US8051759B2 - Motion detecting system for use in a safety system for power equipment - Google Patents

Motion detecting system for use in a safety system for power equipment Download PDF

Info

Publication number
US8051759B2
US8051759B2 US12/661,766 US66176610A US8051759B2 US 8051759 B2 US8051759 B2 US 8051759B2 US 66176610 A US66176610 A US 66176610A US 8051759 B2 US8051759 B2 US 8051759B2
Authority
US
United States
Prior art keywords
cutting tool
blade
movement
arbor
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US12/661,766
Other versions
US20100251866A1 (en
Inventor
Stephen F. Gass
Robert L. Chamberlain
J. David Fulmer
Joel F. Jensen
Benjamin B. Schramm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sawstop Holding LLC
Original Assignee
SD3 LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27585530&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US8051759(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US12/661,766 priority Critical patent/US8051759B2/en
Application filed by SD3 LLC filed Critical SD3 LLC
Priority to US12/800,607 priority patent/US7895927B2/en
Assigned to SD3, LLC reassignment SD3, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FULMER, J. DAVID
Assigned to SD3, LLC reassignment SD3, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GASS, STEPHEN F.
Assigned to SD3, LLC reassignment SD3, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JENSEN, JOEL E.
Assigned to SD3, LLC reassignment SD3, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHRAMM, BENJAMIN B.
Assigned to SD3, LLC reassignment SD3, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAMBERLAIN, ROBERT L.
Priority to US12/806,829 priority patent/US9522476B2/en
Priority to US12/806,836 priority patent/US8196499B2/en
Priority to US12/806,830 priority patent/US8191450B2/en
Priority to US12/807,147 priority patent/US8402869B2/en
Priority to US12/807,146 priority patent/US8291797B2/en
Publication of US20100251866A1 publication Critical patent/US20100251866A1/en
Priority to US13/373,180 priority patent/US8371196B2/en
Application granted granted Critical
Publication of US8051759B2 publication Critical patent/US8051759B2/en
Priority to US13/442,290 priority patent/US8408106B2/en
Priority to US13/854,270 priority patent/US20170190012A9/en
Priority to US14/720,552 priority patent/US20150273725A1/en
Priority to US14/862,571 priority patent/US9925683B2/en
Priority to US15/357,928 priority patent/US9969014B2/en
Priority to US15/362,388 priority patent/US9878380B2/en
Assigned to SAWSTOP HOLDING LLC reassignment SAWSTOP HOLDING LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SD3, LLC
Priority to US15/935,395 priority patent/US10335972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B13/00Band or strap sawing machines; Components or equipment therefor
    • B27B13/14Braking devices specially designed for band sawing machines, e.g. acting after damage of the band saw blade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/08Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of devices for bringing the circular saw blade to the workpiece or removing same therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D59/00Accessories specially designed for sawing machines or sawing devices
    • B23D59/001Measuring or control devices, e.g. for automatic control of work feed pressure on band saw blade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B5/00Sawing machines working with circular or cylindrical saw blades; Components or equipment therefor
    • B27B5/29Details; Component parts; Accessories
    • B27B5/38Devices for braking the circular saw blade or the saw spindle; Devices for damping vibrations of the circular saw blade, e.g. silencing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27GACCESSORY MACHINES OR APPARATUS FOR WORKING WOOD OR SIMILAR MATERIALS; TOOLS FOR WORKING WOOD OR SIMILAR MATERIALS; SAFETY DEVICES FOR WOOD WORKING MACHINES OR TOOLS
    • B27G19/00Safety guards or devices specially adapted for wood saws; Auxiliary devices facilitating proper operation of wood saws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27GACCESSORY MACHINES OR APPARATUS FOR WORKING WOOD OR SIMILAR MATERIALS; TOOLS FOR WORKING WOOD OR SIMILAR MATERIALS; SAFETY DEVICES FOR WOOD WORKING MACHINES OR TOOLS
    • B27G19/00Safety guards or devices specially adapted for wood saws; Auxiliary devices facilitating proper operation of wood saws
    • B27G19/02Safety guards or devices specially adapted for wood saws; Auxiliary devices facilitating proper operation of wood saws for circular saws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • F16P3/14Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
    • F16P3/141Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using sound propagation, e.g. sonar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • F16P3/14Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
    • F16P3/144Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using light grids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • F16P3/14Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
    • F16P3/145Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using magnetic technology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • F16P3/14Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
    • F16P3/147Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using electro-magnetic technology, e.g. tags or radar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • F16P3/14Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
    • F16P3/148Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using capacitive technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S83/00Cutting
    • Y10S83/01Safety devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/02Other than completely through work thickness
    • Y10T83/0304Grooving
    • Y10T83/0311By use of plural independent rotary blades
    • Y10T83/0319Forming common groove
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/081With randomly actuated stopping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/081With randomly actuated stopping means
    • Y10T83/088Responsive to tool detector or work-feed-means detector
    • Y10T83/089Responsive to tool characteristic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/768Rotatable disc tool pair or tool and carrier
    • Y10T83/7684With means to support work relative to tool[s]
    • Y10T83/7693Tool moved relative to work-support during cutting
    • Y10T83/7697Tool angularly adjustable relative to work-support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/768Rotatable disc tool pair or tool and carrier
    • Y10T83/7684With means to support work relative to tool[s]
    • Y10T83/7722Support and tool relatively adjustable
    • Y10T83/7726By movement of the tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/849With signal, scale, or indicator
    • Y10T83/85Signal; e.g., alarm

Definitions

  • the present invention relates to safety systems, and more particularly to a high-speed safety system for use on power equipment.
  • mechanized equipment has allowed workers to produce goods with greater speed and less effort than possible with manually-powered tools.
  • the power and high operating speeds of mechanized equipment creates a risk for those operating such machinery.
  • Each year thousands of people are maimed or killed by accidents involving power equipment.
  • guards that physically blocks an operator from making contact with dangerous components of machinery, such as belts, shafts or blades.
  • guards are effective to reduce the risk of injury, however, there are many instances where the nature of the operations to be performed precludes using a guard that completely blocks access to hazardous machine parts.
  • radio-frequency safety systems which utilize radio-frequency signals to detect the presence of a user's hand in a dangerous area of the machine and thereupon prevent or interrupt operation of the machine.
  • U.S. Pat. Nos. 4,959,909, 5,025,175, 5,122,091, 5,198,702, 5,201,684, 5,272,946, and 5,510,685 disclose safety systems for use with meat-skinning equipment, and are incorporated herein by reference. These systems interrupt or reverse power to the motor, or disengage a clutch, upon contact with a user's hand by any dangerous portion of the machine. Typically, contact between the user and the machine is detected by monitoring for electrical contact between a fine wire mesh in a glove worn by the user and some metal component in the dangerous area of the machine.
  • U.S. Pat. Nos. 3,785,230 and 4,026,177 disclose a safety system for use on circular saws to stop the blade when a user's hand approaches the blade.
  • the system uses the blade as an antenna in an electromagnetic proximity detector to detect the approach of a user's hand prior to actual contact with the blade.
  • the system engages a brake using a standard solenoid.
  • U.S. Pat. No. 4,117,752 which is herein incorporated by reference, discloses a similar braking system for use with a band saw, where the brake is triggered by actual contact between the user's hand and the blade.
  • FIG. 1 is a schematic block diagram of a machine with a fast-acting safety system according to the present invention.
  • FIG. 2 is a schematic diagram of an exemplary safety system in the context of a machine having a circular blade.
  • FIG. 3 is a partial cross-section view of an exemplary magnetic sensor, assembly according to the present invention, where the arbor is not in cross-sectional view.
  • FIG. 4 is a schematic diagram of an exemplary circuit according to the present invention for use with a magnetic sensor assembly.
  • FIG. 5 is a schematic view of an exemplary EMF sensor assembly according to the present invention.
  • FIG. 6 is a partial cross-section view of an exemplary optical sensor assembly according to the present invention, where the arbor is not in cross-sectional view.
  • FIG. 7 is a side elevation of an alternative optical sensor assembly according to the present invention.
  • FIG. 8 is a cross-section view of the alternative optical sensor assembly of FIG. 7 , taken generally along the line 8 - 8 .
  • FIG. 9 is a schematic diagram of an exemplary circuit according to the present invention for use with an optical sensor assembly.
  • FIG. 10 is a partial cross-section view of an exemplary electrical sensor assembly according to the present invention, where the arbor is not in cross-sectional view.
  • FIG. 11 is a schematic side elevation of an alternative electrical sensor assembly according to the present invention.
  • Machine 10 may be any of a variety of different machines adapted for cutting workpieces, such as wood, including a table saw, miter saw (chop saw), radial arm saw, circular saw, band saw, jointer, planer, etc.
  • Machine 10 includes an operative structure 12 having a cutting tool 14 and a motor assembly 16 adapted to drive the cutting tool.
  • Machine 10 also includes a safety system 18 configured to minimize the potential of a serious injury to a person using machine 10 .
  • Safety system 18 is adapted to detect the occurrence of one or more dangerous conditions during use of machine 10 . If such a dangerous condition is detected, safety system 18 is adapted to engage operative structure 12 to limit any injury to the user caused by the dangerous condition.
  • Machine 10 also includes a suitable power source 20 to provide power to operative structure 12 and safety system 18 .
  • Power source 20 may be an external power source such as line current, or an internal power source such as a battery.
  • power source 20 may include a combination of both external and internal power sources.
  • power source 20 may include two or more separate power sources, each adapted to power different portions of machine 10 .
  • operative structure 12 may take any one of many different forms, depending on the type of machine 10 .
  • operative structure 12 may include a stationary housing configured to support motor assembly 16 in driving engagement with cutting tool 14 .
  • operative structure 12 may include a movable structure configured to carry cutting tool 14 between multiple operating positions.
  • operative structure 12 may include one or more transport mechanisms adapted to convey a workpiece toward and/or away from cutting tool 14 .
  • Motor assembly 16 includes one or more motors adapted to drive cutting tool 14 .
  • the motors may be either directly or indirectly coupled to the cutting tool, and may also be adapted to drive workpiece transport mechanisms.
  • Cutting tool 14 typically includes one or more blades or other suitable cutting implements that are adapted to cut or remove portions from the workpieces.
  • the particular form of cutting tool 14 will vary depending upon the various embodiments of machine 10 .
  • cutting tool 14 will typically include one or more circular rotating blades having a plurality of teeth disposed along the perimetrical edge of the blade.
  • the cutting tool typically includes a plurality of radially spaced-apart blades.
  • the cutting tool includes an elongate, circuitous tooth-edged band.
  • Safety system 18 includes a detection subsystem 22 , a reaction subsystem 24 and a control subsystem 26 .
  • Control subsystem 26 may be adapted to receive inputs from a variety of sources including detection subsystem 22 , reaction subsystem 24 , operative structure 12 and motor assembly 16 .
  • the control subsystem may also include one or more sensors adapted to monitor selected parameters of machine 10 .
  • control subsystem 26 typically includes one or more instruments operable by a user to control the machine.
  • the control subsystem is configured to control machine 10 in response to the inputs it receives.
  • Detection subsystem 22 is configured to detect one or more dangerous, or triggering, conditions during use of machine 10 .
  • the detection subsystem may be configured to detect that a portion of the user's body is dangerously close to, or in contact with, a portion of cutting tool 14 .
  • the detection subsystem may be configured to detect the rapid movement of a workpiece due to kickback by the cutting tool, as is described in U.S. Provisional Patent Application Ser. No. 60/182,866, the disclosure of which is herein incorporated by reference.
  • detection subsystem 22 may inform control subsystem 26 of the dangerous condition, which then activates reaction subsystem 24 .
  • the detection subsystem may be adapted to activate the reaction subsystem directly.
  • reaction subsystem 24 is configured to engage operative structure 12 quickly to prevent serious injury to the user. It will be appreciated that the particular action to be taken by reaction subsystem 24 will vary depending on the type of machine 10 and/or the dangerous condition that is detected. For example, reaction subsystem 24 may be configured to do one or more of the following: stop the movement of cutting tool 14 , disconnect motor assembly 16 from power source 20 , place a barrier between the cutting tool and the user, or retract the cutting tool from its operating position, etc. The reaction subsystem may be configured to take a combination of steps to protect the user from serious injury. Placement of a barrier between the cutting tool and teeth is described in more detail in U.S. Provisional Patent Application Ser. No.
  • 60/225,206 entitled “Cutting Tool Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference. Retraction of the cutting tool from its operating position is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,089, entitled “Retraction System For Use In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.
  • reaction subsystem 24 typically will vary depending on which action(s) are taken.
  • reaction subsystem 24 is configured to stop the movement of cutting tool 14 and includes a brake mechanism 28 , a biasing mechanism 30 , a restraining mechanism 32 , and a release mechanism 34 .
  • Brake mechanism 28 is adapted to engage operative structure 12 under the urging of biasing mechanism 30 .
  • restraining mechanism 32 holds the brake mechanism out of engagement with the operative structure.
  • the brake mechanism upon receipt of an activation signal by reaction subsystem 24 , the brake mechanism is released from the restraining mechanism by release mechanism 34 , whereupon, the brake mechanism quickly engages at least a portion of the operative structure to bring the cutting tool to a stop.
  • FIG. 2 one example of the many possible implementations of safety system 18 is shown.
  • System 18 is configured to engage an operative structure having a cutting tool in the form of a circular blade 40 mounted on a rotating shaft or arbor 42 .
  • Blade 40 includes a plurality of cutting teeth (not shown) disposed around the outer edge of the blade.
  • braking mechanism 28 is adapted to engage the teeth of blade 40 and stop the rotation of the blade.
  • detection subsystem 22 is adapted to detect the dangerous condition of the user coming into contact with blade 40 .
  • the detection subsystem includes a sensor assembly, such as contact detection plates 44 and 46 , capacitively coupled to blade 40 to detect any contact between the user's body and the blade.
  • the blade, or some larger portion of cutting tool 14 is electrically isolated from the remainder of machine 10 .
  • detection subsystem 22 may include a different sensor assembly configured to detect contact in other ways, such as optically, resistively, etc.
  • the detection subsystem is adapted to transmit a signal to control subsystem 26 when contact between the user and the blade is detected.
  • Various exemplary embodiments and implementations of detection subsystem 22 are described in more detail in U.S. Provisional Patent Application Ser. No.
  • 60/225,200 entitled “Contact Detection System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,211, entitled “Apparatus And Method For Detecting Dangerous Conditions In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
  • Control subsystem 26 includes one or more instruments 48 that are operable by a user to control the motion of blade 40 .
  • Instruments 48 may include start/stop switches, speed controls, direction controls, etc.
  • Control subsystem 26 also includes a logic controller 50 connected to receive the user's inputs via instruments 48 .
  • Logic controller 50 is also connected to receive a contact detection signal from detection subsystem 22 . Further, the logic controller may be configured to receive inputs from other sources (not shown) such as blade motion sensors, workpiece sensors, etc. In any event, the logic controller is configured to control operative structure 12 in response to the user's inputs through instruments 48 .
  • control subsystem 26 Various exemplary embodiments and implementations of control subsystem 26 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,059, entitled “Logic Control For Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.
  • brake mechanism 28 includes a pawl 60 mounted adjacent the edge of blade 40 and selectively moveable to engage and grip the teeth of the blade.
  • Pawl 60 may be constructed of any suitable material adapted to engage and stop the blade.
  • the pawl may be constructed of a relatively high strength thermoplastic material such as polycarbonate, ultrahigh molecular weight polyethylene (UHMW) or Acrylonitrile Butadiene Styrene (ABS), etc., or a metal such as aluminum, etc. It will be appreciated that the construction of pawl 60 will vary depending on the configuration of blade 40 . In any event, the pawl is urged into the blade by a biasing mechanism in the form of a spring 66 .
  • pawl 60 is pivoted into the teeth of blade 40 . It should be understood that sliding or rotary movement of pawl 60 may also be used.
  • the spring is adapted to urge pawl 60 into the teeth of the blade with sufficient force to grip the blade and quickly bring it to a stop.
  • the pawl is held away from the edge of the blade by a restraining mechanism in the form of a fusible member 70 .
  • the fusible member is constructed of a suitable material adapted to restrain the pawl against the bias of spring 66 , and also adapted to melt under a determined electrical current density. Examples of suitable materials for fusible member 70 include NiChrome wire, stainless steel wire, etc.
  • the fusible member is connected between the pawl and a contact mount 72 .
  • fusible member 70 holds the pawl relatively close to the edge of the blade to reduce the distance the pawl must travel to engage the blade. Positioning the pawl relatively close to the edge of the blade reduces the time required for the pawl to engage and stop the blade.
  • the pawl is held approximately 1/32-inch to 1 ⁇ 4-inch from the edge of the blade by fusible member 70 , however other pawl-to-blade spacings may also be used within the scope of the invention.
  • Pawl 60 is released from its unactuated, or cocked, position to engage blade 40 by a release mechanism in the form of a firing subsystem 76 .
  • the firing subsystem is coupled to contact mount 72 , and is configured to melt fusible member 70 by passing a surge of electrical current through the fusible member.
  • Firing subsystem 76 is coupled to logic controller 50 and activated by a signal from the logic controller. When the logic controller receives a contact detection signal from detection subsystem 22 , the logic controller sends an activation signal to firing subsystem 76 , which melts fusible member 70 , thereby releasing the pawl to stop the blade.
  • reaction subsystem 24 are described in more detail in U.S. Provisional Patent Application Ser. No.
  • safety system 18 includes a replaceable cartridge 80 having a housing 82 .
  • Pawl 60 , spring 66 , fusible member 70 and contact mount 72 are all mounted within housing 82 .
  • other portions of safety system 18 may be mounted within the housing.
  • safety system 18 may be replaced separately or reused as appropriate.
  • Various exemplary embodiments and implementations of a safety system using a replaceable cartridge are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,201, entitled “Replaceable Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,212, entitled “Brake Positioning System,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
  • safety system 18 While one particular implementation of safety system 18 has been described, it will be appreciated that many variations and modifications are possible within the scope of the invention. Many such variations and modifications are described in U.S. Provisional Patent Application Ser. No. 60/182,866, filed Feb. 16, 2000 and U.S. Provisional Patent Application Ser. No. 60/157,340, filed Oct. 1, 1999, the disclosures of which are herein incorporated by reference.
  • safety system 18 may include a sensor or sensor assembly for detecting motion of the blade or cutting tool.
  • the sensor assembly typically is coupled to send a signal to logic controller 50 indicating whether the blade is in motion.
  • the logic controller may be configured to respond differently to the detection of a dangerous condition based on whether the blade is moving. For example, it is often necessary for a user of machine 10 to touch blade 40 when preparing the machine for use, and when installing or removing the blade. Usually, the user would disconnect all power from machine 10 while performing such operations. However, in the event that the user neglects to disconnect the machine from power source 20 before touching the blade, logic controller 50 would receive a contact detection signal from detection subsystem 22 .
  • safety system 18 includes a blade motion sensor
  • logic controller 50 may be configured not to actuate firing subsystem 76 when the blade is not moving. Instead, the logic controller may be configured to take one or more other actions such as disabling motor assembly 16 , sounding an alarm, displaying an error, etc. Alternatively, the logic controller may be configured to take no action if contact is detected while the blade is not moving.
  • safety system 18 may also be configured to determine the speed at which the blade is moving. This allows the logic controller to distinguish between rapid blade movement which could cause injury to the user, and slow blade movement which generally would not cause injury to the user. Thus, for example, a user could move the blade by hand without actuating firing subsystem 76 .
  • the blade motion sensor may be configured to determine relative blade speed.
  • logic controller 50 may be configured to analyze the signal from the blade motion sensor to determine relative blade speed.
  • an embodiment of safety system 18 for use on the table saw may be configured to actuate the firing subsystem only at blade speeds above approximately 10, 25, 60, or 90 rpm, while an alternative embodiment of safety system 18 for use on the trim saw may be configured to actuate the firing subsystem only at blade speeds above approximately 40, 100, or 240 rpm.
  • the logic controller may be configured to interpret blade motion as being dangerous only when detected during or soon after motor assembly 16 was in operation.
  • the blade motion detection would only be active while the blade was being moved by the motor assembly and during a relatively brief period afterward while the blade was coasting to a stop. Any blade motion detected at other times would be ignored.
  • Safety system 18 may include any of a wide variety of sensor assemblies to detect blade movement. Furthermore, each sensor assembly may be adapted as necessary depending on the particular type of blade 40 and/or the configuration of machine 10 . While several exemplary sensor assemblies are described herein, it will be understood that all methods and mechanisms suitable for automatically detecting the motion of a blade are within the scope of the invention.
  • magnetic sensor assembly 1000 configured to detect movement of the blade. It will be appreciated that the blade movement may be detected by monitoring the blade or any other portion of the safety system that moves with the blade, including the arbor, bearings, motor assembly, arbor pulley, etc.
  • magnetic sensor assembly 1000 includes a Hall effect sensor 1001 and one or more magnets 1002 . A coil could also be used to detect magnetic field fluctuations from rotation. The magnets are mounted on arbor 42 .
  • Sensor 1001 is mounted and configured to detect blade motion by detecting the movement of the magnets on the arbor. Sensor 1001 may be any suitable Hall effect sensor such as, for example, the sensor available from Micronas Intermetall of San Jose, Calif., under the part no. HAL 114.
  • Hall effect sensor 1001 may be mounted adjacent the arbor by any suitable method.
  • the sensor is mounted in a recessed region 272 of an insulating tube 268 .
  • the insulating tube also supports charge plates 44 and 46 , as is described in more detail in U.S. Provisional Application Ser. No. 60/225,211, entitled “Apparatus and Method for Detecting Dangerous Conditions in Power Equipment,” filed Aug. 14, 2000, by SD3, LLC.
  • the recessed region is disposed at least partially over a hole 273 in charge plate 44 .
  • the recessed region may be disposed over a hole 273 in charge plate 46 .
  • magnet 1002 is disposed on arbor 42 to pass beneath or adjacent hole 273 as the arbor rotates within the insulating tube. Hole 273 allows sensor 1001 to detect the field created by magnet 1002 as it passes.
  • Sensor 1001 includes one or more connector leads 1003 connectable to receive power from, and transmit signals to, logic controller 50 .
  • Magnets 1002 may be mounted on the arbor in any suitable fashion. Typically, the magnets are mounted so as not to extend above the surface of the arbor. For example, the magnets may be press-fit and/or glued in a recess formed on the arbor. Alternatively, one or more of the magnets may be mounted to extend above the surface of the arbor. The size and number of magnets 1002 may be varied to control the signal produced by sensor 1001 . In alternative embodiments, magnets 1002 may be mounted at other locations such as an end of arbor 42 , on blade 40 , etc.
  • Sensor 1001 may be connected to send signals to logic controller 50 via any suitable circuitry.
  • FIG. 4 illustrates one exemplary rotation sense circuit 177 adapted to couple the signals from sensor 1001 to logic controller 50 .
  • circuit 177 may be modified as needed for a particular application.
  • EMF electromagnetic field
  • safety system 18 includes an EMF sensor assembly 1005 configured to detect motion of blade 40 .
  • Sensor assembly 1005 includes an EMF detection circuit 1006 disposed in the power supply path between motor assembly 16 and power source 20 .
  • Circuit 1006 is adapted to monitor power cables 1007 which extend between the power source and the motor assembly, and to detect the presence of EMF pulses on the cables.
  • circuit 1006 may be disposed at any other location suitable for detecting EMF pulses from motor assembly 16 .
  • Circuit 1006 may be any circuit or mechanism adapted to detect EMF pulses, such as are known to those of skill in the art.
  • Circuit 1006 is also coupled to logic controller 50 , and adapted to convey a signal to the logic controller indicating the presence and/or absence of EMF pulses on cables 1007 .
  • circuit 1006 and/or logic controller 50 may be adapted to analyze the detected EMF emissions, and evaluate the speed of blade 40 .
  • the logic controller may be configured not to actuate firing subsystem 76 when the speed of the blade is unlikely to cause serious injury to the user.
  • safety system 18 includes an optical sensor assembly adapted to optically detect movement of blade 40 .
  • Safety system 18 may be configured to optically detect blade motion in a variety of ways.
  • a rotary optical encoder may be coupled to the arbor to detect rotation of the arbor. Any rotary encoder may be used, such as those available from Omron Electronics Inc., of Schaumburg, Ill.
  • other optical sensor assemblies may be used as described below.
  • optical sensor assembly 1010 includes an optical detector 1011 adapted to detect light from an optical source 1012 .
  • optical source 1012 plural optical sources and/or plural optical detectors may be used.
  • any of a variety of different optical sources may be used which are known to those of skill in the art, including an incandescent or fluorescent bulb, light emitting diode (LED), laser diode, etc.
  • any of a variety of different optical detectors may be used which are known to those of skill in the art, including a photodiode, phototransistor, etc.
  • the optical source is arranged so that the signal received at the optical detector when the blade is moving is different than the signal received when the blade is stationary.
  • the source and detector may be arranged so that a signal is received only when the blade is moving, or only when the blade is stationary.
  • source 1012 and detector 1011 may be arranged so that the amount of emitted light that reaches the detector varies when the blade is in motion.
  • Sensor assembly 1010 includes an LED 1012 mounted in insulating tube 268 to emit light through hole 273 in charge plate 44 or 46 .
  • the light reflects off arbor 42 and is detected by a photodiode 1011 which is also mounted in insulating tube 268 adjacent hole 273 .
  • the arbor includes one or more reduced-reflection regions 1013 adapted to reduce the amount of light reflected to photodiode 1011 .
  • Regions 1013 may be formed by coating the arbor with a light-absorbing coating, roughening the arbor to cause random scattering of the light, etc. In any event, the reduced reflecting regions create a varying signal at the photodiode when the arbor is rotating. In contrast, a constant signal is produced at the photodiode when the arbor is stationary.
  • the insulating tube assembly may be sealed in a protective housing (not shown).
  • optical sensor assembly 1010 includes a barrier member 1014 mounted on the arbor and disposed between photodiode 1011 and LED 1012 .
  • the barrier member may be mounted on any other portion of cutting tool 14 or motor assembly 16 adapted to move with the blade.
  • Barrier member 1014 includes one or more light-transmitting regions or holes 1015 , which may take any desired shape or size.
  • the photodiode and LED are mounted in a support member 1016 attached to an arbor block 250 , and disposed on either side of barrier member 1014 .
  • the photodiode is aligned so that emitted light will pass through holes 1015 .
  • the LED is aligned to detect the light which passes through the holes.
  • arbor 42 rotates, light from the LED is alternately blocked and transmitted by the barrier member, thereby creating a varying signal at the photodiode.
  • Photodiode 1011 and LED 1012 may be connected to any suitable driving circuitry such as are known to those of skill in the art.
  • FIG. 9 shows one exemplary circuitry for producing an optical signal at LED 1012 and detecting the signal at photodiode 1011 .
  • the particular values of the circuit components and voltage supplies may be selected as desired for a specific application.
  • the photodiode is coupled to transmit a signal to logic controller 50 to indicate whether blade 40 is moving.
  • safety system 18 includes an electrical sensor assembly adapted to electrically detect movement of blade 40 .
  • electrical sensor assembly adapted to electrically detect movement of blade 40 .
  • charge plate 46 is configured to capacitively detect a signal induced in the blade, any incidental eccentricity in the blade or the blade rotation will cause the capacitance between the blade and charge plate 46 to vary as the blade rotates.
  • charge plate 46 will detect a varying signal amplitude when the blade is rotating.
  • a single sensor may be configured to detect both contact with the user and rotation of the blade.
  • the incidental variation fluctuation is insufficient in magnitude and/or rate of change to trigger reaction subsystem 24 .
  • safety system 18 may include an exemplary electrical sensor assembly adapted to detect a signal variation caused by a designed eccentricity or non-uniformity in the blade.
  • the sensor assembly may be adapted to detect the signal from an eccentricity in some portion of cutting tool 14 that moves with the blade and is electrically coupled to the blade.
  • One exemplary implementation of such a sensor assembly is indicated generally at 1020 in FIG. 10 .
  • Sensor assembly 1020 includes a detection electrode 1021 capacitively coupled to detect an electrical signal on arbor 42 .
  • Electrode 1021 may be mounted in any suitable fashion to provide electrical insulation from arbor 42 as well as the remainder of cutting tool 14 and machine 10 .
  • electrode 1021 is mounted in insulating tube 268 and arranged to extend to a point closely adjacent the arbor between charge plates 44 and 46 .
  • Sensor assembly 1020 also includes one or more eccentricities 1022 disposed on the arbor and substantially aligned with electrode 1021 so as to pass by the electrode as the arbor rotates.
  • eccentricities 1022 may be configured in any desired quantity, size, shape or form adapted to cause a variation in the capacitance between the arbor and the electrode as the arbor rotates.
  • eccentricities 1022 take the form of beveled regions formed on the surface of arbor 42 .
  • the space between the electrode and the arbor is greater (and therefore the capacitance is less) when an eccentricity is positioned beneath the electrode than when an eccentricity is not positioned beneath the electrode.
  • eccentricities 1022 may take other forms adapted to vary the capacitance between the arbor and electrode, including raised regions, dielectric pads, etc.
  • electrode 1021 will detect variations in that signal if the arbor is rotating. Conversely, the electrode will detect no variations in the signal if the arbor is stationary.
  • Electrode 1021 is disposed adjacent the teeth 1023 of blade 40 .
  • Electrode 1021 may be mounted on arbor block 250 or any other suitable portion of machine 10 . Additionally, the electrode may be positioned at the side of the blade (as shown in FIG. 11 ) or at the perimeter of the blade facing in toward the arbor. The size, shape and position of the electrode may vary depending on the position and size of teeth 1023 . In any event, as teeth 1023 pass by electrode 1021 , the capacitance between the blade and the electrode varies, thereby varying the amplitude of the signal detected by the electrode. Alternatively, a plurality of electrodes may be positioned at various points adjacent the teeth so that blade motion would be detected by modulations in the relative signal amplitudes at the electrodes. Such an alternative detection mechanism may also be used with other implementations of sensor assembly 1020 .
  • safety system 18 may include other types of motion detection sensors such as mechanical sensors, sonic and ultra-sonic sensors, etc.
  • the invention provides effective and reliable means for discriminating between conditions which are, and are not, likely to cause injury to a user of power machinery.

Abstract

A method of controlling a woodworking machine having a movable cutting tool. The method monitors a signal for a change indicative of a dangerous condition between the cutting tool and a person, senses movement of the cutting tool, and performs an action to mitigate the dangerous condition when the signal change and movement of the cutting tool are both detected. A woodworking machine including a detection system adapted to detect a dangerous condition between a person and a working portion of the machine and then to perform some action to mitigate the dangerous condition is also disclosed. A motion detection system is adapted to detect motion of the working portion and to disable the reaction system when the working portion is not moving.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 11/810,196, filed Jun. 4, 2007, issuing as U.S. Pat. No. 7,681,479 on Mar. 23, 2010, which in turn is a continuation of U.S. patent application Ser. No. 09/929,234, filed Aug. 13, 2001, issued as U.S. Pat. No. 7,225,712 on Jun. 5, 2007, which claims the benefit of and priority from the following U.S. Provisional Patent Applications: Ser. No. 60/225,056, filed Aug. 14, 2000, Ser. No. 60/225,057, filed Aug. 14, 2000, Ser. No. 60/225,058, filed Aug. 14, 2000, Ser. No. 60/225,059, filed Aug. 14, 2000, Ser. No. 60/225,089, filed Aug. 14, 2000, Ser. No. 60/225,094, filed Aug. 14, 2000, Ser. No. 60/225,169, filed Aug. 14, 2000, Ser. No. 60/225,170, filed Aug. 14, 2000, Ser. No. 60/225,200, filed Aug. 14, 2000, Ser. No. 60/225,201, filed Aug. 14, 2000, Ser. No. 60/225,206, filed Aug. 14, 2000, Ser. No. 60/225,210, filed Aug. 14, 2000, Ser. No. 60/225,211, filed Aug. 14, 2000, and Ser. No. 60/225,212, filed Aug. 14, 2000. The identified patent and applications are all incorporated by reference in their entireties.
FIELD
The present invention relates to safety systems, and more particularly to a high-speed safety system for use on power equipment.
BACKGROUND
Beginning with the industrial revolution and continuing to the present, mechanized equipment has allowed workers to produce goods with greater speed and less effort than possible with manually-powered tools. Unfortunately, the power and high operating speeds of mechanized equipment creates a risk for those operating such machinery. Each year thousands of people are maimed or killed by accidents involving power equipment.
As might be expected, many systems have been developed to minimize the risk of injury when using power equipment. Probably the most common safety feature is a guard that physically blocks an operator from making contact with dangerous components of machinery, such as belts, shafts or blades. In many cases, guards are effective to reduce the risk of injury, however, there are many instances where the nature of the operations to be performed precludes using a guard that completely blocks access to hazardous machine parts.
Various systems have been proposed to prevent accidental injury where guards cannot effectively be employed. For instance, U.S. Pat. Nos. 941,726, 2,978,084, 3,011,610, 3,047,116, 4,195,722 and 4,321,841, the disclosures of which are incorporated herein by reference, all disclose safety systems for use with power presses. These systems utilize cables attached to the wrists of the operator that either pull back a user's hands from the work zone upon operation or prevent operation until the user's hands are outside the danger zone. U.S. Pat. Nos. 3,953,770, 4,075,961, 4,470,046, 4,532,501 and 5,212,621, the disclosures of which are incorporated herein by reference, disclose radio-frequency safety systems which utilize radio-frequency signals to detect the presence of a user's hand in a dangerous area of the machine and thereupon prevent or interrupt operation of the machine.
U.S. Pat. Nos. 4,959,909, 5,025,175, 5,122,091, 5,198,702, 5,201,684, 5,272,946, and 5,510,685 disclose safety systems for use with meat-skinning equipment, and are incorporated herein by reference. These systems interrupt or reverse power to the motor, or disengage a clutch, upon contact with a user's hand by any dangerous portion of the machine. Typically, contact between the user and the machine is detected by monitoring for electrical contact between a fine wire mesh in a glove worn by the user and some metal component in the dangerous area of the machine.
U.S. Pat. Nos. 3,785,230 and 4,026,177, the disclosures of which are herein incorporated by reference, disclose a safety system for use on circular saws to stop the blade when a user's hand approaches the blade. The system uses the blade as an antenna in an electromagnetic proximity detector to detect the approach of a user's hand prior to actual contact with the blade. Upon detection of a user's hand, the system engages a brake using a standard solenoid. U.S. Pat. No. 4,117,752, which is herein incorporated by reference, discloses a similar braking system for use with a band saw, where the brake is triggered by actual contact between the user's hand and the blade.
It is often necessary for an equipment operator to touch the blade or other cutting device of power equipment when the blade or device is not moving (e.g., to adjust the blade, perform equipment maintenance, etc.). Thus, it would be desirable to disable the safety system when the blade is not moving since there is no danger to the user from contact with the blade.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic block diagram of a machine with a fast-acting safety system according to the present invention.
FIG. 2 is a schematic diagram of an exemplary safety system in the context of a machine having a circular blade.
FIG. 3 is a partial cross-section view of an exemplary magnetic sensor, assembly according to the present invention, where the arbor is not in cross-sectional view.
FIG. 4 is a schematic diagram of an exemplary circuit according to the present invention for use with a magnetic sensor assembly.
FIG. 5 is a schematic view of an exemplary EMF sensor assembly according to the present invention.
FIG. 6 is a partial cross-section view of an exemplary optical sensor assembly according to the present invention, where the arbor is not in cross-sectional view.
FIG. 7 is a side elevation of an alternative optical sensor assembly according to the present invention.
FIG. 8 is a cross-section view of the alternative optical sensor assembly of FIG. 7, taken generally along the line 8-8.
FIG. 9. is a schematic diagram of an exemplary circuit according to the present invention for use with an optical sensor assembly.
FIG. 10 is a partial cross-section view of an exemplary electrical sensor assembly according to the present invention, where the arbor is not in cross-sectional view.
FIG. 11 is a schematic side elevation of an alternative electrical sensor assembly according to the present invention.
DETAILED DESCRIPTION
A machine is shown schematically in FIG. 1 and indicated generally at 10. Machine 10 may be any of a variety of different machines adapted for cutting workpieces, such as wood, including a table saw, miter saw (chop saw), radial arm saw, circular saw, band saw, jointer, planer, etc. Machine 10 includes an operative structure 12 having a cutting tool 14 and a motor assembly 16 adapted to drive the cutting tool. Machine 10 also includes a safety system 18 configured to minimize the potential of a serious injury to a person using machine 10. Safety system 18 is adapted to detect the occurrence of one or more dangerous conditions during use of machine 10. If such a dangerous condition is detected, safety system 18 is adapted to engage operative structure 12 to limit any injury to the user caused by the dangerous condition.
Machine 10 also includes a suitable power source 20 to provide power to operative structure 12 and safety system 18. Power source 20 may be an external power source such as line current, or an internal power source such as a battery. Alternatively, power source 20 may include a combination of both external and internal power sources. Furthermore, power source 20 may include two or more separate power sources, each adapted to power different portions of machine 10.
It will be appreciated that operative structure 12 may take any one of many different forms, depending on the type of machine 10. For example, operative structure 12 may include a stationary housing configured to support motor assembly 16 in driving engagement with cutting tool 14. Alternatively, operative structure 12 may include a movable structure configured to carry cutting tool 14 between multiple operating positions. As a further alternative, operative structure 12 may include one or more transport mechanisms adapted to convey a workpiece toward and/or away from cutting tool 14.
Motor assembly 16 includes one or more motors adapted to drive cutting tool 14. The motors may be either directly or indirectly coupled to the cutting tool, and may also be adapted to drive workpiece transport mechanisms. Cutting tool 14 typically includes one or more blades or other suitable cutting implements that are adapted to cut or remove portions from the workpieces. The particular form of cutting tool 14 will vary depending upon the various embodiments of machine 10. For example, in table saws, miter saws, circular saws and radial arm saws, cutting tool 14 will typically include one or more circular rotating blades having a plurality of teeth disposed along the perimetrical edge of the blade. For a jointer or planer, the cutting tool typically includes a plurality of radially spaced-apart blades. For a band saw, the cutting tool includes an elongate, circuitous tooth-edged band.
Safety system 18 includes a detection subsystem 22, a reaction subsystem 24 and a control subsystem 26. Control subsystem 26 may be adapted to receive inputs from a variety of sources including detection subsystem 22, reaction subsystem 24, operative structure 12 and motor assembly 16. The control subsystem may also include one or more sensors adapted to monitor selected parameters of machine 10. In addition, control subsystem 26 typically includes one or more instruments operable by a user to control the machine. The control subsystem is configured to control machine 10 in response to the inputs it receives.
Detection subsystem 22 is configured to detect one or more dangerous, or triggering, conditions during use of machine 10. For example, the detection subsystem may be configured to detect that a portion of the user's body is dangerously close to, or in contact with, a portion of cutting tool 14. As another example, the detection subsystem may be configured to detect the rapid movement of a workpiece due to kickback by the cutting tool, as is described in U.S. Provisional Patent Application Ser. No. 60/182,866, the disclosure of which is herein incorporated by reference. In some embodiments, detection subsystem 22 may inform control subsystem 26 of the dangerous condition, which then activates reaction subsystem 24. In other embodiments, the detection subsystem may be adapted to activate the reaction subsystem directly.
Once activated in response to a dangerous condition, reaction subsystem 24 is configured to engage operative structure 12 quickly to prevent serious injury to the user. It will be appreciated that the particular action to be taken by reaction subsystem 24 will vary depending on the type of machine 10 and/or the dangerous condition that is detected. For example, reaction subsystem 24 may be configured to do one or more of the following: stop the movement of cutting tool 14, disconnect motor assembly 16 from power source 20, place a barrier between the cutting tool and the user, or retract the cutting tool from its operating position, etc. The reaction subsystem may be configured to take a combination of steps to protect the user from serious injury. Placement of a barrier between the cutting tool and teeth is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,206, entitled “Cutting Tool Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference. Retraction of the cutting tool from its operating position is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,089, entitled “Retraction System For Use In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.
The configuration of reaction subsystem 24 typically will vary depending on which action(s) are taken. In the exemplary embodiment depicted in FIG. 1, reaction subsystem 24 is configured to stop the movement of cutting tool 14 and includes a brake mechanism 28, a biasing mechanism 30, a restraining mechanism 32, and a release mechanism 34. Brake mechanism 28 is adapted to engage operative structure 12 under the urging of biasing mechanism 30. During normal operation of machine 10, restraining mechanism 32 holds the brake mechanism out of engagement with the operative structure. However, upon receipt of an activation signal by reaction subsystem 24, the brake mechanism is released from the restraining mechanism by release mechanism 34, whereupon, the brake mechanism quickly engages at least a portion of the operative structure to bring the cutting tool to a stop.
It will be appreciated by those of skill in the art that the exemplary embodiment depicted in FIG. 1 and described above may be implemented in a variety of ways depending on the type and configuration of operative structure 12. Turning attention to FIG. 2, one example of the many possible implementations of safety system 18 is shown. System 18 is configured to engage an operative structure having a cutting tool in the form of a circular blade 40 mounted on a rotating shaft or arbor 42. Blade 40 includes a plurality of cutting teeth (not shown) disposed around the outer edge of the blade. As described in more detail below, braking mechanism 28 is adapted to engage the teeth of blade 40 and stop the rotation of the blade. U.S. Provisional Patent Application Ser. No. 60/225,210, entitled “Translation Stop For Use In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference, describes other systems for stopping the movement of the cutting tool. U.S. Provisional Patent Application Ser. No. 60/225,058, entitled “Table Saw With Improved Safety System,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,057, entitled “Miter Saw With Improved Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference, describe safety system 18 in the context of particular types of machines 10.
In the exemplary implementation, detection subsystem 22 is adapted to detect the dangerous condition of the user coming into contact with blade 40. The detection subsystem includes a sensor assembly, such as contact detection plates 44 and 46, capacitively coupled to blade 40 to detect any contact between the user's body and the blade. Typically, the blade, or some larger portion of cutting tool 14 is electrically isolated from the remainder of machine 10. Alternatively, detection subsystem 22 may include a different sensor assembly configured to detect contact in other ways, such as optically, resistively, etc. In any event, the detection subsystem is adapted to transmit a signal to control subsystem 26 when contact between the user and the blade is detected. Various exemplary embodiments and implementations of detection subsystem 22 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,200, entitled “Contact Detection System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,211, entitled “Apparatus And Method For Detecting Dangerous Conditions In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
Control subsystem 26 includes one or more instruments 48 that are operable by a user to control the motion of blade 40. Instruments 48 may include start/stop switches, speed controls, direction controls, etc. Control subsystem 26 also includes a logic controller 50 connected to receive the user's inputs via instruments 48. Logic controller 50 is also connected to receive a contact detection signal from detection subsystem 22. Further, the logic controller may be configured to receive inputs from other sources (not shown) such as blade motion sensors, workpiece sensors, etc. In any event, the logic controller is configured to control operative structure 12 in response to the user's inputs through instruments 48. However, upon receipt of a contact detection signal from detection subsystem 22, the logic controller overrides the control inputs from the user and activates reaction subsystem 24 to stop the motion of the blade. Various exemplary embodiments and implementations of control subsystem 26 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,059, entitled “Logic Control For Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.
In the exemplary implementation, brake mechanism 28 includes a pawl 60 mounted adjacent the edge of blade 40 and selectively moveable to engage and grip the teeth of the blade. Pawl 60 may be constructed of any suitable material adapted to engage and stop the blade. As one example, the pawl may be constructed of a relatively high strength thermoplastic material such as polycarbonate, ultrahigh molecular weight polyethylene (UHMW) or Acrylonitrile Butadiene Styrene (ABS), etc., or a metal such as aluminum, etc. It will be appreciated that the construction of pawl 60 will vary depending on the configuration of blade 40. In any event, the pawl is urged into the blade by a biasing mechanism in the form of a spring 66. In the illustrative embodiment shown in FIG. 2, pawl 60 is pivoted into the teeth of blade 40. It should be understood that sliding or rotary movement of pawl 60 may also be used. The spring is adapted to urge pawl 60 into the teeth of the blade with sufficient force to grip the blade and quickly bring it to a stop.
The pawl is held away from the edge of the blade by a restraining mechanism in the form of a fusible member 70. The fusible member is constructed of a suitable material adapted to restrain the pawl against the bias of spring 66, and also adapted to melt under a determined electrical current density. Examples of suitable materials for fusible member 70 include NiChrome wire, stainless steel wire, etc. The fusible member is connected between the pawl and a contact mount 72. Preferably, fusible member 70 holds the pawl relatively close to the edge of the blade to reduce the distance the pawl must travel to engage the blade. Positioning the pawl relatively close to the edge of the blade reduces the time required for the pawl to engage and stop the blade. Typically, the pawl is held approximately 1/32-inch to ¼-inch from the edge of the blade by fusible member 70, however other pawl-to-blade spacings may also be used within the scope of the invention.
Pawl 60 is released from its unactuated, or cocked, position to engage blade 40 by a release mechanism in the form of a firing subsystem 76. The firing subsystem is coupled to contact mount 72, and is configured to melt fusible member 70 by passing a surge of electrical current through the fusible member. Firing subsystem 76 is coupled to logic controller 50 and activated by a signal from the logic controller. When the logic controller receives a contact detection signal from detection subsystem 22, the logic controller sends an activation signal to firing subsystem 76, which melts fusible member 70, thereby releasing the pawl to stop the blade. Various exemplary embodiments and implementations of reaction subsystem 24 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Firing Subsystem For Use In Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, U.S. Provisional Patent Application Ser. No. 60/225,170, entitled “Spring-Biased Brake Mechanism for Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
It will be appreciated that activation of the brake mechanism will require the replacement of one or more portions of safety system 18. For example, pawl 60 and fusible member 70 typically must be replaced before the safety system is ready to be used again. Thus, it may be desirable to construct one or more portions of safety system 18 in a cartridge that can be easily replaced. For example, in the exemplary implementation depicted in FIG. 2, safety system 18 includes a replaceable cartridge 80 having a housing 82. Pawl 60, spring 66, fusible member 70 and contact mount 72 are all mounted within housing 82. Alternatively, other portions of safety system 18 may be mounted within the housing. In any event, after the reaction system has been activated, the safety system can be reset by replacing cartridge 80. The portions of safety system 18 not mounted within the cartridge may be replaced separately or reused as appropriate. Various exemplary embodiments and implementations of a safety system using a replaceable cartridge are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,201, entitled “Replaceable Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,212, entitled “Brake Positioning System,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
While one particular implementation of safety system 18 has been described, it will be appreciated that many variations and modifications are possible within the scope of the invention. Many such variations and modifications are described in U.S. Provisional Patent Application Ser. No. 60/182,866, filed Feb. 16, 2000 and U.S. Provisional Patent Application Ser. No. 60/157,340, filed Oct. 1, 1999, the disclosures of which are herein incorporated by reference.
As mentioned above, safety system 18 may include a sensor or sensor assembly for detecting motion of the blade or cutting tool. The sensor assembly typically is coupled to send a signal to logic controller 50 indicating whether the blade is in motion. The logic controller may be configured to respond differently to the detection of a dangerous condition based on whether the blade is moving. For example, it is often necessary for a user of machine 10 to touch blade 40 when preparing the machine for use, and when installing or removing the blade. Usually, the user would disconnect all power from machine 10 while performing such operations. However, in the event that the user neglects to disconnect the machine from power source 20 before touching the blade, logic controller 50 would receive a contact detection signal from detection subsystem 22. If safety system 18 includes a blade motion sensor, then logic controller 50 may be configured not to actuate firing subsystem 76 when the blade is not moving. Instead, the logic controller may be configured to take one or more other actions such as disabling motor assembly 16, sounding an alarm, displaying an error, etc. Alternatively, the logic controller may be configured to take no action if contact is detected while the blade is not moving.
In addition to detecting whether the blade is moving, safety system 18 may also be configured to determine the speed at which the blade is moving. This allows the logic controller to distinguish between rapid blade movement which could cause injury to the user, and slow blade movement which generally would not cause injury to the user. Thus, for example, a user could move the blade by hand without actuating firing subsystem 76. In some embodiments, the blade motion sensor may be configured to determine relative blade speed. In alternative embodiments, logic controller 50 may be configured to analyze the signal from the blade motion sensor to determine relative blade speed.
It will be appreciated that the speed at which a blade is considered likely to cause injury will vary depending on the type of machine 10 and blade 40. For example, a 14-inch carbide tooth blade on a table saw will cause serious injury at a lower speed than a 5⅜-inch plywood blade on a cordless trim saw. Thus, an embodiment of safety system 18 for use on the table saw may be configured to actuate the firing subsystem only at blade speeds above approximately 10, 25, 60, or 90 rpm, while an alternative embodiment of safety system 18 for use on the trim saw may be configured to actuate the firing subsystem only at blade speeds above approximately 40, 100, or 240 rpm.
Alternatively or additionally, the logic controller may be configured to interpret blade motion as being dangerous only when detected during or soon after motor assembly 16 was in operation. In other words, the blade motion detection would only be active while the blade was being moved by the motor assembly and during a relatively brief period afterward while the blade was coasting to a stop. Any blade motion detected at other times would be ignored.
Safety system 18 may include any of a wide variety of sensor assemblies to detect blade movement. Furthermore, each sensor assembly may be adapted as necessary depending on the particular type of blade 40 and/or the configuration of machine 10. While several exemplary sensor assemblies are described herein, it will be understood that all methods and mechanisms suitable for automatically detecting the motion of a blade are within the scope of the invention.
One exemplary embodiment of safety system 18 includes a magnetic sensor assembly 1000 configured to detect movement of the blade. It will be appreciated that the blade movement may be detected by monitoring the blade or any other portion of the safety system that moves with the blade, including the arbor, bearings, motor assembly, arbor pulley, etc. In the exemplary implementation depicted in FIG. 3, magnetic sensor assembly 1000 includes a Hall effect sensor 1001 and one or more magnets 1002. A coil could also be used to detect magnetic field fluctuations from rotation. The magnets are mounted on arbor 42. Sensor 1001 is mounted and configured to detect blade motion by detecting the movement of the magnets on the arbor. Sensor 1001 may be any suitable Hall effect sensor such as, for example, the sensor available from Micronas Intermetall of San Jose, Calif., under the part no. HAL 114.
Hall effect sensor 1001 may be mounted adjacent the arbor by any suitable method. In the exemplary implementation, the sensor is mounted in a recessed region 272 of an insulating tube 268. The insulating tube also supports charge plates 44 and 46, as is described in more detail in U.S. Provisional Application Ser. No. 60/225,211, entitled “Apparatus and Method for Detecting Dangerous Conditions in Power Equipment,” filed Aug. 14, 2000, by SD3, LLC. The recessed region is disposed at least partially over a hole 273 in charge plate 44. Alternatively the recessed region may be disposed over a hole 273 in charge plate 46. In any event, magnet 1002 is disposed on arbor 42 to pass beneath or adjacent hole 273 as the arbor rotates within the insulating tube. Hole 273 allows sensor 1001 to detect the field created by magnet 1002 as it passes. Sensor 1001 includes one or more connector leads 1003 connectable to receive power from, and transmit signals to, logic controller 50.
Magnets 1002 may be mounted on the arbor in any suitable fashion. Typically, the magnets are mounted so as not to extend above the surface of the arbor. For example, the magnets may be press-fit and/or glued in a recess formed on the arbor. Alternatively, one or more of the magnets may be mounted to extend above the surface of the arbor. The size and number of magnets 1002 may be varied to control the signal produced by sensor 1001. In alternative embodiments, magnets 1002 may be mounted at other locations such as an end of arbor 42, on blade 40, etc.
Sensor 1001 may be connected to send signals to logic controller 50 via any suitable circuitry. For example, FIG. 4 illustrates one exemplary rotation sense circuit 177 adapted to couple the signals from sensor 1001 to logic controller 50. Those of skill in the art will appreciate that circuit 177 may be modified as needed for a particular application.
Another example of a suitable method for detecting blade motion is through electromagnetic field (EMF) measurements. As is known to those of skill in the art, when power to an electric motor is shut off, the motor will produce EMF pulses on the input power cables as the motor spins down. Thus, where blade 40 is driven by an electric motor assembly 16, the blade may be assumed to be in motion whenever an EMF pulse is detected on the power supply cables, as well as whenever power is being supplied to the motor assembly.
Thus, in another exemplary embodiment depicted in FIG. 5, safety system 18 includes an EMF sensor assembly 1005 configured to detect motion of blade 40. Sensor assembly 1005 includes an EMF detection circuit 1006 disposed in the power supply path between motor assembly 16 and power source 20. Circuit 1006 is adapted to monitor power cables 1007 which extend between the power source and the motor assembly, and to detect the presence of EMF pulses on the cables. Alternatively, circuit 1006 may be disposed at any other location suitable for detecting EMF pulses from motor assembly 16. Circuit 1006 may be any circuit or mechanism adapted to detect EMF pulses, such as are known to those of skill in the art. Circuit 1006 is also coupled to logic controller 50, and adapted to convey a signal to the logic controller indicating the presence and/or absence of EMF pulses on cables 1007. Optionally, circuit 1006 and/or logic controller 50 may be adapted to analyze the detected EMF emissions, and evaluate the speed of blade 40. In such case, the logic controller may be configured not to actuate firing subsystem 76 when the speed of the blade is unlikely to cause serious injury to the user.
In another exemplary embodiment, safety system 18 includes an optical sensor assembly adapted to optically detect movement of blade 40. Safety system 18 may be configured to optically detect blade motion in a variety of ways. For example, a rotary optical encoder may be coupled to the arbor to detect rotation of the arbor. Any rotary encoder may be used, such as those available from Omron Electronics Inc., of Schaumburg, Ill. Alternatively, other optical sensor assemblies may be used as described below.
Typically, the optical sensor assembly will be at least partially enclosed to prevent saw dust or other debris from interfering with the detection. One exemplary implementation of an optical sensor assembly is indicated generally at 1010 in FIG. 6. Sensor assembly 1010 includes an optical detector 1011 adapted to detect light from an optical source 1012. Alternatively, plural optical sources and/or plural optical detectors may be used. It will be appreciated that any of a variety of different optical sources may be used which are known to those of skill in the art, including an incandescent or fluorescent bulb, light emitting diode (LED), laser diode, etc. Similarly, any of a variety of different optical detectors may be used which are known to those of skill in the art, including a photodiode, phototransistor, etc.
In any event, the optical source is arranged so that the signal received at the optical detector when the blade is moving is different than the signal received when the blade is stationary. For example, the source and detector may be arranged so that a signal is received only when the blade is moving, or only when the blade is stationary. Alternatively, source 1012 and detector 1011 may be arranged so that the amount of emitted light that reaches the detector varies when the blade is in motion.
The implementation depicted in FIG. 6 uses this latter arrangement. Sensor assembly 1010 includes an LED 1012 mounted in insulating tube 268 to emit light through hole 273 in charge plate 44 or 46. The light reflects off arbor 42 and is detected by a photodiode 1011 which is also mounted in insulating tube 268 adjacent hole 273. The arbor includes one or more reduced-reflection regions 1013 adapted to reduce the amount of light reflected to photodiode 1011. Regions 1013 may be formed by coating the arbor with a light-absorbing coating, roughening the arbor to cause random scattering of the light, etc. In any event, the reduced reflecting regions create a varying signal at the photodiode when the arbor is rotating. In contrast, a constant signal is produced at the photodiode when the arbor is stationary.
The minimal clearance between arbor 42 and charge plates 44, 46 tends to maintain the space between the arbor and the photodiode/LED relatively free of debris which could block the signal. Alternatively, the insulating tube assembly may be sealed in a protective housing (not shown).
In another alternative implementation depicted in FIGS. 7 and 8, optical sensor assembly 1010 includes a barrier member 1014 mounted on the arbor and disposed between photodiode 1011 and LED 1012. Alternatively, the barrier member may be mounted on any other portion of cutting tool 14 or motor assembly 16 adapted to move with the blade. Barrier member 1014 includes one or more light-transmitting regions or holes 1015, which may take any desired shape or size. The photodiode and LED are mounted in a support member 1016 attached to an arbor block 250, and disposed on either side of barrier member 1014. The photodiode is aligned so that emitted light will pass through holes 1015. Likewise, the LED is aligned to detect the light which passes through the holes. Thus, as arbor 42 rotates, light from the LED is alternately blocked and transmitted by the barrier member, thereby creating a varying signal at the photodiode.
Photodiode 1011 and LED 1012 may be connected to any suitable driving circuitry such as are known to those of skill in the art. FIG. 9 shows one exemplary circuitry for producing an optical signal at LED 1012 and detecting the signal at photodiode 1011. The particular values of the circuit components and voltage supplies may be selected as desired for a specific application. In any event, the photodiode is coupled to transmit a signal to logic controller 50 to indicate whether blade 40 is moving.
In another exemplary embodiment, safety system 18 includes an electrical sensor assembly adapted to electrically detect movement of blade 40. There are numerous methods and mechanisms for electrically detecting blade movement within the scope of the invention. The particular method and/or mechanism selected will typically depend on the specific type and configuration of machine 10. For example, where charge plate 46 is configured to capacitively detect a signal induced in the blade, any incidental eccentricity in the blade or the blade rotation will cause the capacitance between the blade and charge plate 46 to vary as the blade rotates. As a result, charge plate 46 will detect a varying signal amplitude when the blade is rotating. Thus, a single sensor may be configured to detect both contact with the user and rotation of the blade. Preferably, the incidental variation fluctuation is insufficient in magnitude and/or rate of change to trigger reaction subsystem 24.
Rather than rely on incidental eccentricities, safety system 18 may include an exemplary electrical sensor assembly adapted to detect a signal variation caused by a designed eccentricity or non-uniformity in the blade. Alternatively, the sensor assembly may be adapted to detect the signal from an eccentricity in some portion of cutting tool 14 that moves with the blade and is electrically coupled to the blade. One exemplary implementation of such a sensor assembly is indicated generally at 1020 in FIG. 10. Sensor assembly 1020 includes a detection electrode 1021 capacitively coupled to detect an electrical signal on arbor 42. Electrode 1021 may be mounted in any suitable fashion to provide electrical insulation from arbor 42 as well as the remainder of cutting tool 14 and machine 10. In the exemplary implementation, electrode 1021 is mounted in insulating tube 268 and arranged to extend to a point closely adjacent the arbor between charge plates 44 and 46. Sensor assembly 1020 also includes one or more eccentricities 1022 disposed on the arbor and substantially aligned with electrode 1021 so as to pass by the electrode as the arbor rotates.
It will be appreciated that eccentricities 1022 may be configured in any desired quantity, size, shape or form adapted to cause a variation in the capacitance between the arbor and the electrode as the arbor rotates. In the exemplary implementation, eccentricities 1022 take the form of beveled regions formed on the surface of arbor 42. Thus, the space between the electrode and the arbor is greater (and therefore the capacitance is less) when an eccentricity is positioned beneath the electrode than when an eccentricity is not positioned beneath the electrode. Alternatively, eccentricities 1022 may take other forms adapted to vary the capacitance between the arbor and electrode, including raised regions, dielectric pads, etc. In any event, if an electrical signal is induced in the arbor (e.g., by charge plate 44 of contact detection subsystem 22), then electrode 1021 will detect variations in that signal if the arbor is rotating. Conversely, the electrode will detect no variations in the signal if the arbor is stationary.
Turning attention now to FIG. 11, another exemplary implementation of electrical sensor assembly 1020 is shown in which electrode 1021 is disposed adjacent the teeth 1023 of blade 40. Electrode 1021 may be mounted on arbor block 250 or any other suitable portion of machine 10. Additionally, the electrode may be positioned at the side of the blade (as shown in FIG. 11) or at the perimeter of the blade facing in toward the arbor. The size, shape and position of the electrode may vary depending on the position and size of teeth 1023. In any event, as teeth 1023 pass by electrode 1021, the capacitance between the blade and the electrode varies, thereby varying the amplitude of the signal detected by the electrode. Alternatively, a plurality of electrodes may be positioned at various points adjacent the teeth so that blade motion would be detected by modulations in the relative signal amplitudes at the electrodes. Such an alternative detection mechanism may also be used with other implementations of sensor assembly 1020.
While a few exemplary magnetic, EMF, optical and electrical sensor assemblies have been described for detecting blade motion, it will be appreciated that many modifications and variations to such sensor assemblies are included within the scope of the invention. Furthermore, safety system 18 may include other types of motion detection sensors such as mechanical sensors, sonic and ultra-sonic sensors, etc. In any event, the invention provides effective and reliable means for discriminating between conditions which are, and are not, likely to cause injury to a user of power machinery.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to all of the disclosed inventions. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.

Claims (17)

1. A method of controlling a woodworking machine having a movable cutting tool, the method comprising:
imparting an electric signal to a predetermined portion of the machine;
monitoring the electric signal for at least one change indicative of a dangerous condition between the cutting tool and a person;
sensing movement of the cutting tool; and
performing a predetermined action to mitigate the dangerous condition when the change in the electric signal and movement of the cutting tool are both detected.
2. The method of claim 1, where the predetermined portion of the machine is the cutting tool.
3. The method of claim 1, where the predetermined action is stopping the motion of the cutting tool.
4. The method of claim 1, where the predetermined action is retracting the cutting tool.
5. The method of claim 1, where the woodworking machine includes a motor to move the cutting tool, and where the predetermined action is disconnecting the motor from power.
6. The method of claim 1, where the predetermined action is placing a barrier adjacent the cutting tool.
7. The method of claim 1, where the dangerous condition is contact with the cutting tool.
8. The method of claim 1, where the dangerous condition is proximity to the cutting tool.
9. The method of claim 1, where the woodworking machine includes a rotatable arbor, where the cutting tool is mounted on the arbor, and where movement of the cutting tool is sensed by sensing rotation of the arbor.
10. The method of claim 1, where movement of the cutting tool is not sensed if the cutting tool is moving below a threshold speed.
11. The method of claim 1, where the woodworking machine is a table saw and the cutting tool is a circular blade.
12. The method of claim 1, where sensing movement of the cutting tool includes application of data to an algorithm.
13. The method of claim 12, where the application of data to an algorithm is done by a signal processor.
14. The method of claim 1, where movement of the cutting tool is sensed through an electrical signal.
15. The method of claim 1, where movement of the cutting tool is sensed through an optical signal.
16. The method of claim 1, where movement of the cutting tool is sensed through an electromagnetic field sensor.
17. A method of controlling a woodworking machine having a movable cutting tool, the method comprising:
imparting an electric signal to a predetermined portion of the machine;
monitoring the electric signal for at least one change indicative of a dangerous condition between the cutting tool and a person;
a step for sensing movement of the cutting tool; and
mitigating the dangerous condition when the change in the electric signal and movement of the cutting tool are both detected.
US12/661,766 1999-10-01 2010-03-22 Motion detecting system for use in a safety system for power equipment Expired - Fee Related US8051759B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US12/661,766 US8051759B2 (en) 2000-08-14 2010-03-22 Motion detecting system for use in a safety system for power equipment
US12/800,607 US7895927B2 (en) 1999-10-01 2010-05-19 Power equipment with detection and reaction systems
US12/806,829 US9522476B2 (en) 1999-10-01 2010-08-20 Power equipment with detection and reaction systems
US12/806,836 US8196499B2 (en) 1999-10-01 2010-08-20 Power equipment with detection and reaction systems
US12/806,830 US8191450B2 (en) 2000-08-14 2010-08-20 Power equipment with detection and reaction systems
US12/807,147 US8402869B2 (en) 1999-10-01 2010-08-27 Brake mechanism for power equipment
US12/807,146 US8291797B2 (en) 1999-10-01 2010-08-27 Table saw with improved safety system
US13/373,180 US8371196B2 (en) 2000-08-14 2011-11-07 Motion detecting system for use in a safety system for power equipment
US13/442,290 US8408106B2 (en) 1999-10-01 2012-04-09 Method of operating power equipment with detection and reaction systems
US13/854,270 US20170190012A9 (en) 1999-10-01 2013-04-01 Power equipment with detection and reaction systems
US14/720,552 US20150273725A1 (en) 1999-10-01 2015-05-22 Table saws with detection and reaction systems
US14/862,571 US9925683B2 (en) 1999-10-01 2015-09-23 Table saws
US15/357,928 US9969014B2 (en) 1999-10-01 2016-11-21 Power equipment with detection and reaction systems
US15/362,388 US9878380B2 (en) 1999-10-01 2016-11-28 Table saw throat plates and table saws including the same
US15/935,395 US10335972B2 (en) 1999-10-01 2018-03-26 Table Saws

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US22521100P 2000-08-14 2000-08-14
US22505900P 2000-08-14 2000-08-14
US22521200P 2000-08-14 2000-08-14
US22520000P 2000-08-14 2000-08-14
US22520600P 2000-08-14 2000-08-14
US22516900P 2000-08-14 2000-08-14
US22521000P 2000-08-14 2000-08-14
US22505600P 2000-08-14 2000-08-14
US22520100P 2000-08-14 2000-08-14
US22505700P 2000-08-14 2000-08-14
US22505800P 2000-08-14 2000-08-14
US22509400P 2000-08-14 2000-08-14
US22508900P 2000-08-14 2000-08-14
US22517000P 2000-08-14 2000-08-14
US09/929,234 US7225712B2 (en) 2000-08-14 2001-08-13 Motion detecting system for use in a safety system for power equipment
US11/810,196 US7681479B2 (en) 2000-08-14 2007-06-04 Motion detecting system for use in a safety system for power equipment
US12/661,766 US8051759B2 (en) 2000-08-14 2010-03-22 Motion detecting system for use in a safety system for power equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/810,196 Continuation US7681479B2 (en) 1999-10-01 2007-06-04 Motion detecting system for use in a safety system for power equipment

Related Child Applications (9)

Application Number Title Priority Date Filing Date
US09/929,237 Continuation US7600455B2 (en) 1999-10-01 2001-08-13 Logic control for fast-acting safety system
US12/800,607 Continuation US7895927B2 (en) 1999-10-01 2010-05-19 Power equipment with detection and reaction systems
US12/806,829 Continuation US9522476B2 (en) 1999-10-01 2010-08-20 Power equipment with detection and reaction systems
US12/806,830 Continuation US8191450B2 (en) 1999-10-01 2010-08-20 Power equipment with detection and reaction systems
US12/806,836 Continuation US8196499B2 (en) 1999-10-01 2010-08-20 Power equipment with detection and reaction systems
US12/807,146 Continuation US8291797B2 (en) 1999-10-01 2010-08-27 Table saw with improved safety system
US12/807,147 Continuation US8402869B2 (en) 1999-10-01 2010-08-27 Brake mechanism for power equipment
US13/373,180 Continuation US8371196B2 (en) 1999-10-01 2011-11-07 Motion detecting system for use in a safety system for power equipment
US13/373,180 Division US8371196B2 (en) 1999-10-01 2011-11-07 Motion detecting system for use in a safety system for power equipment

Publications (2)

Publication Number Publication Date
US20100251866A1 US20100251866A1 (en) 2010-10-07
US8051759B2 true US8051759B2 (en) 2011-11-08

Family

ID=27585530

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/929,234 Expired - Lifetime US7225712B2 (en) 1999-10-01 2001-08-13 Motion detecting system for use in a safety system for power equipment
US11/810,196 Expired - Fee Related US7681479B2 (en) 1999-10-01 2007-06-04 Motion detecting system for use in a safety system for power equipment
US12/661,766 Expired - Fee Related US8051759B2 (en) 1999-10-01 2010-03-22 Motion detecting system for use in a safety system for power equipment
US13/373,180 Expired - Lifetime US8371196B2 (en) 1999-10-01 2011-11-07 Motion detecting system for use in a safety system for power equipment

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/929,234 Expired - Lifetime US7225712B2 (en) 1999-10-01 2001-08-13 Motion detecting system for use in a safety system for power equipment
US11/810,196 Expired - Fee Related US7681479B2 (en) 1999-10-01 2007-06-04 Motion detecting system for use in a safety system for power equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/373,180 Expired - Lifetime US8371196B2 (en) 1999-10-01 2011-11-07 Motion detecting system for use in a safety system for power equipment

Country Status (1)

Country Link
US (4) US7225712B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056351A1 (en) * 1999-10-01 2011-03-10 Gass Stephen F Table saw with improved safety system
US20140083269A1 (en) * 2001-07-11 2014-03-27 Black & Decker Inc. Power tool safety mechanisms
US9724840B2 (en) 1999-10-01 2017-08-08 Sd3, Llc Safety systems for power equipment
US9927796B2 (en) 2001-05-17 2018-03-27 Sawstop Holding Llc Band saw with improved safety system
US10632642B2 (en) 2008-11-19 2020-04-28 Power Tool Institute Table saw with table sensor for sensing characteristic of workpiece
US11085582B2 (en) 2017-08-30 2021-08-10 Milwaukee Electric Tool Corporation Power tool having object detection

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030056853A1 (en) 2001-09-21 2003-03-27 Gass Stephen F. Router with improved safety system
US7971613B2 (en) * 2007-12-31 2011-07-05 Sd3, Llc Detection systems for power equipment
US7197969B2 (en) * 2001-09-24 2007-04-03 Sd3, Llc Logic control with test mode for fast-acting safety system
US6857345B2 (en) * 2000-08-14 2005-02-22 Sd3, Llc Brake positioning system
US7610836B2 (en) * 2000-08-14 2009-11-03 Sd3, Llc Replaceable brake mechanism for power equipment
US7024975B2 (en) * 2000-08-14 2006-04-11 Sd3, Llc Brake mechanism for power equipment
US8065943B2 (en) 2000-09-18 2011-11-29 Sd3, Llc Translation stop for use in power equipment
US8459157B2 (en) 2003-12-31 2013-06-11 Sd3, Llc Brake cartridges and mounting systems for brake cartridges
US7827890B2 (en) * 2004-01-29 2010-11-09 Sd3, Llc Table saws with safety systems and systems to mount and index attachments
US7055417B1 (en) * 1999-10-01 2006-06-06 Sd3, Llc Safety system for power equipment
US7171879B2 (en) * 2001-07-02 2007-02-06 Sd3, Llc Discrete proximity detection system
US8061245B2 (en) 2000-09-29 2011-11-22 Sd3, Llc Safety methods for use in power equipment
US7836804B2 (en) * 2003-08-20 2010-11-23 Sd3, Llc Woodworking machines with overmolded arbors
US7231856B2 (en) * 2001-06-13 2007-06-19 Sd3, Llc Apparatus and method for detecting dangerous conditions in power equipment
US7536238B2 (en) 2003-12-31 2009-05-19 Sd3, Llc Detection systems for power equipment
US20050041359A1 (en) * 2003-08-20 2005-02-24 Gass Stephen F. Motion detecting system for use in a safety system for power equipment
US7707920B2 (en) 2003-12-31 2010-05-04 Sd3, Llc Table saws with safety systems
US7377199B2 (en) 2000-09-29 2008-05-27 Sd3, Llc Contact detection system for power equipment
US7712403B2 (en) 2001-07-03 2010-05-11 Sd3, Llc Actuators for use in fast-acting safety systems
US6826988B2 (en) 2000-09-29 2004-12-07 Sd3, Llc Miter saw with improved safety system
US6813983B2 (en) 2000-09-29 2004-11-09 Sd3, Llc Power saw with improved safety system
US6900728B2 (en) * 2002-07-29 2005-05-31 Home Depot U.S.A., Inc. System to detect user entry into a defined danger zone
US20040060404A1 (en) * 2002-09-30 2004-04-01 Emerson Electric Co. Breakaway hub for saw
CA2448479C (en) * 2002-11-12 2009-05-05 Makita Corporation Power tools
US20040123709A1 (en) * 2002-12-30 2004-07-01 Emerson Electric Co. System for sensing user contact with a saw blade
US20040194594A1 (en) * 2003-01-31 2004-10-07 Dils Jeffrey M. Machine safety protection system
US7564361B2 (en) * 2003-07-21 2009-07-21 Chang-Ming Yang Structural improvement for alert system
JP2005088248A (en) * 2003-09-12 2005-04-07 Makita Corp Power tool
US7661614B2 (en) * 2004-09-10 2010-02-16 Fellowes Inc. Shredder throat safety system
US7311276B2 (en) * 2004-09-10 2007-12-25 Fellowes Inc. Shredder with proximity sensing system
US7631822B2 (en) * 2004-09-10 2009-12-15 Fellowes Inc. Shredder with thickness detector
GB2435189B (en) * 2004-12-17 2010-06-23 Milwaukee Electric Tool Corp Saw and Blade with Operational Communication
US7628101B1 (en) 2006-03-13 2009-12-08 Power Tool Institute Pyrotechnic drop mechanism for power tools
US7804204B1 (en) 2005-05-19 2010-09-28 Power Tool Institute Capacitive sensing system for power cutting tool
US7421932B1 (en) 2005-05-19 2008-09-09 Power Tool Institute Power cutting tool comprising a radar sensing system
US20100037739A1 (en) * 2005-06-01 2010-02-18 Anderson Will H Power cutting tool with overhead sensing system
EP1909588A4 (en) * 2005-07-18 2009-08-26 Bladestop Pty Ltd Electric saw with operator protection system
US20070157782A1 (en) * 2006-01-12 2007-07-12 Hetcher Jason D Saw such as a miter saw with digital readout and related measurement devices
US7932809B2 (en) * 2006-02-23 2011-04-26 Rockwell Automation Technologies, Inc. RFID/biometric area protection
GB2437594B (en) * 2006-04-24 2010-08-11 Acco Uk Ltd A shredding machine
CN2915259Y (en) * 2006-07-14 2007-06-27 上海震旦办公设备有限公司 Paper shredder touch safety device
US8008812B2 (en) 2006-07-14 2011-08-30 Aurora Office Equipment Co., Ltd. Paper shredder control system responsive to touch-sensitive element
DE102007039570A1 (en) * 2006-09-04 2008-03-06 Robert Bosch Gmbh Machine tool monitoring device
DE102007039565A1 (en) * 2006-09-04 2008-04-10 Robert Bosch Gmbh Machine tool monitoring device
DE102007041098A1 (en) * 2006-09-04 2008-03-06 Robert Bosch Gmbh Machine tool monitoring device
US7757982B2 (en) * 2006-09-28 2010-07-20 Fellowes, Inc. Shredder with intelligent activation switch
US20100064869A1 (en) * 2006-10-06 2010-03-18 Gregory Scott Poole Device for measuring distance
GB2451513B (en) 2007-08-02 2012-04-18 Acco Uk Ltd A shredding machine
US20090094839A1 (en) * 2007-10-11 2009-04-16 Earl Votolato Electronic Utility Knife with Safety Reaction System
CN201239643Y (en) 2008-08-06 2009-05-20 上海震旦办公设备有限公司 Full automatic paper crusher without selecting paper
CN201244502Y (en) 2008-08-19 2009-05-27 上海震旦办公设备有限公司 Structure capable of removing nail of automatic paper crusher
US7739934B2 (en) * 2008-09-08 2010-06-22 Power Tool Institute Detection system for power tool
US8122798B1 (en) 2008-11-19 2012-02-28 Power Tool Institute Power cutting tool with proximity sensing system
US20100243633A1 (en) * 2009-03-24 2010-09-30 Tung Huynh Power Line De-Icing Apparatus
US8373095B2 (en) * 2009-03-24 2013-02-12 Tung Minh Huynh Power line de-icing apparatus
CN101543799B (en) * 2009-04-28 2012-10-10 上海震旦办公设备有限公司 Novel protector for paper crusher
CN101543800A (en) * 2009-05-07 2009-09-30 上海震旦办公设备有限公司 Paper jamming prevention protective device of paper shredder
US8327744B2 (en) 2009-08-26 2012-12-11 Robert Bosch Gmbh Table saw with reset mechanism
US8297159B2 (en) * 2009-08-26 2012-10-30 Robert Bosch Gmbh Table saw with dropping blade
US10029386B2 (en) * 2009-08-26 2018-07-24 Robert Bosch Tool Corporation Table saw with positive locking mechanism
US8286537B2 (en) * 2009-08-26 2012-10-16 Robert Bosch Gmbh Table saw with pressure operated actuator
US8186258B2 (en) 2009-08-26 2012-05-29 Robert Bosch Gmbh Table saw with actuator reset mechanism
US10076796B2 (en) * 2009-08-26 2018-09-18 Robert Bosch Tool Corporation Table saw with dust shield
US9079258B2 (en) * 2009-08-26 2015-07-14 Robert Bosch Gmbh Table saw with belt stop
US8291801B2 (en) * 2009-08-26 2012-10-23 Robert Bosch Gmbh Table saw with ratchet mechanism
US9969013B2 (en) * 2009-08-26 2018-05-15 Robert Bosch Tool Corporation Table saw with actuator module
US8316748B2 (en) * 2009-08-26 2012-11-27 Robert Bosch Gmbh Table saw with alignment plate
US8250957B2 (en) * 2009-08-26 2012-08-28 Robert Bosch Gmbh Table saw with linkage drop system
US8210076B2 (en) * 2009-08-26 2012-07-03 Robert Bosch Gmbh Table saw with mechanical fuse
US8245612B2 (en) * 2009-08-26 2012-08-21 Robert Bosch Gmbh Table saw with swing arm support
US8534174B2 (en) 2010-09-27 2013-09-17 Power Tool Institute Pyrotechnic actuator and power cutting tool with safety reaction system having such pyrotechnic actuator
US8723468B2 (en) 2011-04-28 2014-05-13 Aurora Office Equipment Co., Ltd. Cooled motor
WO2012154718A1 (en) * 2011-05-09 2012-11-15 Drexel University Semi-autonomous rescue apparatus
US8708260B2 (en) 2011-08-08 2014-04-29 Aurora Office Equipment Co., Ltd. Depowered standby paper shredder and method
ITMO20120033A1 (en) * 2012-02-15 2013-08-16 Scm Group Spa PROCESSING APPARATUS
US9952583B2 (en) * 2012-09-28 2018-04-24 Robert Bosch Tool Corporation System and method for identification of implement motion in a power tool
US9517516B2 (en) 2013-03-14 2016-12-13 Robert Bosch Tool Corporation Blade drop power tool with dust management
US9511429B2 (en) 2013-03-15 2016-12-06 Robert BoschTool Corporation Blade drop for power device and method of manufacturing thereof
KR101984486B1 (en) * 2014-12-15 2019-05-31 로베르트 보쉬 게엠베하 Ratchet and release mechanism for swing arm of table saw
US10322522B2 (en) 2015-03-12 2019-06-18 Robert Bosch Tool Corporation Electrical configuration for object detection system in a saw
US10786854B2 (en) 2015-03-12 2020-09-29 Robert Bosch Tool Corporation Table saw with electrically isolated arbor shaft
US9868166B2 (en) 2015-03-12 2018-01-16 Robert Bosch Tool Corporation Power tool with pyrotechnic lockout
US10799964B2 (en) 2015-03-12 2020-10-13 Robert Bosch Tool Corporation Table saw with pulley alignment mechanism
US9868167B2 (en) 2015-03-12 2018-01-16 Robert Bosch Tool Corporation Power tool with drop arm orbit bracket
US10758989B2 (en) 2015-03-12 2020-09-01 Robert Bosch Tool Corporation System and method for sensing cable fault detection in a saw
US9969015B2 (en) 2015-03-12 2018-05-15 Robert Bosch Tool Corporation Power tool with protected coupling plate
US10369642B2 (en) 2015-03-12 2019-08-06 Robert Bosch Tool Corporation Power tool with protected circuit board orientation
US10105863B2 (en) 2015-03-12 2018-10-23 Robert Bosch Tool Corporation System and method for object and operator profiling in an object detection system in a saw
US10189098B2 (en) 2015-03-12 2019-01-29 Robert Bosch Tool Corporation Diagnostic and maintenance operation for a saw
US10493543B2 (en) 2015-03-12 2019-12-03 Robert Bosch Tool Corporation Power tool motor with reduced electrical noise
US9914239B2 (en) 2015-03-12 2018-03-13 Robert Bosch Tool Corporation User interface system in a table saw
US9687922B2 (en) 2015-03-12 2017-06-27 Robert Bosch Tool Corporation Power tool with cammed throat plate
US10071432B2 (en) 2015-03-12 2018-09-11 Robert Bosch Tool Corporation Power tool with arbor lock
US10821529B2 (en) 2015-03-12 2020-11-03 Robert Bosch Tool Corporation Power tool with improved belt tensioning
US10213853B2 (en) 2015-03-12 2019-02-26 Robert Bosch Tool Corporation Power tool drop arm with offset ribbing
US10427227B2 (en) 2015-03-12 2019-10-01 Robert Bosch Tool Corporation Drop arm reset method
US10099399B2 (en) 2015-03-12 2018-10-16 Robert Bosch Tool Corporation Object proximity detection in a saw
US9849527B2 (en) 2015-03-12 2017-12-26 Robert Bosch Tool Corporation Power tool with lightweight actuator housing
US9972133B2 (en) * 2015-04-24 2018-05-15 Jpw Industries Inc. Wearable display for use with tool
DE102016207861A1 (en) * 2016-05-06 2017-11-09 Maja-Maschinenfabrik Hermann Schill Gmbh & Co. Kg Device and method for safety control of a machine
US11098849B2 (en) 2016-05-31 2021-08-24 Sawstop Holding Llc Detection systems for power tools with active injury mitigation technology
US10993859B2 (en) * 2017-12-14 2021-05-04 Matthew Aaron Halanski Cast saw protective system
CN108393989B (en) * 2018-03-28 2020-06-30 华琳琳 Firewood ware is used in agricultural construction
US10865941B2 (en) 2018-11-20 2020-12-15 Dennis E. Lewis Safety system and method for power tools
US20220266363A1 (en) * 2021-02-25 2022-08-25 Nan John Electrical Co., Ltd. Human-body-defined security recognition system of processing machine
CN113263357B (en) * 2021-05-26 2022-08-05 吉林大学重庆研究院 Portable numerical control machine state monitoring device
WO2023141153A1 (en) * 2022-01-18 2023-07-27 Eaton John Iii Electric power tool safety device

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371736A (en) 1965-12-08 1968-03-05 Fred I. Lewis Safety belt system
US3783709A (en) 1972-05-26 1974-01-08 R Scott Machine guard
US3785230A (en) 1972-11-08 1974-01-15 Lokey Tool Inc Automatic safety brake for rotary blade equipment
US3805639A (en) 1972-11-21 1974-04-23 Best & Donovan Safety guard for a breaking saw
US3805658A (en) 1972-07-24 1974-04-23 Whitney Corp W Punch press with safety door
US3840851A (en) 1972-06-30 1974-10-08 Emihus Microcomponents Ltd Vehicle signal lighting systems
US3858095A (en) 1973-08-28 1974-12-31 Riedl Ohg Adolf Protective circuit arrangement for band cutter machines
US3889567A (en) 1971-07-06 1975-06-17 Amada Co Ltd Horizontal band saw machine
US4029159A (en) 1974-06-05 1977-06-14 Svend Nymann Brake control for rotary electric tools
US4048886A (en) 1976-09-16 1977-09-20 Xenex Corporation Brake monitor with self-checking
US4117752A (en) * 1976-05-25 1978-10-03 Kichi Yoneda Emergency system for stopping a band blade of a cutting apparatus
US4453112A (en) 1981-03-25 1984-06-05 Saint-Gobain Vitrage Electronic safety device for controlling the drive motor attached to a sliding window
US4557168A (en) 1982-03-30 1985-12-10 Amada Company, Limited Method and apparatus for detecting the cutting resistance in bandsaw machines
US4644832A (en) 1985-03-21 1987-02-24 Smith H Reid Method for monitoring saw blade stability and controlling work feed rate on circular saw and bandsaw machines
US4653189A (en) 1984-06-19 1987-03-31 Ab Electrolux Arrangement in a motor saw
US5094000A (en) 1990-03-02 1992-03-10 Black & Decker Inc. Hand-held power tool with a rotary driven tool
US5572916A (en) 1994-10-20 1996-11-12 Hitachi Koki Haramachi Co., Ltd. Desk-top cutting machine
DE19609771A1 (en) 1996-03-13 1998-06-04 Jan Nieberle Active safety device for table-mounted circular saws
US5989116A (en) 1998-02-03 1999-11-23 Swift & Company, Inc. High-speed bone-in loin slicer
US5992276A (en) 1998-04-09 1999-11-30 Sullivan; David R. Safety guard for lathes
US6167324A (en) * 1998-07-14 2000-12-26 American Saw & Manufacturing Company Machine tool monitoring system
US6170373B1 (en) * 1998-01-12 2001-01-09 Makita Corporation Circular saw having movement prevention means

Family Cites Families (453)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US146886A (en) * 1874-01-27 Improvement in sawing-machines
US1896924A (en) 1933-02-07 Table fob saws ob the like
US1311508A (en) * 1919-07-29 Planooraph co
US299480A (en) * 1884-05-27 Saw-guard
US162814A (en) * 1875-05-04 Improvement in saw-guards
US307112A (en) * 1884-10-28 Saw-guard
US302041A (en) * 1884-07-15 Saw-guard
US264412A (en) * 1882-09-12 Half to john h
US545504A (en) * 1895-09-03 Saw-guard
US261090A (en) * 1882-07-11 Circular-saw guard
US2675707A (en) * 1954-04-20 brown
US509253A (en) * 1893-11-21 Safety-guard for rip-saws
US1324136A (en) * 1919-12-09 Tool-operating machine
US869513A (en) * 1907-06-17 1907-10-29 Frederick C Pfeil Saw-guard.
US941726A (en) 1907-10-15 1909-11-30 Charles F Pfalzgraf Safety trip device for power-operated machines.
FR12487E (en) * 1909-08-07 1910-09-23 Othon Troupenat Safety device for circular saws
US1050649A (en) * 1910-05-28 1913-01-14 Crescent Machine Company Saw-guard.
US1037843A (en) * 1911-10-30 1912-09-10 David S Ackley Saw-guard
US1054558A (en) * 1912-07-29 1913-02-25 Nye Company Self-adjusting support for circular-saw and shaper guards.
US1082870A (en) * 1912-11-20 1913-12-30 John W Humason Saw-guard.
US1148169A (en) * 1913-01-06 1915-07-27 Andrew F Howe Saw-guard.
US1126970A (en) * 1913-02-10 1915-02-02 Eastman Kodak Co Saw-guard.
US1074198A (en) * 1913-03-21 1913-09-30 Francis Vosburgh Phillips Saw-guard.
US1101515A (en) * 1913-06-27 1914-06-30 George H Adam Safety saw-guard.
US1205246A (en) * 1913-10-27 1916-11-21 Int Harvester Canada Shipping-package.
US1132129A (en) * 1914-06-15 1915-03-16 Fred M Stevens Safety-grip for circular saws.
US1154209A (en) * 1914-08-11 1915-09-21 John L Rushton Saw-guard.
US1255886A (en) * 1915-11-23 1918-02-12 Emerald E Jones Saw-guard.
US1258961A (en) * 1916-03-09 1918-03-12 James G Tattersall Saw-guard and splitter.
US1240430A (en) * 1916-07-22 1917-09-18 Peter Erickson Cutter-guard.
US1228047A (en) * 1916-12-18 1917-05-29 Darwin O Reinhold Self-adjusting spreader for saws.
US1244187A (en) * 1917-02-17 1917-10-23 Warren M Frisbie Circular-saw guard.
US1397606A (en) * 1918-07-29 1921-11-22 Christian N Smith Safety-shield for circular saws
US1381612A (en) * 1919-10-24 1921-06-14 George A Anderson Saw-guard
US1427005A (en) * 1919-12-26 1922-08-22 James D Mcmichael Saw guard
US1465224A (en) * 1921-07-22 1923-08-14 Lantz Joseph Edward Automatic shield for circular saws
US1430983A (en) * 1921-10-05 1922-10-03 Granberg Wilhelm Guard for sawing machines
US1464924A (en) * 1922-06-20 1923-08-14 William D Drummond Saw guard
US1496212A (en) * 1923-02-06 1924-06-03 James F Sullivan Circular-saw guard
US1526128A (en) * 1923-10-20 1925-02-10 Flohr Andrew Saw guard
US1527587A (en) * 1923-12-07 1925-02-24 Hutchinson Frank Saw guard
US1511797A (en) * 1924-02-15 1924-10-14 Frank E Berghold Saw guard
US1640517A (en) * 1924-04-17 1927-08-30 Paine Lumber Company Ltd Saw guard
US1553996A (en) * 1924-04-19 1925-09-15 Federer Joseph Safety saw guard
US1551900A (en) 1924-12-05 1925-09-01 Robert L Morrow Safety device
US1582483A (en) * 1925-01-13 1926-04-27 Geniah B Runyan Meat cutter
US1701948A (en) * 1925-04-02 1929-02-12 Crowe Mfg Corp Portable saw
US1616478A (en) * 1926-01-19 1927-02-08 Julius C Reiche Guard for circular saws
US1600604A (en) * 1926-03-06 1926-09-21 Sorlien Andrew Board holder for sawing machines
US1662372A (en) * 1926-04-26 1928-03-13 Abraham D Ward Saw guard
US1712828A (en) * 1927-02-14 1929-05-14 Henry J Klehm Saw guard
US1711490A (en) * 1927-09-12 1929-05-07 William D Drummond Saw guard
US1774521A (en) * 1928-10-31 1930-09-02 Wilbur S Neighbour Saw guard
US1811066A (en) * 1929-02-23 1931-06-23 Carl E Tannewitz Sawing machine
US1807120A (en) * 1929-03-11 1931-05-26 Hall & Brown Wood Working Mach Saw
US1879280A (en) * 1930-08-30 1932-09-27 George V James Guard for circular saws
US1904005A (en) * 1932-02-03 1933-04-18 Masset Edward Saw guard
US1988102A (en) * 1932-04-02 1935-01-15 William H Woodward Circular saw machine
US1902270A (en) 1932-06-02 1933-03-21 Delta Mfg Co Miter gauge
US1910651A (en) 1932-12-05 1933-05-23 Delta Mfg Co Trunnion table mounting
US1938548A (en) 1933-02-04 1933-12-05 Delts Mfg Company Machine table extension
US1963688A (en) 1933-02-15 1934-06-19 Delta Mfg Co Hollow fence bar and process of making the same
US1993219A (en) * 1933-07-12 1935-03-05 Herberts Machinery Company Ltd Circular saw
US1938549A (en) 1933-07-22 1933-12-05 Delta Mfg Co Machine table
US2007887A (en) 1933-09-20 1935-07-09 Delta Mfg Co Saw guard
US2010851A (en) * 1934-07-02 1935-08-13 William D Drummond Automatic hood guard
US2038810A (en) 1934-09-06 1936-04-28 Delta Mfg Co Circular-saw machine
US2106288A (en) 1934-09-27 1938-01-25 Herbert E Tautz Circular saw apparatus
US2020222A (en) 1935-04-08 1935-11-05 Delta Mfg Co Machine table insert
US2075282A (en) * 1935-05-27 1937-03-30 Duro Metal Prod Co Bench saw
US2095330A (en) * 1936-07-25 1937-10-12 Duro Metal Prod Co Bench saw
US2131492A (en) * 1936-11-28 1938-09-27 Walker Turner Company Inc Tilting arbor table saw
US2168282A (en) * 1936-12-18 1939-08-01 Delta Mfg Co Circular saw
US2106321A (en) * 1937-02-16 1938-01-25 Guertin Gilles Saw guard
US2163320A (en) * 1937-05-01 1939-06-20 William P Morgan Sawing appliance
US2121069A (en) * 1937-06-14 1938-06-21 Atlas Press Company Circular saw
US2241556A (en) * 1938-06-20 1941-05-13 Hydraulic Dev Corp Inc Photoelectrically controlled press
US2265407A (en) * 1939-01-25 1941-12-09 Delta Mfg Co Tilting arbor saw
US2261696A (en) * 1939-03-15 1941-11-04 Walker Turner Co Inc Tilting saw
US2299262A (en) * 1940-04-29 1942-10-20 Uremovich Mark Power-driven bench saw
US2292872A (en) * 1940-07-10 1942-08-11 Elwyn A Eastman Double hinge tilting arbor saw
US2312118A (en) * 1940-07-31 1943-02-23 Ray H Neisewander Adjustable woodworking machine
US2286589A (en) * 1940-10-28 1942-06-16 Carl E Tannewitz Blade grabber for band saws
US2328244A (en) * 1941-02-24 1943-08-31 William H Woodward Circular saw machine
US2313686A (en) * 1941-03-17 1943-03-09 Uremovich Mark Saw guard
US2352235A (en) * 1941-09-10 1944-06-27 Delta Mfg Co Saw guard
US2377265A (en) * 1942-01-09 1945-05-29 Gen Motors Corp Sealed-in regulator
US2402232A (en) * 1942-04-20 1946-06-18 Automatic Elect Lab Automatic telephone system
US2452589A (en) * 1943-01-22 1948-11-02 Standard Telephones Cables Ltd Electric remote control and indication system
GB598204A (en) 1943-03-25 1948-02-12 Citroen Sa Andre Improvements in the protective control of the operations of machine tools
US2496613A (en) * 1944-05-30 1950-02-07 William H Woodward Guard for rotary disks
US2434174A (en) * 1944-06-19 1948-01-06 Joseph P Morgan Safety brake for band-saw blades
US2466325A (en) * 1945-07-18 1949-04-05 Kearney & Trecker Corp Saw guard for adjustable-saw saw tables
US2425331A (en) * 1945-12-13 1947-08-12 Linzie F Kramer Guard device for circular-saw table sawing machines
US2554124A (en) * 1946-03-05 1951-05-22 Zita Wallace Salmont Means for automatic control of machinery or other devices
US2601878A (en) 1946-03-08 1952-07-01 St Paul Foundry & Mfg Co Table saw with part of the table swingably and laterally adjustable
US2530290A (en) * 1946-12-12 1950-11-14 Atlas Press Company Table saw with tiltable and vertically adjustable arbor
US2562396A (en) 1947-03-15 1951-07-31 Walt Inc De Safety device for saws
US2590035A (en) * 1947-09-10 1952-03-18 Pollak Abraham Tilting-arbor saw and cradle suspension therefor
US2509813A (en) * 1947-09-29 1950-05-30 Stratos Corp Emergency disconnect means for auxiliaries
US2572326A (en) * 1948-07-12 1951-10-23 Evans Mervyn Camille Circular saw guard
US2623555A (en) 1948-07-14 1952-12-30 Rockwell Mfg Co Saw guard
US2695638A (en) 1949-02-17 1954-11-30 King Seeley Corp Tilting arbor circular wood saw
US2593596A (en) * 1949-03-24 1952-04-22 George V Olson Circular saw guard
US2517649A (en) * 1949-04-09 1950-08-08 Frechtmann Jean Blade guard
US2518684A (en) * 1949-04-21 1950-08-15 Hyman M Harris Duplex bench saw
US2737213A (en) * 1950-02-02 1956-03-06 Syntron Co Belt-driven hand saw with increased belt friction
CH297525A (en) 1950-05-02 1954-03-31 Gardette Gabriel Working machine provided with a safety device.
US2690084A (en) 1950-08-01 1954-09-28 Atlas Press Company Spring belt tension equalizer for machine tools
US2661780A (en) 1950-08-02 1953-12-08 Harry Crisci Automatic magnetic brake for band saws
US2626639A (en) * 1950-11-04 1953-01-27 Duro Metal Products Co Belt and pulley drive means for tiltable saws and the like
US2625966A (en) * 1951-06-01 1953-01-20 Callender Foundry & Mfg Compan Motor and belt drive for tilt arbor saws
US2711762A (en) 1951-12-08 1955-06-28 King Seeley Corp Arbor saw
US2661777A (en) 1952-09-15 1953-12-08 Edgar J Hitchcock Self-adjusting motor mounting for vertically adjusted saws
US2678071A (en) 1953-02-06 1954-05-11 Duro Metal Products Co Motor mounting and drive means for power tools
US2704560A (en) * 1953-02-12 1955-03-22 Gibraltar Mfg Co Inc Tilt arbor bench saw
US2722246A (en) 1953-05-22 1955-11-01 Arnoldy Leo Safety guards for power saws
US2913581A (en) 1953-09-25 1959-11-17 Bernard R Katshen Method and apparatus for controlling production machines
US2883486A (en) * 1954-03-09 1959-04-21 Bell Telephone Labor Inc Piezoelectric switching device
US2758615A (en) 1954-03-11 1956-08-14 Hampden Brass And Aluminum Com Mounting for tilting arbor rotary miter saws
US2736348A (en) * 1954-04-23 1956-02-28 Kropp Forge Company Band saw blade trap
US2785710A (en) * 1954-05-03 1957-03-19 Walt Inc De Automatic brake for power tools
US2731049A (en) * 1954-06-10 1956-01-17 Orville C Akin Saw guard assembly for rotary table saws
US2810408A (en) 1954-06-11 1957-10-22 Boice Crane Company Adjustable mounting and drive mechanism for table saws
US3085602A (en) * 1954-06-14 1963-04-16 King Seeley Thermos Co Tilting arbor saw
US2873773A (en) * 1954-06-14 1959-02-17 King Seeley Corp Shiftable motor drive for tilting arbor saw
US2844173A (en) 1954-09-13 1958-07-22 King Seely Corp Arbor saw with single handle control of tilt and elevation
US2913025A (en) 1955-11-23 1959-11-17 Yates American Machine Co Combination saw, jointer and sander tool
US2786496A (en) * 1955-12-06 1957-03-26 Yates American Machine Co Safety guard for circular saw
US2852047A (en) 1956-04-16 1958-09-16 Duro Metal Products Co Tilting and elevating mechanism for a disc type table saw
US2850054A (en) 1956-07-09 1958-09-02 Yates American Machine Co Tilting arbor saw
US2957166A (en) 1956-12-28 1960-10-18 Burroughs Corp Signal pulse converter
US3021881A (en) * 1956-12-31 1962-02-20 Yuba Cons Ind Inc Power saw
US2945516A (en) 1956-12-31 1960-07-19 Yuba Cons Ind Inc Tilting arbor table saw with coaxial control of elevation and tilt
US3005477A (en) 1957-12-23 1961-10-24 Horstmann & Sherwen Ltd Rotary tool wood working machines
US2954118A (en) 1958-06-23 1960-09-27 Doall Co Guard for protecting the cutting edges of saw blades
US2984268A (en) 1958-07-07 1961-05-16 George E Vuichard Manually-actuated saw brake
US3035995A (en) 1958-08-11 1962-05-22 North American Aviation Inc Electronic reactor safety control device
US3047116A (en) 1958-08-27 1962-07-31 Rockwell Standard Co Safety device for power presses
US2978084A (en) * 1958-10-21 1961-04-04 Safeguard Mfg Company Safety interlock
US3013592A (en) 1959-03-23 1961-12-19 Theodore G Ambrosio Tilting table saw
US2991593A (en) 1959-08-17 1961-07-11 Cohen Murray Abrading and cutting tool
US3011529A (en) 1959-09-08 1961-12-05 Rockwell Mfg Co Tilt and elevating mechanism for tilting arbor saws
US3011610A (en) 1959-10-09 1961-12-05 Rockwell Standard Co Safety device for power presses
US3129731A (en) * 1960-10-17 1964-04-21 Mc Culloch Corp Chain saw protector
US3105530A (en) 1961-10-23 1963-10-01 Russell E Peterson Guard for a circular table saw
US3356111A (en) 1961-10-31 1967-12-05 Rockwell Mfg Co Power tool improvements
US3163732A (en) 1961-11-20 1964-12-29 Gray & Huleguard Inc Electrically fused spring package
US3246205A (en) 1962-07-19 1966-04-12 Imrich M Miller Capacitor protective device
US3207273A (en) 1962-07-20 1965-09-21 Garcy Corp Closure release device
US3184001A (en) 1962-08-16 1965-05-18 Gen Motors Corp Brake drum and lining
US3232326A (en) * 1962-10-04 1966-02-01 Rockwell Mfg Co Blade guard and splitter assembly for table saws
US4190000A (en) * 1962-10-23 1980-02-26 The United States Of America As Represented By The Secretary Of The Army Mine proximity fuse
US3313185A (en) 1962-10-29 1967-04-11 Drake Corp Automatic grinders
US3186256A (en) 1963-07-22 1965-06-01 Reznick Louis Safety guards for brakes, punch presses and similar machines
US3249134A (en) 1964-01-30 1966-05-03 Wilton Corp Saw and dado guard
US3306149A (en) * 1964-02-12 1967-02-28 Dienes Werke Rotary cutter
GB1072493A (en) 1964-05-02 1967-06-14 Daimler Benz Ag Improvements relating to disc brakes
US3213731A (en) 1964-08-04 1965-10-26 John J Renard Paper log cutting apparatus
US3224474A (en) 1964-12-17 1965-12-21 Black & Decker Mfg Co Automatically-applied friction braking means for a portable electric tool
US3323814A (en) 1964-12-24 1967-06-06 Gray & Huleguard Inc Electromechanical actuator package
US3315715A (en) 1965-05-17 1967-04-25 Moak Machine And Foundry Compa Tilting arbor saw
GB1132708A (en) 1965-10-15 1968-11-06 Wilmot Breeden Ltd Improvements in or relating to object detection systems
US3445835A (en) 1965-11-09 1969-05-20 R F Controls Inc Capacitive proximity sensor
US3439183A (en) 1966-03-16 1969-04-15 Intern Electric Fence Co Inc Solid state fence controller
US3386322A (en) 1966-03-21 1968-06-04 Stone Machinery Company Inc Cut-off machine
US3456696A (en) 1966-07-13 1969-07-22 Rockwell Mfg Co Portable circular saw
CH440865A (en) 1966-11-15 1967-07-31 Frydmann Eduard Braking device for the load-dependent braking of a driven, rotating organ
US3454286A (en) 1967-03-01 1969-07-08 Us Navy Thermally operated release mechanism
US3538964A (en) 1967-11-20 1970-11-10 Rockwell Mfg Co Motor driven table saw
CH471921A (en) 1968-11-05 1969-04-30 Saurer Ag Adolph Shuttle box for weaving machine, with shuttle braking device
US3540338A (en) 1968-11-21 1970-11-17 James Mcewan Inc Cutoff machine
US3580376A (en) 1969-01-02 1971-05-25 Reliance Electric Co Escalator system having fault indicator
US3554067A (en) * 1969-02-26 1971-01-12 Joseph Scutella Fail-safe double-action safety guard
US3566996A (en) * 1969-03-21 1971-03-02 Richard L Crossman Automatic brake adjuster
US3613748A (en) 1969-09-11 1971-10-19 Dolen A De Pue Safety guard arrangement for circular saw
US3581784A (en) 1969-11-21 1971-06-01 Rockwell Mfg Co Saw table insert
US3670788A (en) 1970-05-22 1972-06-20 Henry M Pollak Arbor saw
US3695116A (en) 1970-09-30 1972-10-03 Bunker Ramo Non-explosive electrically initiated heat-ignitable actuator
US3675444A (en) 1970-11-03 1972-07-11 Gen Electric High speed shaft disconnect utilizing a fusible element
US3680609A (en) 1970-12-28 1972-08-01 Troy Steel Corp Cutting apparatus
US3688815A (en) 1971-04-30 1972-09-05 Charles A Ridenour Radial arm saw depth gauge
US3745546A (en) 1971-06-07 1973-07-10 Allen Bradley Co Controller output circuit
US3749933A (en) 1971-12-02 1973-07-31 W Davidson Underwater release device
US3754493A (en) 1971-12-10 1973-08-28 Rockwell Mfg Co Circular saw blade guard
US3829850A (en) 1971-12-17 1974-08-13 Tyco Laboratories Inc Proximity detector
US3772590A (en) 1972-05-24 1973-11-13 Mc Graw Edison Co Method of production testing fuses and circuit for accomplishing such testing
US3967161A (en) 1972-06-14 1976-06-29 Lichtblau G J A multi-frequency resonant tag circuit for use with an electronic security system having improved noise discrimination
US3886413A (en) 1973-01-29 1975-05-27 Xenex Corp Presence sensing and self-checking control system
US3863208A (en) * 1973-02-14 1975-01-28 Eaton Corp Vehicle safety system control circuit having a malfunction indicator
US3808932A (en) 1973-02-23 1974-05-07 Stanley Fixture Mfg Co Inc Saw guard
US3880032A (en) 1973-08-22 1975-04-29 Dwight C Green Feeler operated saw guard
US3882744A (en) 1973-08-24 1975-05-13 Xerox Corp Electrostatographic web feeding apparatus
JPS5078998A (en) 1973-11-15 1975-06-27
US3861016A (en) * 1973-11-19 1975-01-21 Usm Corp Electric safety control mechanism
US3946631A (en) * 1974-03-04 1976-03-30 Malm John A Undercut saw
US3924688A (en) 1974-04-05 1975-12-09 G & H Technology Fire fighting system
DE2422940B2 (en) 1974-05-11 1976-06-10 Werkzeugmaschinenfabrik Adolf Waldrich Coburg, 8630 Coburg DEVICE FOR CONTROLLING THE INFEED MOVEMENT OF A ROTATING TOOL CARRIED BY A TOOL SPINDLE, IN PARTICULAR A GRINDING WHEEL
US3960310A (en) 1974-05-20 1976-06-01 Lucian Nussbaum Apparatus for brazing hardened tips to surfaces
US3935777A (en) * 1974-06-13 1976-02-03 Alvin Lee Bassett Portable cutting device
DE7420476U (en) 1974-06-14 1974-09-12 Eisele Ch Maschinenfabrik Circular saw machine
US3953770A (en) 1974-07-11 1976-04-27 Jinnosuke Hayashi Safety equipment for machinery used in processing plates, etc.
US3947734A (en) * 1974-09-06 1976-03-30 The Stanley Works Electronic personnel safety sensor
US3931727A (en) * 1974-09-09 1976-01-13 Verson Allsteel Press Company Method and system for detecting brake wear in a metal forming machine
US3945286A (en) * 1974-11-08 1976-03-23 Smith Roger W Portable radial arm saw
ES208471Y (en) 1974-12-18 1976-08-01 Vidaller Fierro PROTECTIVE DEVICE FOR DISC SAWS.
DE2460057B2 (en) 1974-12-19 1977-02-10 Robert Bosch Gmbh, 7000 Stuttgart SWITCH ARRANGEMENT WITH A STRIKE FIELD CAPACITOR
US3974565A (en) 1975-02-07 1976-08-17 Simplex Cutting Machine Company, Inc. Adjustable cutting machine
US3949636A (en) 1975-02-21 1976-04-13 Armstrong Cork Company Saw guard
US3975600A (en) 1975-06-06 1976-08-17 Marston Harvey J Telephone line splicing apparatus
US4091698A (en) 1975-09-08 1978-05-30 Western Gear Corporation Rotary cutting blade control system
US4007679A (en) * 1975-09-22 1977-02-15 Cincinnati Milacron, Inc. Press and safety latch therefor
US4060160A (en) 1975-11-17 1977-11-29 Raymond Stanley Lieber Safety guard for power operated machine
US4085303A (en) 1976-03-08 1978-04-18 Ametek, Inc. Safety double protection device for machines having plural circuit breaker assemblies associated with doffer roller and hand guard
US4090345A (en) 1976-03-17 1978-05-23 Briggs & Stratton Corporation Brake safety system for a power driven rotary mower
US4175452A (en) 1976-03-30 1979-11-27 Mukachevsky Stankostroitelny Zavod Imeni S.M. Kirova Machine for the mechanical working of band saws
US4047156A (en) 1976-04-12 1977-09-06 Wagner Electric Corporation Reactively decoupled dual channel keying circuit for wide-band frequency modulated keyable control circuit
US4075961A (en) * 1976-05-07 1978-02-28 Burlington Industries, Inc. Injury protection device for machinery
US4026177A (en) 1976-07-21 1977-05-31 Lokey Tool, Inc. Rotary insulated saw blade
US4077161A (en) * 1976-07-23 1978-03-07 Wyle Laboratories Cut-off machine
DE2641465C3 (en) 1976-09-15 1980-11-27 Gustav Wagner Maschinenfabrik, 7410 Reutlingen Device for freeing up play in the gear unit of a cold circular saw for steel and non-ferrous metals
US4070940A (en) * 1977-02-01 1978-01-31 Caterpillar Tractor Co. Machine tool with protective light curtain and work stock holding mechanism
US4152833A (en) 1977-06-22 1979-05-08 Crow, Lytle, Gilwee, Donoghue, Adler And Weineger Chain saw braking mechanism
US4161649A (en) 1977-12-21 1979-07-17 American Motors Corporation Multimode electronic brake monitor system
DE2800403A1 (en) 1978-01-05 1979-07-19 Bosch Gmbh Robert Operator protection on press or drilling machine tool - has probe which, on operator contact, causes tool feed to reverse
US4199930A (en) 1978-01-19 1980-04-29 The Gillette Company Alarm switch for an alarm circuit in a horological device
US4145940A (en) * 1978-01-26 1979-03-27 Woloveke Eugene L Brake apparatus for a motor driven saw blade
US4195722A (en) 1978-04-19 1980-04-01 Outboard Marine Corporation Circuit for a power operated machine
US4305442A (en) 1979-03-29 1981-12-15 Bruce Currie Saw including resiliently mounted flexible guard means
US4276799A (en) 1979-04-18 1981-07-07 Black & Decker Inc. Power tool apparatus
US4267914A (en) 1979-04-26 1981-05-19 Black & Decker Inc. Anti-kickback power tool control
US4249117A (en) * 1979-05-01 1981-02-03 Black And Decker, Inc. Anti-kickback power tool control
US4249442A (en) * 1979-07-25 1981-02-10 Black & Decker Inc. Elevation setting mechanism for a table saw and the like
US4291794A (en) 1979-10-10 1981-09-29 The B. F. Goodrich Company Power transmission and energy absorbing systems
AU531563B2 (en) 1979-10-10 1983-08-25 Bendix Corp., The Warning circuit suitable for brake system
US4560033A (en) 1980-01-21 1985-12-24 Julian C. Renfro Multifunction wheelchair handbrake especially adapted for ramp climbing
US4270427A (en) 1980-02-04 1981-06-02 Black & Decker Inc. Bevel angle setting means for a power tool apparatus
US4321841A (en) * 1980-04-10 1982-03-30 Steelcase Inc. Press safety device
US4391358A (en) 1980-11-05 1983-07-05 Haeger Virgil J Hardware press and punch apparatus
US4372202A (en) * 1980-11-20 1983-02-08 Ross Operating Valve Company Emergency brake for presses
GB2096844A (en) 1981-04-10 1982-10-20 Beswick Kenneth E Ltd Electrical fuse
US4418597A (en) 1982-01-18 1983-12-06 Emerson Electric Co. Anti-kickback device
US4470046A (en) 1982-02-02 1984-09-04 E. I. Du Pont De Nemours And Company Capacitively coupled machine tool safety system having a digital quantizer
US4532501A (en) 1982-02-02 1985-07-30 E. I. Du Pont De Nemours And Company Capacitively coupled machine tool safety system
JPS59500348A (en) 1982-03-06 1984-03-01 ガウス,ハリ− Safety devices for appliances powered by general-purpose power sources
US4512224A (en) 1982-04-01 1985-04-23 Kabushiki Kaisha Kindai Slitter device
US4510489A (en) 1982-04-29 1985-04-09 Allied Corporation Surveillance system having magnetomechanical marker
US4518043A (en) 1982-08-09 1985-05-21 Jack F. Anderson Tool apparatus with control to move tool when object approached
DE3235194A1 (en) * 1982-09-23 1984-03-29 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND DEVICE FOR SECURING TOOLS
US4466233A (en) 1982-09-30 1984-08-21 Thesman Industries, Inc. Mower drive assembly
SE436713B (en) * 1983-05-20 1985-01-21 Electrolux Ab SENSORS FOR DISPLACING AUTOMATIC PROTECTIVE STOP DEVICES IN HAND MANOVERED, MOTOR POWER TOOLS
DE3322907A1 (en) 1983-06-25 1985-01-03 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt GEAR AND METHOD FOR THE PRODUCTION THEREOF
DK149179C (en) 1983-06-27 1986-08-25 Herluf Kallesoee CIRCUIT WITH LOCKABLE DRIVE CLUTCH
US4576073A (en) * 1983-07-01 1986-03-18 Stinson Robert J Saw blade guard
FR2551928B1 (en) 1983-09-14 1986-05-23 Sames Sa PROTECTION DEVICE FOR LOW-VOLTAGE CIRCUITS OF ELECTROSTATIC PROJECTION EQUIPMENT, AND PROJECTION EQUIPMENT INCORPORATING THIS DEVICE
US4532844A (en) 1983-09-16 1985-08-06 Chang Jen W Device for supporting a circular saw of sawing machine
EP0139581B1 (en) 1983-10-20 1988-07-20 Cehess Technologies Fuse devices particularly suitable for being mounted on printed-circuit cards
US4675664A (en) 1983-10-26 1987-06-23 Hydro-Quebec Alarm system and method for detecting proximity of an object to electrical power lines
FR2570017A2 (en) 1983-12-20 1986-03-14 Tony Stempniakowski Electronic safety contact detector
FR2556643A1 (en) 1983-12-20 1985-06-21 Stempniakowski Tonny Safety electronic contact detector
US4621300A (en) 1984-07-05 1986-11-04 Summerer Ray E Safety monitoring system for punch press operators
DE3427733A1 (en) 1984-07-27 1986-01-30 Karl M. Reich Maschinenfabrik GmbH, 7440 Nürtingen Circular saw with a run-down brake
US4637289A (en) 1984-11-02 1987-01-20 Whirlwind, Inc. Work presence controller
US4566512A (en) 1985-03-11 1986-01-28 Wilson Basil L R Router attachment
US4599927A (en) 1985-05-08 1986-07-15 Emerson Electric Co. Tool elevation and bevel adjustment for direct drive power tool
SE457627B (en) 1985-05-31 1989-01-16 Electrolux Ab MOTORSAAGSBROMS
US4625604A (en) 1985-06-10 1986-12-02 Hirsh Company Splitter and blade guard assembly
US4606251A (en) 1985-07-31 1986-08-19 Cae Machinery Ltd. Adjustable sawdust shear for bandmills
US4657428A (en) 1985-09-10 1987-04-14 Wiley Edward R Quick change mechanism for circular saw blades and other spinning disc devices
US4615247A (en) 1985-09-13 1986-10-07 Shopsmith, Inc. Anti-kickback system
CN86107973B (en) 1985-12-03 1988-08-03 三菱电机株式会社 Control device for sewing machine
US4756220A (en) 1985-12-18 1988-07-12 Engineering Consulting Services Safety mechanism for saws
US4679719A (en) 1985-12-27 1987-07-14 Senco Products, Inc. Electronic control for a pneumatic fastener driving tool
US4637188A (en) * 1986-02-28 1987-01-20 Owens-Corning Fiberglas Corporation Splicing means for faced insulation batts
US4751603A (en) 1986-07-07 1988-06-14 Simatelex Manufactory Company Limited Safety devices
DK552186A (en) 1986-11-19 1988-05-20 Smidth & Co As F L METHOD AND APPARATUS FOR DETECTING RETURN RADIATION IN AN ELECTROFILTER WITH GENERAL OR INTERMITTING POWER SUPPLY
FR2608781B1 (en) 1986-12-17 1989-03-03 Thomas Jean PROXIMITY DETECTOR BETWEEN A METAL GROUND AND AN ELECTRICALLY VOLTAGE ELEMENT
JP2717534B2 (en) * 1986-12-29 1998-02-18 株式会社マキタ Safety cover device for circular saw machine
US4792965A (en) 1987-01-29 1988-12-20 Morgan Harvey L Oscillator system for detecting a selected one of a plurality of tuned circuits
US4896607A (en) * 1987-10-01 1990-01-30 Hall James C Boosted kinetic energy penetrator fuze
US4875398A (en) 1988-01-15 1989-10-24 Atlantic Richfield Company Retractable dust control hood and guard for rotary table saw
US4864455A (en) 1988-02-16 1989-09-05 Mitsubishi Denki Kabushiki Kaisha Arrester disconnecting device
US4934233B1 (en) 1988-06-29 1994-08-23 Emerson Electric Co Compound miter saw
US5119555A (en) 1988-09-19 1992-06-09 Tini Alloy Company Non-explosive separation device
US4965909A (en) 1988-10-04 1990-10-30 Mccullough Timothy J Safety control for power operated equipment
DE68922175T2 (en) 1988-10-04 1995-08-10 Giorgio Grasselli Safety system for devices with motor drive.
US4906962A (en) * 1989-01-05 1990-03-06 Babcock, Inc. Fuse wire switch
JP2573057B2 (en) 1989-07-07 1997-01-16 株式会社マキタ Tabletop circular saw machine
EP0398728B1 (en) 1989-05-19 1994-07-13 Murata Manufacturing Co., Ltd. Ceramic resonance type electrostatic sensor apparatus
US4937554A (en) 1989-05-22 1990-06-26 Paccar Inc. Electronic brake monitoring system and method
US5052255A (en) 1989-06-12 1991-10-01 Gaines Robert C Speed brake
US5149176A (en) 1989-08-07 1992-09-22 Tekonsha Engineering Company Controller for electric braking systems
US4975798A (en) 1989-09-05 1990-12-04 Motorola Inc. Voltage-clamped integrated circuit
DE3930980A1 (en) * 1989-09-16 1991-03-28 Autoflug Gmbh RELEASE DEVICE FOR A MECHANICAL ENERGY STORAGE
US5201684A (en) 1989-10-10 1993-04-13 Townsend Engineering Company Safety means for powered machinery
US5025175A (en) 1989-10-10 1991-06-18 Townsend Engineering Company Safety means for powered machinery
US5083973A (en) * 1989-10-26 1992-01-28 Townsend Engineering Company Safety method and means for stopping meat skinning machines
US5046426A (en) 1989-10-31 1991-09-10 The Boeing Company Sequential structural separation system
US5082316A (en) * 1989-12-01 1992-01-21 The Cookson Company Release mechanism and method with alarm circuit
IT1239202B (en) * 1990-03-07 1993-09-28 Giorgio Grasselli IMPROVEMENTS TO THE CONTROL AND SAFETY SYSTEM FOR ELECTRICALLY OPERATED DEVICES.
US5086890A (en) * 1990-03-14 1992-02-11 Briggs & Stratton Corporation Engine braking system
US5212621A (en) 1990-04-26 1993-05-18 Cnc Retrofits, Inc. Proximity switched machine control method and apparatus
US5081406A (en) * 1990-06-26 1992-01-14 Saf-T-Margin, Inc. Proximity responsive capacitance sensitive method, system, and associated electrical circuitry for use in controlling mechanical and electro-mechanical equipment
US5331875A (en) 1990-06-28 1994-07-26 Ryobi America Corporation Anti-kick forward device for power driven saws
US5257570A (en) 1990-07-16 1993-11-02 Ryobi Limited Circular saw unit
US5074047A (en) 1990-09-10 1991-12-24 Tuscarora Designs, Inc. Anti-pinch device for chain saw
US5122091A (en) 1990-09-20 1992-06-16 Townsend Engineering Company Safety mechanism for meat skinning machines
JPH0811327B2 (en) * 1990-11-16 1996-02-07 三星電子株式会社 Drive safety device for tabletop cutting machine
US5320382A (en) 1991-05-31 1994-06-14 Gt-Devices Pulsed pressure source particularly adapted for vehicle occupant air bag restraint systems
US5174349A (en) 1991-08-09 1992-12-29 Skil Corporation Power table saw assemblies having integral spare part storage
US5218189A (en) 1991-09-09 1993-06-08 Checkpoint Systems, Inc. Binary encoded multiple frequency rf indentification tag
US6427570B1 (en) 1991-10-09 2002-08-06 Black & Decker Inc. Dust collection system for compound miter saw
US5199343A (en) 1991-10-09 1993-04-06 Black & Decker Inc. Power saw with louvered blade guard
US5819619A (en) 1991-10-09 1998-10-13 Black & Decker Inc. Dust collection system for compound miter saw
DE4235161A1 (en) 1991-11-25 1993-05-27 Intecma Konstruktions Und Hand DEVICE FOR SECURING A LIMITED WORKING AREA
US5265510A (en) 1992-01-13 1993-11-30 Hoyer Ellefsen Sigurd Material working and tool control system
KR940005058B1 (en) 1992-02-14 1994-06-10 삼성전자 주식회사 Out-put circuit and method of microwave oven
US5207253A (en) 1992-03-20 1993-05-04 Ryobi Motor Products, Corp Plunge router
US5272946A (en) 1992-03-20 1993-12-28 Food Industry Equipment International, Inc. Safety control system for power operated equipment
US5276431A (en) 1992-04-29 1994-01-04 Checkpoint Systems, Inc. Security tag for use with article having inherent capacitance
US5245879A (en) 1992-05-07 1993-09-21 Mckeon Rolling Steel Door Co., Inc. Fail-safe fire door release mechanism having automatic reset
US5285708A (en) * 1992-05-18 1994-02-15 Porter-Cable Corporation Miter saw alignment system
JP2613156B2 (en) * 1992-08-27 1997-05-21 株式会社マキタ Tabletop circular saw machine
US5239978A (en) 1992-09-30 1993-08-31 The United States Of America As Represented By The Secretary Of The Navy Oscillatory abrasive cable power saw
US5231906A (en) 1992-09-30 1993-08-03 Julien Kogej Table saw guard
US5353670A (en) 1993-03-15 1994-10-11 Emerson Electric Co. Independently and jointly operable radial saw guards
JP3163425B2 (en) * 1993-03-31 2001-05-08 日本信号株式会社 Motor rotation presence / absence determination circuit and motor rotation stop confirmation device using the same
US5587618A (en) 1993-04-15 1996-12-24 Hathaway; George D. Direct current homopolar machine
CA2095398C (en) 1993-05-03 2001-06-12 Kalyan Ghosh System for detecting human presence in hazardous situations
US5411221A (en) 1993-05-24 1995-05-02 Allied-Signal Inc. Seat belt retractor with tension relief mechanism
US5321230A (en) 1993-06-02 1994-06-14 Shanklin Corporation Seal wire heat control system
US5401928A (en) * 1993-06-07 1995-03-28 Kelley; William J. Safety control for power tool
GB9314165D0 (en) 1993-07-08 1993-08-18 Black & Decker Inc Chop/table saw with parallelogram arrangement
GB9314163D0 (en) 1993-07-08 1993-08-18 Black & Decker Inc Chop/table saw arrangement
IT231035Y1 (en) 1993-07-29 1999-07-12 Giorgio Grasselli SAFETY SYSTEM FOR THE SAFETY OF THE OPERATOR FOR MACHINES WITH ELECTRIC MOTOR.
DE4326313A1 (en) 1993-08-05 1995-02-09 Rolf Neusel Method and arrangement for the electrical release of mechanically stored power for unlocking
US5453903A (en) 1993-08-18 1995-09-26 Abb Power T&D Company, Inc. Sub-cycle digital distance relay
DE4330850A1 (en) * 1993-09-11 1995-03-16 Stihl Maschf Andreas Mechanical two-circuit braking system
DK0648703T3 (en) 1993-10-18 1999-09-13 Inventio Ag Safety brake for a lift cabin
US5377571A (en) 1993-10-19 1995-01-03 Josephs; Harold Safety guard system for band saws and similar equipment
FR2713372B1 (en) 1993-12-01 1996-03-01 Neopost Ind Thermal protection device for secure electronic device, in particular postage meter.
US5392568A (en) 1993-12-22 1995-02-28 Black & Decker Inc. Random orbit sander having braking member
US5791224A (en) 1994-03-24 1998-08-11 Ryobi Limited Circular sawing machine
US5471888A (en) 1994-04-12 1995-12-05 G & H Technology, Inc. Motion initiator
JP3272535B2 (en) 1994-04-18 2002-04-08 富士通株式会社 Power supply circuit
US6418829B1 (en) 1994-05-06 2002-07-16 Thomas Stanley Pilchowski Power tool safety device
US5852951A (en) 1994-10-04 1998-12-29 Briggs & Stratton Corporation Composite gear and method of making same
CA2179524A1 (en) 1994-10-21 1996-05-02 Charles J. Moorman Pneumatic fastener driving tool and an electronic control system therefor
US5534836A (en) 1994-11-28 1996-07-09 Sensormatic Electronics Corporation Deactivator for theft-deterrent markers
GB9425391D0 (en) 1994-12-12 1995-02-15 Black & Decker Inc Bevel table saw adjustment
US5623860A (en) 1994-12-15 1997-04-29 Emerson Electric Co. Adjustable/bypassable bevel stop for compound miter saw
US5503059A (en) 1995-01-03 1996-04-02 Pacholok; David R. Vehicle disabling device and method
US6479958B1 (en) 1995-01-06 2002-11-12 Black & Decker Inc. Anti-kickback and breakthrough torque control for power tool
US5667152A (en) 1995-05-30 1997-09-16 Mooring; Jonathan E. Safety system for a wood chipper
US5755148A (en) 1995-07-07 1998-05-26 Black & Decker Inc. Adjustable fence for a compound miter saw
US5791223A (en) 1995-07-13 1998-08-11 Midwest Rail Inc. Angled power saw for railroad rails
US5937720A (en) 1995-08-10 1999-08-17 Milwaukee Electric Tool Corporation Lower blade guard actuating mechanism for a slide compound miter saw
JP3263284B2 (en) 1995-09-04 2002-03-04 株式会社マキタ Electric chainsaw
US5771742A (en) 1995-09-11 1998-06-30 Tini Alloy Company Release device for retaining pin
US5606889A (en) 1995-09-19 1997-03-04 G & H Technology, Inc. Reusable initiator for use in triggering high-load actuators
US5942975A (en) 1995-09-25 1999-08-24 Soerensen; Joern Method and a device for sensing the distance between a first object and a second object
US5722308A (en) 1995-10-10 1998-03-03 Black & Decker Inc. Movable fence for a machine tool
US5724875A (en) 1995-10-10 1998-03-10 Black & Decker Inc. Guard and control apparatuses for sliding compound miter saw
US5700165A (en) 1995-12-11 1997-12-23 General Motors Corporation Fused high ampacity electrical quick disconnect
US5730165A (en) 1995-12-26 1998-03-24 Philipp; Harald Time domain capacitive field detector
US5671633A (en) 1996-02-12 1997-09-30 Wagner Electronic Products, Inc. Plate array for moisture sensor with reduced sensitivity to loading effects
US5921367A (en) 1996-03-01 1999-07-13 Mitsubishi Cable Industries, Ltd. Safety device for a kneading machine using rolls
USD445119S1 (en) 1998-11-20 2001-07-17 Black & Decker Inc. Table saw with telescoping rails
US5695306A (en) 1996-05-08 1997-12-09 Lockheed Martin Corp. Fusible member connection apparatus and method
US20010032534A1 (en) 1996-06-17 2001-10-25 Warren A. Ceroll Table saw with switched reluctance motor
US5875698A (en) 1996-06-17 1999-03-02 Black & Decker Inc. Blade and motor carrier with height/angle adjustment mechanism
JP2963053B2 (en) 1996-07-12 1999-10-12 津根精機株式会社 Circular saw cutting machine
US5782001A (en) 1996-08-27 1998-07-21 Gray; John W. Circular saw guard hold and release device
US5791441A (en) 1996-11-25 1998-08-11 Matos; Anthony Brake failure monitoring system
US6148504A (en) 1996-12-23 2000-11-21 Eastlex Machine Corporation Operator safety device for attaching apparatus
US6037729A (en) * 1997-02-06 2000-03-14 Black & Decker Inc. Apparatus and method for braking electric motors
US5950514A (en) 1997-02-28 1999-09-14 Benedict Engineering Company Miter saw blade guards
KR100256609B1 (en) 1997-06-03 2000-05-15 윤종용 Overvoltage and surge protection circuit in a hard disk drive
US6052884A (en) 1997-06-30 2000-04-25 National Railroad Passenger Corporation Conveyorized system for rebuilding tread and disc brake actuator units for use in railway cars
US5861809A (en) 1997-09-22 1999-01-19 Checkpoint Systems, Inc. Deactivateable resonant circuit
US5933308A (en) 1997-11-19 1999-08-03 Square D Company Arcing fault protection system for a switchgear enclosure
US5963173A (en) 1997-12-05 1999-10-05 Sensormatic Electronics Corporation Antenna and transmitter arrangement for EAS system
JP3356043B2 (en) 1997-12-26 2002-12-09 三菱電機株式会社 Distance detector for laser processing equipment
TW467783B (en) 1998-02-13 2001-12-11 Black & Amp Decker Inc Table saw
US6013592A (en) * 1998-03-27 2000-01-11 Siemens Westinghouse Power Corporation High temperature insulation for ceramic matrix composites
WO1999052197A1 (en) 1998-04-08 1999-10-14 Thermo Black Clawson Inc. Integrated paper pulp and process machinery having integrated drive and control and methods of use thereof
US6330848B1 (en) 1998-05-30 2001-12-18 Kanefusa Kabushiki Kaisha Circular saw cutting machine
JP4178658B2 (en) 1998-06-30 2008-11-12 株式会社デンソー Capacitive physical quantity detector
US6405624B2 (en) 1998-07-08 2002-06-18 Delta International Machinery Corp. Splitter and cutting member guard assembly
FR2781921B1 (en) * 1998-07-29 2000-09-15 Schneider Electric Ind Sa CIRCUIT BREAKER WITH ELECTRODYNAMIC HOLD AND HIGH BREAKING POWER
CA2276499C (en) * 1998-08-19 2004-10-26 Sommerville Design & Manufacturing Inc. Circular saw splitter device with integral anti-kick back
US6216575B1 (en) 1999-02-12 2001-04-17 One World Technologies Inc. Table saw throat plate with blade height scale
US6095092A (en) 1999-02-18 2000-08-01 Chou; Wayne W. Apparatus and method for confining an animal within a boundary
US6796208B1 (en) 1999-02-19 2004-09-28 Matthew Roy Jorgensen Sawdust collection hood for table saw
JP2002538042A (en) 1999-03-02 2002-11-12 テクストロン インコーポレイテッド Golf car having disc brake and one-point latch brake
JP3972064B2 (en) 1999-04-02 2007-09-05 独立行政法人労働安全衛生総合研究所 Sensor device and safety device
USD422290S (en) 1999-04-13 2000-04-04 Black & Decker Inc. Table saw
JP3613066B2 (en) 1999-04-15 2005-01-26 ソニー株式会社 Drive device using shape memory alloy
ES2152184B1 (en) 1999-04-26 2001-08-16 Sanchez Jose Maria Martinez PREVENTIVE APPLIANCE FOR LABOR, HOME AND CIRCULATION ACCIDENTS.
US6536536B1 (en) * 1999-04-29 2003-03-25 Stephen F. Gass Power tools
US6420814B1 (en) 1999-05-18 2002-07-16 Stephen M. Bobbio Spiral wound transducer
TW494057B (en) 1999-06-09 2002-07-11 Sb Power Tool Co Table saw and rip fence for use with a table saw
US6530303B1 (en) 1999-06-10 2003-03-11 Black & Decker Inc. Table saw
US6430007B1 (en) 1999-07-15 2002-08-06 International Business Machines Corporation Air-activated spindle/disk pack locking system
US6119984A (en) 1999-07-16 2000-09-19 Swales Aerospace Low shock anti-friction release device
US6133818A (en) 1999-08-11 2000-10-17 Space Systems/Loral, Inc. Redundant fuse wire release device
US7290472B2 (en) 2002-01-14 2007-11-06 Sd3, Llc Miter saw with improved safety system
US6945148B2 (en) 2000-09-29 2005-09-20 Sd3, Llc Miter saw with improved safety system
US7353737B2 (en) 2001-08-13 2008-04-08 Sd3, Llc Miter saw with improved safety system
US6857345B2 (en) * 2000-08-14 2005-02-22 Sd3, Llc Brake positioning system
US8459157B2 (en) 2003-12-31 2013-06-11 Sd3, Llc Brake cartridges and mounting systems for brake cartridges
US7536238B2 (en) 2003-12-31 2009-05-19 Sd3, Llc Detection systems for power equipment
US6945149B2 (en) 2001-07-25 2005-09-20 Sd3, Llc Actuators for use in fast-acting safety systems
US6920814B2 (en) 2000-08-14 2005-07-26 Sd3, Llc Cutting tool safety system
US20050139459A1 (en) 2003-12-31 2005-06-30 Gass Stephen F. Switch box for power tools with safety systems
US20050139056A1 (en) 2003-12-31 2005-06-30 Gass Stephen F. Fences for table saws
US7707920B2 (en) 2003-12-31 2010-05-04 Sd3, Llc Table saws with safety systems
US7827890B2 (en) 2004-01-29 2010-11-09 Sd3, Llc Table saws with safety systems and systems to mount and index attachments
US6366099B1 (en) 1999-12-21 2002-04-02 Conrad Technologies, Inc. Differential capacitance sampler
US6578856B2 (en) 2000-01-10 2003-06-17 W. Scott Kahle Collapsible portable saw stand
US6352137B1 (en) * 2000-03-22 2002-03-05 Indian Head Industries, Inc. Brake monitoring system
US6492802B1 (en) 2000-07-14 2002-12-10 Ge Medical Technology Services, Inc. Apparatus and method for detecting defects in a multi-channel scan driver
US7168502B2 (en) 2000-08-17 2007-01-30 Hilti Aktiengesellschaft Electric power tool with locking mechanism
US6826988B2 (en) 2000-09-29 2004-12-07 Sd3, Llc Miter saw with improved safety system
US6601493B1 (en) 2000-10-19 2003-08-05 Grizzly Industrial, Inc. Band saw fence systems and methods
US6578460B2 (en) 2000-12-26 2003-06-17 James A. Sartori Blade guard assembly
US6546835B2 (en) 2001-01-25 2003-04-15 Tian Wang Wang Saw blade adjusting device for table saw
US6592067B2 (en) 2001-02-09 2003-07-15 Georgia-Pacific Corporation Minimizing paper waste carousel-style dispenser apparatus, sensor, method and system with proximity sensor
EP1365879A1 (en) 2001-02-15 2003-12-03 HTC Products, Inc. Fence with a fine adjustment mechanism
US6736042B2 (en) 2001-03-01 2004-05-18 Porter-Cable Corporation Work piece guiding system for a table saw
US6502493B1 (en) * 2001-06-27 2003-01-07 Emerson Electric Co. Table saw blade heel adjuster
AU2002326360A1 (en) 2001-07-11 2003-01-29 Black And Decker Inc. Power tool safety mechanisms
US20030037655A1 (en) * 2001-08-21 2003-02-27 Chang Chin-Chin Catch structure of rotary cover plate of circular sawing machine
US6832466B2 (en) 2001-09-19 2004-12-21 Cross Tech Manufacturing, Inc. Brush cutter emergency stop system
US6644157B2 (en) 2001-10-11 2003-11-11 Durq Machinery Corp. Table saw having adjustable worktable
US6640683B2 (en) 2001-10-25 2003-11-04 P&F Brother Industrial Corporation Apparatus for clamping a workpiece-blocking plate of a table saw
US6471106B1 (en) 2001-11-15 2002-10-29 Intellectual Property Llc Apparatus and method for restricting the discharge of fasteners from a tool
US6659233B2 (en) 2001-12-04 2003-12-09 Hydro-Aire, Inc. System and method for aircraft braking system usage monitoring
US6722242B2 (en) 2001-12-05 2004-04-20 Bor Yann Chuang Transmission device of a table saw
US6856125B2 (en) 2001-12-12 2005-02-15 Lifescan, Inc. Biosensor apparatus and method with sample type and volume detection
USD469354S1 (en) * 2001-12-14 2003-01-28 Black & Decker Inc. Shrink ring protector for circular saw blades
US6619348B2 (en) 2002-01-25 2003-09-16 Tian Wang Wang Adjustable and extendible platform for working table
US6742430B2 (en) 2002-03-18 2004-06-01 Rexon Co., Ltd. Circular sawing machine having a hidden-type infrared guide device
US6607015B1 (en) 2002-05-09 2003-08-19 Rexon Industrial Corp., Ltd. Foldable worktable
US6840144B2 (en) * 2002-07-17 2005-01-11 Durq Machinery Corp. Quick-detachable blade guard mounting structure
US6874399B2 (en) 2002-09-18 2005-04-05 Wy Peron Lee Cutting machine with built-in miter cutting feature
US20040060404A1 (en) 2002-09-30 2004-04-01 Emerson Electric Co. Breakaway hub for saw
CA2448479C (en) 2002-11-12 2009-05-05 Makita Corporation Power tools
US7698975B2 (en) 2003-01-31 2010-04-20 Techtronic Power Tools Technology Limited Table saw with cutting tool retraction system
US20040194594A1 (en) 2003-01-31 2004-10-07 Dils Jeffrey M. Machine safety protection system
US6874397B2 (en) 2003-05-08 2005-04-05 P&F Brother Industrial Corporation Circular cutter with a friction-provided plate
US6922153B2 (en) 2003-05-13 2005-07-26 Credo Technology Corporation Safety detection and protection system for power tools
JP2005088248A (en) * 2003-09-12 2005-04-07 Makita Corp Power tool

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371736A (en) 1965-12-08 1968-03-05 Fred I. Lewis Safety belt system
US3889567A (en) 1971-07-06 1975-06-17 Amada Co Ltd Horizontal band saw machine
US3783709A (en) 1972-05-26 1974-01-08 R Scott Machine guard
US3840851A (en) 1972-06-30 1974-10-08 Emihus Microcomponents Ltd Vehicle signal lighting systems
US3805658A (en) 1972-07-24 1974-04-23 Whitney Corp W Punch press with safety door
US3785230A (en) 1972-11-08 1974-01-15 Lokey Tool Inc Automatic safety brake for rotary blade equipment
US3805639A (en) 1972-11-21 1974-04-23 Best & Donovan Safety guard for a breaking saw
US3858095A (en) 1973-08-28 1974-12-31 Riedl Ohg Adolf Protective circuit arrangement for band cutter machines
US4029159A (en) 1974-06-05 1977-06-14 Svend Nymann Brake control for rotary electric tools
US4117752A (en) * 1976-05-25 1978-10-03 Kichi Yoneda Emergency system for stopping a band blade of a cutting apparatus
US4048886A (en) 1976-09-16 1977-09-20 Xenex Corporation Brake monitor with self-checking
US4453112A (en) 1981-03-25 1984-06-05 Saint-Gobain Vitrage Electronic safety device for controlling the drive motor attached to a sliding window
US4557168A (en) 1982-03-30 1985-12-10 Amada Company, Limited Method and apparatus for detecting the cutting resistance in bandsaw machines
US4653189A (en) 1984-06-19 1987-03-31 Ab Electrolux Arrangement in a motor saw
US4644832A (en) 1985-03-21 1987-02-24 Smith H Reid Method for monitoring saw blade stability and controlling work feed rate on circular saw and bandsaw machines
US5094000A (en) 1990-03-02 1992-03-10 Black & Decker Inc. Hand-held power tool with a rotary driven tool
US5572916A (en) 1994-10-20 1996-11-12 Hitachi Koki Haramachi Co., Ltd. Desk-top cutting machine
DE19609771A1 (en) 1996-03-13 1998-06-04 Jan Nieberle Active safety device for table-mounted circular saws
US6170373B1 (en) * 1998-01-12 2001-01-09 Makita Corporation Circular saw having movement prevention means
US5989116A (en) 1998-02-03 1999-11-23 Swift & Company, Inc. High-speed bone-in loin slicer
US5992276A (en) 1998-04-09 1999-11-30 Sullivan; David R. Safety guard for lathes
US6167324A (en) * 1998-07-14 2000-12-26 American Saw & Manufacturing Company Machine tool monitoring system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056351A1 (en) * 1999-10-01 2011-03-10 Gass Stephen F Table saw with improved safety system
US8291797B2 (en) * 1999-10-01 2012-10-23 Sd3, Llc Table saw with improved safety system
US9724840B2 (en) 1999-10-01 2017-08-08 Sd3, Llc Safety systems for power equipment
US9927796B2 (en) 2001-05-17 2018-03-27 Sawstop Holding Llc Band saw with improved safety system
US20140083269A1 (en) * 2001-07-11 2014-03-27 Black & Decker Inc. Power tool safety mechanisms
US9267644B2 (en) * 2001-07-11 2016-02-23 Black & Decker Inc. Power tool safety mechanisms
US10632642B2 (en) 2008-11-19 2020-04-28 Power Tool Institute Table saw with table sensor for sensing characteristic of workpiece
US11085582B2 (en) 2017-08-30 2021-08-10 Milwaukee Electric Tool Corporation Power tool having object detection
US11674642B2 (en) 2017-08-30 2023-06-13 Milwaukee Electric Tool Corporation Power tool having object detection

Also Published As

Publication number Publication date
US20020017178A1 (en) 2002-02-14
US7681479B2 (en) 2010-03-23
US20100251866A1 (en) 2010-10-07
US20070240786A1 (en) 2007-10-18
US20120125485A1 (en) 2012-05-24
US7225712B2 (en) 2007-06-05
US8371196B2 (en) 2013-02-12

Similar Documents

Publication Publication Date Title
US8051759B2 (en) Motion detecting system for use in a safety system for power equipment
US6997090B2 (en) Safety systems for power equipment
US7228772B2 (en) Brake positioning system
US7377199B2 (en) Contact detection system for power equipment
US7359174B2 (en) Motion detecting system for use in a safety system for power equipment
US8413559B2 (en) Apparatus and method for detecting dangerous conditions in power equipment
EP1234285B1 (en) Table saw safety system
US8079292B2 (en) Detection system for power equipment
US7421315B2 (en) Detection system for power equipment
US7231856B2 (en) Apparatus and method for detecting dangerous conditions in power equipment
US9724840B2 (en) Safety systems for power equipment
US8006595B2 (en) Apparatus and method for detecting dangerous conditions in power equipment
US20100083804A1 (en) Discrete proximity detection system
US20100180741A1 (en) Apparatus and method for detecting dangerous conditions in power equipment
NZ530888A (en) Machine safety protection system
US20140290455A1 (en) Apparatus for detecting dangerous conditions in power equipment
AU2007201914A1 (en) Safety systems for power equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: SD3, LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHAMBERLAIN, ROBERT L.;REEL/FRAME:024743/0831

Effective date: 20001205

Owner name: SD3, LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JENSEN, JOEL E.;REEL/FRAME:024743/0683

Effective date: 20001221

Owner name: SD3, LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GASS, STEPHEN F.;REEL/FRAME:024743/0905

Effective date: 20001221

Owner name: SD3, LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHRAMM, BENJAMIN B.;REEL/FRAME:024743/0698

Effective date: 20010112

Owner name: SD3, LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FULMER, J. DAVID;REEL/FRAME:024743/0844

Effective date: 20001221

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: SAWSTOP HOLDING LLC, OREGON

Free format text: CHANGE OF NAME;ASSIGNOR:SD3, LLC;REEL/FRAME:044367/0140

Effective date: 20170703

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20231108