US8027112B2 - Low frequency booster for RV/shock/friction disturbance rejection - Google Patents

Low frequency booster for RV/shock/friction disturbance rejection Download PDF

Info

Publication number
US8027112B2
US8027112B2 US12/609,656 US60965609A US8027112B2 US 8027112 B2 US8027112 B2 US 8027112B2 US 60965609 A US60965609 A US 60965609A US 8027112 B2 US8027112 B2 US 8027112B2
Authority
US
United States
Prior art keywords
control signal
low frequency
frequency disturbance
disturbance signals
low pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/609,656
Other versions
US20110102928A1 (en
Inventor
Qing Wei Jia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Asia Ltd
Original Assignee
Hitachi Asia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Asia Ltd filed Critical Hitachi Asia Ltd
Priority to US12/609,656 priority Critical patent/US8027112B2/en
Assigned to HITACHI ASIA LTD. reassignment HITACHI ASIA LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JIA, QING WEI
Publication of US20110102928A1 publication Critical patent/US20110102928A1/en
Application granted granted Critical
Publication of US8027112B2 publication Critical patent/US8027112B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/54Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head into or out of its operative position or across tracks
    • G11B5/55Track change, selection or acquisition by displacement of the head
    • G11B5/5521Track change, selection or acquisition by displacement of the head across disk tracks
    • G11B5/5582Track change, selection or acquisition by displacement of the head across disk tracks system adaptation for working during or after external perturbation, e.g. in the presence of a mechanical oscillation caused by a shock
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/596Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
    • G11B5/59627Aligning for runout, eccentricity or offset compensation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2508Magnetic discs
    • G11B2220/2516Hard disks

Definitions

  • This disclosure relates to a system for removing noise from a control system output. More particularly, this disclosure relates to removing low frequency noise from a control system output. Still more particularly, this disclosure relates to a system for removing low frequency noise introduced into a control system output for a hard disk drive that is caused by shock, friction and other outside sources.
  • HDD Hard Disk Drive
  • data is stored on a circular disk. Heads for reading and/writing are located on an arm that is positioned over the disk. A track servo system moves the arm over the disk to position the heads over a particular portion of the disk for reading and/or writing of data to that portion of the disk as the disk is rotated by a motor. A controller generates control signals that are transmitted to the servo system to position the arm over the disk to read and/or write desired data.
  • HDDs have become smaller and are included in more devices.
  • a problem encountered is that the servo systems in HDDs are required to hold read/write heads to very small off-track errors to support the increasing track density of disks.
  • Tracking errors can be induced due to many effects including disk and bearing run-out; servo-track-writer induced irregularities; electronic noise; spindle and actuator resonances; and external shock and vibration excitations.
  • the tracking errors cause noise in the control signal applied to the servo system by the controller.
  • the controller monitors the signal applied to the plant to correct the signal to account for the noise added by these tracking errors.
  • the tracking errors induced by disk and bearing run-out; servo-track-writer induced irregularities; electronic noise; and spindle and actuator resonances cause high frequency noise in the control signal.
  • the controller can adjust the control signal applied to remove this noise.
  • tracking errors from external shock and vibration excitations are typically low frequency noise in the control signals.
  • observer circuitry had to be added to the control signal circuit to reduce the low frequency error signals.
  • the observer circuitry estimates the low frequency noise and tries to attenuate the low frequency noise from the control signal.
  • the observer circuitry often requires a lot of real estate in the control circuitry adding to the cost and complexity of the design.
  • An example of prior art observer circuitry is provided in U.S. Pat. No. 7,319,570 issued in the name of Jia et al. entitled “Random Vibration and Shock Compensator Using a Disturbance Observer”.
  • the low frequency noise is a particular problem in small form factor HDDs used in portable environments where there is an increased exposure to continuous shocks and random vibration due to daily activities like jogging, cycling, etc.
  • Portable devices such as MP3 players, require a smooth flow of music without interruption during jogging.
  • External shocks to the portable device may cause the read/write head in the disk drive to move off-track due to mechanical imbalance of the actuator.
  • the read/write head To make the disk drive embedded in the portable device suitable for these types of uses, the read/write head must be able to recover from shocks quickly before the next shock arrives.
  • those skilled in the art are constantly striving to provide a system to remove the low frequency noise from control signals induced by these types of uses while reducing the amount of real estate or space needed in the control signal circuitry.
  • a first advantage of this disclosed system is that it does not require a sample of an output signal from a plant. This reduces the amount of real estate or space the system requires in control signal circuitry.
  • a second advantage is that the simplicity of the circuitry makes the system more reliable than conventional observer circuitries.
  • a control signal circuit includes a mixer.
  • One input of the mixers receives a control signal generated by a controller.
  • a feedback loop connects an output of the mixer to a second input of the mixer.
  • a low pass filter in the feedback loop only allows low frequency signals to pass through the feedback loop. The mixers then add the low frequency signals to the control signal to increase the amplitudes of the low frequency signals which counteracts the external low frequency disturbances.
  • a delay circuit is added to the feedback loop to account for computational delays.
  • a hold circuit may receive the control signal output by the mixer.
  • the hold circuit is between the output of the mixer and the input of a plant receiving the control signal.
  • a sample circuit captures the output of the system.
  • the sample circuit receives a signal output from the plant.
  • the system may include a feedback loop that applies the control signal, applied to the plant, to the controller to allow the controller to generate a control signal based on the control signal being applied to the plant.
  • the low pass filter is one of multiple low pass filters.
  • a switch connects one of the multiple low pass filters to the feedback loop between an output and a second input of the mixer.
  • a switch controller controls the switch to selectively connect one of the low pass filters.
  • the low pass filters are each of a different order.
  • a low pass filter having a lower order is connected in the feedback loop for better rejection/to improve gain of said low frequency disturbance signals.
  • a low pass signal having a higher order is connected into the feedback loop for concern about system stability.
  • FIG. 1 illustrates a prior art observer circuit for removing low frequency disturbance signals
  • FIG. 2 illustrates a control signal circuit including a boost system in accordance with one embodiment
  • FIG. 3 illustrates a control signal circuit including a boost system in accordance with a second embodiment
  • FIG. 4 illustrates a graph showing the magnitude of open loop frequency response
  • FIG. 5 illustrates a graph showing the phase of open loop frequency response
  • FIG. 6 illustrates a graph showing of open loop sensitivity frequency response
  • FIG. 7 illustrates a graph showing the noise injected into a system
  • FIG. 8 illustrates a graph showing the spectrum of the noise injected into a system
  • FIG. 9 illustrates a graph showing disturbance rejection at low frequencies
  • FIG. 10 illustrates a graph showing disturbance rejection at low frequencies.
  • This disclosure relates to a system for removing noise from a control system output, and more particularly, to removing low frequency noise from a control system output. Still more particularly, this disclosure relates to a system for removing low frequency noise introduced into a control system output for a HDD that is caused by shock, friction and other outside sources.
  • a system for removing low frequency noise introduced into a control system output for a HDD that is caused by shock, friction and other outside sources.
  • a boost system in accordance as disclosed herein is used to feedback the low frequency disturbance signals to increase the amplitude of the low frequency disturbance signals in the control signal that allows for compensation of the low frequency disturbances in the generated control signals.
  • a plant is any circuit that receives the control signal to perform a certain function. Examples of a plant include, but are not limited to, a servo system in a HDD.
  • the system described herein greatly simplifies the circuitry needed to handle low frequency disturbance signals. These low frequency disturbance signals are typically generated by shocks and random vibrations caused by activities such as jogging, cycling, etc.
  • FIG. 1 illustrates a control signal system 100 that includes disturbance observer circuitry for attenuating low frequency disturbance signals.
  • System 100 includes a controller 110 that generates a control signal, u, from a reference signal and a sample of the control signal previously applied to plant 125 that are received from mixer 105 .
  • Controller 110 is conventional circuitry for generating a control signal through either analog or digital means. The exact workings and components of controller 110 are omitted, for brevity, as the workings and components of controller 110 are not important for understanding this disclosure.
  • An input of mixer 115 receives the control signal, u, from controller 110 .
  • An output of mixer 115 applies a corrected control signal, u′, to the observer circuit and to plant 125 .
  • the corrected control signal, u′ is applied to delay 145 .
  • Delay 145 is circuitry that delays the propagation of the corrected control signal through the circuitry to account for computational and propagation delays.
  • the delayed corrected control signal is then received by a first input of mixer 140 .
  • a second input of the mixer 140 receives an inverse plant signal from inverse plant signal generator 135 .
  • Inverse plant signal generator 135 receives the control signal applied to plant 125 and generates an inverse signal.
  • Mixer 140 receives the inverse control signal and the corrected control signal and adds the signals together to form an error correction signal.
  • Low pass filter 150 receives the error correction signal from the output of mixer 140 . Low pass filter 150 then removes high frequency disturbance signals from the error correction signal. The low frequency disturbance signals remaining in the error correction signal are then received by a second input of mixer 115 that is connected to an output low pass filter 150 .
  • Mixer 115 then mixes the low frequency disturbance signals remaining in the corrected error signal with the control signal, u, received from control 110 to generate the corrected control signal u′.
  • the corrected error signal from the output of mixer 115 is then applied to hold circuit 122 to apply the signal to plant 125 .
  • Hold circuit 122 converts the digital signal from the output of mixer 115 into an analog signal to control the plant 125 .
  • Representative mixer 120 is not physically part of control signal circuit 100 . However, representative mixer 120 is provided to show that corrected control signal is subjected to the introduction of low frequency disturbance signals. The signals are typically generated by external shock and vibrations of system 100 .
  • the corrected error signal, including the added low frequency disturbance signals, is applied to plant 125 . Plant 125 then performs a function in accordance with the received error signal.
  • the actual workings of plant 125 are omitted for brevity, as an understanding of the workings of plant 125 is unimportant for an understanding of this disclosure.
  • the control signal applied to plant 125 is output for use by controller 110 in generating the control signals.
  • Representative mixer 130 is not physically part of control signal circuit 100 . However, representative mixer 130 is provided to show that the control signal applied to plant 125 is subjected to the introduction of high frequency disturbance signals. The signals are typically generated by irregularities; electronic noise; and spindle and actuator resonances in plant 125 .
  • Sample circuit 132 captures a sample of the control signal applied including the noise injected into the signals from other sources as shown by representative mixers 120 and 130 .
  • control signal circuitry 100 is provided in U.S. Pat. No. 7,319,570 issued in the name Jia et al. entitled “Random Vibration and Shock Compensator Using a Disturbance Observer”.
  • control signal circuit 100 shown in FIG. 1 operates in the following manner.
  • Plant 125 , P(s) is subject to external RV/shock disturbance signals, ⁇ , and measurement noise signals, ⁇ as shown by representative mixers 120 and 130 .
  • a nominal model of P(s) is assumed to be known.
  • a sampled plant model control signal is denoted as P(z ⁇ 1 ), as the sampled plant model control signal is a digital representation of P(s) as determined by a Digital Signal Processor (DSP) (Not Shown).
  • DSP Digital Signal Processor
  • the inverse plant model is denoted by P n ⁇ 1 (z ⁇ 1 ).
  • Low pass filter (LPF) 150 Q(z ⁇ 1 ), known as a Q-filter, is used to filter out high frequency contents in the observed disturbance signal ⁇ obs , referred to as the correction signal above.
  • the correction signal, ⁇ ′ contains only the low frequency signals of the observed disturbance signal, ⁇ sobs , and is obtained to counteract the effect of the disturbance signal, ⁇ .
  • Delay 145 is a d step delay and is introduced to compensate for the phase loss due to computational and other delays.
  • Low pass filter 150 is a low-pass filter with unity dc gain.
  • low pass filter 150 attenuates the high frequency signals in the disturbance signal cause by sensor noise and at the same time, cancels the low frequency signals in the disturbance signal cause by RV/shock.
  • the disturbance observer circuitry requires an inverted model of the plant P, which is usually difficult to obtain for the low frequency range. Thus, the practical applications of these types of compensation methods based on disturbance observer are limited.
  • the system described herein relies on the fact that if inverse plant signal generator 135 is removed from the disturbance observer, the disturbance observer is simplified into a positive feedback loop to create a new scheme.
  • the new scheme which is referred to as a low frequency booster scheme, greatly enhances the open loop gain at low frequencies.
  • the improvements of gain can be easily seen from the transfer function of the loop from u to u′:
  • z ⁇ d represents a d-step delays.
  • G ⁇ ⁇ ⁇ y ⁇ ( z - 1 ) ( 1 - Q ⁇ ( z - 1 ) ⁇ z - d ) ⁇ P ⁇ ( z - 1 ) 1 + P ⁇ ( z - 1 ) ⁇ C ⁇ ( z - 1 ) - Q ⁇ ( z - 1 ) ⁇ z - d ( 0.3 )
  • Eqn. (0.4) shows that a booster has insignificant effect on the control system 200 at higher frequencies.
  • FIG. 2 illustrates control signal circuitry 200 that includes a feedback loop 210 that differs from that shown in FIG. 1 .
  • System 200 includes a controller 110 that generates a control signal, u, from a reference signal and a sample of the control signal previously applied to plant 125 that are received from mixer 105 .
  • Controller 110 is conventional circuitry for generating a control signal through either analog or digital means. The exact workings and components of controller 110 are omitted, for brevity, as the workings and components of controller 110 are not important for understanding this disclosure.
  • An input of mixer 115 receives the control signal, u, from controller 110 .
  • An output of mixer 115 applies a corrected control signal, u′, to the feedback loop 210 and to plant 125 .
  • the corrected control signal, u′ is applied to delay 215 .
  • Delay 215 is circuitry that delays the propagation of a control signal through the circuit to account for computational and propagation delays.
  • Low pass filter 220 receives the corrected control signal from delay 215 and subsequently removes the higher frequency signals from the corrected control signal.
  • the low frequency disturbance signals remaining in the corrected control signal are then received by a second input of mixer 115 that is connected to an output of low pass filter 220 .
  • Mixer 115 then mixes the low frequency disturbance signals remaining in the corrected error signal with the control signal, u, received from control 110 , to generate the corrected control signal u′.
  • the corrected error signal from the output of mixer 115 is then applied to hold circuit 122 to apply the signal to plant 125 .
  • the hold circuit 122 converts the digital signal from the output of mixer 115 into an analog signal to control the plant 125 .
  • Representative mixer 120 is not physically part of control signal circuit 200 . However, representative mixer 120 is provided to show that the corrected control signal is subjected to the introduction of low frequency disturbance signals. The signals are typically generated by external shock and vibrations of system 200 .
  • the corrected error signal including the added low frequency disturbance signals is applied to plant 125 .
  • Plant 125 then performs a function in accordance with the received error signal.
  • the actual workings of plant 125 are omitted for brevity as an understanding of the workings of plant 125 is unimportant for an understanding of this disclosure.
  • the output of plant 125 is used by controller 110 in generating the control signals.
  • Representative mixer 130 is not physically part of control signal circuit 200 . However, representative mixer 130 is provided to show that the control signal applied to plant 125 is subjected to the introduction of high frequency disturbance signals. The signals are typically generated by irregularities; electronic noise; and spindle and actuator resonances in plant 125 .
  • Sample circuit 132 captures a sample of the control signal applied including the noise injected into the signals from other sources as shown by representative mixers 120 and 130 .
  • the applied control signal including both high and low frequency disturbance signals, is then applied to an input of mixer 105 for mixing in the reference signal as described above.
  • a second embodiment provides multiple switches and a switch for selectively connecting one of the filters to the feedback loop.
  • the multiple filters and switch enable a selection to be made that trades off between disturbance rejection capability and stability margins.
  • the switch may receive signals from a switch control (Not Shown) to select a filter with the proper bandwidth or order according to the RV disturbance or Position Error Signal (PES). For example, when the system has a high PES/RV level, a lower order Q filter is selected for better disturbance rejection performance. However, when the PES/RV level in the system is low, a Q filter with higher order is selected for better stability margins.
  • FIG. 3 illustrates a control signal system 300 that includes a switch and a plurality of low pass filters.
  • System 300 includes a controller 110 that generates a control signal, u, from a reference signal and sample of the control signal previously applied to plant 125 that are received from mixer 105 .
  • Controller 110 is conventional circuitry for generating a control signal through either analog or digital means. The exact workings and components of controller 105 are omitted, for brevity, as the workings and components of controller 105 are not important for understanding this disclosure.
  • An input of mixer 115 receives the control signal, u, from controller 110 .
  • An output of mixer 115 applies a corrected control signal, u′, to the feedback loop and to plant 125 .
  • the feedback loop includes switch 305 that selectively connects one of low pass filters 220 - 222 into the feedback loop.
  • Each of low pass filters 220 - 222 is of a different order.
  • low pass filter 220 is a first order low pass filter
  • low pass filter 221 is a second order low pass filter
  • low pass filter 222 is an nth order low pass filter.
  • the selectively connected low pass filter 220 - 222 receives the corrected error signal and removes high frequency disturbance signals from the corrected control signal.
  • the low frequency disturbance signals remaining in the correct control signal are then received by a second input of mixer 115 that is connected to an output of the connected low pass filter 220 - 222 .
  • Mixer 115 then mixes the low frequency disturbance signals remaining in the corrected error signal with the control signal, u, received from controller 110 to generate the corrected control signal u′.
  • the corrected error signal from the output of mixer 115 is then applied to hold circuit 122 to applying the signal to plant 125 .
  • the hold circuit 122 converts the digital signal from the output of mixer 115 into an analog signal to control the plant 125 .
  • Representative mixer 120 is not physically part of control signal circuit 300 . However, representative mixer 120 is provided to show that corrected control signal is subjected to the introduction of low frequency disturbance signals. The signals are typically generated by external shocks and vibrations of system 300 .
  • the corrected error signal, including the added low frequency disturbance signals, is applied to plant 125 . Plant 125 then performs a function in accordance with the received error signal.
  • the actual workings of plant 125 are omitted for brevity as an understanding of the workings of plant 125 is unimportant for an understanding of this disclosure.
  • the output of plant 125 is used by controller 110 in generating the control signals.
  • Representative mixer 130 is not physically part of control signal circuit 300 . However, representative mixer 130 is provided to show that the control signal applied to plant 125 is subjected to the introduction of high frequency disturbance signals. The signals are typically generated by irregularities; electronic noise; and spindle and actuator resonances in plant 125 .
  • Sample circuit 132 captures a sample of the control signal applied including the noise injected into the signals from other sources as shown by representative mixers 120 and 130 .
  • the applied control signal including both high and low frequency disturbance signals, is applied to an input of mixer 105 for mixing in the reference signal as described above.
  • FIG. 4 illustrates a graph 400 of open loop frequency response, in terms of log-magnitude, using different orders of low pass filters where the bandwidth of the filters is set to 500 Hz.
  • Line 405 shows the response of an open loop system with no filter.
  • Line 420 shows the response using a first order low pass filter or the special case of an added integrator.
  • Line 415 shows the response using a second order low pass filter.
  • Line 410 shows the response using a third order low pass filter.
  • FIG. 5 illustrates a graph 500 of open loop frequency response, in terms of phase, using different orders of low pass filters where the bandwidth of the filters is set to 500 Hz.
  • Line 505 shows the response of an open loop system with no filter.
  • Line 520 shows the response using a first order low pass filter or the special case of an added integrator.
  • Line 515 shows the response using a second order low pass filter.
  • Line 510 shows the response using a third order low pass filter.
  • FIG. 6 illustrates a graph 600 of sensitivity frequency response using different orders of low pass filters where the bandwidth of the filters is set to 500 Hz.
  • Line 605 shows the sensitivity frequency response of an open loop system with no filter.
  • Line 620 shows the response using a first order low pass filter or the special case of an added integrator.
  • Line 615 shows the response using a second order low pass filter.
  • Line 610 shows the response of using a third order low pass filter.
  • FIG. 7 illustrates graph 700 showing the noise 705 , which is a band-limited white noise with 100 Hz bandwidth, injected into a system to generate graphs 400 , 500 , and 600 .
  • FIG. 8 illustrates graph 800 showing the spectrum 805 of the noise 705 injected into the system to generate graphs 400 , 500 , and 600 .
  • FIG. 9 illustrates graph 900 showing the PES using different order low pass filters in a feedback loop as described herein.
  • Line 905 shows the response of an open loop system with no filter.
  • Line 910 shows the PES signal using a first order low pass filter or the special case of an added integrator.
  • Line 915 shows the PES signal using a second order low pass filter.
  • Line 920 shows the PES signal using a third order low pass filter.
  • FIG. 10 illustrates graph 1000 showing the PES spectrums using different order low pass filters in a feedback loop in accordance with a system as described herein.
  • Line 1005 shows the PES spectrum of an open loop system with no filter.
  • Line 1010 shows the PES spectrum using a first order low pass filter or the special case of an added integrator.
  • Line 1015 shows the PES spectrum using a second order low pass filter.
  • Line 1020 shows the PES spectrum using a third order low pass filter.
  • Graphs 900 and 1000 show that disturbance rejection at low frequencies is slightly worse using higher ordered low pass filters than when an integrator is used. However, higher order low pass filters provide no significant disturbance amplification in middle frequencies (from about 1,000 Hz to about 3,000 Hz) and no significant loss in gain margins and phase margins.

Abstract

A system for removing low frequency disturbance signals from a control system output. The system includes a controller, a mixer, a feedback loop, and a low pass filter. The controller generates a control signal. The mixer is connected to the controller and receives the control signal from the controller. The feedback loop connects an output of said mixer to an input of the mixer. A low pass filter in the feedback loop allows low frequency disturbance signals in the control signal output from the mixer to pass through the feedback loop and to be added to the control signal by said mixer for handling by the controller.

Description

FIELD OF THE DISCLOSURE
This disclosure relates to a system for removing noise from a control system output. More particularly, this disclosure relates to removing low frequency noise from a control system output. Still more particularly, this disclosure relates to a system for removing low frequency noise introduced into a control system output for a hard disk drive that is caused by shock, friction and other outside sources.
BACKGROUND
In today's society, many devices include a controller that generates a control signal that controls movement and/or operation of another component of a device. One example of such a device is a Hard Disk Drive (HDD). In a typical HDD, data is stored on a circular disk. Heads for reading and/writing are located on an arm that is positioned over the disk. A track servo system moves the arm over the disk to position the heads over a particular portion of the disk for reading and/or writing of data to that portion of the disk as the disk is rotated by a motor. A controller generates control signals that are transmitted to the servo system to position the arm over the disk to read and/or write desired data.
As technology has advanced, HDDs have become smaller and are included in more devices. As the HDDs have become smaller, a problem encountered is that the servo systems in HDDs are required to hold read/write heads to very small off-track errors to support the increasing track density of disks. Tracking errors can be induced due to many effects including disk and bearing run-out; servo-track-writer induced irregularities; electronic noise; spindle and actuator resonances; and external shock and vibration excitations. The tracking errors cause noise in the control signal applied to the servo system by the controller. The controller monitors the signal applied to the plant to correct the signal to account for the noise added by these tracking errors.
Typically, the tracking errors induced by disk and bearing run-out; servo-track-writer induced irregularities; electronic noise; and spindle and actuator resonances cause high frequency noise in the control signal. The controller can adjust the control signal applied to remove this noise. However, tracking errors from external shock and vibration excitations are typically low frequency noise in the control signals. In the past, observer circuitry had to be added to the control signal circuit to reduce the low frequency error signals. The observer circuitry estimates the low frequency noise and tries to attenuate the low frequency noise from the control signal. The observer circuitry often requires a lot of real estate in the control circuitry adding to the cost and complexity of the design. An example of prior art observer circuitry is provided in U.S. Pat. No. 7,319,570 issued in the name of Jia et al. entitled “Random Vibration and Shock Compensator Using a Disturbance Observer”.
The low frequency noise is a particular problem in small form factor HDDs used in portable environments where there is an increased exposure to continuous shocks and random vibration due to daily activities like jogging, cycling, etc. Portable devices, such as MP3 players, require a smooth flow of music without interruption during jogging. External shocks to the portable device may cause the read/write head in the disk drive to move off-track due to mechanical imbalance of the actuator. Hence, the inability of the HDD to load information from drive to memory buffer. If the drive cannot recover fast enough from shocks, the system will hang. The hanging causes a portable device, such as a MP3 player, to stop operating. To make the disk drive embedded in the portable device suitable for these types of uses, the read/write head must be able to recover from shocks quickly before the next shock arrives. Thus, those skilled in the art are constantly striving to provide a system to remove the low frequency noise from control signals induced by these types of uses while reducing the amount of real estate or space needed in the control signal circuitry.
SUMMARY
The above and other problems are solved and an advance in the art is made by a low frequency booster for random vibration (RV)/shock/friction disturbance rejection as disclosed herein. A first advantage of this disclosed system is that it does not require a sample of an output signal from a plant. This reduces the amount of real estate or space the system requires in control signal circuitry. A second advantage is that the simplicity of the circuitry makes the system more reliable than conventional observer circuitries.
In accordance with some embodiments, a control signal circuit includes a mixer. One input of the mixers receives a control signal generated by a controller. A feedback loop connects an output of the mixer to a second input of the mixer. A low pass filter in the feedback loop only allows low frequency signals to pass through the feedback loop. The mixers then add the low frequency signals to the control signal to increase the amplitudes of the low frequency signals which counteracts the external low frequency disturbances.
In accordance with other embodiments, a delay circuit is added to the feedback loop to account for computational delays.
In accordance with yet other embodiments, a hold circuit may receive the control signal output by the mixer. In some preferred embodiments, the hold circuit is between the output of the mixer and the input of a plant receiving the control signal.
In accordance with additional embodiments, a sample circuit captures the output of the system. In some preferred embodiments, the sample circuit receives a signal output from the plant.
In accordance with still other embodiments, the system may include a feedback loop that applies the control signal, applied to the plant, to the controller to allow the controller to generate a control signal based on the control signal being applied to the plant.
In accordance with other embodiments, the low pass filter is one of multiple low pass filters. In accordance with some of these embodiments, a switch connects one of the multiple low pass filters to the feedback loop between an output and a second input of the mixer. In some of these further embodiments, a switch controller controls the switch to selectively connect one of the low pass filters. Furthermore, the low pass filters are each of a different order.
In accordance with these embodiments, a low pass filter having a lower order is connected in the feedback loop for better rejection/to improve gain of said low frequency disturbance signals. A low pass signal having a higher order is connected into the feedback loop for concern about system stability.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other features and advantages of a system in accordance with this system are described in the below detailed description and are shown in the following drawings:
FIG. 1 illustrates a prior art observer circuit for removing low frequency disturbance signals;
FIG. 2 illustrates a control signal circuit including a boost system in accordance with one embodiment;
FIG. 3 illustrates a control signal circuit including a boost system in accordance with a second embodiment;
FIG. 4 illustrates a graph showing the magnitude of open loop frequency response;
FIG. 5 illustrates a graph showing the phase of open loop frequency response;
FIG. 6 illustrates a graph showing of open loop sensitivity frequency response;
FIG. 7 illustrates a graph showing the noise injected into a system;
FIG. 8 illustrates a graph showing the spectrum of the noise injected into a system;
FIG. 9 illustrates a graph showing disturbance rejection at low frequencies; and
FIG. 10 illustrates a graph showing disturbance rejection at low frequencies.
DETAILED DESCRIPTION
This disclosure relates to a system for removing noise from a control system output, and more particularly, to removing low frequency noise from a control system output. Still more particularly, this disclosure relates to a system for removing low frequency noise introduced into a control system output for a HDD that is caused by shock, friction and other outside sources. For purposes of clarity, components shown in more than one drawing are given the same reference number throughout the entirety of this description.
A boost system in accordance as disclosed herein is used to feedback the low frequency disturbance signals to increase the amplitude of the low frequency disturbance signals in the control signal that allows for compensation of the low frequency disturbances in the generated control signals. For purposes of this discussion, a plant is any circuit that receives the control signal to perform a certain function. Examples of a plant include, but are not limited to, a servo system in a HDD. The system described herein greatly simplifies the circuitry needed to handle low frequency disturbance signals. These low frequency disturbance signals are typically generated by shocks and random vibrations caused by activities such as jogging, cycling, etc.
One approach to the handling of low frequency disturbance signals is to provide disturbance observer circuitry that determines the low frequency disturbance signals and generates an attenuation signal that is then mixed with the control signal to attenuate low frequency disturbance signals in the drive signal. FIG. 1 illustrates a control signal system 100 that includes disturbance observer circuitry for attenuating low frequency disturbance signals.
System 100 includes a controller 110 that generates a control signal, u, from a reference signal and a sample of the control signal previously applied to plant 125 that are received from mixer 105. Controller 110 is conventional circuitry for generating a control signal through either analog or digital means. The exact workings and components of controller 110 are omitted, for brevity, as the workings and components of controller 110 are not important for understanding this disclosure. An input of mixer 115 receives the control signal, u, from controller 110.
An output of mixer 115 applies a corrected control signal, u′, to the observer circuit and to plant 125. The corrected control signal, u′, is applied to delay 145. Delay 145 is circuitry that delays the propagation of the corrected control signal through the circuitry to account for computational and propagation delays. The delayed corrected control signal is then received by a first input of mixer 140. A second input of the mixer 140 receives an inverse plant signal from inverse plant signal generator 135.
Inverse plant signal generator 135 receives the control signal applied to plant 125 and generates an inverse signal. Mixer 140 receives the inverse control signal and the corrected control signal and adds the signals together to form an error correction signal. Low pass filter 150 receives the error correction signal from the output of mixer 140. Low pass filter 150 then removes high frequency disturbance signals from the error correction signal. The low frequency disturbance signals remaining in the error correction signal are then received by a second input of mixer 115 that is connected to an output low pass filter 150. Mixer 115 then mixes the low frequency disturbance signals remaining in the corrected error signal with the control signal, u, received from control 110 to generate the corrected control signal u′.
The corrected error signal from the output of mixer 115 is then applied to hold circuit 122 to apply the signal to plant 125. Hold circuit 122 converts the digital signal from the output of mixer 115 into an analog signal to control the plant 125. Representative mixer 120 is not physically part of control signal circuit 100. However, representative mixer 120 is provided to show that corrected control signal is subjected to the introduction of low frequency disturbance signals. The signals are typically generated by external shock and vibrations of system 100. The corrected error signal, including the added low frequency disturbance signals, is applied to plant 125. Plant 125 then performs a function in accordance with the received error signal. The actual workings of plant 125 are omitted for brevity, as an understanding of the workings of plant 125 is unimportant for an understanding of this disclosure.
The control signal applied to plant 125, y(t), is output for use by controller 110 in generating the control signals. Representative mixer 130 is not physically part of control signal circuit 100. However, representative mixer 130 is provided to show that the control signal applied to plant 125 is subjected to the introduction of high frequency disturbance signals. The signals are typically generated by irregularities; electronic noise; and spindle and actuator resonances in plant 125. Sample circuit 132 captures a sample of the control signal applied including the noise injected into the signals from other sources as shown by representative mixers 120 and 130.
The applied control signal, including both high and low frequency disturbance signals, is applied to an input of mixer 105 for mixing in the reference signal as described above. A more complete description of control signal circuitry 100 is provided in U.S. Pat. No. 7,319,570 issued in the name Jia et al. entitled “Random Vibration and Shock Compensator Using a Disturbance Observer”.
In operation, control signal circuit 100 shown in FIG. 1 operates in the following manner. Plant 125, P(s), is subject to external RV/shock disturbance signals, ζ, and measurement noise signals, ξ as shown by representative mixers 120 and 130. A nominal model of P(s) is assumed to be known. A sampled plant model control signal is denoted as P(z−1), as the sampled plant model control signal is a digital representation of P(s) as determined by a Digital Signal Processor (DSP) (Not Shown). The inverse plant model is denoted by Pn −1(z−1). Low pass filter (LPF) 150, Q(z−1), known as a Q-filter, is used to filter out high frequency contents in the observed disturbance signal ζobs, referred to as the correction signal above. The correction signal, ζ′, contains only the low frequency signals of the observed disturbance signal, ζsobs, and is obtained to counteract the effect of the disturbance signal, ζ. Delay 145 is a d step delay and is introduced to compensate for the phase loss due to computational and other delays.
Low pass filter 150 is a low-pass filter with unity dc gain. Thus, low pass filter 150 attenuates the high frequency signals in the disturbance signal cause by sensor noise and at the same time, cancels the low frequency signals in the disturbance signal cause by RV/shock. As can be seen, the disturbance observer circuitry requires an inverted model of the plant P, which is usually difficult to obtain for the low frequency range. Thus, the practical applications of these types of compensation methods based on disturbance observer are limited.
From the above description, it can be seen that u′a due to the disturbance, ξ, at low frequencies is calculated by the following equation:
u a = G ϛ y ( z - 1 ) P n - 1 ( z - 1 ) ϛ = ( 1 - Q ( z - 1 ) z - d ) P ( z - 1 ) P n - 1 ( z - 1 ) ϛ 1 + P ( z - 1 ) C ( z - 1 ) + Q ( z - 1 ) ( P ( z - 1 ) P n - 1 ( z - 1 ) - z - d ) ( 1 - Q ( z - 1 ) z - d ) ϛ 1 + P ( z - 1 ) C ( z - 1 ) ( 0.1 )
where:
    • Gξy is the transfer function from the disturbance, ξ, to the plant output y; and
    • C(z−1) is a stable digital controller.
In the above equation, it can be seen that as 1−Q(z−1)z−d≈0 and the amplitude of the sensitivity function, S=1/(1+PC), becomes very small at low frequencies, the value of u′a becomes very small and the contribution to u′a becomes relatively insignificant. Therefore, it is reasonable to remove the path from y(t) to u′a, that includes the inverse plant signal generator 135, from the disturbance observer to simplify the implementation.
The system described herein relies on the fact that if inverse plant signal generator 135 is removed from the disturbance observer, the disturbance observer is simplified into a positive feedback loop to create a new scheme. The new scheme, which is referred to as a low frequency booster scheme, greatly enhances the open loop gain at low frequencies. The improvements of gain can be easily seen from the transfer function of the loop from u to u′:
G uu ( z - 1 ) = 1 1 - Q ( z - 1 ) z - d ( 0.2 )
where:
z−d represents a d-step delays.
When Q(z−1) is chosen to be a low-pass filter with unity dc gain, the amplitude of Guu′ is well enhanced at low frequencies and approaches infinity as the frequency approaches zero. The transfer function from ξ to y becomes:
G ϛ y ( z - 1 ) = ( 1 - Q ( z - 1 ) z - d ) P ( z - 1 ) 1 + P ( z - 1 ) C ( z - 1 ) - Q ( z - 1 ) z - d ( 0.3 )
One skilled in the art will recognize that at low frequencies, 1−Q(z−1)z−d≈0 and Gξy≈0; and at high frequencies, Q≈0 and
G ϛ y ( z - 1 ) P ( z - 1 ) 1 + P ( z - 1 ) C ( z - 1 ) ( 0.4 )
Thus, Eqn. (0.4) shows that a booster has insignificant effect on the control system 200 at higher frequencies.
FIG. 2 illustrates control signal circuitry 200 that includes a feedback loop 210 that differs from that shown in FIG. 1. System 200 includes a controller 110 that generates a control signal, u, from a reference signal and a sample of the control signal previously applied to plant 125 that are received from mixer 105. Controller 110 is conventional circuitry for generating a control signal through either analog or digital means. The exact workings and components of controller 110 are omitted, for brevity, as the workings and components of controller 110 are not important for understanding this disclosure. An input of mixer 115 receives the control signal, u, from controller 110.
An output of mixer 115 applies a corrected control signal, u′, to the feedback loop 210 and to plant 125. In feedback loop 210, the corrected control signal, u′, is applied to delay 215. Delay 215 is circuitry that delays the propagation of a control signal through the circuit to account for computational and propagation delays.
Low pass filter 220 receives the corrected control signal from delay 215 and subsequently removes the higher frequency signals from the corrected control signal. The low frequency disturbance signals remaining in the corrected control signal are then received by a second input of mixer 115 that is connected to an output of low pass filter 220. Mixer 115 then mixes the low frequency disturbance signals remaining in the corrected error signal with the control signal, u, received from control 110, to generate the corrected control signal u′.
The corrected error signal from the output of mixer 115 is then applied to hold circuit 122 to apply the signal to plant 125. The hold circuit 122 converts the digital signal from the output of mixer 115 into an analog signal to control the plant 125. Representative mixer 120 is not physically part of control signal circuit 200. However, representative mixer 120 is provided to show that the corrected control signal is subjected to the introduction of low frequency disturbance signals. The signals are typically generated by external shock and vibrations of system 200.
The corrected error signal, including the added low frequency disturbance signals is applied to plant 125. Plant 125 then performs a function in accordance with the received error signal. The actual workings of plant 125 are omitted for brevity as an understanding of the workings of plant 125 is unimportant for an understanding of this disclosure.
The output of plant 125, y(t), is used by controller 110 in generating the control signals. Representative mixer 130 is not physically part of control signal circuit 200. However, representative mixer 130 is provided to show that the control signal applied to plant 125 is subjected to the introduction of high frequency disturbance signals. The signals are typically generated by irregularities; electronic noise; and spindle and actuator resonances in plant 125. Sample circuit 132 captures a sample of the control signal applied including the noise injected into the signals from other sources as shown by representative mixers 120 and 130. The applied control signal, including both high and low frequency disturbance signals, is then applied to an input of mixer 105 for mixing in the reference signal as described above.
One skilled in the art will recognize that low gain enhancement with an additional integrator is a special case of a boost system as described herein. For simplification of discussion, Q(s), the counterpart in continuous-time of the digital low-pass filter Q(z−1) is used. When Q(s) is chosen to be of the first order, namely, Q(s)=b/(s+b), where b is the bandwidth of Q(s), without considering the delay term z−d in the proposed diagram, the gain enhancement due the positive feedback is:
G uu = 1 1 - Q ( s ) = 1 + b s ( 0.5 )
The order of the Q filter has significant effect on the disturbance rejection performance. Lower order Q filters provide better disturbance rejection performance. In contrast, higher order Q filters provide more stability margins. Therefore, a second embodiment provides multiple switches and a switch for selectively connecting one of the filters to the feedback loop. The multiple filters and switch enable a selection to be made that trades off between disturbance rejection capability and stability margins. The switch may receive signals from a switch control (Not Shown) to select a filter with the proper bandwidth or order according to the RV disturbance or Position Error Signal (PES). For example, when the system has a high PES/RV level, a lower order Q filter is selected for better disturbance rejection performance. However, when the PES/RV level in the system is low, a Q filter with higher order is selected for better stability margins.
FIG. 3 illustrates a control signal system 300 that includes a switch and a plurality of low pass filters. System 300 includes a controller 110 that generates a control signal, u, from a reference signal and sample of the control signal previously applied to plant 125 that are received from mixer 105. Controller 110 is conventional circuitry for generating a control signal through either analog or digital means. The exact workings and components of controller 105 are omitted, for brevity, as the workings and components of controller 105 are not important for understanding this disclosure. An input of mixer 115 receives the control signal, u, from controller 110.
An output of mixer 115 applies a corrected control signal, u′, to the feedback loop and to plant 125. The feedback loop includes switch 305 that selectively connects one of low pass filters 220-222 into the feedback loop. Each of low pass filters 220-222 is of a different order. In the shown embodiment, low pass filter 220 is a first order low pass filter, low pass filter 221 is a second order low pass filter, and low pass filter 222 is an nth order low pass filter.
The selectively connected low pass filter 220-222 receives the corrected error signal and removes high frequency disturbance signals from the corrected control signal. The low frequency disturbance signals remaining in the correct control signal are then received by a second input of mixer 115 that is connected to an output of the connected low pass filter 220-222. Mixer 115 then mixes the low frequency disturbance signals remaining in the corrected error signal with the control signal, u, received from controller 110 to generate the corrected control signal u′.
The corrected error signal from the output of mixer 115 is then applied to hold circuit 122 to applying the signal to plant 125. The hold circuit 122 converts the digital signal from the output of mixer 115 into an analog signal to control the plant 125. Representative mixer 120 is not physically part of control signal circuit 300. However, representative mixer 120 is provided to show that corrected control signal is subjected to the introduction of low frequency disturbance signals. The signals are typically generated by external shocks and vibrations of system 300. The corrected error signal, including the added low frequency disturbance signals, is applied to plant 125. Plant 125 then performs a function in accordance with the received error signal. The actual workings of plant 125 are omitted for brevity as an understanding of the workings of plant 125 is unimportant for an understanding of this disclosure.
The output of plant 125, y(t), is used by controller 110 in generating the control signals. Representative mixer 130 is not physically part of control signal circuit 300. However, representative mixer 130 is provided to show that the control signal applied to plant 125 is subjected to the introduction of high frequency disturbance signals. The signals are typically generated by irregularities; electronic noise; and spindle and actuator resonances in plant 125. Sample circuit 132 captures a sample of the control signal applied including the noise injected into the signals from other sources as shown by representative mixers 120 and 130. The applied control signal, including both high and low frequency disturbance signals, is applied to an input of mixer 105 for mixing in the reference signal as described above.
FIG. 4 illustrates a graph 400 of open loop frequency response, in terms of log-magnitude, using different orders of low pass filters where the bandwidth of the filters is set to 500 Hz. Line 405 shows the response of an open loop system with no filter. Line 420 shows the response using a first order low pass filter or the special case of an added integrator. Line 415 shows the response using a second order low pass filter. Line 410 shows the response using a third order low pass filter.
FIG. 5 illustrates a graph 500 of open loop frequency response, in terms of phase, using different orders of low pass filters where the bandwidth of the filters is set to 500 Hz. Line 505 shows the response of an open loop system with no filter. Line 520 shows the response using a first order low pass filter or the special case of an added integrator. Line 515 shows the response using a second order low pass filter. Line 510 shows the response using a third order low pass filter.
FIG. 6 illustrates a graph 600 of sensitivity frequency response using different orders of low pass filters where the bandwidth of the filters is set to 500 Hz. Line 605 shows the sensitivity frequency response of an open loop system with no filter. Line 620 shows the response using a first order low pass filter or the special case of an added integrator. Line 615 shows the response using a second order low pass filter. Line 610 shows the response of using a third order low pass filter.
From graphs 400; 500; and 600, one skilled in the art will recognize that the use of an integrator greatly improves rejection performance at low frequencies, such as frequencies below 1,000 Hz. However, disturbance amplification at medium frequency range (1 KHz to 3 KHz) and loss of phase margins are significant. This is shown in the following table showing the stability margins:
Stability margins
Schemes o I 1 2 3
PM(degree) 49.8 30.5 30.5 44.7 51.9
GM(db) 15.15 14.37 14.37 15.19 15.15
Where:
    • scheme o refers to the original servo system without any additional compensation
    • scheme I refers to the scheme with an additional integrator; and
    • schemes 1-3 refer to the proposed schemes with the low pass filter chosen to be 1st, 2nd and 3rd, orders respectively.
FIG. 7 illustrates graph 700 showing the noise 705, which is a band-limited white noise with 100 Hz bandwidth, injected into a system to generate graphs 400, 500, and 600. FIG. 8 illustrates graph 800 showing the spectrum 805 of the noise 705 injected into the system to generate graphs 400, 500, and 600.
The following table shows variation of PES signals for a system as described herein using different order low pass filters:
Variations of PES signals
Schemes o I 1 2 3
sigma 108.66 19.26 19.24 28.58 40.08
where:
    • variation σ is calculated using Matlab function std( )
    • scheme o refers to the original servo system without any additional compensation;
    • scheme I refers to the scheme with an additional integrator; and
    • schemes 1-3 refer to the proposed schemes with the low pass filter chosen to be 1st, 2nd and 3rd, orders respectively
FIG. 9 illustrates graph 900 showing the PES using different order low pass filters in a feedback loop as described herein. Line 905 shows the response of an open loop system with no filter. Line 910 shows the PES signal using a first order low pass filter or the special case of an added integrator. Line 915 shows the PES signal using a second order low pass filter. Line 920 shows the PES signal using a third order low pass filter.
FIG. 10 illustrates graph 1000 showing the PES spectrums using different order low pass filters in a feedback loop in accordance with a system as described herein. Line 1005 shows the PES spectrum of an open loop system with no filter. Line 1010 shows the PES spectrum using a first order low pass filter or the special case of an added integrator. Line 1015 shows the PES spectrum using a second order low pass filter. Line 1020 shows the PES spectrum using a third order low pass filter.
Graphs 900 and 1000 show that disturbance rejection at low frequencies is slightly worse using higher ordered low pass filters than when an integrator is used. However, higher order low pass filters provide no significant disturbance amplification in middle frequencies (from about 1,000 Hz to about 3,000 Hz) and no significant loss in gain margins and phase margins.
The above is a description of embodiments of a low frequency booster for RV/shock/friction disturbance rejection in accordance with a system as described herein.

Claims (36)

1. A system for removing low frequency disturbance signals from a control signal for a plant, said system comprising:
a controller that generates said control signal;
a mixer connected to said controller to receive said control signal;
a feedback loop that connects an output of said mixer to an input of said mixer; and
a low pass filter in said feedback loop that allows said low frequency disturbance signals in said control signal output from said mixer
to pass through said feedback loop and
to be added to said control signal by said mixer for handling by said controller.
2. The system of claim 1, further comprising:
delay circuitry in said feedback loop.
3. The system of claim 1, further comprising:
a hold circuit connected to said output of said mixer.
4. The system of claim 3, wherein said hold circuit is between said output of said mixer and said plant.
5. The system of claim 1, further comprising: a feedback loop from said plant to said controller to provide said control signal applied to said plant to said controller for use in generating said control signal.
6. The system of claim 5, further comprising: a sample circuit in said feedback loop from said plant to said controller.
7. The system of claim 1, further comprising: a plurality of low pass filters, including said low pass filter, wherein each low pass filter from said plurality of low pass filters has an order selected from a finite plurality of orders.
8. The system of claim 7, further comprising: a switch for selectively connecting one of said low pass filters from said plurality of low pass filters into said feedback loop to act as said low pass filter in said system.
9. The system of claim 8, further comprising: a switch controller connected to said switch to move said switch between low pass filters from said plurality of low pass filters.
10. The system of claim 8, wherein said switch connects said one of said plurality of low pass filters having a lower order into said feedback loop for better rejection of said low frequency disturbance signals.
11. The system of claim 8, wherein said switch connects said one of said plurality of low pass filters having a higher order for a higher stability margin.
12. The system of claim 8, wherein said one of said plurality of low pass filters is selected based on a level of said low frequency disturbance signals.
13. The system of claim 8, wherein said one of said plurality of low pass filters is selected for a desired level of stability margins based on a level of said low frequency disturbance signals.
14. A method for removing low frequency disturbance signals from a control system, said method comprising:
tapping a control signal generated by a controller;
isolating said low frequency disturbance signals from said control signal; and
adding said isolated low frequency disturbance signals to said control signal.
15. The method of claim 14, further comprising: delaying said low frequency disturbance signals by a desired period prior to adding said isolated low frequency disturbance signals to said control signal.
16. The method of claim 14, further comprising: sampling said control signal in response to said adding said isolated low frequency disturbance signals to said control signal.
17. The method of claim 14, further comprising: holding said control signal in response to said adding said isolated low frequency disturbance signals to said control signal.
18. The method of claim 14, further comprising: feeding back said control signal applied to a plant including said added isolated low frequency disturbance signals to said controller for use in generating said control signal.
19. The method of claim 18, wherein said one of said plurality of low pass filters is selected for a desired stability margin.
20. The method of claim 14, wherein said step of isolating comprises:
selecting one of a plurality of low pass filters to isolate said low frequency disturbance signals, wherein each of said plurality of low pass filters is one of a finite plurality of orders.
21. The method of claim 20, wherein said one of said plurality of low pass filters selected has a lower order for better rejection of said low frequency disturbance signals.
22. The method of claim 20, wherein said one of said plurality of low pass filters selected has a higher order for a higher stability margin.
23. The method of claim 20, wherein said one of said plurality of low pass filters is selected based on a level of said low frequency disturbance signals.
24. The method of claim 14, further comprising:
adjusting said control signal generated by said controller to account for said low frequency disturbance signals above a desired level.
25. An apparatus for removing low frequency disturbance signals from a control signal for a plant, said apparatus comprising:
means for generating said control signal;
means for receiving said control signal;
means for isolating said low frequency disturbance signals in said received control signal; and
means for adding said isolated low frequency disturbance signals to said control signal.
26. The apparatus of claim 25, further comprising: means for delaying said isolated low frequency signals.
27. The apparatus of claim 25, further comprising: means for holding said control signal with said isolated low frequency disturbance signals added.
28. The apparatus of claim 27, wherein said means for holding is between said means for receiving and said plant.
29. The apparatus of claim 25, further comprising: means for feeding back said control signal from said plant to said means for generating to provide said control signal applied to said plant to said means for generating for use in generating said control signal.
30. The apparatus of claim 29, further comprising: means for sampling said control signal being fed back from said plant to said means for generating.
31. The apparatus of claim 25, further comprising: a plurality of means for isolating said low frequency disturbance signals including said means for isolating said low frequency disturbance signals, wherein each of said means for isolating has an order selected from a finite plurality of orders.
32. The apparatus of claim 31, further comprising: means for selectively connecting said one of said means for isolating said low frequency disturbance signals to said means for receiving said control signal to isolate said low frequency disturbance signals.
33. The apparatus of claim 32, wherein said one of said means for isolating has a lower order for better rejection of said low frequency disturbance signals.
34. The apparatus of claim 32, wherein said one of said means for isolating has a higher order for a higher stability margin.
35. The apparatus of claim 32, wherein said one of said means for isolating is selected based on a desired level of rejection of said low frequency disturbance signals.
36. The apparatus of claim 32, wherein said one of said means for isolating is selected for a desired stability margin.
US12/609,656 2009-10-30 2009-10-30 Low frequency booster for RV/shock/friction disturbance rejection Expired - Fee Related US8027112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/609,656 US8027112B2 (en) 2009-10-30 2009-10-30 Low frequency booster for RV/shock/friction disturbance rejection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/609,656 US8027112B2 (en) 2009-10-30 2009-10-30 Low frequency booster for RV/shock/friction disturbance rejection

Publications (2)

Publication Number Publication Date
US20110102928A1 US20110102928A1 (en) 2011-05-05
US8027112B2 true US8027112B2 (en) 2011-09-27

Family

ID=43925185

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/609,656 Expired - Fee Related US8027112B2 (en) 2009-10-30 2009-10-30 Low frequency booster for RV/shock/friction disturbance rejection

Country Status (1)

Country Link
US (1) US8027112B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140324390A1 (en) * 2013-04-24 2014-10-30 Andrew D. White Apparatus and Method for Applying a Load to a Material
US20210336628A1 (en) * 2020-04-28 2021-10-28 Lake Shore Cryotronics, Inc. Hybrid digital and analog signal generation systems and methods

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997876A (en) 1972-06-07 1976-12-14 International Business Machines Corporation Apparatus and method for avoiding defects in the recording medium within a peripheral storage system
US4449106A (en) * 1981-03-10 1984-05-15 Victor Company Of Japan, Ltd. Noise reducing apparatus
US4985925A (en) * 1988-06-24 1991-01-15 Sensor Electronics, Inc. Active noise reduction system
US5136386A (en) * 1989-10-12 1992-08-04 Kabushiki Kaisha Toshiba Video signal noise reduction circuit preceded by a picture quality control circuit
US5426545A (en) 1991-05-09 1995-06-20 Sidman; Michael D. Active disturbance compensation system for disk drives
US5483438A (en) 1991-04-05 1996-01-09 Nec Corporation Noise reducing estimator
US5636193A (en) 1993-11-09 1997-06-03 Kabushiki Kaisha Toshiba Method and apparatus for reducing vibration on a disk spindle motor by detecting the vibrations and correcting the motor driving signal according to the detected vibration
US5654840A (en) 1994-06-30 1997-08-05 Western Digital Corporation Hard disk drive which uses the back EMF of the actuator to detect shocks
US5663847A (en) 1995-03-27 1997-09-02 Abramovitch; Daniel Y. Rejection of disturbances on a disk drive by use of an accelerometer
US6567230B1 (en) * 1998-10-29 2003-05-20 International Business Machines Corporation Method and system for performing positioning control of a head actuator in a disk device utilizing a digital filter
US6795559B1 (en) * 1999-12-22 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Impulse noise reducer detecting impulse noise from an audio signal
US6937423B1 (en) 2004-02-06 2005-08-30 Western Digital Technologies, Inc. Reducing effects of rotational vibration in disk drive
US6958879B2 (en) 2003-07-10 2005-10-25 Samsung Electronics Co., Ltd. Method and apparatus reducing off track head motion due to disk vibration in a hard disk drive using configuration of the disk drive servo controller
US7242225B2 (en) * 2003-11-05 2007-07-10 Rohde & Schwarz Gmbh & Co. Kg Direct digital frequency synthesizer
US7292403B2 (en) 2005-02-04 2007-11-06 Samsung Electronics Co., Ltd. Low frequency disturbance compensation control device and disk drive using the same
US7319570B2 (en) 2005-09-19 2008-01-15 Seagate Technology Llc Random vibration and shock compensator using a disturbance observer
US7365932B1 (en) 2005-12-30 2008-04-29 Western Digital Technologies, Inc. Disk drive comprising an optical sensor for vibration mode compensation
US20080134787A1 (en) * 2006-10-31 2008-06-12 Nissan Motor Co., Ltd. Vibration reducing device and vibration reducing method
US7400468B2 (en) 2006-11-22 2008-07-15 Samsung Electronics Co., Ltd. Vibration detector for hard disk drives
EP1993007A1 (en) 2006-03-07 2008-11-19 National University Corporation Nagoya Institute of Technology Control method and controller of positioning mechanism
US7504990B2 (en) * 2004-01-15 2009-03-17 Fujitsu Ten Limited Radar apparatus
US20090092337A1 (en) * 2007-09-07 2009-04-09 Takefumi Nagumo Image processing apparatus, image processing method, and computer program
US7545599B2 (en) 2004-12-27 2009-06-09 Hitachi Global Storage Technologies Netherlands B.V. Disk drive with vibration suppression member disposed near head assembly
US7564644B2 (en) * 2006-08-14 2009-07-21 Samsung Electronics Co., Ltd. Adaptive disturbance repressing method and apparatus, and disk drive apparatus using the same
US20100004824A1 (en) * 2008-07-03 2010-01-07 Mitsubishi Electric Corporation Electric power-steering control apparatus
US20100097258A1 (en) * 2006-12-21 2010-04-22 Nokia Corporation Apparatus comprising frequency selective circuit and method

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997876A (en) 1972-06-07 1976-12-14 International Business Machines Corporation Apparatus and method for avoiding defects in the recording medium within a peripheral storage system
US4449106A (en) * 1981-03-10 1984-05-15 Victor Company Of Japan, Ltd. Noise reducing apparatus
US4985925A (en) * 1988-06-24 1991-01-15 Sensor Electronics, Inc. Active noise reduction system
US5136386A (en) * 1989-10-12 1992-08-04 Kabushiki Kaisha Toshiba Video signal noise reduction circuit preceded by a picture quality control circuit
US5483438A (en) 1991-04-05 1996-01-09 Nec Corporation Noise reducing estimator
US5426545A (en) 1991-05-09 1995-06-20 Sidman; Michael D. Active disturbance compensation system for disk drives
US5636193A (en) 1993-11-09 1997-06-03 Kabushiki Kaisha Toshiba Method and apparatus for reducing vibration on a disk spindle motor by detecting the vibrations and correcting the motor driving signal according to the detected vibration
US5654840A (en) 1994-06-30 1997-08-05 Western Digital Corporation Hard disk drive which uses the back EMF of the actuator to detect shocks
US5663847A (en) 1995-03-27 1997-09-02 Abramovitch; Daniel Y. Rejection of disturbances on a disk drive by use of an accelerometer
US6567230B1 (en) * 1998-10-29 2003-05-20 International Business Machines Corporation Method and system for performing positioning control of a head actuator in a disk device utilizing a digital filter
US6795559B1 (en) * 1999-12-22 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Impulse noise reducer detecting impulse noise from an audio signal
US6958879B2 (en) 2003-07-10 2005-10-25 Samsung Electronics Co., Ltd. Method and apparatus reducing off track head motion due to disk vibration in a hard disk drive using configuration of the disk drive servo controller
US7242225B2 (en) * 2003-11-05 2007-07-10 Rohde & Schwarz Gmbh & Co. Kg Direct digital frequency synthesizer
US7504990B2 (en) * 2004-01-15 2009-03-17 Fujitsu Ten Limited Radar apparatus
US6937423B1 (en) 2004-02-06 2005-08-30 Western Digital Technologies, Inc. Reducing effects of rotational vibration in disk drive
US7545599B2 (en) 2004-12-27 2009-06-09 Hitachi Global Storage Technologies Netherlands B.V. Disk drive with vibration suppression member disposed near head assembly
US7292403B2 (en) 2005-02-04 2007-11-06 Samsung Electronics Co., Ltd. Low frequency disturbance compensation control device and disk drive using the same
US7319570B2 (en) 2005-09-19 2008-01-15 Seagate Technology Llc Random vibration and shock compensator using a disturbance observer
US7365932B1 (en) 2005-12-30 2008-04-29 Western Digital Technologies, Inc. Disk drive comprising an optical sensor for vibration mode compensation
EP1993007A1 (en) 2006-03-07 2008-11-19 National University Corporation Nagoya Institute of Technology Control method and controller of positioning mechanism
US7564644B2 (en) * 2006-08-14 2009-07-21 Samsung Electronics Co., Ltd. Adaptive disturbance repressing method and apparatus, and disk drive apparatus using the same
US20080134787A1 (en) * 2006-10-31 2008-06-12 Nissan Motor Co., Ltd. Vibration reducing device and vibration reducing method
US7400468B2 (en) 2006-11-22 2008-07-15 Samsung Electronics Co., Ltd. Vibration detector for hard disk drives
US20100097258A1 (en) * 2006-12-21 2010-04-22 Nokia Corporation Apparatus comprising frequency selective circuit and method
US20090092337A1 (en) * 2007-09-07 2009-04-09 Takefumi Nagumo Image processing apparatus, image processing method, and computer program
US20100004824A1 (en) * 2008-07-03 2010-01-07 Mitsubishi Electric Corporation Electric power-steering control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140324390A1 (en) * 2013-04-24 2014-10-30 Andrew D. White Apparatus and Method for Applying a Load to a Material
US9506782B2 (en) * 2013-04-24 2016-11-29 Bose Corporation Apparatus and method for applying a load to a material
US20210336628A1 (en) * 2020-04-28 2021-10-28 Lake Shore Cryotronics, Inc. Hybrid digital and analog signal generation systems and methods

Also Published As

Publication number Publication date
US20110102928A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
US7319570B2 (en) Random vibration and shock compensator using a disturbance observer
US8630059B1 (en) Methods for closed-loop compensation of ultra-high frequency disturbances in hard disk drives and hard disk drives utilizing same
US6710966B1 (en) Method for reducing an effect of vibration on a disk drive during a track following operation by adjusting an adaptive-filter gain applied to an acceleration sensor signal
US6064540A (en) Active control for stabilizing a servo-controlled actuator system
CN1925051B (en) Read channel and memory driver for dynamically adapting a read channel equalizer
US20090116136A1 (en) Vibration detection and compensation filter
US9934803B1 (en) Data storage device attenuating multiple actuator coupling disturbance
US8406351B1 (en) Method and device to compensate for baseline wander
US20030193736A1 (en) Method and apparatus for feedforward repeatable runout compensation in a selected frequency range
US20100079906A1 (en) Adaptive Feed Forward Rotational Vibration Compensation During a SEEK Operation
JPH09245435A (en) Data reproducing equipment
US8027112B2 (en) Low frequency booster for RV/shock/friction disturbance rejection
Ye et al. Radial error propagation issues in self-servo track writing technology
JP2013084331A (en) Magnetic disk device and head position control method
US7719787B2 (en) Phase locked anti- notch filter in a servo control loop
US9971913B1 (en) Adaptively combining waveforms
Wu et al. Repeatable runout compensation for hard disk drives using adaptive feedforward cancellation
US20170011763A1 (en) Data storage devices and methods with frequency-shaped sliding mode control
US8537485B2 (en) Compensation for vibration in a data storage system
US9001454B1 (en) Disk drive adjusting phase of adaptive feed-forward controller when reconfiguring servo loop
US7158333B1 (en) Up-sampled filtering for servo demodulation
US8804268B1 (en) DC-control for post processor
US7046478B2 (en) Method and apparatus for reducing vibration in a dynamic system
US10984831B1 (en) Data storage device compensating for seek vibration using vibration sensor
US10002630B1 (en) Adaptive attenuation for disturbance compensation

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI ASIA LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JIA, QING WEI;REEL/FRAME:023451/0384

Effective date: 20090812

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150927