US7563847B2 - Polymer composition and film thereof - Google Patents

Polymer composition and film thereof Download PDF

Info

Publication number
US7563847B2
US7563847B2 US11/777,427 US77742707A US7563847B2 US 7563847 B2 US7563847 B2 US 7563847B2 US 77742707 A US77742707 A US 77742707A US 7563847 B2 US7563847 B2 US 7563847B2
Authority
US
United States
Prior art keywords
polymer
weight
copolymer
propylene
butene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US11/777,427
Other versions
US20080015312A1 (en
Inventor
Hideaki Hori
Takeshi Ebara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to US11/777,427 priority Critical patent/US7563847B2/en
Publication of US20080015312A1 publication Critical patent/US20080015312A1/en
Application granted granted Critical
Publication of US7563847B2 publication Critical patent/US7563847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms

Definitions

  • the present invention relates to polymer compositions and to their films.
  • the invention relates to polymer compositions from which films superior in low-temperature heat sealability, hot tack property and transparency can be produced and also relates to their films.
  • the invention relates to polymer compositions from which films superior in low-temperature heat sealability, hot tack property and transparency can be obtained and which exhibit less tackiness when being fabricated into films and the invention also relates to their films.
  • Films or sheets obtained by shaping polypropylene have been used widely in the field, particularly, of packaging of foods or the like due to their superior transparency, heat resistance, food sanitation and the like.
  • JP-A-55-59964 discloses a film that has a lowered heat seal temperature and an increased heat seal strength and that is not affected with respect to other properties films are required to possess.
  • a polypropylene multilayer film in which a layer of a mixture composed of from 85 to 97 parts by weight of a propylene-butene-1 copolymer having a butene-1 content of from 10 to 25% by weight and from 3 to 15 parts by weight of a propylene-butene-1 copolymer having a butene-1 content of from 80 to 93%.
  • JP-A-61-108647 discloses a crystalline propylene random copolymer composition from which a polypropylene composite laminate superior in low-temperature heat sealability and heat seal strength can be obtained. Specifically disclosed is a crystalline propylene random copolymer composition comprising a crystalline propylene random copolymer which is made up of propylene and ⁇ -olefin other than propylene and which contains the propylene as a main component and a 1-butene random copolymer made up of ethylene and 1-butene.
  • An object of the present is to provide a polymer composition from which a film superior in low-temperature heat sealability, hot tack property and transparency can be afforded and to provide a film thereof.
  • Another object of the present invention is to provide a polymer composition from which films superior in low-temperature heat sealability, hot tack property and transparency can be obtained and which exhibit less tackiness when being fabricated into films and to provide a film thereof.
  • the present invention is directed to a polymer composition
  • a polymer composition comprising:
  • Requirement (1) the content of a 20° C. xylene-soluble portion of the polymer composition is from 5 to 45% by weight
  • Requirement (2) a 20° C. xylene-soluble portion of the polymer composition has an intrinsic viscosity of 1.3 dl/g or higher,
  • Requirement (A-1) the polymer is a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms or a copolymer of propylene, ⁇ -olefin having 4 or more carbon atoms and ethylene,
  • the polymer has a content of structural units derived from ⁇ -olefin having 4 or more carbon atoms of from 3 to 40% by weight,
  • the polymer has a content of structural units derived from ethylene of from 0.1 to 5% by weight when the polymer is a copolymer of propylene, ⁇ -olefin having 4 or more carbon atoms and ethylene,
  • Requirement (B-1) the polymer is a homopolymer of 1-butene, a copolymer of 1-butene and ethylene, a copolymer of 1-butene and propylene, a copolymer of 1-butene and ⁇ -olefin having 4 or more carbon atoms other than 1-butene, a copolymer of 1-butene, ethylene and propylene or a copolymer of 1-butene, ethylene and ⁇ -olefin having 4 or more carbon atoms other than 1-butene, and
  • Requirement (B-2) the polymer has a melting point of not lower than 60° C. but lower than 125° C.
  • the present invention is directed to a polymer composition according to the first embodiment, wherein the polymer composition further comprises from 1 to 25 parts by weight, based on 100 parts by weight of the polymers (A) and (B) in total, of a polymer (D) satisfying Requirements (D-1), (D-2) and (D-3) defined below:
  • Requirement (D-1) the polymer is a homopolymer of propylene, a copolymer of propylene and ethylene, or a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms,
  • Requirement (D-2) the polymer has a melting point of from 150° C. to 170° C.
  • the polymer has a content of structural units derived from ethylene of from 0.1 to 3% by weight when the polymer is a copolymer of propylene and ethylene or the polymer has a content of structural units derived from ⁇ -olefin having 4 or more carbon atoms of from 0.1 to 3% by weight when the polymer is a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms.
  • the present invention is directed to a polymer composition
  • a polymer composition comprising:
  • C-1) the polymer is a copolymer of propylene and ethylene, a copolymer propylene and ⁇ -olefin having 4 or more carbon atoms, or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atoms,
  • C-2 the polymer has a content of structural units derived from ethylene of from 0.1 to 10% by weight when the polymer is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atom, wherein this content is based on the weight of the polymer,
  • the polymer has a content of structural units derived from ⁇ -olefin having 4 or more carbon atoms of from 0.1 to 10% by weight when the polymer is a propylene and ⁇ -olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atoms,
  • the polymer has a content, based on the weight of the polymer, of structural units derived from ⁇ -olefin having 4 or more carbon atoms less than that of polymer (A) when the polymer is a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atoms, and
  • Requirement (C-5) the polymer has a melting point of not lower than 125° C. but lower than 150° C.
  • the present invention is directed to a polymer composition according to the third embodiment, wherein the polymer composition further comprises from 1 to 25 parts by weight, based on 100 parts by weight of the polymers (A), (B) and (C) in total, of a polymer (D) satisfying Requirements (D-1), (D-2) and (D-3) defined above.
  • the polymer (A) is a copolymer of propylene and 1-butene.
  • the polymer (C) is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and 1-butene.
  • the polymer (D) is a homopolymer of propylene having a melting point of from 155° C. to 170° C.
  • the present invention also provides a film having at least one layer made of any of the polymer compositions mentioned above.
  • the polymer composition of the first embodiment of the present invention is a polymer composition comprising from 70 to 99% by weight of the polymer (A) and from 1 to 30% by weight of the polymer (B), the polymer composition satisfying Requirements (1) and (2) defined below, wherein said amounts of the polymers (A) and (B) are based on a combined amount of the polymers (A) and (B):
  • Requirement (1) the content of a 20° C. xylene-soluble portion of the polymer composition is from 5 to 45% by weight, and
  • Requirement (2) a 20° C. xylene-soluble portion recovered from the polymer composition has an intrinsic viscosity of 1.3 dl/g or higher.
  • the polymer composition of the second embodiment of the present invention is a polymer composition of the first embodiment which further comprises from 1 to 25 parts by weight, based on 100 parts by weight of the polymers (A) and (B) in total, of the polymer (D).
  • the polymer composition of the third embodiment of the present invention is a polymer composition comprising from 30 to 98% by weight of the polymer (A), from 1 to 30% by weight of the polymer (B), and from 1 to 50% by weight of the polymer (C), the polymer composition satisfying Requirements (1) and (2) defined above, wherein said amounts of the polymers (A), (B) and (C) are based on a combined amount of the polymers (A), (B) and (C).
  • the polymer composition of the fourth embodiment of the present invention is a polymer composition of the third embodiment which further comprises from 1 to 25 parts by weight, based on 100 parts by weight of the polymers (A), (B) and (C) in total, of the polymer (D).
  • the content of a 20° C. xylene-soluble portion (henceforth, referred to as CXS) of the polymer compositions of the present invention is from 5 to 45% by weight (Requirement (1)) and, from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films, preferably is from 10 to 40% by weight.
  • the intrinsic viscosity of the CXS is 1.3 dl/g or higher (Requirement (2)), preferably from 1.3 to 7 dl/g and, from the viewpoint of hot tack strength, is more preferably from 1.34 to 7 dl/g, particularly preferably from 1.38 to 5 dl/g.
  • the [ ⁇ ]CXS in the present invention is measured in tetralin at 135° C. For the measurement, an Ubbelohde's viscometer is used.
  • the melt flow rate (MFR), measured at 230° C., of the polymer compositions of the present invention is, from the viewpoints of fluidity and film formability, usually from 0.1 to 50 g/10 minutes, preferably from 1 to 20 g/10 minutes, more preferably from 3 to 15 g/10 minutes, and even more preferably from 4 to 15 g/10 minutes.
  • the content of the polymer (A) and that of the polymer (B) are from 70 to 99% by weight and from 1 to 30% by weight, respectively and, from the viewpoint of preventing polymer compositions from exhibiting tackiness during their film formation, preferably from 75 to 99% by weight and from 1 to 25% by weight, respectively and more preferably from 80 to 97% by weight and from 3 to 20% by weight, respectively.
  • the content of the polymer (A), that of the polymer (B) and that of the polymer (C) are from 30 to 98% by weight, from 1 to 30% by weight and from 1 to 50% by weight, respectively and, from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films, preferably from 40 to 98% by weight, from 1 to 25% by weight and from 1 to 45% by weight, respectively and more preferably from 50 to 96% by weight, 3 to 20% by weight and from 1 to 40% by weight, respectively.
  • the polymer (A) used in the present invention is a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms or a copolymer of propylene, ⁇ -olefin having 4 or more carbon atoms and ethylene (Requirement (A-1)).
  • the content of structural units derived from ⁇ -olefin having 4 or more carbon atoms is from 3 to 40% by weight (Requirement (A-2)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films, the content is preferably from 5 to 40% by weight, more preferably from 10 to 30% by weight, and even more preferably from 15 to 40% by weight. It should be noted that said contents are based on the combined weight of the structural units derived from propylene and the structural units derived from ⁇ -olefin having 4 or more carbon atoms in the polymer (A).
  • the content of structural units derived from ethylene is 0.1 to 5% by weight (Requirement (A-3)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and preventing films from whitening with time, the content is preferably up to 3% by weight. It should be noted that said contents are based on the total of the combined weight of the structural units derived from propylene, the structural units derived from ethylene and the structural units derived from ⁇ -olefin having 4 or more carbon atoms in the polymer (A).
  • the melt flow rate (MFR), measured at 230° C., of the polymer (A) is usually from 0.1 to 50 g/10 minutes and, from the viewpoint of fluidity, it is preferably from 1 to 20 g/10 minutes, more preferably from 3 to 15 g/10 minutes and even more preferably from 4 to 15 g/10 minutes.
  • the ⁇ -olefin having 4 or more carbon atoms to be used for the preparation of the polymer (A) is preferably an ⁇ -olefin having from 4 to 20 carbon atoms and more preferably is an ⁇ -olefin having from 4 to 12 carbon atoms.
  • Examples of the ⁇ -olefin having 4 or more carbon atoms to be used for the preparation of the polymer (A) include 1-butene, 2-methyl-1-propene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 2-ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl-1-butene, 1-heptene, 2-methyl-1-hexene, 2,3,-dimethyl-1-pentene, 2-ethyl-1-pentene, 2,3,4-trimethyl-1-butene, 2-methyl-3-ethyl-1-butene, 1-octene, 5-methyl-1-pentene, 2-ethyl-1-hexene, 3,3-dimethyl-1-hexene, 2-propyl-1-heptene, 2-methyl-3-ethyl-1
  • 1-butene 1-pentene, 1-hexene and 1-octene. From the viewpoint of copolymerizability and the economical standpoint, more preferred are 1-butene and 1-hexene.
  • Examples of the polymer (A) includes a propylene-1-butene copolymer, a propylene-1-hexene copolymer, a propylene-ethylene-1-butene copolymer and a propylene-ethylene-1-hexene copolymer.
  • Preferred are a propylene-1-butene copolymer and a propylene-1-hexene copolymer.
  • the polymer (A) is preferably a polymer containing from 1 to 30% by weight of a segment (a-1) defined below and from 70 to 99% by weight of a segment (a-2) defined below, wherein said amounts of the segments are based on the combined weight of the segments:
  • segment (a-1) a segment having structural units derived from 1-butene in a content of not less than 1% by weight but less than 15% by weight,
  • segment (a-2) a segment having structural units derived from 1-butene in a content of not less than 15% by weight but not more than 40% by weight.
  • the content of the segment (a-1) and that of the segment (a-2) are preferably from 1 to 20% by weight and from 80 to 99% by weight, respectively.
  • the content of 1-butene in the segment (a-1) is preferably from 1 to 10% by weight.
  • the content of 1-butene in the segment (a-2) is preferably from 15 to 30% by weight.
  • Examples of the segment (a-1) include a propylene-1-butene copolymer segment and a propylene-ethylene-1-butene copolymer segment. Preferred is a propylene-1-butene copolymer segment.
  • Examples of the segment (a-2) also include a propylene-1-butene copolymer segment and a propylene-ethylene-1-butene copolymer segment. Preferred is a propylene-1-butene copolymer segment.
  • the kinds of the structural units of the segment (a-1) and those of the structural units of the segment (a-2) may be either identical or different.
  • Examples of such a polymer (A) containing a segment (a-1) and a segment (a-2) include a (propylene-1-butene)-(propylene-1-butene) copolymer, a (proppylene-1-butene)-(propylene-ethylene-1-butene) copolymer, a (propylene-ethylene-1-butene)-(propylene-1-butene) copolymer, and a (propylene-ethylene-1-butene)-(propylene-ethylene-1-butene) copolymer.
  • the polymer (B) to be used in the present invention is a homopolymer of 1-butene, a copolymer of 1-butene and ethylene, a copolymer of 1-butene and propylene, a copolymer of 1-butene and ⁇ -olefin having 4 or more carbon atoms other than 1-butene, a copolymer of 1-butene, ethylene and propylene, or a copolymer of 1-butene, ethylene and ⁇ -olefin having 4 or more carbon atoms other than 1-butene (Requirement (B-1)).
  • the polymer (B) is a copolymer of 1-butene and ⁇ -olefin having 4 or more carbon atoms other than 1-butene
  • examples of the ⁇ -olefin include 1-pentene and 1-hexene.
  • the polymer (B) is a copolymer of 1-butene and ⁇ -olefin having 4 or more carbon atoms other than 1-butene
  • examples of such a copolymer include a 1-butene-propylene copolymer, a 1-butene-ethylene copolymer and a 1-butene-propylene-ethylene copolymer.
  • Preferred are a 1-butene-ethylene copolymer and a 1-butene-propylene copolymer.
  • the polymer (B) is a copolymer
  • its content of structural units derived from 1-butene is usually from 55 to 99.9% by weight.
  • the content is preferably from 60 to 99.9% by weight and more preferably from 65 to 99.9% by weight.
  • the polymer (B) is a copolymer
  • its content of structural units derived from monomers other than 1-butene is usually from 0.1 to 45% by weight, preferably from 0.1 to 40% by weight, and more preferably from 0.1 to 35% by weight.
  • the melting point (Tm) of the polymer (B) is not lower than 60° C. but lower than 125° C. (Requirement (B-2)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films, the melting point is preferably from 65 to 120° C. and more preferably from 65 to 115° C.
  • the intrinsic viscosity [ ⁇ ] of the polymer (B) is preferably from 1.4 to 7 dl/g, more preferably from 1.5 to 6 dl/g and even more preferably from 1.6 to 5 dl/g from the viewpoints of hot tack strength of films and dispersibility of the polymer achieved during the pelletization of the composition.
  • the polymer (C) used in the present invention is a copolymer of propylene and ethylene, a copolymer propylene and ⁇ -olefin having 4 or more carbon atoms, or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atoms (Requirement (C-1)).
  • the polymer (C) is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atoms
  • the polymer has a content of structural units derived from ethylene of from 0.1 to 10% by weight (Requirement (C-2)).
  • the content is preferably from 0.1 to 8% by weight and more preferably from 1 to 7% by weight.
  • the polymer When the polymer is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atoms, the polymer must satisfy the aforementioned Requirement (C-2) from the viewpoint of properties of a powder during the polymerization for the production of the polymer (C) and also from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films.
  • C-2 Requirement
  • the polymer (C) is a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atoms
  • the polymer has a content of structural units derived from ⁇ -olefin having 4 or more carbon atoms of from 0.1 to 10% by weight (Requirement (C-3)), and preferably is from 1 to 8% by weight.
  • the polymer (C) is a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atoms
  • the polymer (C) has a content, based on the weight of the polymer, of structural units derived from ⁇ -olefin having 4 or more carbon atoms less than that of polymer (A) (Requirement (C-4)).
  • the polymer (C) When the polymer (C) is a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and ⁇ -olefin having 4 or more carbon atoms, the polymer (C) must satisfy the aforementioned Requirements (C-3) and (C-4) from the viewpoint of properties of a powder achieved during the polymerization for the production of polymer (C) and also from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films.
  • the melting point of the polymer (C) is not lower than 125° C. but lower than 150° C. (Requirement (C-5)). It is preferably from not lower than 125° C. but not higher than 145° C. from the viewpoint of properties of a powder achieved during the polymerization for the production of polymer (C) or low-temperature heat sealability of films.
  • the melt flow rate (MFR), measured at 230° C., of the polymer (C) is usually from 0.1 to 200 g/10 minutes and, from the viewpoints of fluidity and film formability, preferably from 1 to 150 g/10 minutes.
  • the content of the polymer (A) and that of the polymer (B) are preferably from 75 to 99% by weight and from 1 to 25% by weight, respectively, and more preferably from 80 to 97% by weight and from 3 to 20% by weight, respectively from the viewpoint of preventing polymer compositions from exhibiting tackiness during their film formation.
  • the content of the polymer (A), that of the polymer (B) and that of the polymer (C) are preferably from 40 to 98% by weight, from 1 to 25% by weight and from 1 to 45% by weight, respectively, and more preferably from 50 to 96% by weight, from 3 to 20% by weight and from 1 to 40% by weight, respectively from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat seal temperature of resulting films.
  • the polymer (D) to be used in the present invention is a homopolymer of propylene, a copolymer of propylene and ethylene, or a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms (Requirement (D-1)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation, a homopolymer of propylene is preferred.
  • the melting point of the polymer (D) is from 150° C. to 170° C. (Requirement (D-2)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation, it is preferably from 155° C. to 170° C., and more preferably from 158° C. to 170° C.
  • the polymer (D) is a copolymer of propylene and ethylene
  • the polymer has a content of structural units derived from ethylene of from 0.1 to 3% by weight
  • the polymer is a copolymer of propylene and ⁇ -olefin having 4 or more carbon atoms
  • the polymer has a content of structural units derived from ⁇ -olefin having 4 or more carbon atoms of from 0.1 to 3% by weight (Requirement (D-3)).
  • Requirement (D-3) From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation, it is preferably from 0.1 to 2% by weight.
  • the melt flow rate (MFR), measured at 230° C., of the polymer (D) is usually from 0.1 to 200 g/10 minutes and, from the viewpoints of fluidity and film formability, preferably from 1 to 150 g/10 minutes.
  • the content of the polymer (D) in a polymer composition containing no polymer (C) is from 1 to 25 parts by weight based on 100 parts by weight of the polymers (A) and (B) in total. From the viewpoint of hot tack strength, it is preferably from 1 to 18 parts by weight and more preferably from 1 to 12 parts by weight. On the other hand, the content of the polymer (D) in a polymer composition containing the polymer (C) is from 1 to 25 parts by weight based on 100 parts by weight of the polymers (A), (B) and (C) in total.
  • Examples of the catalyst for polymerization include Ziegler-Natta type catalysts and metallocene-type catalysts. Preferred are catalysts containing Ti, Mg and halogen as essential components.
  • Ti—Mg-based catalysts comprising a solid catalyst component obtained by compounding a magnesium compound with a titanium compound, and catalyst systems comprising such a solid catalyst component, an organoaluminum compound and a third component, e.g. an electron-donating compound, are mentioned.
  • Specific examples are catalyst systems disclosed, for example, in JP-A-61-218606, JP-A-61-287904 and JP-A-7-216017.
  • organoaluminum compound examples include triethylaluminum, triisobutylaluminu, a mixture of triethylaluminu and diethylaluminum chloride, and tetraethyldialumoxane.
  • Preferred examples of the electron-donating compound include cyclohexyl-ethyldimethoxysilane, tert-butyl-n-propyldimethoxysilane, tert-butylethyldimethoxysilane and dicyclopentyldimethoxysilane.
  • Examples of the type of polymerization include solvent polymerization using an inert solvent typified by hydrocarbon compounds such as hexane, heptane, octane, decane, cyclohexane, methylcyclohexane, benzene, toluene and xylene; bulk polymerization using liquid monomer as solvent; and gas phase polymerization carried out in vaporous monomer. Preferred are bulk polymerization and gas phase polymerization because post-treatment can be conducted easily. These polymerization may be carried out either in a batch manner or in a continuous manner.
  • the polymer (A) is a copolymer containing the aforementioned segments (a-1) and (a-2), its production can be carried out by multistep polymerization comprising a first polymerization step and a polymerization step or steps following the first polymerization step.
  • the type of the polymerization used in the first polymerization step and that used in the following polymerization step or steps may be either the same or different. From the viewpoints of polymerization activity and ease in post-treatment, polymerization is carried out in the absence of inert solvent in the first polymerization step and polymerization is carried out in a gas phase in the step or steps following the first polymerization step.
  • the polymerization in the first polymerization step and the polymerization in the step or each of the steps following the first polymerization step may be carried out either in the same polymerization reactor or in different polymerization reactors.
  • Examples of the multistep polymerization composed of the first polymerization step and a polymerization step or steps following the firs polymerization step include solvent-solvent polymerization, bulk-bulk polymerization, gas phase-gas phase polymerization, solvent-gas phase polymerization, bulk-gas phase-gas phase polymerization, solvent-gas phase-gas phase polymerization and bulk-gas phase-gas phase polymerization.
  • solvent-solvent polymerization bulk-bulk polymerization
  • gas phase-gas phase polymerization solvent-gas phase polymerization
  • bulk-gas phase-gas phase polymerization solvent-gas phase-gas phase polymerization
  • solvent-gas phase-gas phase polymerization and bulk-gas phase-gas phase polymerization solvent-solvent polymerization
  • Preferred are bulk-gas phase polymerization, gas phase-gas phase polymerization and bulk-gas phase-gas phase polymerization.
  • the polymerization temperature in the first polymerization step is usually from 20 to 150° C. and, from the viewpoints of production efficiency and ease in controlling the contents of the copolymer segments (a-1) and (a-2), preferably from 35 to 95° C.
  • the polymerization temperature in the step or each of the steps following the first polymerization step may be equal to or different from the polymerization temperature in the first polymerization step. However, it is usually from 20 to 150° C. and preferably from 35 to 95° C.
  • the preparation of the polymer (B) can be carried out by polymerization using a method widely employed in industrial production.
  • the polymer compositions of the present invention may contain additives or a resin other than the polymers (A), (B), (C) and (D), if required.
  • additives include antioxidants, UV absorbers, antistatic agents, lubricants, nucleating agents, adhesives, anticlouding agents and antiblocking agents.
  • the resin other than the polymers (A), (B), (C) and (D) may be polyethylene or the like.
  • the film of the present invention is a film having at least one layer made of any of the polymer compositions of the present invention described above.
  • the film of the present invention may be either a film composed of a single layer or a multilayer film.
  • the method for producing the film of the present invention may be a conventionally-used method such as the inflation method, the T die method and the calender method.
  • the method for producing the multilayer film may be a conventionally-used method such as coextrusion, extrusion lamination, hot lamination and dry lamination.
  • the film of the present invention may be a drawn film.
  • the method for producing the drawn film may be a method in which a film or sheet prepared by processing a polymer composition of the present invention is stretched.
  • the method of the stretching may be a method of uniaxially or biaxially stretching a film or sheet by roll stretching, tenter stretching, tubular stretching, or the like.
  • the film of the present invention preferably is an undrawn film produced by coextrusion or a film produced by biaxially drawing from the viewpoints of balance between properties of the film including low-temperature heat sealability, transparency and rigidity.
  • Examples of the application of the film of the present invention include wrapping of various items.
  • Examples of the items to be wrapped in the film of the present invention include foods and clothes. Foods are preferred.
  • the IR spectrum was taken by a method described in Macromolecule Handbook (1995, published by Kinokuniya), page 619. Based on the spectrum, the content of structural units derived from 1-butene was determined.
  • the content of structural units derived from ethylene was determined from characteristic absorptions appearing within the range from 732 to 720 cm ⁇ 1 .
  • the intrinsic viscosity was measured at 135° C. in tetralin using an Ubbelohde's viscometer.
  • the MFR was determined according to JIS K 7210 at a temperature of 230° C. under a load of 21.18 N.
  • a polymer composition was subjected to hot press molding including operations [1] through [5] shown below, yielding a sheet 0.5 mm in thickness.
  • step [5] To transfer the sample obtained in step [4] above to a molding section controlled to 30° C. in another compression molding machine manufactured by Shinto Metal Industries, Ltd. and to press the sample under a pressure of 30 kgf/cm 2 for five minutes.
  • the haze was measured according to JIS K 7105.
  • Two 75 mm-wide pieces of the same film composed of a surface layer and a substrate layer were laminated in a manner that the surface layer of one piece was put on the surface layer of the other piece.
  • the laminated pieces were pressed under a load of 2 kg/cm 2 for two seconds by means of a heat sealer heated to a predetermined temperature, thereby being heat sealed.
  • a peel force was applied to the sealed portion using a leaf spring, thereby allowing the surface layers to peel from each other. The peel length was measured.
  • the peel test described above was repeated at different peel forces using leaf springs different in spring constant and a peel force resulting in a peel length of 3.2 mm was determined.
  • the spring constants of the leaf springs used were 53 g, 77 g, 110 g, 154 g, 224 g, 250 g and 295 g.
  • a solid catalyst was prepared and polymerization was carried out in the same manner as Example 1 disclosed in JP-A-2002-069143.
  • a powder (A) of a propylene-1-butene copolymer having a content of structural units derived from 1-butene of 24.6% by weight and an MFR of 2.2 g/10 minutes was obtained.
  • polymer (A-1) having an MFR of 10.3 g/10 minutes in the form of pellets was obtained.
  • the MFR regulator used was a masterbatch composed of polypropylene powder impregnated with 8% by weight of 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane.
  • polymer composition (1) in the form of pellets was obtained.
  • Polymer composition (1) had an MFR of 7.9 g/10 minutes and it contained CXS in an amount of 28.3% by weight.
  • the [ ⁇ ]CXS was 1.65 dl/g.
  • the constitution, CXS and [ ⁇ ]CXS of polymer composition (1) are shown in Table 1.
  • a drawn film having a surface layer and a substrate layer was produced in the manner described below.
  • Polymer composition (1) prepared above was used for forming the surface layer.
  • polymer composition (1) and FS2011DG2 were melt kneaded separately at 230° C. and 260° C., respectively, and then were charged into a coextrusion T die.
  • the extrudate having a two-kind two-layer structure, namely a surface layer/substrate layer structure, extruded through the T die was cooled rapidly to 30° C. and solidified on a chill roll. Thus, a cast sheet 1 mm in thickness was obtained.
  • the resulting cast sheet was preheated and then was stretched five times in the longitudinal direction at a stretching temperature of 145° C. by the action of difference in peripheral speed between rolls of a longitudinal stretching machine. Subsequently, the sheet was stretched eight times in the transverse direction at a stretching temperature of 157° C. in an oven and then was subjected to heat treatment at 165° C.
  • the film was wound up by a winding machine. Physical properties of the biaxially drawn multilayer film are shown in Table 2.
  • a biaxially drawn multilayer film was produced in the same manner as Example 1 except the polymer composition (1) used for forming the substrate layer was changed to the polymer composition (2). Physical properties of the biaxially drawn multilayer film are shown in Table 2.
  • a biaxially drawn multilayer film was produced in the same manner as Example 1 except the polymer composition (1) used for forming the substrate layer was changed to the polymer composition (3). Physical properties of the biaxially drawn multilayer film are shown in Table 2.
  • Examples 1 and 2 which satisfy the requirements of the present invention, are superior in low-temperature heat sealability, hot tack property and transparency.
  • Comparative Example 1 which does not satisfy one of the requirements of the present invention regarding the intrinsic viscosity ([ ⁇ ]CXS) of 20° C. xylene-soluble portion of a polymer composition, an insufficient hot tack strength was obtained.
  • the proportions of polymer (A-4) and polymer (B-1) were 89.5% by weight and 10.5% by weight, respectively.
  • the content, based on 100 parts by weight of polymers (A-4) and (B-1) in total, of polymer (D-1) was 5.26 parts by weight.
  • Polymer composition (4) had an MFR of 6.3 g/10 minutes and it contained CXS in an amount of 25.0% by weight.
  • the [ ⁇ ]CXS was 1.77 dl/g.
  • the constitution, CXS and [ ⁇ ]CXS of polymer composition (4) are shown in Table 3.
  • a drawn film having a surface layer and a substrate layer was produced in the manner described below.
  • Polymer composition (4) prepared above was used for forming the surface layer.
  • Polymer composition (4) and FS2011DG2 were melt kneaded separately in separate extruders, and then were charged into a coextrusion T die.
  • the extrudate having a two-kind two-layer structure, namely a surface layer/substrate layer structure, extruded through the T die was cooled rapidly to 30° C. and solidified on a chill roll. Thus, a cast sheet 1 mm in thickness was obtained.
  • the resulting cast sheet was preheated and then was stretched five times in the longitudinal direction at a stretching temperature of 145° C. by the action of difference in peripheral speed between rolls of a longitudinal stretching machine. Subsequently, the sheet was stretched eight times in the transverse direction at a stretching temperature of 157° C. in an oven and then was subjected to heat treatment at 165° C.
  • the film was wound up by a winding machine. Physical properties of the biaxially drawn multilayer film are shown in Table 4.
  • the proportions of polymer (A-5) and polymer (B-2) were 89.5% by weight and 10.5% by weight, respectively.
  • the content, based on 100 parts by weight of polymers (A-5) and (B-2) in total, of polymer (D-1) was 5.26 parts by weight.
  • the polymer composition (5) had an MFR of 7.8 g/10 minutes and it contained CXS in an amount of 23.7% by weight.
  • the [ ⁇ ]CXS was 1.44 dl/g.
  • the constitution, CXS and [ ⁇ ]CXS of polymer composition (5) are shown in Table 3.
  • a biaxially drawn multilayer film was produced in the same manner as Example 3 except the polymer composition (4) used for forming the substrate layer was changed to the polymer composition (5). Physical properties of the biaxially drawn multilayer film are shown in Table 4.
  • TAFMER BL3080 i.e., polymer (B-1), 5 parts by weight of polymer (D-1), 55 parts by weight of powder (A) of the propylene-1-butene copolymer used in Example 1 and moreover, based on 100 parts by weight of these four components in total, 0.055 part by weight of calcium stearate, 0.0275 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.055 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.) and 0.22 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut.
  • TAFMER BL3080 i.e., polymer (B-1), 5 parts
  • the proportions of powder (A), polymer (B-1) and polymer (C-1) were 57.9% by weight, 10.5% by weight and 31.6% by weight, respectively.
  • the content of polymer (D-1) was 5.26 parts by weight based on 100 parts by weight of powder (A), polymer (B-1) and polymer (C-1) in total.
  • the polymer composition (6) had an MFR of 6.4 g/10 minutes and it contained CXS in an amount of 22.8% by weight.
  • the [ ⁇ ]CXS was 1.69 dl/g.
  • the constitution, CXS and [ ⁇ ]CXS of polymer composition (6) are shown in Table 3.
  • a biaxially drawn multilayer film was produced in the same manner as Example 3 except the polymer composition (4) used for forming the substrate layer was changed to the polymer composition (6). Physical properties of the biaxially drawn multilayer film are shown in Table 4.
  • the proportions of powder (A) and polymer (B-3) were 90% by weight and 10% by weight, respectively.
  • the polymer composition (7) had an MFR of 8.7 g/10 minutes and it contained CXS in an amount of 27.8% by weight.
  • the [ ⁇ ]CXS was 1.19 d/g.
  • the constitution, CXS and [ ⁇ ]CXS of polymer composition (7) are shown in Table 3.
  • a biaxially drawn multilayer film was produced in the same manner as Example 3 except the polymer composition (4) used for forming the substrate layer was changed to the polymer composition (7). Physical properties of the biaxially drawn multilayer film are shown in Table 4.
  • the proportions of powder (A) and polymer (B-3) were 89.5% by weight and 10.5% by weight, respectively.
  • the content of polymer (D-1) was 5.26 parts by weight based on 100 parts by weight of powder (A) and polymer (B-3) in total.
  • the polymer composition (8) had an MFR of 6.8 g/10 minutes and it contained CXS in an amount of 24.5% by weight.
  • the [ ⁇ ]CXS was 1.21 dl/g.
  • the constitution, CXS and [ ⁇ ]CXS of polymer composition (8) are shown in Table 3.
  • a biaxially drawn multilayer film was produced in the same manner as Example 3 except the polymer composition (4) used for forming the substrate layer was changed to the polymer composition (8). Physical properties of the biaxially drawn multilayer film are shown in Table 4.
  • Examples 3 through 5 which satisfy the requirements of the present invention, are superior in low-temperature heat sealability, hot tack property and transparency tackiness was not recognized.
  • Comparative Example 2 which does not contain polymer (D) that is one of the requirements of the present invention, a much degree of tackiness was recognized.
  • Comparative Example 1 which does not satisfy one of the requirements of the present invention regarding the intrinsic viscosity ([ ⁇ ]CXS) of 20° C. xylene-soluble portion of a polymer composition, an insufficient hot tack strength was obtained.

Abstract

Disclosed is a polymer composition comprising a copolymer of propylene, a specific amount of α-olefin having 4 or more carbon atoms and optionally a specific amount of ethylene and a specific 1-butene homopolymer or copolymer having a melting point of not lower than 60° C. but lower than 125° C., wherein the polymer composition contains a 20° C. xylene-soluble portion of the polymer composition in an amount of from 5 to 45% by weight and the 20° C. xylene-soluble portion has an intrinsic viscosity of 1.3 dl/g or higher. The polymer composition may optionally contain a specific propylene copolymer and/or a specific propylene homopolymer or copolymer having a melting point of from 150° C. to 170° C.

Description

This is a divisional application of application Ser. No. 10/920,274 filed Aug. 18, 2004 now U.S. Pat. No. 7,276,558, which claims priority under 35 U.S.C. §119 to Japanese Patent Applications Nos. 2003-208001 and 2003-208002, both filed on Aug. 20, 2003. The entire disclosures of the prior applications, U.S. application Ser. No. 10/920,274 and Japanese Patent Applications Nos. 2003-208001 and 2003-208002, are hereby incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to polymer compositions and to their films. Particularly, the invention relates to polymer compositions from which films superior in low-temperature heat sealability, hot tack property and transparency can be produced and also relates to their films. In addition, the invention relates to polymer compositions from which films superior in low-temperature heat sealability, hot tack property and transparency can be obtained and which exhibit less tackiness when being fabricated into films and the invention also relates to their films.
2. Description of the Related Art
Films or sheets obtained by shaping polypropylene have been used widely in the field, particularly, of packaging of foods or the like due to their superior transparency, heat resistance, food sanitation and the like.
JP-A-55-59964 discloses a film that has a lowered heat seal temperature and an increased heat seal strength and that is not affected with respect to other properties films are required to possess. Specifically disclosed is a polypropylene multilayer film in which a layer of a mixture composed of from 85 to 97 parts by weight of a propylene-butene-1 copolymer having a butene-1 content of from 10 to 25% by weight and from 3 to 15 parts by weight of a propylene-butene-1 copolymer having a butene-1 content of from 80 to 93%.
JP-A-61-108647 discloses a crystalline propylene random copolymer composition from which a polypropylene composite laminate superior in low-temperature heat sealability and heat seal strength can be obtained. Specifically disclosed is a crystalline propylene random copolymer composition comprising a crystalline propylene random copolymer which is made up of propylene and α-olefin other than propylene and which contains the propylene as a main component and a 1-butene random copolymer made up of ethylene and 1-butene.
In recent years, in the field of packaging of foods and the like, the fabrication speed of bags has been increased and a material which can be processed at an increased fabrication speed is awaited. For the propylene copolymer compositions, a further improvement in low-temperature heat sealability, hot tack property and transparency of films obtained from the compositions is awaited. Moreover, an improvement in tackiness of the compositions during film formation is also awaited.
SUMMARY OF THE INVENTION
An object of the present is to provide a polymer composition from which a film superior in low-temperature heat sealability, hot tack property and transparency can be afforded and to provide a film thereof. Another object of the present invention is to provide a polymer composition from which films superior in low-temperature heat sealability, hot tack property and transparency can be obtained and which exhibit less tackiness when being fabricated into films and to provide a film thereof.
In a first embodiment, the present invention is directed to a polymer composition comprising:
from 70 to 99% by weight of a polymer (A) satisfying Requirements (A-1) through (A-3) defined below and
from 1 to 30% by weight of a polymer (B) satisfying Requirements (B-1) and (B-2) defined below, the polymer composition satisfying Requirements (1) and (2) defined below, wherein said amounts of the polymers (A) and (B) are based on a combined amount of the polymers (A) and (B):
Requirement (1): the content of a 20° C. xylene-soluble portion of the polymer composition is from 5 to 45% by weight,
Requirement (2): a 20° C. xylene-soluble portion of the polymer composition has an intrinsic viscosity of 1.3 dl/g or higher,
Requirement (A-1): the polymer is a copolymer of propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, α-olefin having 4 or more carbon atoms and ethylene,
Requirement (A-2): the polymer has a content of structural units derived from α-olefin having 4 or more carbon atoms of from 3 to 40% by weight,
Requirement (A-3): the polymer has a content of structural units derived from ethylene of from 0.1 to 5% by weight when the polymer is a copolymer of propylene, α-olefin having 4 or more carbon atoms and ethylene,
Requirement (B-1): the polymer is a homopolymer of 1-butene, a copolymer of 1-butene and ethylene, a copolymer of 1-butene and propylene, a copolymer of 1-butene and α-olefin having 4 or more carbon atoms other than 1-butene, a copolymer of 1-butene, ethylene and propylene or a copolymer of 1-butene, ethylene and α-olefin having 4 or more carbon atoms other than 1-butene, and
Requirement (B-2): the polymer has a melting point of not lower than 60° C. but lower than 125° C.
In a second embodiment, the present invention is directed to a polymer composition according to the first embodiment, wherein the polymer composition further comprises from 1 to 25 parts by weight, based on 100 parts by weight of the polymers (A) and (B) in total, of a polymer (D) satisfying Requirements (D-1), (D-2) and (D-3) defined below:
Requirement (D-1): the polymer is a homopolymer of propylene, a copolymer of propylene and ethylene, or a copolymer of propylene and α-olefin having 4 or more carbon atoms,
Requirement (D-2): the polymer has a melting point of from 150° C. to 170° C., and
Requirement (D-3): the polymer has a content of structural units derived from ethylene of from 0.1 to 3% by weight when the polymer is a copolymer of propylene and ethylene or the polymer has a content of structural units derived from α-olefin having 4 or more carbon atoms of from 0.1 to 3% by weight when the polymer is a copolymer of propylene and α-olefin having 4 or more carbon atoms.
In a third embodiment, the present invention is directed to a polymer composition comprising:
from 30 to 98% by weight of a polymer (A) satisfying Requirements (A-1) through (A-3) defined above,
from 1 to 30% by weight of a polymer (B) satisfying Requirements (B-1) and (B-2) defined above, and
from 1 to 50% by weight of a polymer (C) satisfying Requirements (C-1) through (C-5) defined below, the polymer composition satisfying Requirements (1) and (2) defined above, wherein said amounts of the polymers (A), (B) and (C) are based on a combined amount of the polymers (A), (B) and (C):
Requirement (C-1): the polymer is a copolymer of propylene and ethylene, a copolymer propylene and α-olefin having 4 or more carbon atoms, or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms,
Requirement (C-2): the polymer has a content of structural units derived from ethylene of from 0.1 to 10% by weight when the polymer is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atom, wherein this content is based on the weight of the polymer,
Requirement (C-3): the polymer has a content of structural units derived from α-olefin having 4 or more carbon atoms of from 0.1 to 10% by weight when the polymer is a propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms,
Requirement (C-4): the polymer has a content, based on the weight of the polymer, of structural units derived from α-olefin having 4 or more carbon atoms less than that of polymer (A) when the polymer is a copolymer of propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms, and
Requirement (C-5): the polymer has a melting point of not lower than 125° C. but lower than 150° C.
In a fourth embodiment, the present invention is directed to a polymer composition according to the third embodiment, wherein the polymer composition further comprises from 1 to 25 parts by weight, based on 100 parts by weight of the polymers (A), (B) and (C) in total, of a polymer (D) satisfying Requirements (D-1), (D-2) and (D-3) defined above.
In the polymer compositions of the first through fourth embodiments, the polymer (A) is a copolymer of propylene and 1-butene.
In the polymer compositions of the third and fourth embodiments, the polymer (C) is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and 1-butene.
In the polymer compositions of the second and fourth embodiments, the polymer (D) is a homopolymer of propylene having a melting point of from 155° C. to 170° C.
Moreover, the present invention also provides a film having at least one layer made of any of the polymer compositions mentioned above.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The polymer composition of the first embodiment of the present invention is a polymer composition comprising from 70 to 99% by weight of the polymer (A) and from 1 to 30% by weight of the polymer (B), the polymer composition satisfying Requirements (1) and (2) defined below, wherein said amounts of the polymers (A) and (B) are based on a combined amount of the polymers (A) and (B):
Requirement (1): the content of a 20° C. xylene-soluble portion of the polymer composition is from 5 to 45% by weight, and
Requirement (2): a 20° C. xylene-soluble portion recovered from the polymer composition has an intrinsic viscosity of 1.3 dl/g or higher.
The polymer composition of the second embodiment of the present invention is a polymer composition of the first embodiment which further comprises from 1 to 25 parts by weight, based on 100 parts by weight of the polymers (A) and (B) in total, of the polymer (D).
The polymer composition of the third embodiment of the present invention is a polymer composition comprising from 30 to 98% by weight of the polymer (A), from 1 to 30% by weight of the polymer (B), and from 1 to 50% by weight of the polymer (C), the polymer composition satisfying Requirements (1) and (2) defined above, wherein said amounts of the polymers (A), (B) and (C) are based on a combined amount of the polymers (A), (B) and (C).
The polymer composition of the fourth embodiment of the present invention is a polymer composition of the third embodiment which further comprises from 1 to 25 parts by weight, based on 100 parts by weight of the polymers (A), (B) and (C) in total, of the polymer (D).
The content of a 20° C. xylene-soluble portion (henceforth, referred to as CXS) of the polymer compositions of the present invention is from 5 to 45% by weight (Requirement (1)) and, from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films, preferably is from 10 to 40% by weight.
In the polymer compositions of the present invention, the intrinsic viscosity of the CXS (henceforth, referred to as [η]CXS) is 1.3 dl/g or higher (Requirement (2)), preferably from 1.3 to 7 dl/g and, from the viewpoint of hot tack strength, is more preferably from 1.34 to 7 dl/g, particularly preferably from 1.38 to 5 dl/g. It should be noted that the [η]CXS in the present invention is measured in tetralin at 135° C. For the measurement, an Ubbelohde's viscometer is used.
The melt flow rate (MFR), measured at 230° C., of the polymer compositions of the present invention is, from the viewpoints of fluidity and film formability, usually from 0.1 to 50 g/10 minutes, preferably from 1 to 20 g/10 minutes, more preferably from 3 to 15 g/10 minutes, and even more preferably from 4 to 15 g/10 minutes.
In the polymer compositions of the first and second embodiments of the present invention, the content of the polymer (A) and that of the polymer (B) are from 70 to 99% by weight and from 1 to 30% by weight, respectively and, from the viewpoint of preventing polymer compositions from exhibiting tackiness during their film formation, preferably from 75 to 99% by weight and from 1 to 25% by weight, respectively and more preferably from 80 to 97% by weight and from 3 to 20% by weight, respectively.
In the polymer compositions of the third and fourth embodiments of the present invention, the content of the polymer (A), that of the polymer (B) and that of the polymer (C) are from 30 to 98% by weight, from 1 to 30% by weight and from 1 to 50% by weight, respectively and, from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films, preferably from 40 to 98% by weight, from 1 to 25% by weight and from 1 to 45% by weight, respectively and more preferably from 50 to 96% by weight, 3 to 20% by weight and from 1 to 40% by weight, respectively.
The polymer (A) used in the present invention is a copolymer of propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, α-olefin having 4 or more carbon atoms and ethylene (Requirement (A-1)).
The content of structural units derived from α-olefin having 4 or more carbon atoms is from 3 to 40% by weight (Requirement (A-2)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films, the content is preferably from 5 to 40% by weight, more preferably from 10 to 30% by weight, and even more preferably from 15 to 40% by weight. It should be noted that said contents are based on the combined weight of the structural units derived from propylene and the structural units derived from α-olefin having 4 or more carbon atoms in the polymer (A).
When the polymer (A) is a copolymer of propylene, α-olefin having 4 or more carbon atoms and ethylene, the content of structural units derived from ethylene is 0.1 to 5% by weight (Requirement (A-3)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and preventing films from whitening with time, the content is preferably up to 3% by weight. It should be noted that said contents are based on the total of the combined weight of the structural units derived from propylene, the structural units derived from ethylene and the structural units derived from α-olefin having 4 or more carbon atoms in the polymer (A).
The melt flow rate (MFR), measured at 230° C., of the polymer (A) is usually from 0.1 to 50 g/10 minutes and, from the viewpoint of fluidity, it is preferably from 1 to 20 g/10 minutes, more preferably from 3 to 15 g/10 minutes and even more preferably from 4 to 15 g/10 minutes.
It is possible to control the fluidity of the polymer (A) by changing its molecular weight by a conventional method. For example, it is possible to control the MFR of the polymer (A) by melt kneading it in the presence of an organic peroxide.
The α-olefin having 4 or more carbon atoms to be used for the preparation of the polymer (A) is preferably an α-olefin having from 4 to 20 carbon atoms and more preferably is an α-olefin having from 4 to 12 carbon atoms.
Examples of the α-olefin having 4 or more carbon atoms to be used for the preparation of the polymer (A) include 1-butene, 2-methyl-1-propene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 2-ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl-1-butene, 1-heptene, 2-methyl-1-hexene, 2,3,-dimethyl-1-pentene, 2-ethyl-1-pentene, 2,3,4-trimethyl-1-butene, 2-methyl-3-ethyl-1-butene, 1-octene, 5-methyl-1-pentene, 2-ethyl-1-hexene, 3,3-dimethyl-1-hexene, 2-propyl-1-heptene, 2-methyl-3-ethyl-1-heptene, 2,3,4-trimethyl-1-pentene, 2-propyl-1-pentene, 2,3-diethyl-1-butene, 1-nonene, 1-decene, 1-undecene and 1-dodecene.
Preferred are 1-butene, 1-pentene, 1-hexene and 1-octene. From the viewpoint of copolymerizability and the economical standpoint, more preferred are 1-butene and 1-hexene.
Examples of the polymer (A) includes a propylene-1-butene copolymer, a propylene-1-hexene copolymer, a propylene-ethylene-1-butene copolymer and a propylene-ethylene-1-hexene copolymer. Preferred are a propylene-1-butene copolymer and a propylene-1-hexene copolymer.
The polymer (A) is preferably a polymer containing from 1 to 30% by weight of a segment (a-1) defined below and from 70 to 99% by weight of a segment (a-2) defined below, wherein said amounts of the segments are based on the combined weight of the segments:
segment (a-1): a segment having structural units derived from 1-butene in a content of not less than 1% by weight but less than 15% by weight,
segment (a-2): a segment having structural units derived from 1-butene in a content of not less than 15% by weight but not more than 40% by weight.
From the viewpoint of properties of a powder during polymerization and also from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films, the content of the segment (a-1) and that of the segment (a-2) are preferably from 1 to 20% by weight and from 80 to 99% by weight, respectively. The content of 1-butene in the segment (a-1) is preferably from 1 to 10% by weight. The content of 1-butene in the segment (a-2) is preferably from 15 to 30% by weight.
Examples of the segment (a-1) include a propylene-1-butene copolymer segment and a propylene-ethylene-1-butene copolymer segment. Preferred is a propylene-1-butene copolymer segment. Examples of the segment (a-2) also include a propylene-1-butene copolymer segment and a propylene-ethylene-1-butene copolymer segment. Preferred is a propylene-1-butene copolymer segment. The kinds of the structural units of the segment (a-1) and those of the structural units of the segment (a-2) may be either identical or different.
Examples of such a polymer (A) containing a segment (a-1) and a segment (a-2) include a (propylene-1-butene)-(propylene-1-butene) copolymer, a (proppylene-1-butene)-(propylene-ethylene-1-butene) copolymer, a (propylene-ethylene-1-butene)-(propylene-1-butene) copolymer, and a (propylene-ethylene-1-butene)-(propylene-ethylene-1-butene) copolymer. Preferred are a (propylene-1-butene)-(propylene-1-butene) copolymer and a (propylene-1-butene)-(propylene-1-butene) copolymer. More preferred is a (propylene-1-butene)-(propylene-1-butene) copolymer.
The polymer (B) to be used in the present invention is a homopolymer of 1-butene, a copolymer of 1-butene and ethylene, a copolymer of 1-butene and propylene, a copolymer of 1-butene and α-olefin having 4 or more carbon atoms other than 1-butene, a copolymer of 1-butene, ethylene and propylene, or a copolymer of 1-butene, ethylene and α-olefin having 4 or more carbon atoms other than 1-butene (Requirement (B-1)).
When the polymer (B) is a copolymer of 1-butene and α-olefin having 4 or more carbon atoms other than 1-butene, examples of the α-olefin include 1-pentene and 1-hexene.
When the polymer (B) is a copolymer of 1-butene and α-olefin having 4 or more carbon atoms other than 1-butene, examples of such a copolymer include a 1-butene-propylene copolymer, a 1-butene-ethylene copolymer and a 1-butene-propylene-ethylene copolymer. Preferred are a 1-butene-ethylene copolymer and a 1-butene-propylene copolymer.
When the polymer (B) is a copolymer, its content of structural units derived from 1-butene is usually from 55 to 99.9% by weight. From the viewpoint of preventing polymer compositions from exhibiting tackiness during their film formation, the content is preferably from 60 to 99.9% by weight and more preferably from 65 to 99.9% by weight.
When the polymer (B) is a copolymer, its content of structural units derived from monomers other than 1-butene is usually from 0.1 to 45% by weight, preferably from 0.1 to 40% by weight, and more preferably from 0.1 to 35% by weight.
The melting point (Tm) of the polymer (B) is not lower than 60° C. but lower than 125° C. (Requirement (B-2)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films, the melting point is preferably from 65 to 120° C. and more preferably from 65 to 115° C.
The intrinsic viscosity [η] of the polymer (B) is preferably from 1.4 to 7 dl/g, more preferably from 1.5 to 6 dl/g and even more preferably from 1.6 to 5 dl/g from the viewpoints of hot tack strength of films and dispersibility of the polymer achieved during the pelletization of the composition.
The polymer (C) used in the present invention is a copolymer of propylene and ethylene, a copolymer propylene and α-olefin having 4 or more carbon atoms, or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms (Requirement (C-1)).
When the polymer (C) is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms, the polymer has a content of structural units derived from ethylene of from 0.1 to 10% by weight (Requirement (C-2)). The content is preferably from 0.1 to 8% by weight and more preferably from 1 to 7% by weight.
When the polymer is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms, the polymer must satisfy the aforementioned Requirement (C-2) from the viewpoint of properties of a powder during the polymerization for the production of the polymer (C) and also from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films.
When the polymer (C) is a copolymer of propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms, the polymer has a content of structural units derived from α-olefin having 4 or more carbon atoms of from 0.1 to 10% by weight (Requirement (C-3)), and preferably is from 1 to 8% by weight.
When the polymer (C) is a copolymer of propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms, the polymer (C) has a content, based on the weight of the polymer, of structural units derived from α-olefin having 4 or more carbon atoms less than that of polymer (A) (Requirement (C-4)).
When the polymer (C) is a copolymer of propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms, the polymer (C) must satisfy the aforementioned Requirements (C-3) and (C-4) from the viewpoint of properties of a powder achieved during the polymerization for the production of polymer (C) and also from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat sealability of resulting films.
The melting point of the polymer (C) is not lower than 125° C. but lower than 150° C. (Requirement (C-5)). It is preferably from not lower than 125° C. but not higher than 145° C. from the viewpoint of properties of a powder achieved during the polymerization for the production of polymer (C) or low-temperature heat sealability of films.
The melt flow rate (MFR), measured at 230° C., of the polymer (C) is usually from 0.1 to 200 g/10 minutes and, from the viewpoints of fluidity and film formability, preferably from 1 to 150 g/10 minutes.
It is possible to control the fluidity of the polymer (C) by changing its molecular weight by a conventional method. For example, it is possible to control the MFR of the polymer (C) by melt kneading it in the presence of an organic peroxide.
In the polymer compositions of the first and second embodiments of the present invention, the content of the polymer (A) and that of the polymer (B) are preferably from 75 to 99% by weight and from 1 to 25% by weight, respectively, and more preferably from 80 to 97% by weight and from 3 to 20% by weight, respectively from the viewpoint of preventing polymer compositions from exhibiting tackiness during their film formation.
In the polymer compositions of the third and fourth embodiments of the present invention, the content of the polymer (A), that of the polymer (B) and that of the polymer (C) are preferably from 40 to 98% by weight, from 1 to 25% by weight and from 1 to 45% by weight, respectively, and more preferably from 50 to 96% by weight, from 3 to 20% by weight and from 1 to 40% by weight, respectively from the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation and low-temperature heat seal temperature of resulting films.
The polymer (D) to be used in the present invention is a homopolymer of propylene, a copolymer of propylene and ethylene, or a copolymer of propylene and α-olefin having 4 or more carbon atoms (Requirement (D-1)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation, a homopolymer of propylene is preferred.
The melting point of the polymer (D) is from 150° C. to 170° C. (Requirement (D-2)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation, it is preferably from 155° C. to 170° C., and more preferably from 158° C. to 170° C.
When the polymer (D) is a copolymer of propylene and ethylene, the polymer has a content of structural units derived from ethylene of from 0.1 to 3% by weight and when the polymer is a copolymer of propylene and α-olefin having 4 or more carbon atoms, the polymer has a content of structural units derived from α-olefin having 4 or more carbon atoms of from 0.1 to 3% by weight (Requirement (D-3)). From the viewpoints of preventing polymer compositions from exhibiting tackiness during their film formation, it is preferably from 0.1 to 2% by weight.
The melt flow rate (MFR), measured at 230° C., of the polymer (D) is usually from 0.1 to 200 g/10 minutes and, from the viewpoints of fluidity and film formability, preferably from 1 to 150 g/10 minutes.
It is possible to control the fluidity of the polymer (D) by changing its molecular weight by a conventional method. For example, it is possible to control the MFR of the polymer (D) by melt kneading it in the presence of an organic peroxide.
The content of the polymer (D) in a polymer composition containing no polymer (C) is from 1 to 25 parts by weight based on 100 parts by weight of the polymers (A) and (B) in total. From the viewpoint of hot tack strength, it is preferably from 1 to 18 parts by weight and more preferably from 1 to 12 parts by weight. On the other hand, the content of the polymer (D) in a polymer composition containing the polymer (C) is from 1 to 25 parts by weight based on 100 parts by weight of the polymers (A), (B) and (C) in total.
It is possible to produce the polymers (A), (C) and (D) by polymerizations using appropriate polymerization catalysts.
Examples of the catalyst for polymerization include Ziegler-Natta type catalysts and metallocene-type catalysts. Preferred are catalysts containing Ti, Mg and halogen as essential components. For example, Ti—Mg-based catalysts comprising a solid catalyst component obtained by compounding a magnesium compound with a titanium compound, and catalyst systems comprising such a solid catalyst component, an organoaluminum compound and a third component, e.g. an electron-donating compound, are mentioned. Specific examples are catalyst systems disclosed, for example, in JP-A-61-218606, JP-A-61-287904 and JP-A-7-216017.
Preferred examples of the organoaluminum compound include triethylaluminum, triisobutylaluminu, a mixture of triethylaluminu and diethylaluminum chloride, and tetraethyldialumoxane.
Preferred examples of the electron-donating compound include cyclohexyl-ethyldimethoxysilane, tert-butyl-n-propyldimethoxysilane, tert-butylethyldimethoxysilane and dicyclopentyldimethoxysilane.
Examples of the type of polymerization include solvent polymerization using an inert solvent typified by hydrocarbon compounds such as hexane, heptane, octane, decane, cyclohexane, methylcyclohexane, benzene, toluene and xylene; bulk polymerization using liquid monomer as solvent; and gas phase polymerization carried out in vaporous monomer. Preferred are bulk polymerization and gas phase polymerization because post-treatment can be conducted easily. These polymerization may be carried out either in a batch manner or in a continuous manner.
When the polymer (A) is a copolymer containing the aforementioned segments (a-1) and (a-2), its production can be carried out by multistep polymerization comprising a first polymerization step and a polymerization step or steps following the first polymerization step.
The type of the polymerization used in the first polymerization step and that used in the following polymerization step or steps may be either the same or different. From the viewpoints of polymerization activity and ease in post-treatment, polymerization is carried out in the absence of inert solvent in the first polymerization step and polymerization is carried out in a gas phase in the step or steps following the first polymerization step. The polymerization in the first polymerization step and the polymerization in the step or each of the steps following the first polymerization step may be carried out either in the same polymerization reactor or in different polymerization reactors.
Examples of the multistep polymerization composed of the first polymerization step and a polymerization step or steps following the firs polymerization step include solvent-solvent polymerization, bulk-bulk polymerization, gas phase-gas phase polymerization, solvent-gas phase polymerization, bulk-gas phase-gas phase polymerization, solvent-gas phase-gas phase polymerization and bulk-gas phase-gas phase polymerization. Preferred are bulk-gas phase polymerization, gas phase-gas phase polymerization and bulk-gas phase-gas phase polymerization.
The polymerization temperature in the first polymerization step is usually from 20 to 150° C. and, from the viewpoints of production efficiency and ease in controlling the contents of the copolymer segments (a-1) and (a-2), preferably from 35 to 95° C.
The polymerization temperature in the step or each of the steps following the first polymerization step may be equal to or different from the polymerization temperature in the first polymerization step. However, it is usually from 20 to 150° C. and preferably from 35 to 95° C.
The preparation of the polymer (B) can be carried out by polymerization using a method widely employed in industrial production.
It is possible to produce the polymer compositions of the present invention by mixing ingredients prepared separately and then dispersing them uniformly. Examples of such a method include extrusion melt blending and Banbury blending.
In the preparation of the polymer compositions of the present invention, it is desirable to melt knead each of the polymers (A), (C) and (D) or mixtures thereof in the presence of an organic peroxide. However, it is undesirable to melt knead the polymer (B) or a mixture of the polymer (B) and other polymers.
The polymer compositions of the present invention may contain additives or a resin other than the polymers (A), (B), (C) and (D), if required. Examples of additives include antioxidants, UV absorbers, antistatic agents, lubricants, nucleating agents, adhesives, anticlouding agents and antiblocking agents.
The resin other than the polymers (A), (B), (C) and (D) may be polyethylene or the like.
The film of the present invention is a film having at least one layer made of any of the polymer compositions of the present invention described above. The film of the present invention may be either a film composed of a single layer or a multilayer film.
The method for producing the film of the present invention may be a conventionally-used method such as the inflation method, the T die method and the calender method. The method for producing the multilayer film may be a conventionally-used method such as coextrusion, extrusion lamination, hot lamination and dry lamination.
The film of the present invention may be a drawn film. The method for producing the drawn film may be a method in which a film or sheet prepared by processing a polymer composition of the present invention is stretched. The method of the stretching may be a method of uniaxially or biaxially stretching a film or sheet by roll stretching, tenter stretching, tubular stretching, or the like.
The film of the present invention preferably is an undrawn film produced by coextrusion or a film produced by biaxially drawing from the viewpoints of balance between properties of the film including low-temperature heat sealability, transparency and rigidity.
Examples of the application of the film of the present invention include wrapping of various items. Examples of the items to be wrapped in the film of the present invention include foods and clothes. Foods are preferred.
EXAMPLES
The present invention will be described specifically below with reference to examples and compatible examples. However, the invention is not restricted to the examples. The methods for preparing the samples used in the examples and comparative examples and the methods for measuring physical properties are shown below.
(1) Content of Structural Units Derived from 1-butene (Unit: % by Weight)
The IR spectrum was taken by a method described in Macromolecule Handbook (1995, published by Kinokuniya), page 619. Based on the spectrum, the content of structural units derived from 1-butene was determined.
(2) Content of Structural Units Derived from ethylene (Unit: % by Weight)
By a conventional method using an infrared spectrophotometer and a standard sample, the content of structural units derived from ethylene was determined from characteristic absorptions appearing within the range from 732 to 720 cm−1.
(3) Intrinsic Viscosity ([η]; Unit: dl/g)
The intrinsic viscosity was measured at 135° C. in tetralin using an Ubbelohde's viscometer.
(4) Content of 20° C. xylene-Soluble Portion (CXS) (Unit: % by Weight)
One gram of polymer composition was dissolved completely in 100 ml of boiling xylene and then cooled to 20° C. After being left for four hours, the mixture was separated by filtration into a solid and a solution. The filtrate was evaporated and was dried under reduced pressure at 70° C., yielding a dry solid. The dry solid was weighed and then the content of 20° C. xylene-soluble portion (CXS) in the polymer composition was determined.
(5) Melt Flow Rate (MFR; Unit: g/10 Minutes)
The MFR was determined according to JIS K 7210 at a temperature of 230° C. under a load of 21.18 N.
(6) Melting Point (Tm; Unit: ° C.)
A polymer composition was subjected to hot press molding including operations [1] through [5] shown below, yielding a sheet 0.5 mm in thickness.
[1] To introduce a mass of polymer composition into a molding section controlled to 230° C. in a compression molding machine manufactured by Shinto Metal Industries, Ltd.
[2] To preheat the polymer composition to 230° C. in the molding section for five minutes without application of load.
[3] To increase the pressure applied to the mass of polymer composition up to 50 kgf/cm2 in three minutes using a pressing machine.
[4] To keep the pressure at 50 kgf/cm2 for two minutes.
[5] To transfer the sample obtained in step [4] above to a molding section controlled to 30° C. in another compression molding machine manufactured by Shinto Metal Industries, Ltd. and to press the sample under a pressure of 30 kgf/cm2 for five minutes.
Using a differential scanning calorimeter (Model DSC-7, manufactured by PerkinElmer Inc.), a 10 mg portion taken from the pressed sheet was subjected to a thermal hysteresis including the operations (i) through (vii) shown below under a nitrogen atmosphere. During the step (vii), a fusion curve was produced. In the resulting fusion curve, a temperature (° C.) where the highest endothermic curve appears was determined. The temperature was used as the melting point of the polymer composition.
(i) To heat a sample from room temperature to 220° C. at a rate of 300° C./min.
(ii) To hold the sample at 220° C. for five minutes.
(iii) To cool the sample from 200° C. to 150° C. at a rate of 300° C./min.
(iv) To hold the sample at 150° C. for one minute.
(v) To cool the sample from 150° C. to 50° C. at a rate 5° C./min.
(vi) To hold the sample at 50° C. for one minute.
(vii) To heat the sample from 50° C. to 180° C. at a rate of 5° C./min.
(7) Transparency (Haze; Unit: %)
The haze was measured according to JIS K 7105.
(8) Heat Seal Temperature (HST; Unit: ° C.)
Two pieces of the same film composed of a surface layer and a substrate layer were laminated in a manner that the surface layer of one piece was put on the surface layer of the other piece. The laminated pieces were pressed under a load of 2 kgf/cm2 for two seconds by means of a heat sealer (manufactured by Toyo Seiki Seisaku-sho, Ltd.) heated to a predetermined temperature, thereby being heat sealed. The resulting sample was conditioned overnight at a temperature of 23° C. at a humidity of 50%. Then, the sample was measured for a peel resistance by peeling the laminated layers under the following conditions: a temperature of 23° C., a humidity of 50%, a peel speed of 200 mm/min and a peel angle of 180°. The heat sealing and the peel test were repeated while the seal temperature was varied and a seal temperature at which a peel resistance of 300 g/25 mm was achieved was determined. The seal temperature was used as the heat seal temperature (HST) of the film.
(9) Hot Tack Strength (HT; Unit: g/75 mm)
Two 75 mm-wide pieces of the same film composed of a surface layer and a substrate layer were laminated in a manner that the surface layer of one piece was put on the surface layer of the other piece. The laminated pieces were pressed under a load of 2 kg/cm2 for two seconds by means of a heat sealer heated to a predetermined temperature, thereby being heat sealed. Just after the load was removed, a peel force was applied to the sealed portion using a leaf spring, thereby allowing the surface layers to peel from each other. The peel length was measured.
The peel test described above was repeated at different peel forces using leaf springs different in spring constant and a peel force resulting in a peel length of 3.2 mm was determined. The spring constants of the leaf springs used were 53 g, 77 g, 110 g, 154 g, 224 g, 250 g and 295 g.
(10) Tackiness of Film During its Formation
A film which had been biaxially stretched and then passed through an oven having a preheating section controlled to 175° C. and 165° C., a stretching section controlled to 157° C. and a heat-setting section controlled to 165° C. was touched with fingers. When no tackiness was felt, the film was judged to be “good.” Conversely, when a much degree of tackiness was felt, the film was judged to be “poor.”
Example 1
[Polymer (A-1)]
A solid catalyst was prepared and polymerization was carried out in the same manner as Example 1 disclosed in JP-A-2002-069143. Thus, a powder (A) of a propylene-1-butene copolymer having a content of structural units derived from 1-butene of 24.6% by weight and an MFR of 2.2 g/10 minutes was obtained. To 100 parts by weight of the resulting powder (A), 0.1 part by weight of calcium stearate, 0.05 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.1 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.), 0.4 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) and 0.25 part by weight of an MFR regulator were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer (A-1) having an MFR of 10.3 g/10 minutes in the form of pellets was obtained. The MFR regulator used was a masterbatch composed of polypropylene powder impregnated with 8% by weight of 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane.
[Polymer (B-1)]
TAFMER BL3080 (1-butene-ethylene copolymer manufactured by Mitsui Chemicals, Inc.; [η]=2.56 dl/g, Tm=79° C.)
[Polymer Composition (1)]
Ninety percent by weight of the polymer (A-1) prepared above and 10% by weight of TAFMER BL3080 (i.e., polymer (B-1)) were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer composition (1) in the form of pellets was obtained. Polymer composition (1) had an MFR of 7.9 g/10 minutes and it contained CXS in an amount of 28.3% by weight. The [η]CXS was 1.65 dl/g. The constitution, CXS and [η]CXS of polymer composition (1) are shown in Table 1.
[Preparation of Drawn Film]
A drawn film having a surface layer and a substrate layer was produced in the manner described below.
Polymer composition (1) prepared above was used for forming the surface layer. Polypropylene FS2011DG2 manufactured by Sumitomo Chemical Co., Ltd. (melting point=159° C., MFR=2.5 g/10 minutes) was used for forming the substrate layer. In separate extruders, polymer composition (1) and FS2011DG2 were melt kneaded separately at 230° C. and 260° C., respectively, and then were charged into a coextrusion T die. The extrudate having a two-kind two-layer structure, namely a surface layer/substrate layer structure, extruded through the T die was cooled rapidly to 30° C. and solidified on a chill roll. Thus, a cast sheet 1 mm in thickness was obtained.
The resulting cast sheet was preheated and then was stretched five times in the longitudinal direction at a stretching temperature of 145° C. by the action of difference in peripheral speed between rolls of a longitudinal stretching machine. Subsequently, the sheet was stretched eight times in the transverse direction at a stretching temperature of 157° C. in an oven and then was subjected to heat treatment at 165° C. Thus, a biaxially drawn multilayer film having a layer constitution: surface layer/substrate layer=1 μm/20 μm was obtained. The film was wound up by a winding machine. Physical properties of the biaxially drawn multilayer film are shown in Table 2.
Example 2
[Polymer (A-2)]
To 100 parts by weight of powder (A) of the propylene-1-butene copolymer obtained in Example 1, 0.1 part by weight of calcium stearate, 0.05 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.1 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.), 0.4 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) and 0.22 part by weight of an MFR regulator the same as that used in Example 1 were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer (A-2) having an MFR of 8.5 g/10 minutes in the form of pellets was obtained.
[Polymer (B-2)]
TAFMER BL3110 (1-butene-ethylene copolymer manufactured by Mitsui Chemicals, Inc.; [η]=1.79 dl/g, Tm=100.7° C.)
[Preparation of Polymer Composition (2) and Drawn Film]
Ninety percent by weight of the polymer (A-2) prepared above and 10% by weight of TAFMER BL3110 (polymer (B-2)) were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer composition (2) in the form of pellets was obtained. The polymer composition (2) had an MFR of 8.6 g/10 minutes and it contained CXS in an amount of 28.2% by weight. The [η]CXS was 1.40 dl/g. The constitution, CXS and [η]CXS of polymer composition (2) are shown in Table 1.
A biaxially drawn multilayer film was produced in the same manner as Example 1 except the polymer composition (1) used for forming the substrate layer was changed to the polymer composition (2). Physical properties of the biaxially drawn multilayer film are shown in Table 2.
Comparative Example 1
[Polymer (A-3)]
To 100 parts by weight of powder (A) of the propylene-1-butene copolymer obtained in Example 1, 0.1 part by weight of calcium stearate, 0.05 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.1 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.), 0.4 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) and 0.21 part by weight of an MFR regulator the same as that used in Example 1 were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer (A-3) having an MFR of 7.8 g/10 minutes in the form of pellets was obtained.
[Polymer (B-3)]
TAFMER BL3450 (1-butene-ethylene copolymer manufactured by Mitsui Chemicals, Inc.; [η]=1.35 dl/g, Tm=94.7° C.)
[Preparation of Polymer Composition (3) and Drawn Film]
Ninety percent by weight of the polymer (A-3) prepared above and 10% by weight of TAFMER BL3450 (i.e., polymer (B-3)) were mixed The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer composition (3) in the form of pellets was obtained. The polymer composition (3) had an MFR of 8.3 g/10 minutes and it contained CXS in an amount of 28.2% by weight. The [η]CXS was 1.28 dl/g. The constitution, CXS and [η]CXS of polymer composition (2) are shown in Table 1.
A biaxially drawn multilayer film was produced in the same manner as Example 1 except the polymer composition (1) used for forming the substrate layer was changed to the polymer composition (3). Physical properties of the biaxially drawn multilayer film are shown in Table 2.
TABLE 1
Polymer (A) Polymer (B)
Content Content CXS [η]CXS
Kind (%) Kind (%) (%) (dl/g)
Example 1 A-1 90 B-1 10 28.3 1.65
Example 2 A-2 90 B-2 10 28.2 1.40
Comparative A-3 90 B-3 10 28.2 1.28
Example 1
TABLE 2
HT(g/75 mm)
Haze HST 90° 100° 110° 120° 130° 140° 150°
(%) (° C.) C. C. C. C. C. C. C.
Example 1 2.4 80 <53 130 197  295< 288 113 <53
Example 2 2.5 81 <53 119 178 269 268 108 <53
Comparative 2.4 79 <53 108 138 233 164 61 <53
Example 1
Examples 1 and 2, which satisfy the requirements of the present invention, are superior in low-temperature heat sealability, hot tack property and transparency.
Conversely, in Comparative Example 1, which does not satisfy one of the requirements of the present invention regarding the intrinsic viscosity ([η]CXS) of 20° C. xylene-soluble portion of a polymer composition, an insufficient hot tack strength was obtained.
Example 3
[Polymer (A-4)]
To 100 parts by weight of powder (A) of the propylene-1-butene copolymer obtained in Example 1, 0.1 part by weight of calcium stearate, 0.05 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.1 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.), 0.4 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) and 0.21 part by weight of an MFR regulator the same as that used in Example 1 were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer (A-4) having an MFR of 7.9 g/10 minutes in the form of pellets was obtained.
[Polymer (B-1)]
TAFMER BL3080 (1-butene-ethylene copolymer manufactured by Mitsui Chemicals, Inc.; [η]=2.56 dl/g, Tm=79° C.)
[Polymer (D-1)]
Propylene homopolymer (Tm=164° C., MFR=140 g/10 minutes)
[Polymer Composition (4)]
Eighty-five parts by weight of the polymer (A-4) prepared above, 10 parts by weight of TAFMER BL3080 (i.e., polymer (B-1)) and 5 parts by weight of the aforementioned polymer (D-1) were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer composition (4) in the form of pellets was obtained.
In the resulting polymer composition (4), the proportions of polymer (A-4) and polymer (B-1) were 89.5% by weight and 10.5% by weight, respectively. The content, based on 100 parts by weight of polymers (A-4) and (B-1) in total, of polymer (D-1) was 5.26 parts by weight.
Polymer composition (4) had an MFR of 6.3 g/10 minutes and it contained CXS in an amount of 25.0% by weight. The [η]CXS was 1.77 dl/g. The constitution, CXS and [η]CXS of polymer composition (4) are shown in Table 3.
[Preparation of Drawn Film]
A drawn film having a surface layer and a substrate layer was produced in the manner described below. Polymer composition (4) prepared above was used for forming the surface layer. Polypropylene FS2011DG2 manufactured by Sumitomo Chemical Co., Ltd. (melting point=159° C., MFR=2.5 g/10 minutes) was used for forming the substrate layer. Polymer composition (4) and FS2011DG2 were melt kneaded separately in separate extruders, and then were charged into a coextrusion T die. The extrudate having a two-kind two-layer structure, namely a surface layer/substrate layer structure, extruded through the T die was cooled rapidly to 30° C. and solidified on a chill roll. Thus, a cast sheet 1 mm in thickness was obtained.
The resulting cast sheet was preheated and then was stretched five times in the longitudinal direction at a stretching temperature of 145° C. by the action of difference in peripheral speed between rolls of a longitudinal stretching machine. Subsequently, the sheet was stretched eight times in the transverse direction at a stretching temperature of 157° C. in an oven and then was subjected to heat treatment at 165° C. Thus, a biaxially drawn multilayer film having a layer constitution: surface layer/substrate layer=1 μm/20 μm was obtained. The film was wound up by a winding machine. Physical properties of the biaxially drawn multilayer film are shown in Table 4.
Example 4
[Polymer (A-5)]
To 100 parts by weight of powder (A) of the propylene-1-butene copolymer obtained in Example 1, 0.1 part by weight of calcium stearate, 0.05 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.1 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.), 0.4 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) and 0.21 part by weight of an MFR regulator the same as that used in Example 1 were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer (A-5) having an MFR of 7.9 g/10 minutes in the form of pellets was obtained.
[Polymer (B-2)]
TAFMER BL3110 (1-butene-ethylene copolymer manufactured by Mitsui Chemicals, Inc.; [η]=1.79 dl/g, Tm=100.7° C.)
[Preparation of Polymer Composition (5) and Drawn Film]
Eighty-five percent by weight of the polymer (A-5) prepared above, 10 parts by weight of TAFMER BL3110 (i.e., polymer (B-2)) and 5 parts by weight of the aforementioned polymer (D-1) were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer composition (5) in the form of pellets was obtained.
In the resulting polymer composition (5), the proportions of polymer (A-5) and polymer (B-2) were 89.5% by weight and 10.5% by weight, respectively. The content, based on 100 parts by weight of polymers (A-5) and (B-2) in total, of polymer (D-1) was 5.26 parts by weight.
The polymer composition (5) had an MFR of 7.8 g/10 minutes and it contained CXS in an amount of 23.7% by weight. The [η]CXS was 1.44 dl/g. The constitution, CXS and [η]CXS of polymer composition (5) are shown in Table 3.
A biaxially drawn multilayer film was produced in the same manner as Example 3 except the polymer composition (4) used for forming the substrate layer was changed to the polymer composition (5). Physical properties of the biaxially drawn multilayer film are shown in Table 4.
Example 5
[Polymer (C-1)]
To 100 parts by weight of propylene-ethylene-1-butene copolymer (content of structural units derived from ethylene=4.0% by weight, content of structural units derived from 1-butene=3.6% by weight, Tm-129° C., MFR=6.0 g/10 minutes), 0.1 part by weight of calcium stearate, 0.05 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.1 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.), 0.4 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) and 0.75 part by weight of an MFR regulator the same as that used in Example 1 were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer (C-1) having an MFR of 44 g/10 minutes in the form of pellets was obtained.
[Preparation of Polymer Composition (6) and Drawn Film]
Thirty percent by weight of the polymer (C-1) prepared above, 10 parts by weight of TAFMER BL3080 (i.e., polymer (B-1), 5 parts by weight of polymer (D-1), 55 parts by weight of powder (A) of the propylene-1-butene copolymer used in Example 1 and moreover, based on 100 parts by weight of these four components in total, 0.055 part by weight of calcium stearate, 0.0275 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.055 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.) and 0.22 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer composition (6) in the form of pellets was obtained.
In the resulting polymer composition (6), the proportions of powder (A), polymer (B-1) and polymer (C-1) were 57.9% by weight, 10.5% by weight and 31.6% by weight, respectively. Moreover, the content of polymer (D-1) was 5.26 parts by weight based on 100 parts by weight of powder (A), polymer (B-1) and polymer (C-1) in total.
The polymer composition (6) had an MFR of 6.4 g/10 minutes and it contained CXS in an amount of 22.8% by weight. The [η]CXS was 1.69 dl/g. The constitution, CXS and [η]CXS of polymer composition (6) are shown in Table 3.
A biaxially drawn multilayer film was produced in the same manner as Example 3 except the polymer composition (4) used for forming the substrate layer was changed to the polymer composition (6). Physical properties of the biaxially drawn multilayer film are shown in Table 4.
Comparative Example 2
[Polymer (B-3)]
TAFMER BL3450 (1-butene-ethylene copolymer manufactured by Mitsui Chemicals, Inc.; [η]=1.35 dl/g, Tm=94.7° C.)
[Preparation of Polymer Composition (7) and Drawn Film]
To 90 parts by weight of powder (A) of the propylene-1-butene copolymer obtained in Example 1 and 10 parts by weight of TAFMER BL3450 (i.e., polymer (B-3)), 0.1 part by weight of calcium stearate, 0.05 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.1 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.), 0.4 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) and 0.12 part by weight of an MFR regulator the same as that used in Example 1 were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer composition (7) in the form of pellets was obtained.
In the resulting polymer composition (7), the proportions of powder (A) and polymer (B-3) were 90% by weight and 10% by weight, respectively.
The polymer composition (7) had an MFR of 8.7 g/10 minutes and it contained CXS in an amount of 27.8% by weight. The [η]CXS was 1.19 d/g. The constitution, CXS and [η]CXS of polymer composition (7) are shown in Table 3.
A biaxially drawn multilayer film was produced in the same manner as Example 3 except the polymer composition (4) used for forming the substrate layer was changed to the polymer composition (7). Physical properties of the biaxially drawn multilayer film are shown in Table 4.
Comparative Example 3
[Polymer Composition (8)]
To 85 parts by weight of powder (A) of the propylene-1-butene copolymer obtained in Example 1, 10 parts by weight of TAFMER BL3450 (polymer (B-3)) and 5 parts by weight of polymer (D-1), 0 1 part by weight of calcium stearate, 0.05 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals), 0.1 part by weight of 2,6-di-tert-butyl-4-methylphenol (BHT manufactured by Sumitomo Chemical Co., Ltd.), 0.4 part by weight of Tospearl 120 (manufactured by GE Toshiba Silicones) and 0.11 part by weight of an MFR regulator the same as that used in Example 1 were mixed. The resulting mixture was melt kneaded at 220° C. and then extruded through an extruder. The strand-shaped extrudate was cooled and cut. Thus, polymer composition (8) in the form of pellets was obtained.
In the resulting polymer composition (8), the proportions of powder (A) and polymer (B-3) were 89.5% by weight and 10.5% by weight, respectively. Moreover, the content of polymer (D-1) was 5.26 parts by weight based on 100 parts by weight of powder (A) and polymer (B-3) in total.
The polymer composition (8) had an MFR of 6.8 g/10 minutes and it contained CXS in an amount of 24.5% by weight. The [η]CXS was 1.21 dl/g. The constitution, CXS and [η]CXS of polymer composition (8) are shown in Table 3.
A biaxially drawn multilayer film was produced in the same manner as Example 3 except the polymer composition (4) used for forming the substrate layer was changed to the polymer composition (8). Physical properties of the biaxially drawn multilayer film are shown in Table 4.
TABLE 3
Polymer Polymer
Polymer (A) Polymer (B) (D-1) (C-1)
Content Content Content Content CXS [η]CXS
Kind (%) Kind (%) (%) (%) (%) (dl/g)
Example 3 A-4 85 B-1 10 5 0 25.0 1.77
Example 4 A-5 85 B-2 10 5 0 23.7 1.44
Example 5 Powder 55 B-1 10 5 30 22.8 1.69
(A)
Coraparative Powder 90 B-3 10 0 0 27.8 1.19
Example 2 (A)
Comparative Powder 85 B-3 10 5 0 24.5 1.21
Example 3 (A)
TABLE 4
HT(g/75 mm)
Haze HST 90° 100° 110° 120° 130° 140° 150°
(%) (° C.) C. C. C. C. C. C. C. Tackiness
Example 3 2.5 84 <53 120 157 160 178 107 <53 good
Example 4 2.6 85 <53 90 113 116 113 73 <53 good
Example 5 2.8 85 <53 60 104 131 185 94 <53 good
Comparative 2.5 81 <53 75 68 196 158 67 <53 poor
Example 2
Comparative 2.9 84 <53 53 53 53 113 71 <53 good
Example 3
Examples 3 through 5, which satisfy the requirements of the present invention, are superior in low-temperature heat sealability, hot tack property and transparency tackiness was not recognized.
Conversely, in Comparative Example 2, which does not contain polymer (D) that is one of the requirements of the present invention, a much degree of tackiness was recognized. In Comparative Example 1, which does not satisfy one of the requirements of the present invention regarding the intrinsic viscosity ([η]CXS) of 20° C. xylene-soluble portion of a polymer composition, an insufficient hot tack strength was obtained.
As described in detail above, according to the present invention, one can obtain a polymer composition from which a film superior in low-temperature heat sealability, hot tack property and transparency can be afforded and also can obtain a film thereof. In addition, according to the present invention, one can obtain a polymer composition from which films superior in low-temperature heat sealability, hot tack property and transparency can be obtained and which exhibit less tackiness when being fabricated into films can be afforded and also one can obtain a film thereof.

Claims (6)

1. A polymer composition comprising:
from 30 to 98% by weight of a polymer (A) satisfying Requirements (A-1) through (A-3) defined below,
from 1 to 30% by weight of a polymer (B) satisfying Requirements (B-1) through (B-3) defined below, and
from 1 to 50% by weight of a polymer (C) satisfying Requirements (C-1) through (C-5), the polymer composition satisfying Requirements (1) and (2) defined below, wherein said amounts of the polymers (A), (B) and (C) are based on a combined amount of the polymers (A), (B) and (C):
Requirement (1): the content of a 20° C. xylene-soluble portion of the polymer composition is from 5 to 45% by weight,
Requirement (2): a 20° C. xylene-soluble portion of the polymer composition has an intrinsic viscosity of 1.3 dl/g or higher,
Requirement (A-1): the polymer is a copolymer of propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, α-olefin having 4 or more carbon atoms and ethylene,
Requirement (A-2): the polymer has a content of structural units derived from α-olefin having 4 or more carbon atoms of from 3 to 40% by weight,
Requirement (A-3): the polymer has a content of structural units derived from ethylene of from 0.1 to 5% by weight when the polymer is a copolymer of propylene, α-olefin having 4 or more carbon atoms and ethylene,
Requirement (B-1): the polymer is a homopolymer of 1-butene, a copolymer of 1-butene and ethylene, a copolymer of 1-butene and propylene, a copolymer of 1-butene and α-olefin having 4 or more carbon atoms other than 1-butene, a copolymer of 1-butene, ethylene and propylene or a copolymer of 1-butene, ethylene and α-olefin having 4 or more carbon atoms other than 1-butene,
Requirement (B-2): the polymer has a melting point of not lower than 60° C. but lower than 125° C.,
Requirement (B-3): the polymer has a content of structural units derived from 1-butene of from 60 to 99.9% by weight when the polymer is a copolymer of 1-butene and ethylene, a copolymer of 1-butene and propylene, a copolymer of 1-butene and α-olefin having 4 or more carbon atoms other than 1-butene, a copolymer of 1-butene, ethylene and propylene or a copolymer of 1-butene, ethylene and α-olefin having 4 or more carbon atoms other than 1-butene,
Requirement (C-1): the polymer is a copolymer of propylene and ethylene, a copolymer propylene and α-olefin having 4 or more carbon atoms, or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms,
Requirement (C-2): the polymer has a content of structural units derived from ethylene of from 0 1 to 10% by weight when the polymer is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms, wherein this content is based on the weight of the polymer,
Requirement (C-3): the polymer has a content of structural units derived from α-olefin having 4 or more carbon atoms of from 0.1 to 10% by weight when the polymer is a copolymer of propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms,
Requirement (C-4): the polymer has a content, based on the weight of the polymer, of structural units derived from α-olefin having 4 or more carbon atoms less than that of polymer (A) when the polymer is a copolymer of propylene and α-olefin having 4 or more carbon atoms or a copolymer of propylene, ethylene and α-olefin having 4 or more carbon atoms, and
Requirement (C-5): the polymer has a melting point of not lower than 125° C. but lower than 150° C.
2. The polymer composition according to claim 1, wherein the polymer composition further comprises from 1 to 25 parts by weight, based on 100 parts by weight of the polymers (A), (B) and (C) in total, of a polymer (D) satisfying Requirements (D-1), (D-2) and (D-3) defined below:
Requirement (D-1): the polymer is a homopolymer of propylene, a copolymer of propylene and ethylene or a copolymer of propylene and α-olefin having 4 or more carbon atoms,
Requirement (D-2): the polymer has a melting point of from 150° C. to 170° C., and
Requirement (D-3): the polymer has a content of structural units derived from ethylene of from 0.1 to 3% by weight when the polymer is a copolymer of propylene and ethylene or the polymer has a content of structural units derived from α-olefin having 4 or more carbon atoms of from 0.1 to 3% by weight when the polymer is a copolymer of propylene and α-olefin having 4 or more carbon atoms.
3. The polymer composition according to claim 1 or 2, wherein the polymer (A) is a copolymer of propylene and 1-butene.
4. The polymer composition according to claim 1 or 2, wherein the polymer (C) is a copolymer of propylene and ethylene or a copolymer of propylene, ethylene and 1-butene.
5. The polymer composition according to claim 2, wherein the polymer (D) is a homopolymer of propylene having a melting point of from 155° C. to 170° C.
6. A film having at least one layer made of the polymer composition according to claim 1.
US11/777,427 2003-08-20 2007-07-13 Polymer composition and film thereof Active US7563847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/777,427 US7563847B2 (en) 2003-08-20 2007-07-13 Polymer composition and film thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003208001 2003-08-20
JP2003208002 2003-08-20
JP2003-208001 2003-08-20
JP2003-208002 2003-08-20
US10/920,274 US7276558B2 (en) 2003-08-20 2004-08-18 Polymer composition and film thereof
US11/777,427 US7563847B2 (en) 2003-08-20 2007-07-13 Polymer composition and film thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/920,274 Division US7276558B2 (en) 2003-08-20 2004-08-18 Polymer composition and film thereof

Publications (2)

Publication Number Publication Date
US20080015312A1 US20080015312A1 (en) 2008-01-17
US7563847B2 true US7563847B2 (en) 2009-07-21

Family

ID=34220637

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/920,274 Active 2025-03-03 US7276558B2 (en) 2003-08-20 2004-08-18 Polymer composition and film thereof
US11/777,427 Active US7563847B2 (en) 2003-08-20 2007-07-13 Polymer composition and film thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/920,274 Active 2025-03-03 US7276558B2 (en) 2003-08-20 2004-08-18 Polymer composition and film thereof

Country Status (3)

Country Link
US (2) US7276558B2 (en)
CN (1) CN1611538B (en)
DE (1) DE102004039453B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090292077A1 (en) * 2008-05-23 2009-11-26 Sumitomo Chemical Company , Limited Polypropylene-based resin composition and film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2592026C (en) * 2004-12-22 2010-11-30 Advantage Polymers, Llc Thermoplastic compositions and method of use thereof for molded articles
EP1911803A4 (en) * 2005-08-02 2009-07-15 Mitsui Chemicals Inc Polypropylene resin composition, film or sheet, stretched film obtained from such film or sheet, multilayer body, and stretched film obtained from such multilayer body
JP5255433B2 (en) * 2006-03-17 2013-08-07 三井化学株式会社 Polypropylene resin composition, molded body, sheet, and container
EP1840164A1 (en) * 2006-03-30 2007-10-03 SOLVAY INDUSTRIAL FOILS MANAGEMENT AND RESEARCH (Société Anonyme) Retortable composition
US20080188622A1 (en) * 2007-02-01 2008-08-07 Sumitomo Chemical Company, Limited Propylene-based copolymer material, film made therefrom, and method for producing propylene-based copolymer material
JP5062035B2 (en) * 2008-05-23 2012-10-31 住友化学株式会社 Polypropylene resin composition and film
EP2143760B1 (en) * 2008-07-11 2011-03-09 Borealis AG Heterophasic polymer composition providing high sealing strength
CN102165004B (en) * 2008-09-24 2013-12-25 巴塞尔聚烯烃意大利有限责任公司 Polyolefin compositions having good resistance at whitening

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559964A (en) 1978-10-30 1980-05-06 Sumitomo Chemical Co Polypropylene multilayer film
JPS61108647A (en) 1984-11-02 1986-05-27 Mitsui Petrochem Ind Ltd Crystalline random propylene copolymer composition
US4642269A (en) 1984-11-01 1987-02-10 Mitsui Petrochemical Industries, Ltd Crystalline random propylene copolymer composition and composite laminate comprising said composition
US4734328A (en) 1984-11-02 1988-03-29 Shell Oil Company Crystalline random propylene copolymer composition and composite laminate comprising said composition
US5496600A (en) * 1993-04-27 1996-03-05 Hoechst Aktiengesellschaft Matte biaxially oriented, multilayer polypropylene film and the use thereof
US5702784A (en) 1993-09-03 1997-12-30 Gunze Limited Polypropylene heat shrinkable film
JPH11245355A (en) 1998-02-27 1999-09-14 Mitsui Chem Inc Polypropylene composite film
US5994482A (en) * 1997-03-04 1999-11-30 Exxon Chemical Patents, Inc. Polypropylene copolymer alloys and process for making
US20030187126A1 (en) 2002-03-29 2003-10-02 Sumitomo Chemical Company, Limited Polypropylene resin composition and film
US20030220453A1 (en) 2002-03-29 2003-11-27 Sumitomo Chemical Company, Limited Propylene-based resin composition and film made of the same
JP2004002762A (en) 2002-03-29 2004-01-08 Sumitomo Chem Co Ltd Polypropylene resin composition and film
JP2004002760A (en) 2002-03-29 2004-01-08 Sumitomo Chem Co Ltd Polypropylene resin composition and film
US6818703B2 (en) 2002-03-29 2004-11-16 Sumitomo Chemical Company, Limited Propylene-based resin composition and film made of the same
US6835791B2 (en) 2001-12-12 2004-12-28 Sumitomo Chemical Company, Limited Stretched polypropylene film
US6927258B2 (en) * 1998-07-01 2005-08-09 Exxonmobil Chemical Patents Inc. Elastic blends comprising crystalline polymer and crystallizable polymers of propylene
US7019081B2 (en) * 1997-08-12 2006-03-28 Exxonmobil Chemical Patents Inc. Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218606A (en) 1985-03-25 1986-09-29 Sumitomo Chem Co Ltd Production of alpha-olefin polymer
JPS61287904A (en) 1985-06-14 1986-12-18 Sumitomo Chem Co Ltd Production of alpha-olefin polymer
JP2950168B2 (en) 1993-12-08 1999-09-20 住友化学工業株式会社 α-olefin polymerization catalyst and method for producing α-olefin polymer
EP0679686B1 (en) * 1994-04-28 1998-07-22 Sumitomo Chemical Company Limited Polypropylene composition for laminated and oriented film and laminated and oriented film thereof
SG38896A1 (en) * 1994-12-22 1997-04-17 Sumitomo Chemical Co Polypropylene composition and laminated and oriented film therefrom
US6106938A (en) 1994-12-22 2000-08-22 Sumitomo Chemical Company, Ltd. Polypropylene composition and laminated and oriented film therefrom
JP4655344B2 (en) 2000-08-30 2011-03-23 住友化学株式会社 PROPYLENE COPOLYMER, PROCESS FOR PRODUCING THE SAME, AND FILM COMPRISING THE PROPYLENE COPOLYMER

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559964A (en) 1978-10-30 1980-05-06 Sumitomo Chemical Co Polypropylene multilayer film
US4642269A (en) 1984-11-01 1987-02-10 Mitsui Petrochemical Industries, Ltd Crystalline random propylene copolymer composition and composite laminate comprising said composition
JPS61108647A (en) 1984-11-02 1986-05-27 Mitsui Petrochem Ind Ltd Crystalline random propylene copolymer composition
US4734328A (en) 1984-11-02 1988-03-29 Shell Oil Company Crystalline random propylene copolymer composition and composite laminate comprising said composition
US5496600A (en) * 1993-04-27 1996-03-05 Hoechst Aktiengesellschaft Matte biaxially oriented, multilayer polypropylene film and the use thereof
US5702784A (en) 1993-09-03 1997-12-30 Gunze Limited Polypropylene heat shrinkable film
US5994482A (en) * 1997-03-04 1999-11-30 Exxon Chemical Patents, Inc. Polypropylene copolymer alloys and process for making
US7019081B2 (en) * 1997-08-12 2006-03-28 Exxonmobil Chemical Patents Inc. Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers
JPH11245355A (en) 1998-02-27 1999-09-14 Mitsui Chem Inc Polypropylene composite film
US6927258B2 (en) * 1998-07-01 2005-08-09 Exxonmobil Chemical Patents Inc. Elastic blends comprising crystalline polymer and crystallizable polymers of propylene
US6835791B2 (en) 2001-12-12 2004-12-28 Sumitomo Chemical Company, Limited Stretched polypropylene film
US20030187126A1 (en) 2002-03-29 2003-10-02 Sumitomo Chemical Company, Limited Polypropylene resin composition and film
US6818703B2 (en) 2002-03-29 2004-11-16 Sumitomo Chemical Company, Limited Propylene-based resin composition and film made of the same
US6822049B2 (en) 2002-03-29 2004-11-23 Sumitomo Chemical Company, Limited Propylene-based resin composition and film made of the same
JP2004002760A (en) 2002-03-29 2004-01-08 Sumitomo Chem Co Ltd Polypropylene resin composition and film
JP2004002762A (en) 2002-03-29 2004-01-08 Sumitomo Chem Co Ltd Polypropylene resin composition and film
US20030220453A1 (en) 2002-03-29 2003-11-27 Sumitomo Chemical Company, Limited Propylene-based resin composition and film made of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090292077A1 (en) * 2008-05-23 2009-11-26 Sumitomo Chemical Company , Limited Polypropylene-based resin composition and film

Also Published As

Publication number Publication date
US7276558B2 (en) 2007-10-02
CN1611538A (en) 2005-05-04
CN1611538B (en) 2010-05-26
US20080015312A1 (en) 2008-01-17
DE102004039453B4 (en) 2021-08-19
DE102004039453A1 (en) 2005-03-17
US20050080192A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US7563847B2 (en) Polymer composition and film thereof
EP1849819B1 (en) Polypropylene film and layered product thereof
US5948547A (en) Composition based on statistical propylene copolymers, process for their manufacture and multilayer heat-sealable sheets containing them
US20050187367A1 (en) Biaxially oriented polypropylene film
JP4844091B2 (en) Propylene resin composition and film thereof
US20020040100A1 (en) Low temprature heat-sealable polypropylene-based film
US6822049B2 (en) Propylene-based resin composition and film made of the same
WO2011064131A1 (en) Polyolefin compositions having improved sealability
US4481336A (en) Olefinic block copolymers of ethylene propylene and 1-butene
EP2358532B1 (en) Multilayer thermoshrinkable films
US6835791B2 (en) Stretched polypropylene film
JPS6319255A (en) Polypropylene laminated film
US6818703B2 (en) Propylene-based resin composition and film made of the same
EP2501747B1 (en) Thermoshrinkable films
JP4923393B2 (en) Propylene copolymer composition and film thereof
JP4923392B2 (en) Propylene copolymer composition and film thereof
US7273907B2 (en) Polypropylene resin composition and film
JP4250993B2 (en) Polypropylene resin composition and film
EP1608506B1 (en) Multilayer films
JP2004002760A (en) Polypropylene resin composition and film
WO2002068531A1 (en) Compositions based on random propylene copolymers, process for their manufacture, and heat-sealable multilayer sheets comprising them
JP4491945B2 (en) Low-temperature heat-sealable polypropylene film
JPH11179866A (en) Film for packaging retort food

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12