US7867909B2 - Polishing composition and polishing method - Google Patents

Polishing composition and polishing method Download PDF

Info

Publication number
US7867909B2
US7867909B2 US11/844,014 US84401407A US7867909B2 US 7867909 B2 US7867909 B2 US 7867909B2 US 84401407 A US84401407 A US 84401407A US 7867909 B2 US7867909 B2 US 7867909B2
Authority
US
United States
Prior art keywords
polishing
polishing composition
ttha
tmah
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US11/844,014
Other versions
US20080051010A1 (en
Inventor
Yasuhide Uemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Assigned to FUJIMI INCORPORATED reassignment FUJIMI INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UEMURA, YASUHIDE
Publication of US20080051010A1 publication Critical patent/US20080051010A1/en
Priority to US12/360,557 priority Critical patent/US20090137123A1/en
Application granted granted Critical
Publication of US7867909B2 publication Critical patent/US7867909B2/en
Priority to US13/368,694 priority patent/US20120138851A1/en
Priority to US13/655,594 priority patent/US8721909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates to a polishing composition mainly used in polishing of a semiconductor wafer and to a polishing method using the polishing composition.
  • Polishing of a semiconductor wafer such as a silicon wafer is usually divided into at least two stages, preliminary polishing and finish polishing. Of these, preliminary polishing is further divided into two or more stages for the purpose of high quality and efficiency.
  • a polishing composition usable for finish polishing a polishing composition described in Japanese Laid-Open Patent Publication No. 02-158684 is known, for example.
  • the polishing composition of the publication comprises water, colloidal silica, a water soluble polymer such as polyacrylamide and sizofuran, and a water soluble salt such as potassium chloride.
  • LPD light point defects
  • An LPD is a kind of defect observed on the surface of a wafer polished by using a polishing composition. Specifically, LPDs with a size of 0.12 ⁇ m or larger had been mainly considered problematic, which were caused by particles attached to wafer surfaces. Thus, an improvement in washing technique has largely reduced such LPDs.
  • LPDs with a size smaller than the above (>0.065 ⁇ m) are mainly caused by scars occurring on wafer surfaces during preliminary polishing, in other words attributable to the polishing process.
  • an object of the present invention is to provide a polishing composition, by using which the number of LPDs attributable to the polishing process can be reduced on the surface of a physical object after being polished, and a polishing method using the polishing composition.
  • a polishing composition contains at least one water soluble polymer selected from the group consisting of polyvinylpyrrolidone and poly(N-vinylformamide), and an alkali.
  • a method of polishing includes polishing a surface of a semiconductor wafer using the above polishing composition.
  • a polishing composition according to this embodiment is produced by mixing a given amounts of a water soluble polymer, an alkali, and abrasive grains with water. Therefore, the polishing composition of this embodiment consists of a water soluble polymer, an alkali, abrasive grains, and water.
  • This polishing composition is used in polishing of semiconductor wafers such as silicon wafers, especially used in preliminary polishing of such wafers. When the preliminary polishing is divided into two or more stages, this polishing composition is used for a finish stage of preliminary polishing.
  • a water soluble polymer contained in the polishing composition of this embodiment is at least one compound selected from the group consisting of polyvinylpyrrolidone and poly(N-vinylformamide). These water soluble polymers can form a hydrophilic film on a wafer surface. This hydrophilic film disperses a vertical force, relative to a wafer surface, given to a wafer by coarse particles including abrasive grains into a horizontal direction. As a result, it is expected that the occurrence of defects on the wafer surface during polishing is prevented, and the number of LPDs attributable to the polishing process is reduced.
  • a water soluble polymer contained in a polishing composition is polyvinylpyrrolidone
  • the number of LPDs attributable to the polishing process is reduced in comparison with the use of poly(N-vinyl formamide). Therefore, a water soluble polymer contained in a polishing composition is preferably polyvinylpyrrolidone.
  • the content of a water soluble polymer in a polishing composition is preferably 0.0003 g/L or more, more preferably 0.001 g/L or more, still more preferably 0.003 g/L or more, and most preferably 0.005 g/L or more.
  • a hydrophilic film that is sufficient to prevent defects from occurring is easily formed on a wafer surface, thereby reducing the number of LPDs attributable to the polishing process.
  • the content of a water soluble polymer in a polishing composition is 0.0003 g/L or more, specifically 0.001 g/L or more, more specifically 0.003 g/L or more, and still more specifically 0.005 g/L or more, the number of LPDs attributable to the polishing process is reduced to a particularly suitable level for practical use.
  • the content of a water soluble polymer in a polishing composition is preferably 0.1 g/L or less, more preferably 0.02 g/L or less, still more preferably 0.015 g/L or less, and most preferably 0.01 g/L or less.
  • a hydrophilic film by a water soluble polymer allows a polishing composition to reduce the polishing rate (removal rate) of a wafer. Therefore, a decrease of the content of a water soluble polymer in a polishing composition prevents a hydrophilic film from reducing the polishing rate.
  • the polishing rate reduction by a hydrophilic film is reduced to a particularly suitable level for practical use.
  • a water soluble polymer contained in a polishing composition has a weight average molecular weight of preferably 6,000 or more. As the weight average molecular weight of a water soluble polymer becomes larger, a hydrophilic film that is sufficient to prevent defects from occurring is easily formed on a wafer surface, thereby reducing the number of LPDs attributable to the polishing process. In this regard, when a water soluble polymer in a polishing composition has a weight average molecular weight of 6,000 or more, the number of LPDs attributable to the polishing process is reduced to a particularly suitable level for practical use.
  • a water soluble polymer contained in a polishing composition has a weight average molecular weight of preferably 4,000,000 or less, and more preferably 3,000,000 or less.
  • a smaller weight average molecular weight of a water soluble polymer prevents a hydrophilic film from reducing the polishing rate of a wafer.
  • the weight average molecular weight of a water soluble polymer in a polishing composition is 4,000,000 or less, and specifically 3,000,000 or less, the polishing rate reduction by a hydrophilic film is reduced to a particularly suitable level for practical use.
  • An alkali contained in the polishing composition of the present embodiment may be, for example, any of alkali metal hydroxides, ammonia, amines, and quaternary ammonium salts. These alkalis can chemically polish a wafer and increase the rate of polishing a wafer by a polishing composition.
  • an alkali contained in a polishing composition is an alkali metal hydroxide or a quaternary ammonium salt
  • the wafer polishing rate by the polishing composition largely increases and additionally an increase of surface roughness of a polished wafer is more prevented in comparison with the use of other alkalis. Therefore, an alkali contained in a polishing composition is preferably an alkali metal hydroxide or a quaternary ammonium salt.
  • the content of an alkali in a polishing composition is preferably 0.1 g/L or more, more preferably 0.25 g/L or more, and still more preferably 0.5 g/L or more.
  • the wafer polishing rate by the polishing composition increases.
  • the wafer polishing rate by the polishing composition is increased to a particularly suitable level for practical use.
  • the content of an alkali in a polishing composition is preferably 5 g/L or less, more preferably 4 g/L or less, and more preferably 3 g/L or less.
  • An alkali may cause an increase of surface roughness of a polished wafer.
  • an increase of surface roughness of a polished wafer is more prevented.
  • the content of an alkali in a polishing composition is 5 g/L or less, specifically 4 g/L or less, and more specifically 3 g/L or less, an increase of surface roughness of a polished wafer is prevented to a particularly suitable level for practical use.
  • Abrasive grains contained in the polishing composition of the present embodiment may be, for example, any of colloidal silica and fumed silica. These abrasive grains can mechanically polish a wafer and increase the rate of polishing a wafer by a polishing composition.
  • abrasive grains contained in a polishing composition are colloidal silica, the stability of a polishing composition is enhanced in comparison with the use of other abrasive grains. As a result, scratches on the surface of a polished wafer are decreased. Therefore, abrasive grains contained in a polishing composition are preferably colloidal silica.
  • the content of abrasive grains in a polishing composition is preferably 1 g/L or more, more preferably 3 g/L or more, and still more preferably 5 g/L or more.
  • the content of abrasive grains in a polishing composition increases, the water polishing rate by the polishing composition is increased.
  • the polishing rate is increased to a particularly suitable level for practical use.
  • the content of abrasive grains in a polishing composition is preferably 45 g/L or less, more preferably 35 g/L or less, and still more preferably 25 g/L or less.
  • a decreased content of abrasive grains in a polishing composition enhances the colloid stability of the polishing composition.
  • the colloid stability of the polishing composition is enhanced to a particularly suitable level for practical use.
  • the average primary particle diameter of abrasive grains contained in a polishing composition is preferably 5 nm or more, more preferably 10 nm or more, and still more preferably 15 nm or more.
  • a larger average primary particle diameter of abrasive grains strengthens the function of the abrasive grains for mechanically polishing a wafer, thereby increasing the wafer polishing rate by a polishing composition.
  • the wafer polishing rate by a polishing composition is increased to a particularly suitable level for practical use.
  • the average primary particle diameter of abrasive grains contained in a polishing composition is preferably 200 nm or less, more preferably 150 nm or less, and still more preferably 100 nm or less.
  • a larger average primary particle diameter of abrasive grains may cause an increase of scratches on the surface of a polished wafer. Therefore, a smaller average primary particle diameter of abrasive grains prevents an increase of scratches on the surface of a polished wafer.
  • the average primary particle diameter of abrasive grains is 200 nm or less, specifically 150 nm or less, and more specifically 100 nm or less, an increase of scratches on the surface of a polished wafer is prevented to a particularly suitable level for practical use.
  • the present embodiment provides the following advantages.
  • the polishing composition of the present embodiment contains at least one water soluble polymer selected from the group consisting of polyvinylpyrrolidone and poly(N-vinyl formamide). This water soluble polymer forms a hydrophilic film on a wafer surface, and the film works to reduce the number of LPDs attributable to the polishing process. Therefore, the polishing composition of the present embodiment reduces the number of LPDs, attributable to the polishing process, on the surface of a wafer polished by using the polishing composition.
  • the polishing composition of the above embodiment may further contain a chelating agent.
  • the chelating agent forms a complex ion with metal impurities in a polishing composition, thereby capturing the metal impurities. This prevents an object to be polished from being contaminated with metal impurities.
  • the chelating agent may be aminocarboxylic acid-based chelating agents or phosphonic acid-based chelating agents.
  • ethylenediaminetetraacetic acid preferably contained is ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, ethylenediaminetetramethylphosphonic acid, or diethylenetriaminepentamethylphosphonic acid
  • Ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, ethylenediaminetetramethylphosphonic acid, and diethylenetriaminepentamethylphosphonic acid have a particularly high ability to capture metal impurities.
  • Known additives such as a preservative or an antifoaming agent may be added, if necessary, to the polishing composition of the above embodiment.
  • the polishing composition of the above embodiment may be prepared by diluting a liquid concentrate before use.
  • the polishing composition of the above embodiment may be used in polishing of physical objects other than semiconductor wafers.
  • polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 were prepared by properly mixing a water soluble polymer, an alkali, abrasive grains, and a chelating agent with water.
  • the detailed of the water soluble polymer, alkali, abrasive grains, and chelating agent in each polishing composition are shown in Tables 1 and 2.
  • PVP* 1 represents polyvinylpyrrolidone having a weight average molecular weight of 10,000
  • PVP* 3 represents polyvinylpyrrolidone having a weight average molecular weight of 1,600,000;
  • PVP* 4 represents polyvinylpyrrolidone having a weight average molecular weight of 67,000
  • PVME represents polyvinyl methyl ether having a weight average molecular weight of 10,000
  • PEG represents polyethylene glycol having a weight average molecular weight of 26,000
  • PAA-NH 4 represents ammonium ammonium polyacrylate having a weight average molecular weight of 20,000
  • PAA-Na represents sodium polyacrylate having a weight average molecular weight of 20,000
  • HEC represents hydroxyethyl cellulose having a weight average molecular weight of 1,000,000
  • CMC-Na* 4 represents sodium carboxymethylcellulose having a weight average molecular weight of 20,000.
  • TMAH represents tetramethylammonium hydroxide
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • IMZ represents imidazole.
  • CS* 1 represents colloidal silica having an average primary particle diameter of 35 nm
  • CS* 2 represents colloidal silica having an average primary particle diameter of 200 nm
  • CS* 3 represents colloidal silica having an average primary particle diameter of 150 nm
  • CS* 4 represents colloidal silica having an average primary particle diameter of 100 nm
  • CS* 5 represents colloidal silica having an average primary particle diameter of 55 nm
  • CS* 6 represents colloidal silica having an average primary particle diameter of 15 nm
  • CS* 7 represents colloidal silica having an average primary particle diameter of 10 nm
  • CS* 8 represents colloidal silica having an average primary particle diameter of 5 nm.
  • TTHA represents triethylenetetraaminehexaacetic acid
  • DTPA represents diethylenetriaminepentaacetic acid
  • EDTPO represents ethylenediaminetetramethylphosphonic acid.
  • polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 were used in polishing of silicon wafers with a diameter of 200 mm and a thickness of 730 ⁇ m (p-type, crystal orientation ⁇ 100>, and COP (crystal originated particle)-free).
  • the polishing rates of the polishing compositions under the conditions of Table 3 were measured Results thereof are shown in the column entitled “polishing rate” of Tables 1 and 2.
  • the polishing rate was obtained by dividing a thickness difference of each wafer between before and after polishing by a polishing period.
  • NANOMETRO 300TT a flatness tester (manufactured by Kuroda Precision Industries, Ltd.) was used.
  • Example 1 to 53 and Comparative Examples 1 to 26 were used in polishing of silicon wafers, and the number of LPDs on the surface of each polished silicon wafer, attributable to the polishing process, was evaluated. Results thereof are shown in the column entitled “defects” of Tables 1 and 2. Specifically, silicon wafers with a diameter of 200 mm and a thickness of 730 ⁇ m (p-type, crystal orientation ⁇ 100>, and COP-free) were subjected to preliminary polishing using the polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 under the conditions shown in Table 3. Thereafter, GLANZOX-3900 manufactured by Fujimi Inc.
  • An LPD existing at the same location in the first and second measurements is defined as an LPD attributable to the polishing process, and the number of LPDs attributable to the polishing process per a wafer surface was measured.
  • polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 were used in polishing of silicon wafers under the conditions of Table 3. After polishing, wetting of the surface of each silicon wafer was evaluated. Results thereof are shown in the column entitled “wetting” of Tables 1 and 2. Specifically, a wafer after polishing was slightly washed with water and wetting status of its surface was visually observed and evaluated.
  • the polishing composition of Comparative Example 11 was excessively gelated, and thus it was impossible to use the composition for polishing a wafer.
  • Polishing Machine PNX-322 manufactured by Okamoto Machine Tool Works, Ltd.
  • Polishing pad SUBA 400 manufactured by Nitta Haas Inc.
  • Wafer polishing pressure 15 kPa
  • Rotation speed of surface plate 50 rpm
  • Polishing period 4 min.
  • Supply rate of polishing composition 1 L/min.
  • Temperature of polishing composition 20° C.
  • Temperature of cooling water for surface plate 20° C.
  • Rotation speed of carrier 50 rpm
  • the polishing compositions of Examples 1 to 53 were evaluated regarding defects as fair or better, and obtained practically satisfactory polishing rates.
  • the polishing compositions of Comparative Examples 1 to 26 were evaluated regarding detects as poor except Comparative Example 11, whereby polishing could not be performed.

Abstract

A polishing composition contains at least one water soluble polymer selected from the group consisting of polyvinylpyrrolidone and poly(N-vinylformamide), and an alkali, and preferably further contains at least one of a chelating agent and an abrasive grain. The water soluble polymer preferably has a weight average molecular weight of 6,000 to 4,000,000. The polishing composition is mainly used in polishing of the surfaces of semiconductor wafers such as silicon wafers, especially used in preliminary polishing of the surfaces of such wafers.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority from Japanese Application No.: 2006-227614, filed on Aug. 24, 2006, the entire content of which is hereby incorporated by reference.
BACKGROUND OF THE INVENTION
The present invention relates to a polishing composition mainly used in polishing of a semiconductor wafer and to a polishing method using the polishing composition.
Polishing of a semiconductor wafer such as a silicon wafer is usually divided into at least two stages, preliminary polishing and finish polishing. Of these, preliminary polishing is further divided into two or more stages for the purpose of high quality and efficiency. As a polishing composition usable for finish polishing, a polishing composition described in Japanese Laid-Open Patent Publication No. 02-158684 is known, for example. The polishing composition of the publication comprises water, colloidal silica, a water soluble polymer such as polyacrylamide and sizofuran, and a water soluble salt such as potassium chloride.
In recent years, as design rules for semiconductor devices have required thinner devices, there is a demand for reducing small size LPDs (light point defects), which had not been considered problematic but are now considered to affect the performance of a semiconductor device. An LPD is a kind of defect observed on the surface of a wafer polished by using a polishing composition. Specifically, LPDs with a size of 0.12 μm or larger had been mainly considered problematic, which were caused by particles attached to wafer surfaces. Thus, an improvement in washing technique has largely reduced such LPDs. However, LPDs with a size smaller than the above (>0.065 μm) are mainly caused by scars occurring on wafer surfaces during preliminary polishing, in other words attributable to the polishing process. In many cases, these cannot be removed by finish polishing or washing. In this regard, even when the polishing composition described in Japanese Laid-Open Patent Publication No. 02-158684 is used for finish polishing, the number of LPDs attributable to the polishing process cannot be reduced more than before.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide a polishing composition, by using which the number of LPDs attributable to the polishing process can be reduced on the surface of a physical object after being polished, and a polishing method using the polishing composition.
In accordance with a first aspect of the present invention, a polishing composition is provided. The polishing composition contains at least one water soluble polymer selected from the group consisting of polyvinylpyrrolidone and poly(N-vinylformamide), and an alkali.
In accordance with a second aspect of the present invention, a method of polishing is provided. The method includes polishing a surface of a semiconductor wafer using the above polishing composition.
Other aspects and advantages of the invention will become apparent from the following description, illustrating by way of example the principles of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereafter, an embodiment of the present invention will be described.
A polishing composition according to this embodiment is produced by mixing a given amounts of a water soluble polymer, an alkali, and abrasive grains with water. Therefore, the polishing composition of this embodiment consists of a water soluble polymer, an alkali, abrasive grains, and water. This polishing composition is used in polishing of semiconductor wafers such as silicon wafers, especially used in preliminary polishing of such wafers. When the preliminary polishing is divided into two or more stages, this polishing composition is used for a finish stage of preliminary polishing.
A water soluble polymer contained in the polishing composition of this embodiment is at least one compound selected from the group consisting of polyvinylpyrrolidone and poly(N-vinylformamide). These water soluble polymers can form a hydrophilic film on a wafer surface. This hydrophilic film disperses a vertical force, relative to a wafer surface, given to a wafer by coarse particles including abrasive grains into a horizontal direction. As a result, it is expected that the occurrence of defects on the wafer surface during polishing is prevented, and the number of LPDs attributable to the polishing process is reduced.
When a water soluble polymer contained in a polishing composition is polyvinylpyrrolidone, the number of LPDs attributable to the polishing process is reduced in comparison with the use of poly(N-vinyl formamide). Therefore, a water soluble polymer contained in a polishing composition is preferably polyvinylpyrrolidone.
The content of a water soluble polymer in a polishing composition is preferably 0.0003 g/L or more, more preferably 0.001 g/L or more, still more preferably 0.003 g/L or more, and most preferably 0.005 g/L or more. As the content of a water soluble polymer increases, a hydrophilic film that is sufficient to prevent defects from occurring is easily formed on a wafer surface, thereby reducing the number of LPDs attributable to the polishing process. In this regard, when the content of a water soluble polymer in a polishing composition is 0.0003 g/L or more, specifically 0.001 g/L or more, more specifically 0.003 g/L or more, and still more specifically 0.005 g/L or more, the number of LPDs attributable to the polishing process is reduced to a particularly suitable level for practical use.
Further, the content of a water soluble polymer in a polishing composition is preferably 0.1 g/L or less, more preferably 0.02 g/L or less, still more preferably 0.015 g/L or less, and most preferably 0.01 g/L or less. A hydrophilic film by a water soluble polymer allows a polishing composition to reduce the polishing rate (removal rate) of a wafer. Therefore, a decrease of the content of a water soluble polymer in a polishing composition prevents a hydrophilic film from reducing the polishing rate. In this regard, when the content of a water soluble polymer in a polishing composition is 0.1 g/L or less, specifically 0.02 g/L or less, more specifically 0.015 g/L or less, and still more specifically 0.01 g/L or less, the polishing rate reduction by a hydrophilic film is reduced to a particularly suitable level for practical use.
A water soluble polymer contained in a polishing composition has a weight average molecular weight of preferably 6,000 or more. As the weight average molecular weight of a water soluble polymer becomes larger, a hydrophilic film that is sufficient to prevent defects from occurring is easily formed on a wafer surface, thereby reducing the number of LPDs attributable to the polishing process. In this regard, when a water soluble polymer in a polishing composition has a weight average molecular weight of 6,000 or more, the number of LPDs attributable to the polishing process is reduced to a particularly suitable level for practical use.
Further, a water soluble polymer contained in a polishing composition has a weight average molecular weight of preferably 4,000,000 or less, and more preferably 3,000,000 or less. A smaller weight average molecular weight of a water soluble polymer prevents a hydrophilic film from reducing the polishing rate of a wafer. In this regard, when the weight average molecular weight of a water soluble polymer in a polishing composition is 4,000,000 or less, and specifically 3,000,000 or less, the polishing rate reduction by a hydrophilic film is reduced to a particularly suitable level for practical use.
An alkali contained in the polishing composition of the present embodiment may be, for example, any of alkali metal hydroxides, ammonia, amines, and quaternary ammonium salts. These alkalis can chemically polish a wafer and increase the rate of polishing a wafer by a polishing composition.
When an alkali contained in a polishing composition is an alkali metal hydroxide or a quaternary ammonium salt, the wafer polishing rate by the polishing composition largely increases and additionally an increase of surface roughness of a polished wafer is more prevented in comparison with the use of other alkalis. Therefore, an alkali contained in a polishing composition is preferably an alkali metal hydroxide or a quaternary ammonium salt.
The content of an alkali in a polishing composition is preferably 0.1 g/L or more, more preferably 0.25 g/L or more, and still more preferably 0.5 g/L or more. As the content of an alkali in a polishing composition increases, the wafer polishing rate by the polishing composition increases. In this regard, when the content of an alkali in a polishing composition is 0.1 g/L or more, specifically 0.25 g/L or more, and more specifically 0.5 g/L or more, the wafer polishing rate by the polishing composition is increased to a particularly suitable level for practical use.
Further, the content of an alkali in a polishing composition is preferably 5 g/L or less, more preferably 4 g/L or less, and more preferably 3 g/L or less. An alkali may cause an increase of surface roughness of a polished wafer. Thus, as the content of an alkali in a polishing composition decreases, an increase of surface roughness of a polished wafer is more prevented. In this regard, when the content of an alkali in a polishing composition is 5 g/L or less, specifically 4 g/L or less, and more specifically 3 g/L or less, an increase of surface roughness of a polished wafer is prevented to a particularly suitable level for practical use.
Abrasive grains contained in the polishing composition of the present embodiment may be, for example, any of colloidal silica and fumed silica. These abrasive grains can mechanically polish a wafer and increase the rate of polishing a wafer by a polishing composition.
When abrasive grains contained in a polishing composition are colloidal silica, the stability of a polishing composition is enhanced in comparison with the use of other abrasive grains. As a result, scratches on the surface of a polished wafer are decreased. Therefore, abrasive grains contained in a polishing composition are preferably colloidal silica.
The content of abrasive grains in a polishing composition is preferably 1 g/L or more, more preferably 3 g/L or more, and still more preferably 5 g/L or more. As the content of abrasive grains in a polishing composition increases, the water polishing rate by the polishing composition is increased. In this regard, when the content of abrasive grains in a polishing composition is 1 g/L or more, specifically 3 g/L or more, and more specifically 5 g/L or more, the polishing rate is increased to a particularly suitable level for practical use.
Further, the content of abrasive grains in a polishing composition is preferably 45 g/L or less, more preferably 35 g/L or less, and still more preferably 25 g/L or less. A decreased content of abrasive grains in a polishing composition enhances the colloid stability of the polishing composition. In this regard, when the content of abrasive grains in a polishing composition is 45 g/L or less, specifically 35 g/L or less, and more specifically 25 g/L or less, the colloid stability of the polishing composition is enhanced to a particularly suitable level for practical use.
The average primary particle diameter of abrasive grains contained in a polishing composition is preferably 5 nm or more, more preferably 10 nm or more, and still more preferably 15 nm or more. A larger average primary particle diameter of abrasive grains strengthens the function of the abrasive grains for mechanically polishing a wafer, thereby increasing the wafer polishing rate by a polishing composition. In this regard, when the average primary particle diameter of abrasive grains is 5 nm or more, specifically 10 nm or more, and more specifically 15 nm or more, the wafer polishing rate by a polishing composition is increased to a particularly suitable level for practical use.
Further, the average primary particle diameter of abrasive grains contained in a polishing composition is preferably 200 nm or less, more preferably 150 nm or less, and still more preferably 100 nm or less. A larger average primary particle diameter of abrasive grains may cause an increase of scratches on the surface of a polished wafer. Therefore, a smaller average primary particle diameter of abrasive grains prevents an increase of scratches on the surface of a polished wafer. In this regard, when the average primary particle diameter of abrasive grains is 200 nm or less, specifically 150 nm or less, and more specifically 100 nm or less, an increase of scratches on the surface of a polished wafer is prevented to a particularly suitable level for practical use.
The present embodiment provides the following advantages.
The polishing composition of the present embodiment contains at least one water soluble polymer selected from the group consisting of polyvinylpyrrolidone and poly(N-vinyl formamide). This water soluble polymer forms a hydrophilic film on a wafer surface, and the film works to reduce the number of LPDs attributable to the polishing process. Therefore, the polishing composition of the present embodiment reduces the number of LPDs, attributable to the polishing process, on the surface of a wafer polished by using the polishing composition.
The above embodiment may be modified as follows.
The polishing composition of the above embodiment may further contain a chelating agent. The chelating agent forms a complex ion with metal impurities in a polishing composition, thereby capturing the metal impurities. This prevents an object to be polished from being contaminated with metal impurities. The chelating agent may be aminocarboxylic acid-based chelating agents or phosphonic acid-based chelating agents. Among these, preferably contained is ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, ethylenediaminetetramethylphosphonic acid, or diethylenetriaminepentamethylphosphonic acid, Ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, ethylenediaminetetramethylphosphonic acid, and diethylenetriaminepentamethylphosphonic acid have a particularly high ability to capture metal impurities.
Known additives such as a preservative or an antifoaming agent may be added, if necessary, to the polishing composition of the above embodiment.
The polishing composition of the above embodiment may be prepared by diluting a liquid concentrate before use.
The polishing composition of the above embodiment may be used in polishing of physical objects other than semiconductor wafers.
Next, Examples of the present invention and Comparative Examples will be described.
The polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 were prepared by properly mixing a water soluble polymer, an alkali, abrasive grains, and a chelating agent with water. The detailed of the water soluble polymer, alkali, abrasive grains, and chelating agent in each polishing composition are shown in Tables 1 and 2.
In the column entitled “water soluble polymer” of Tables 1 and 2:
PVP*1 represents polyvinylpyrrolidone having a weight average molecular weight of 10,000;
PVP*2 represents polyvinylpyrrolidone having a weight average molecular weight of 3,500,000;
PVP*3 represents polyvinylpyrrolidone having a weight average molecular weight of 1,600,000;
PVP*4 represents polyvinylpyrrolidone having a weight average molecular weight of 67,000;
PNVF represents poly(N-vinyl formamide) having a weight average molecular weight of 100,000;
PVA represents polyvinyl alcohol (saponification degree: 95%) having a weight average molecular weight of 62,000;
PVME represents polyvinyl methyl ether having a weight average molecular weight of 10,000;
PEG represents polyethylene glycol having a weight average molecular weight of 26,000;
PEO represents polyethylene oxide having a weight average molecular weight of 200,000;
PPP represents polyoxyethylene polyoxypropyrene block copolymer having a weight average molecular weight of 9,000;
PEI represents polyethyleneimine having a weight average molecular weight of 10,000;
PAA represents polyacrylic acid having a weight average molecular weight of 25,000;
PAA-NH4 represents ammonium ammonium polyacrylate having a weight average molecular weight of 20,000;
PAA-Na represents sodium polyacrylate having a weight average molecular weight of 20,000;
PAAM represents polyacrylamide having a weight average molecular weight of 1,000,000;
PSS-Na represents sodium polystyrene sulfonate having a weight average molecular weight of 100,000;
HEC represents hydroxyethyl cellulose having a weight average molecular weight of 1,000,000;
CMC-Na*1 represents sodium carboxymethylcellulose having a weight average molecular weight of 10,000;
CMC-Na*2 represents sodium carboxymethylcellulose having a weight average molecular weight of 330,000;
CMC-Na*3 represents sodium carboxymethylcellulose having a weight average molecular weight of 90,000; and
CMC-Na*4 represents sodium carboxymethylcellulose having a weight average molecular weight of 20,000.
In the column entitled “alkali” of Tables 1 and 2:
TMAH represents tetramethylammonium hydroxide;
KOH represents potassium hydroxide;
NaOH represents sodium hydroxide;
NH3 represents ammonia;
PIZ represents anhydrous piperazine; and
IMZ represents imidazole.
In the column entitled “abrasive grains” of Tables 1 and 2:
CS*1 represents colloidal silica having an average primary particle diameter of 35 nm;
CS*2 represents colloidal silica having an average primary particle diameter of 200 nm;
CS*3 represents colloidal silica having an average primary particle diameter of 150 nm;
CS*4 represents colloidal silica having an average primary particle diameter of 100 nm;
CS*5 represents colloidal silica having an average primary particle diameter of 55 nm;
CS*6 represents colloidal silica having an average primary particle diameter of 15 nm;
CS*7 represents colloidal silica having an average primary particle diameter of 10 nm; and
CS*8 represents colloidal silica having an average primary particle diameter of 5 nm.
In the column entitled “chelating agent” of Tables 1 and 2:
TTHA represents triethylenetetraaminehexaacetic acid;
DTPA represents diethylenetriaminepentaacetic acid; and
EDTPO represents ethylenediaminetetramethylphosphonic acid.
The polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 were used in polishing of silicon wafers with a diameter of 200 mm and a thickness of 730 μm (p-type, crystal orientation <100>, and COP (crystal originated particle)-free). The polishing rates of the polishing compositions under the conditions of Table 3 were measured Results thereof are shown in the column entitled “polishing rate” of Tables 1 and 2. The polishing rate was obtained by dividing a thickness difference of each wafer between before and after polishing by a polishing period. To measure a wafer thickness, NANOMETRO 300TT, a flatness tester (manufactured by Kuroda Precision Industries, Ltd.) was used.
The polishing compositions of Example 1 to 53 and Comparative Examples 1 to 26 were used in polishing of silicon wafers, and the number of LPDs on the surface of each polished silicon wafer, attributable to the polishing process, was evaluated. Results thereof are shown in the column entitled “defects” of Tables 1 and 2. Specifically, silicon wafers with a diameter of 200 mm and a thickness of 730 μm (p-type, crystal orientation <100>, and COP-free) were subjected to preliminary polishing using the polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 under the conditions shown in Table 3. Thereafter, GLANZOX-3900 manufactured by Fujimi Inc. was diluted in 20 times with pure water, and the obtained dilution was used in finish polishing under the condition shown in Table 4. Wafers obtained after finish polishing were subjected to SC-1 (Standard Clean 1) washing and IPA (isopropyl alcohol) steam drying. Then, a first measurement of LPDs of each wafer was performed using SURFSCAN SP1-TBI manufactured by KLA-Tencor Corporation. Thereafter, the same wafer was again subjected to SC-1 washing and IPA steam drying, and then a second measurement of LPDs was performed using SURFSCAN SP1-TBI. An LPD existing at the same location in the first and second measurements is defined as an LPD attributable to the polishing process, and the number of LPDs attributable to the polishing process per a wafer surface was measured. In the column entitled “defects”, “E” (excellent) indicates that the number of LPDs attributable to the polishing process per a wafer surface was less than 10; “G” (good) indicates that the number thereof was 10 or more to less than 20; “F” (fair) indicates that the number thereof was 20 or more to less than 30; and “P” (poor) indicates that the number thereof was 30 or more.
In order to evaluate the formation of hydrophilic films on wafer surfaces by the action of water soluble polymers, the polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 were used in polishing of silicon wafers under the conditions of Table 3. After polishing, wetting of the surface of each silicon wafer was evaluated. Results thereof are shown in the column entitled “wetting” of Tables 1 and 2. Specifically, a wafer after polishing was slightly washed with water and wetting status of its surface was visually observed and evaluated. In the column entitled “wetting”, numeral 0 indicates no wetting on a wafer surface; numeral 3 indicates that 30% of a wafer surface was wet; numeral 6 indicates that 60% of a wafer surface was wet; numeral 7 indicates that 70% of a water surface was wet; numeral 8 indicates that 80% of a wafer surface was wet; numeral 9 indicates that 90% of a wafer surface was wet; and numeral 10 indicates that 100% of a wafer surface was wet.
The polishing composition of Comparative Example 11 was excessively gelated, and thus it was impossible to use the composition for polishing a wafer.
TABLE 1
water soluble abrasive chelating
polymer alkali grains agent
content content content content polishing rate
name [g/L] name [g/L] name [g/L] name [g/L] [μm/min.] defects wetting
Ex. 1 PVP*1 0.020 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.260 F 10
Ex. 2 PVP*1 0.015 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.270 G 10
Ex. 3 PVP*1 0.013 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.268 G 10
Ex. 4 PVP*1 0.010 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.286 E 10
Ex. 5 PVP*1 0.007 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.300 E 10
Ex. 6 PVP*1 0.005 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.305 E 10
Ex. 7 PVP*1 0.003 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.302 G 10
Ex. 8 PVP*1 0.002 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.292 F 10
Ex. 9 PVP*1 0.001 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.290 F 10
Ex. 10 PVP*1 0.010 TMAH 5.0 CS*1 18.7 TTHA 0.30 0.290 E 10
Ex. 11 PVP*1 0.010 TMAH 4.0 CS*1 18.7 TTHA 0.30 0.295 E 10
Ex. 12 PVP*1 0.010 TMAH 3.0 CS*1 18.7 TTHA 0.30 0.291 E 10
Ex. 13 PVP*1 0.010 TMAH 0.5 CS*1 18.7 TTHA 0.30 0.263 E 10
Ex. 14 PVP*1 0.010 TMAH 0.25 CS*1 18.7 TTHA 0.30 0.248 E 10
Ex. 15 PVP*1 0.010 TMAH 0.10 CS*1 18.7 TTHA 0.30 0.220 E 10
Ex. 16 PVP*1 0.010 KOH 1.5 CS*1 18.7 TTHA 0.30 0.240 E 10
Ex. 17 PVP*1 0.005 KOH 1.5 CS*1 18.7 TTHA 0.30 0.262 E 10
Ex. 18 PVP*1 0.010 NaOH 1.0 CS*1 18.7 TTHA 0.30 0.238 E 10
Ex. 19 PVP*1 0.010 NH3 0.87 CS*1 18.7 TTHA 0.30 0.222 E 10
Ex. 20 PVP*1 0.010 PIZ 3.0 CS*1 18.7 TTHA 0.30 0.428 E 10
Ex. 21 PVP*1 0.010 IMZ 3.0 CS*1 18.7 TTHA 0.30 0.410 E 10
KOH 1.5
Ex. 22 PVP*1 0.010 TMAH 2.0 CS*1 45.0 TTHA 0.30 0.325 E 10
Ex. 23 PVP*1 0.010 TMAH 2.0 CS*1 35.0 TTHA 0.30 0.316 E 10
Ex. 24 PVP*1 0.010 TMAH 2.0 CS*1 25.0 TTHA 0.30 0.302 E 10
Ex. 25 PVP*1 0.010 TMAH 2.0 CS*1 5.0 TTHA 0.30 0.268 E 10
Ex. 26 PVP*1 0.010 TMAH 2.0 CS*1 3.0 TTHA 0.30 0.259 E 10
Ex. 27 PVP*1 0.010 TMAH 2.0 CS*1 1.0 TTHA 0.30 0.231 E 10
Ex. 28 PVP*1 0.010 TMAH 2.0 CS*2 18.7 TTHA 0.30 0.306 E 10
Ex. 29 PVP*1 0.010 TMAH 2.0 CS*3 18.7 TTHA 0.30 0.299 E 10
Ex. 30 PVP*1 0.010 TMAH 2.0 CS*4 18.7 TTHA 0.30 0.292 E 10
Ex. 31 PVP*1 0.010 TMAH 2.0 CS*5 18.7 TTHA 0.30 0.290 E 10
Ex. 32 PVP*1 0.010 TMAH 2.0 CS*6 18.7 TTHA 0.30 0.284 E 10
Ex. 33 PVP*1 0.010 TMAH 2.0 CS*7 18.7 TTHA 0.30 0.276 E 10
Ex. 34 PVP*1 0.010 TMAH 2.0 CS*8 18.7 TTHA 0.30 0.249 E 10
Ex. 35 PVP*1 0.010 KOH 3.0 CS*5 18.7 TTHA 0.30 0.258 E 10
Ex. 36 PVP*1 0.010 KOH 1.5 CS*5 18.7 TTHA 0.30 0.243 E 10
Ex. 37 PVP*1 0.010 KOH 0.5 CS*5 18.7 TTHA 0.30 0.210 E 10
Ex. 38 PVP*1 0.010 PIZ 3.0 CS*5 18.7 TTHA 0.30 0.434 E 10
Ex. 39 PVP*1 0.010 KOH 4.5 FS 18.7 TTHA 0.30 0.254 E 10
Ex. 40 PVP*1 0.010 TMAH 2.0 CS*1 18.7 0.289 E 10
Ex. 41 PVP*1 0.010 TMAH 2.0 CS*1 18.7 DTPA 0.30 0.283 E 10
Ex. 42 PVP*1 0.010 TMAH 2.0 CS*1 18.7 EDTPO 0.30 0.285 E 10
Ex. 43 PVP*2 0.010 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.290 E 10
Ex. 44 PVP*3 0.010 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.290 E 10
Ex. 45 PVP*4 0.010 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.280 E 10
Ex. 46 PVP*3 0.015 KOH 1.5 CS*5 18.7 TTHA 0.30 0.239 G 10
Ex. 47 PVP*3 0.005 KOH 1.5 CS*5 18.7 TTHA 0.30 0.252 E 10
Ex. 48 PNVF 0.010 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.290 E 10
Ex. 49 PNVF 0.010 TMAH 2.0 CS*5 18.7 TTHA 0.30 0.293 E 10
Ex. 50 PNVF 0.003 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.294 G 10
Ex. 51 PNVF 0.005 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.290 E 10
Ex. 52 PNVF 0.007 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.304 E 10
Ex. 53 PNVF 0.013 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.252 G 10
TABLE 2
water soluble abrasive chelating
polymer alkali grains agent
content content content content polishing rate
name [g/L] name [g/L] name [g/L] name [g/L] [μm/min.] defects wetting
C. Ex. 1 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.285 P 0
C. Ex. 2 KOH 1.5 CS*1 18.7 TTHA 0.30 0.237 P 0
C. Ex. 3 KOH 1.5 CS*1 18.7 TTHA 0.30 0.243 P 0
C. Ex. 4 PVA 0.010 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.273 P 10
C. Ex. 5 PVA 0.010 TMAH 2.0 CS*5 18.7 TTHA 0.30 0.277 P 10
C. Ex. 6 PVME 0.10 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.000 P 0
C. Ex. 7 PEG 0.10 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.130 P 3
C. Ex. 8 PEG 0.10 KOH 1.5 CS*1 18.7 TTHA 0.30 0.290 P 0
C. Ex. 9 PEO 0.10 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.090 P 0
C. Ex. 10 PPP 0.050 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.128 P 0
C. Ex. 11 PEI 0.10 TMAH 2.0 CS*1 18.7 TTHA 0.30
C. Ex. 12 PAA 0.10 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.400 P 8
C. Ex. 13 PAA-NH4 0.10 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.470 P 8
C. Ex. 14 PAA-Na 0.10 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.530 P 6
C. Ex. 15 PAAM 0.050 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.155 P 0
C. Ex. 16 PSS-Na 0.50 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.490 P 8
C. Ex. 17 PSS-Na 0.10 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.420 P 8
C. Ex. 18 HEC 0.010 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.281 P 10
C. Ex. 19 CMC-Na*1 0.010 TMAH 2.0 CS*1 18.7 TTHA 0.30 0.285 P 10
C. Ex. 20 CMC-Na*2 0.10 KOH 1.5 CS*1 18.7 TTHA 0.30 0.330 P 0
C. Ex. 21 CMC-Na*3 0.50 KOH 1.5 CS*1 18.7 TTHA 0.30 0.290 P 0
C. Ex. 22 CMC-Na*3 0.10 KOH 1.5 CS*1 18.7 TTHA 0.30 0.420 P 0
C. Ex. 23 CMC-Na*4 0.50 KOH 1.5 CS*1 18.7 TTHA 0.30 0.200 P 9
C. Ex. 24 CMC-Na*4 0.10 KOH 1.5 CS*1 18.7 TTHA 0.30 0.420 P 7
C. Ex. 25 CMC-Na*1 0.50 KOH 1.5 CS*1 18.7 TTHA 0.30 0.330 P 10
C. Ex. 26 CMC-Na*1 0.10 KOH 1.5 CS*1 18.7 TTHA 0.30 0.400 P 7
TABLE 3
conditions for preliminary polishing conditions
Polishing Machine: PNX-322 manufactured by Okamoto Machine
Tool Works, Ltd.
Polishing pad: SUBA 400 manufactured by Nitta Haas Inc.
Wafer polishing pressure: 15 kPa
Rotation speed of surface plate: 50 rpm
Polishing period: 4 min.
Supply rate of polishing composition: 1 L/min.
Temperature of polishing composition: 20° C.
Temperature of cooling water for surface plate: 20° C.
Rotation speed of carrier: 50 rpm
TABLE 4
conditions for finishing polishing
polishing machine: PNX-322 manufactured by Okamoto Machine
Tool Works, Ltd.
polishing pad: Surfin 000FM manufactured by Fujimi Inc
wafer polishing pressure: 15 kPa
rotational speed of platen: 30 rpm
polishing period: 4 min.
feed rate of polishing composition: 0.5 L/min.
temperature of polishing composition: 20° C.
temperature of cooling water for platen: 20° C.
rotation speed of carrier: 30 rpm
As shown in Tables 1 and 2, the polishing compositions of Examples 1 to 53 were evaluated regarding defects as fair or better, and obtained practically satisfactory polishing rates. In contrast, the polishing compositions of Comparative Examples 1 to 26 were evaluated regarding detects as poor except Comparative Example 11, whereby polishing could not be performed.

Claims (13)

1. A polishing composition consisting essentially of comprising:
poly(N-vinylformamide);
abrasive grains of colloidal silica or fumed silica;
an alkali; and
water.
2. The polishing composition according to claim 1, wherein the poly(N-vinylformamide) has a weight average molecular weight of 6,000 to 4,000,000.
3. A polishing composition consisting essentially of:
poly(N-vinylformamide);
abrasive grains of colloidal silica or fumed silica;
an alkali;
a chelating agent; and
water.
4. The polishing composition according to claim 3, wherein the chelating agent is an aminocarboxylic acid-based chelating agent.
5. The polishing composition according to claim 3, wherein the chelating agent is a phosphonic acid-based chelating agent.
6. The polishing composition according to claim 3, wherein the chelating agent is ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, ethylenediaminetetramethylphosphonic acid, or diethylenetriaminepentamethylphosphonic acid.
7. The polishing composition according to claim 3, wherein the chelating agent is ethylenediaminetetraacetic acid.
8. The polishing composition according to claim 3, wherein the chelating agent is diethylenetriaminepentaacetic acid.
9. The polishing composition according to claim 3, wherein the chelating agent is triethylenetetraaminehexaacetic acid.
10. The polishing composition according to claim 3, wherein the chelating agent is ethylenediaminetetramethylphosphonic acid.
11. The polishing composition according to claim 3, wherein the chelating agent is diethylenetriaminepentamethylphosphonic acid.
12. A method of polishing, comprising polishing a surface of a semiconductor wafer using a polishing composition consisting essentially of poly(N-vinylformamide), abrasive grains of colloidal silica or fumed silica, an alkali, and water.
13. The method according to claim 12, wherein said polishing includes preliminary polishing a surface of a semiconductor wafer using said polishing composition and finish polishing a preliminary polished surface of the semiconductor using a polishing composition different from said polishing composition.
US11/844,014 2006-08-24 2007-08-23 Polishing composition and polishing method Expired - Fee Related US7867909B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/360,557 US20090137123A1 (en) 2006-08-24 2009-01-27 Polishing Composition and Polishing Method
US13/368,694 US20120138851A1 (en) 2006-08-24 2012-02-08 Polishing composition and polishing method
US13/655,594 US8721909B2 (en) 2006-08-24 2012-10-19 Polishing composition and polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006227614A JP5204960B2 (en) 2006-08-24 2006-08-24 Polishing composition and polishing method
JP2006-227614 2006-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/360,557 Division US20090137123A1 (en) 2006-08-24 2009-01-27 Polishing Composition and Polishing Method

Publications (2)

Publication Number Publication Date
US20080051010A1 US20080051010A1 (en) 2008-02-28
US7867909B2 true US7867909B2 (en) 2011-01-11

Family

ID=38599067

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/844,014 Expired - Fee Related US7867909B2 (en) 2006-08-24 2007-08-23 Polishing composition and polishing method
US12/360,557 Abandoned US20090137123A1 (en) 2006-08-24 2009-01-27 Polishing Composition and Polishing Method
US13/368,694 Abandoned US20120138851A1 (en) 2006-08-24 2012-02-08 Polishing composition and polishing method
US13/655,594 Active US8721909B2 (en) 2006-08-24 2012-10-19 Polishing composition and polishing method

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/360,557 Abandoned US20090137123A1 (en) 2006-08-24 2009-01-27 Polishing Composition and Polishing Method
US13/368,694 Abandoned US20120138851A1 (en) 2006-08-24 2012-02-08 Polishing composition and polishing method
US13/655,594 Active US8721909B2 (en) 2006-08-24 2012-10-19 Polishing composition and polishing method

Country Status (7)

Country Link
US (4) US7867909B2 (en)
JP (1) JP5204960B2 (en)
KR (1) KR101250044B1 (en)
CN (1) CN101130668B (en)
DE (1) DE102007039910B4 (en)
GB (1) GB2443286B (en)
TW (1) TWI412580B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721909B2 (en) 2006-08-24 2014-05-13 Fujimi Incorporated Polishing composition and polishing method
US9579769B2 (en) 2011-10-24 2017-02-28 Fujimi Incorporated Composition for polishing purposes, polishing method using same, and method for producing substrate

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245724A (en) * 2008-12-19 2011-11-16 安集微电子(上海)有限公司 Chemical-mechanical polishing liquid
US20100159807A1 (en) * 2008-12-22 2010-06-24 Jinru Bian Polymeric barrier removal polishing slurry
TWI385244B (en) * 2009-05-20 2013-02-11 Epoch Material Co Ltd Chemical mechanical polishing composition for removing saw mark
KR101285120B1 (en) 2009-06-05 2013-07-17 가부시키가이샤 사무코 Silicon wafer polishing method and silicon wafer
JP2011171689A (en) 2009-07-07 2011-09-01 Kao Corp Polishing liquid composition for silicon wafer
JP4772156B1 (en) * 2010-07-05 2011-09-14 花王株式会社 Polishing liquid composition for silicon wafer
JP5721505B2 (en) * 2011-04-01 2015-05-20 ニッタ・ハース株式会社 Polishing composition
JP6357296B2 (en) * 2012-02-10 2018-07-11 株式会社フジミインコーポレーテッド Polishing composition and method for manufacturing semiconductor substrate
JP5822356B2 (en) 2012-04-17 2015-11-24 花王株式会社 Polishing liquid composition for silicon wafer
JP5927059B2 (en) * 2012-06-19 2016-05-25 株式会社フジミインコーポレーテッド Polishing composition and method for producing substrate using the same
CN102786879B (en) * 2012-07-17 2014-04-23 清华大学 Barium titanate chemico-mechanical polishing aqueous composition and its application
JP2014080461A (en) * 2012-10-12 2014-05-08 Fujimi Inc Process for producing polishing composition, and polishing composition
CN103773244B (en) * 2012-10-17 2017-08-11 安集微电子(上海)有限公司 A kind of alkaline chemical mechanical polishing liquid
EP2957613B1 (en) * 2013-02-13 2020-11-18 Fujimi Incorporated Polishing composition, method for producing polishing composition and method for producing polished article
JP6110681B2 (en) * 2013-02-13 2017-04-05 株式会社フジミインコーポレーテッド Polishing composition, polishing composition manufacturing method and polishing product manufacturing method
JP5920840B2 (en) * 2013-09-30 2016-05-18 株式会社フジミインコーポレーテッド Polishing composition and method for producing the same
KR101785450B1 (en) * 2013-10-04 2017-10-16 가부시키가이샤 사무코 Polishing agent composition, polishing agent composition for silicon wafer, and method for manufacturing silicon wafer product
JP6292816B2 (en) * 2013-10-18 2018-03-14 東亞合成株式会社 Semiconductor wetting agent and polishing composition
EP3258483A4 (en) * 2015-02-12 2018-02-28 Fujimi Incorporated Method for polishing silicon wafer and surface treatment composition
US10748778B2 (en) 2015-02-12 2020-08-18 Fujimi Incorporated Method for polishing silicon wafer and surface treatment composition
WO2016132676A1 (en) * 2015-02-19 2016-08-25 株式会社フジミインコーポレーテッド Composition for silicon wafer polishing and polishing method
JP6829192B2 (en) * 2015-05-08 2021-02-10 株式会社フジミインコーポレーテッド Polishing method
WO2016181888A1 (en) * 2015-05-08 2016-11-17 株式会社フジミインコーポレーテッド Polishing composition
JP6690606B2 (en) * 2017-07-14 2020-04-28 信越半導体株式会社 Polishing method
CN116710532A (en) * 2021-01-18 2023-09-05 福吉米株式会社 Polishing composition
JPWO2022154016A1 (en) * 2021-01-18 2022-07-21

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715842A (en) 1970-07-02 1973-02-13 Tizon Chem Corp Silica polishing compositions having a reduced tendency to scratch silicon and germanium surfaces
US4169337A (en) 1978-03-30 1979-10-02 Nalco Chemical Company Process for polishing semi-conductor materials
US4462188A (en) 1982-06-21 1984-07-31 Nalco Chemical Company Silica sol compositions for polishing silicon wafers
US4588421A (en) 1984-10-15 1986-05-13 Nalco Chemical Company Aqueous silica compositions for polishing silicon wafers
JPH02158684A (en) 1988-12-12 1990-06-19 Mitsubishi Monsanto Chem Co Fine-polishing composition for wafer
US5230833A (en) 1989-06-09 1993-07-27 Nalco Chemical Company Low sodium, low metals silica polishing slurries
US5352277A (en) 1988-12-12 1994-10-04 E. I. Du Pont De Nemours & Company Final polishing composition
US5916819A (en) 1996-07-17 1999-06-29 Micron Technology, Inc. Planarization fluid composition chelating agents and planarization method using same
WO1999032570A1 (en) 1997-12-23 1999-07-01 Akzo Nobel N.V. A composition for chemical mechanical polishing
WO1999064527A1 (en) 1998-06-10 1999-12-16 Rodel Holdings, Inc. Composition and method for polishing in metal cmp
US6099604A (en) 1997-08-21 2000-08-08 Micron Technology, Inc. Slurry with chelating agent for chemical-mechanical polishing of a semiconductor wafer and methods related thereto
US20010003672A1 (en) 1998-06-22 2001-06-14 Yutaka Inoue Polishing composition and surface treating composition
EP1205965A1 (en) 1999-06-18 2002-05-15 Hitachi Chemical Company, Ltd. Abrasive compound for cmp, method for polishing substrate and method for manufacturing semiconductor device using the same, and additive for cmp abrasive compound
EP1223609A1 (en) 1999-08-26 2002-07-17 Hitachi Chemical Company, Ltd. Polishing compound for chemimechanical polishing and polishing method
US6454820B2 (en) 2000-02-03 2002-09-24 Kao Corporation Polishing composition
US20030068350A1 (en) * 1998-08-14 2003-04-10 Sorrentino Paul M. Thickener-rheology modifier system for personal care compositions
US20030199230A1 (en) * 2000-10-12 2003-10-23 Kabushiki Kaisha Toshiba Polishing cloth, polishing apparatus and method of manufacturing semiconductor devices
US20040077254A1 (en) * 2000-06-30 2004-04-22 Ammon Daniel M. Toy bubblemaking solution
WO2004042812A1 (en) 2002-11-08 2004-05-21 Fujimi Incorporated Polishing composition and rinsing composition
US20040098924A1 (en) 2002-09-30 2004-05-27 Shoji Iwasa Polishing composition and rinse composition
US20040127047A1 (en) 2002-09-30 2004-07-01 Shuhei Yamada Polishing composition and polishing method using the same
US6852009B2 (en) 2001-02-02 2005-02-08 Fujimi Incorporated Polishing composition and polishing method employing it
US20050054203A1 (en) 2003-09-05 2005-03-10 Shuhei Yamada Polishing composition
US20050090104A1 (en) * 2003-10-27 2005-04-28 Kai Yang Slurry compositions for chemical mechanical polishing of copper and barrier films
US20050136670A1 (en) 2003-12-19 2005-06-23 Ameen Joseph G. Compositions and methods for controlled polishing of copper
US20050173669A1 (en) 2002-06-03 2005-08-11 Hitachi Chemical Co. Ltd. Polishing fluid and method of polishing
US20050194562A1 (en) * 2004-02-23 2005-09-08 Lavoie Raymond L.Jr. Polishing compositions for controlling metal interconnect removal rate in semiconductor wafers
US20060021972A1 (en) 2004-07-28 2006-02-02 Lane Sarah J Compositions and methods for chemical mechanical polishing silicon dioxide and silicon nitride
US20060049143A1 (en) * 2004-09-09 2006-03-09 Fujimi Incorporated Polishing composition and polishing method using the same
US20060138086A1 (en) 2004-12-28 2006-06-29 Lane Sarah J Multi-step methods for chemical mechanical polishing silicon dioxide and silicon nitride
EP1702965A2 (en) 2005-03-17 2006-09-20 Fuji Photo Film Co., Ltd. Metal chemical mechanical polishing solution and polishing method
US20060243702A1 (en) 2005-04-28 2006-11-02 Gaku Minamihaba CMP slurry for metallic film, polishing method and method of manufacturing semiconductor device
EP1757665A1 (en) 2005-08-24 2007-02-28 JSR Corporation Aqueous dispersion for chemical mechanical polishing, kit for preparing the aqueous dispersion for a chemical mechanical polishing process, and process for producing semiconductor devices
US20070051917A1 (en) * 2005-09-08 2007-03-08 Thomas Terence M Polymeric barrier removal polishing slurry
US20070176141A1 (en) 2006-01-30 2007-08-02 Lane Sarah J Compositions and methods for chemical mechanical polishing interlevel dielectric layers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623393B2 (en) * 1987-04-27 1994-03-30 日本モンサント株式会社 Composition for fine polishing of wafer
JP4115562B2 (en) * 1997-10-14 2008-07-09 株式会社フジミインコーポレーテッド Polishing composition
JP3979750B2 (en) * 1998-11-06 2007-09-19 株式会社荏原製作所 Substrate polishing equipment
US6612911B2 (en) * 2001-01-16 2003-09-02 Cabot Microelectronics Corporation Alkali metal-containing polishing system and method
JP4003116B2 (en) * 2001-11-28 2007-11-07 株式会社フジミインコーポレーテッド Polishing composition for magnetic disk substrate and polishing method using the same
US7021993B2 (en) * 2002-07-19 2006-04-04 Cabot Microelectronics Corporation Method of polishing a substrate with a polishing system containing conducting polymer
KR100516886B1 (en) * 2002-12-09 2005-09-23 제일모직주식회사 Slurry Composition for Final Polishing of Silicon Wafer
JP2004311967A (en) * 2003-03-27 2004-11-04 Nippon Shokubai Co Ltd Polymer and composition for cmp abrasive
US20060000808A1 (en) * 2004-07-01 2006-01-05 Fuji Photo Film Co., Ltd. Polishing solution of metal and chemical mechanical polishing method
KR100636994B1 (en) * 2004-08-27 2006-10-20 제일모직주식회사 Composition of Slurry for Decreasing Subsurface Damage on Silicon Wafer
JP2006100538A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Polishing composition and polishing method using the same
DE102005052924A1 (en) * 2005-11-03 2007-05-10 Basf Ag Aqueous dispersions of water-soluble polymers with comb-like stabilizers
JP5204960B2 (en) 2006-08-24 2013-06-05 株式会社フジミインコーポレーテッド Polishing composition and polishing method

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715842A (en) 1970-07-02 1973-02-13 Tizon Chem Corp Silica polishing compositions having a reduced tendency to scratch silicon and germanium surfaces
US4169337A (en) 1978-03-30 1979-10-02 Nalco Chemical Company Process for polishing semi-conductor materials
US4462188A (en) 1982-06-21 1984-07-31 Nalco Chemical Company Silica sol compositions for polishing silicon wafers
US4588421A (en) 1984-10-15 1986-05-13 Nalco Chemical Company Aqueous silica compositions for polishing silicon wafers
JPH02158684A (en) 1988-12-12 1990-06-19 Mitsubishi Monsanto Chem Co Fine-polishing composition for wafer
US5352277A (en) 1988-12-12 1994-10-04 E. I. Du Pont De Nemours & Company Final polishing composition
US5230833A (en) 1989-06-09 1993-07-27 Nalco Chemical Company Low sodium, low metals silica polishing slurries
US5916819A (en) 1996-07-17 1999-06-29 Micron Technology, Inc. Planarization fluid composition chelating agents and planarization method using same
US6099604A (en) 1997-08-21 2000-08-08 Micron Technology, Inc. Slurry with chelating agent for chemical-mechanical polishing of a semiconductor wafer and methods related thereto
WO1999032570A1 (en) 1997-12-23 1999-07-01 Akzo Nobel N.V. A composition for chemical mechanical polishing
WO1999064527A1 (en) 1998-06-10 1999-12-16 Rodel Holdings, Inc. Composition and method for polishing in metal cmp
US20010003672A1 (en) 1998-06-22 2001-06-14 Yutaka Inoue Polishing composition and surface treating composition
US20030068350A1 (en) * 1998-08-14 2003-04-10 Sorrentino Paul M. Thickener-rheology modifier system for personal care compositions
EP1205965A1 (en) 1999-06-18 2002-05-15 Hitachi Chemical Company, Ltd. Abrasive compound for cmp, method for polishing substrate and method for manufacturing semiconductor device using the same, and additive for cmp abrasive compound
EP1223609A1 (en) 1999-08-26 2002-07-17 Hitachi Chemical Company, Ltd. Polishing compound for chemimechanical polishing and polishing method
US6454820B2 (en) 2000-02-03 2002-09-24 Kao Corporation Polishing composition
US20040077254A1 (en) * 2000-06-30 2004-04-22 Ammon Daniel M. Toy bubblemaking solution
US20030199230A1 (en) * 2000-10-12 2003-10-23 Kabushiki Kaisha Toshiba Polishing cloth, polishing apparatus and method of manufacturing semiconductor devices
US6852009B2 (en) 2001-02-02 2005-02-08 Fujimi Incorporated Polishing composition and polishing method employing it
US20050173669A1 (en) 2002-06-03 2005-08-11 Hitachi Chemical Co. Ltd. Polishing fluid and method of polishing
US20040098924A1 (en) 2002-09-30 2004-05-27 Shoji Iwasa Polishing composition and rinse composition
US20040127047A1 (en) 2002-09-30 2004-07-01 Shuhei Yamada Polishing composition and polishing method using the same
WO2004042812A1 (en) 2002-11-08 2004-05-21 Fujimi Incorporated Polishing composition and rinsing composition
US20050054203A1 (en) 2003-09-05 2005-03-10 Shuhei Yamada Polishing composition
US20050090104A1 (en) * 2003-10-27 2005-04-28 Kai Yang Slurry compositions for chemical mechanical polishing of copper and barrier films
US20050136670A1 (en) 2003-12-19 2005-06-23 Ameen Joseph G. Compositions and methods for controlled polishing of copper
US20050194562A1 (en) * 2004-02-23 2005-09-08 Lavoie Raymond L.Jr. Polishing compositions for controlling metal interconnect removal rate in semiconductor wafers
US20060021972A1 (en) 2004-07-28 2006-02-02 Lane Sarah J Compositions and methods for chemical mechanical polishing silicon dioxide and silicon nitride
US20060049143A1 (en) * 2004-09-09 2006-03-09 Fujimi Incorporated Polishing composition and polishing method using the same
US20060138086A1 (en) 2004-12-28 2006-06-29 Lane Sarah J Multi-step methods for chemical mechanical polishing silicon dioxide and silicon nitride
EP1702965A2 (en) 2005-03-17 2006-09-20 Fuji Photo Film Co., Ltd. Metal chemical mechanical polishing solution and polishing method
US20060243702A1 (en) 2005-04-28 2006-11-02 Gaku Minamihaba CMP slurry for metallic film, polishing method and method of manufacturing semiconductor device
EP1757665A1 (en) 2005-08-24 2007-02-28 JSR Corporation Aqueous dispersion for chemical mechanical polishing, kit for preparing the aqueous dispersion for a chemical mechanical polishing process, and process for producing semiconductor devices
US20070049180A1 (en) * 2005-08-24 2007-03-01 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, kit for preparing the aqueous dispersion, chemical mechanical polishing process, and process for producing semiconductor devices
US20070051917A1 (en) * 2005-09-08 2007-03-08 Thomas Terence M Polymeric barrier removal polishing slurry
US20070176141A1 (en) 2006-01-30 2007-08-02 Lane Sarah J Compositions and methods for chemical mechanical polishing interlevel dielectric layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721909B2 (en) 2006-08-24 2014-05-13 Fujimi Incorporated Polishing composition and polishing method
US9579769B2 (en) 2011-10-24 2017-02-28 Fujimi Incorporated Composition for polishing purposes, polishing method using same, and method for producing substrate

Also Published As

Publication number Publication date
TW200813207A (en) 2008-03-16
DE102007039910B4 (en) 2017-02-09
US20130040461A1 (en) 2013-02-14
GB2443286A (en) 2008-04-30
TWI412580B (en) 2013-10-21
US8721909B2 (en) 2014-05-13
GB0716358D0 (en) 2007-10-03
CN101130668B (en) 2012-10-31
KR101250044B1 (en) 2013-04-02
GB2443286B (en) 2011-11-23
JP2008053415A (en) 2008-03-06
JP5204960B2 (en) 2013-06-05
DE102007039910A1 (en) 2008-03-27
US20090137123A1 (en) 2009-05-28
US20080051010A1 (en) 2008-02-28
CN101130668A (en) 2008-02-27
KR20080018823A (en) 2008-02-28
US20120138851A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US7867909B2 (en) Polishing composition and polishing method
US7204865B2 (en) Polishing composition
US7772173B2 (en) Rinsing composition, and method for rinsing and manufacturing silicon wafer
JP7148506B2 (en) Polishing composition and polishing method using the same
KR20090122172A (en) Aqueous dispersion for chemical mechanical polishing and method of chemical mechanical polishing of semiconductor device
KR102565682B1 (en) Silicon substrate intermediate polishing composition and silicon substrate polishing composition set
US20230143074A1 (en) Polishing composition and polishing method
US20220186078A1 (en) Polishing composition
JP5656960B2 (en) LPD reducing agent and silicon wafer defect reducing method using the same
WO2017169154A1 (en) Set of compositions for polishing, pre-polishing composition, and method of polishing silicon wafer
TWI744369B (en) Concentrate of composition for rough polishing of silicon wafer
JP5460827B2 (en) Silicon wafer manufacturing method
US11939491B2 (en) Method of polishing object to be polished containing material having silicon-silicon bond
WO2018096991A1 (en) Polishing composition
JP2013034026A (en) Polishing composition and method for manufacturing semiconductor wafer using the same
TW201942274A (en) Polishing composition
WO2022202688A1 (en) Polishing method, method for producing semiconductor substrate, and polishing composition set
WO2024070832A1 (en) Composition for finish polishing
TW202138531A (en) Polishing composition
WO2022209758A1 (en) Polishing method, and polishing composition set
WO2024029457A1 (en) Polishing composition
US20230106868A1 (en) Polishing composition and polishing method
TW202134363A (en) Polishing composition, and method for polishing silicon wafer
KR20220124997A (en) Slurry composition for silicon wafer chemical mechanical polishing

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJIMI INCORPORATED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UEMURA, YASUHIDE;REEL/FRAME:020060/0867

Effective date: 20070822

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230111