A1 (en) Hybrid shielding sockets with impedance tuning for integrated circuit device test tooling
JP2011506925A (en) ECO contactor
KR20010112654A (en) Connection structure of coaxial cable to electric circuit substrate
CN111602472B (en) Back plate occupation area for high-speed and high-density electric connector
Ivanov et al. Vertical transition with elastomeric connectors

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SV PROBE, INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SV PROBE PTE. LTD.;REEL/FRAME:026975/0150

Effective date: 20110715

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20201007