Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS8067054 B2
Type de publicationOctroi
Numéro de demandeUS 11/697,079
Date de publication29 nov. 2011
Date de dépôt5 avr. 2007
Date de priorité5 avr. 2007
Autre référence de publicationEP2155280A2, EP2155280B1, EP2450069A1, US20080249615, WO2008124519A2, WO2008124519A3
Numéro de publication11697079, 697079, US 8067054 B2, US 8067054B2, US-B2-8067054, US8067054 B2, US8067054B2
InventeursJan Weber
Cessionnaire d'origineBoston Scientific Scimed, Inc.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Stents with ceramic drug reservoir layer and methods of making and using the same
US 8067054 B2
Résumé
A method of making a drug eluting stent comprises forming a porous stent body surface layer by ion implantation, applying a layer of ceramic particles on the porous layer and compressing the layer of ceramic particles. The layer of ceramic particles can be compressed to successively higher densities. Drugs can be loaded into the layer of ceramic materials at a relatively low density before the layer of ceramic materials is compressed to a higher density to achieve a desired low drug release rate.
Images(7)
Previous page
Next page
Revendications(23)
1. A method of making a stent, the method comprising steps of:
implanting at least one type of ion into a metallic stent body material in at least one surface portion of the stent body material to produce at least one porous layer at the surface portion, the at least one porous layer comprising a plurality of open pores with a first average size for at least 50 volume percent of the open pores;
depositing a layer of ceramic particles on the porous layer, the ceramic particles having a second average size for at least 50 volume percent of the ceramic particles, the second average size being smaller than one tenth of the first average size; and
compressing the layer of ceramic particles to form a plurality of protuberances and/or recesses on a surface of the layer of ceramic particles, wherein compressing the layer of ceramic particles comprises compressing using a solid surface having a plurality of protuberances and/ or recesses.
2. The method of claim 1, wherein the step of depositing a layer of ceramic particles comprises applying at least one suspension of the ceramic particles and drying the applied suspension.
3. The method of claim 2, wherein the step of depositing a layer of ceramic particles comprises successively applying a plurality of stacked coatings of ceramic particles, wherein applying each of the plurality of the coatings comprises
applying at least one suspension of ceramic particles and drying the applied suspension.
4. The method of claim 1, wherein the step of implanting at least one type of ion comprises implanting ions of at least one element with a sufficiently high flux to produce concentrations of the element in the stent body material in excess of a solubility limit of the element in the stent body material.
5. The method of claim 1, wherein the step of implanting at least one type of ions comprises implanting at least one of argon, helium, xenon, oxygen and nitrogen into the stent body material.
6. The method of claim 5, wherein the step of implanting at least one type of ions comprises implanting at least argon into a stainless steel portion of the stent body material.
7. The method of claim 1, wherein the step of implanting at least one type of ions comprises implanting ions of a first type to produce a porous layer, and implanting ions of a second type to produce a porous structure within the porous layer.
8. The method of claim 7, wherein the step of implanting ions of a first type comprises implanting ions of the first type to produce a first plurality of open pores with a first average pore size for at least 50 volume percent of the first plurality of open pores, and implanting ions of a second type comprises implanting ions of the second type to produce a second plurality of open pores with a second average pore size for at least 50 volume percent of the second plurality of open pores.
9. The method of claim 1, further comprising loading at least one drug into the layer of ceramic particles.
10. The method of claim 9, wherein the step of compressing the layer of ceramic particles comprises compressing the layer to a first density and further compressing the layer to a second density, and wherein loading at least one drug comprises loading the drug into the layer while the layer is at the first density.
11. The method of claim 1, wherein the step of depositing a layer of ceramic particles on the porous layer comprises depositing the layer of ceramic particles on an abluminal surface of a tubular portion of the stent body material, the method further comprising supporting an adluminal surface portion of the tubular portion.
12. The method of claim 11, wherein the step of pressing the layer of ceramic particles with a solid surface comprises pressing the layer with a cylindrical arch section of a solid surface.
13. The method of claim 9, wherein the step of depositing a layer of ceramic particles comprises applying at least one suspension of the ceramic particles and drying the applied suspension, and wherein loading at least one drug into the layer of ceramic particles comprises incorporating the drug in the suspension.
14. The method claim 1, further comprising creating an opening through the metallic stent body material and the layer of ceramic particles by laser ablation after the implanting, depositing and compressing steps.
15. A method of making a stent, the method comprising steps of:
depositing a layer of ceramic particles on at least one surface portion of a stent body material;
compressing the layer of ceramic particles to a first density;
dispersing at least one drug into the layer of ceramic particles while the layer of ceramic particles is at the first density; and
compressing the layer of ceramic particle to a second density that is higher than the first density.
16. The method of claim 15, further comprising forming a porous surface layer on the at least one surface portion of the stent body material.
17. The method of claim 15, wherein the step of forming a porous surface layer comprises forming the porous surface layer by ion implantation.
18. A method of making a stent, the method comprising:
implanting at least one type of ions into a metallic stent body material in at least one surface portion of the stent body material to produce at least one porous layer at the surface portion, the at least one porous layer comprising a plurality of open pores with a first average size for at least 50 volume percent of the open pores;
depositing a layer of particles on the porous layer, the particles having a second average size for at least 50 volume percent of the particles, the second average size being smaller than one tenth of the first average size; and
compressing the layer of particles to form a plurality of protuberances and/or recesses on a surface of the layer of particles, wherein compressing the layer of particles comprises compressing using a solid surface having a plurality of protuberances and/or recesses.
19. The method of claim 18, wherein the step of depositing a layer of particles on the porous layer comprises depositing at least one type of metal, polymeric and ceramic particles.
20. A method of making a stent, the method comprising steps of:
implanting at least one type of ions into a metallic stent body material in at least one surface portion of the stent body material to produce at least one porous layer at the surface portion;
depositing a layer of particles on the at least one porous layer;
compressing the layer of particles to a first density;
dispersing at least one drug into the layer of particles while the layer of particles is at the first density; and
compressing the layer of particle to a second density that is higher than the first density.
21. The method of claim 20, wherein depositing a layer of particles on the porous layer comprises depositing at least one type of metal, polymeric and ceramic particles.
22. The method of claim 16, wherein the porous layer comprises a plurality of open pores with a first average size for at least 50 volume percent of the open pores, and the ceramic particles have a second average size for at least 50 volume percent of the ceramic particles, the second average size being smaller than one tenth of the first average size.
23. The method of claim 20, wherein the at least one porous layer comprises a plurality of open pores with a first average size for at least 50 volume percent of the open pores, and the particles have a second average size for at least 50 volume percent of the particles, the second average size being smaller than one tenth of the first average size.
Description
TECHNICAL FIELD

This disclosure relates to stents and related methods. Specific arrangements also relate to methods and configurations of stents with drug reservoir layers that can be loaded with drugs at low temperatures.

BACKGROUND

Stents are prosthetic devices typically intraluminally placed by a catheter within a vein, artery, or other tubular body organ for treating conditions such as, occlusions, stenoses, aneurysms, dissection, or weakened, diseased, or abnormally dilated vessels or vessel walls, by expanding vessels or by reinforcing vessel walls. Stents can improve angioplasty results by preventing elastic recoil and remodeling of the vessel wall and treating dissections in blood vessel walls caused by balloon angioplasty of coronary arteries.

Stents are typically tubular and expandable from a collapsed state to an expanded state. In a typical operation to implant a stent, the stent is initially configured in the collapsed state, with a cross-sectional size sufficiently small for ease of passage to the intended site. After the stent reaches the intended site, the stent is typically deformed to increase its cross-sectional size to fully engage the stent with the surrounding tissues. The stent thereafter remains in place in the expanded state.

In some cases, stents are impregnated with drugs, i.e., therapeutic agents, to be released over time to treat various conditions. Drugs are typically dispersed in porous drug reservoir layers formed on the surfaces of metallic stent bodies. Bonding between the drug reservoir layers and the stent bodies is of significant concern as the stents typically undergo significant deformation during deployment, and detachment of the drug reservoir layers from the stent bodies would generally be undesirable.

While conventional stent technology is relatively well developed, technologies related to drug-delivering stents are still being developed.

SUMMARY OF THE DISCLOSURE

The present disclosure relates generally to methods of making stents with drug reservoir surface coating layers. In one configuration, a drug reservoir layer is made by applying a layer of ceramic particles, compressing the particles to a final density in successive stages and infusing the layer with drug between stages of compression.

A further aspect of the present disclosure relates to providing stent body having porous surface portions, and depositing a layer of ceramic particles over the porous surface portions, with a portion of the ceramic particles at least partially filling the open pores in the porous surface portions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic perspective view of an example stent constructed according to one aspect of the present disclosure.

FIG. 2 is a schematic cross-sectional view of a portion of an example stent constructed according to one aspect of the present disclosure.

FIG. 3( a) is a scanning electron micrographs of porous surface portions of stainless steel. The porous structures are produced by argon bombardment. The scale bar represents approximately 10 micrometers.

FIG. 3( b) is a magnified view (magnification=2×) of a portion of the micrograph in FIG. 3( a).

FIG. 3( c) is a magnified view (magnification=8×) of a portion of the micrograph in FIG. 3( a).

FIG. 4 is a schematic diagram showing an apparatus for compression of a layer of ceramic particles on the abluminal surface portions of a stent.

DETAILED DESCRIPTION

I. Overview

This disclosure relates to making stents having ceramic reservoir surface layers formed on stent bodies.

Stents are typically implanted intraluminally in tubular body organs, such as blood vessels, to expand or strengthen the portion of the organ where the stent is placed. Drug eluting stents typically have surface portions capable of storing drugs and releasing the drugs at particular rates. Porous ceramic drug reservoir layers coating stent bodies are desirable in many applications because of the biocompatibility exhibited by many ceramic materials. It is desirable to have ceramic drug reservoir layers that are sufficiently thick (e.g., on the order of a few micrometers or thicker) to achieve useful drug storage capacities. In some applications, it is also desirable to have substantially polymer-free ceramic drug reservoir layers.

There are a number of difficulties in making stents with ceramic drug reservoir layers. First, it is often difficult to achieve good bonding between porous ceramic layers to the underlying stent bodies, which are typically metallic. Second, it is often difficult to load drugs into a porous network structure of a ceramic drug reservoir layer. Although certain chemical processes using organic substances, such as polymers, can be used to aid the loading of drugs into the ceramic drug reservoir layers, the subsequent processes, such as heating to drive off the organic substances, are often detrimental to the drugs. Third, ceramic layers of adequate thicknesses for drug eluting stents and made by traditional methods can sometimes be prone to cracking, especially when the stent is deformed in the deployment process.

The example processes disclosed in the present disclosure overcome at least some of the above-mentioned difficulties in producing stents with ceramic drug reservoir surface layers. In one aspect of the present disclosure, porous surface portions of stent body material are produced by ion implantation, and a layer of ceramic particles are deposited on the porous surface portions and partially compressed into the open pores to form a strong bond between the layer of ceramic particles and the stent body. In another aspect of the present disclosure, Drugs are dispersed into the layer of ceramic particles after the layer of ceramic particles is compressed to a first density, and the layer is further compressed to a higher density thereafter to achieve a designed drug release rate.

II. Example Processes and Configurations

A process for making a stent with drug reservoir coating layers is now described with reference to an example stent 20 in FIGS. 1 and 2. The stent 20 is shown in an at least partially expanded state. The stent 20 has the form of a tubular member defined by a plurality of bands 22 and a plurality of connectors 24 that extend between and connect adjacent bands. During use, bands 22 are expanded from an initial, smaller cross-sectional size to a larger one to contact stent 20 against a wall of a vessel, thereby expanding or strengthening the vessel. A stent can be expanded using a variety of methods. For example, one or more balloons can be used to expand a stent. A self-expanding stent can also be compressed into a collapsed state and held in the collapsed state by a sheath prior to implantation, and unsheathed and permitted to expand at the implantation site. Examples of self-expanding stents include stents made of memory metals, which are flexible and collapsible from a predefined shape at room temperature but regains the predefined shape above certain critical temperature. Connectors 24 provide stent 20 with flexibility and conformability so that the stent can adapt to the contours of the vessel.

As shown in FIG. 2, the stent 20 comprises a stent body 26 with an adluminal (toward lumen) surface 28 and abluminal (away from lumen; or toward vessel wall) surface 30. In an example method of the present disclosure, a surface, such as the abluminal surface 30 of the stent body 26 is treated, for example, by ion implantation, to produce a layer 38 of porous structure. A coating of ceramic particles is then deposited on the layer 38 of porous structure by, for example, spraying a suspension of the particles in water or an organic solvent, to the treated surface 30 or by dipping the treated surface 30 in such a suspension. The coating is then dried. Subsequent deposition and drying steps can be carried out to stack additional coatings of ceramic particles to form a combined layer of ceramic particles on the porous layer of the stent body 26. After the deposition steps, the layer of ceramic particles is compressed by, for example, a mechanical press with a solid surface. In one aspect of the present disclosure, the layer of ceramic particles is compressed to a first density. A drug is then dispersed into the layer. The layer is then further compressed to a second density. The process in this example thus produces a ceramic layer at a relatively low density, or high porosity, for ease of drug uptake by the ceramic layer; the subsequent compression results in a denser ceramic layer, with lower porosity for adequately low rate of release of the loaded drugs. The pressure at each stage of compression can be set according to the desired drug uptake and release rates, respectively, for specific applications.

In one respect of the present disclosure, the average size of at least 50 volume percent of the ceramic particles in the ceramic layer is smaller than the average size of at least 50 volume percent of the open pores in the porous layer supporting the ceramic layer. As an example, the average size of at least 50 volume percent of the ceramic particles in the ceramic layer can be less than one tenth of the average size of at least 50 volume percent of the open pores in the porous metal layer or smaller. For example, the surface of a metallic stent body can be treated to produce a porous layer having an average pore size on the order of one-half to one micrometer for at least 50 volume percent of the open pores, and the ceramic particles applied to the porous layer can have an average size on the order of 25 to 50 micrometers for at least 50 volume percent of the ceramic particles. Thus, after the coating and compression steps, some ceramic particles are embedded in the open pores in the porous layer, thereby enhancing the bonding between the ceramic layer and the stent body.

More specific aspects of example methods and configurations are described in the following sections.

A. Surface Treatment of Stent Body

In one aspect of the present disclosure, surface portions of a stent body, such as the abluminal surface 30 of the stent body 26 in FIG. 2 is modified to produce a porous layer, such as the porous layer 38. As an example, ion implantation into a surface of a metal can be used to produce a porous surface layer on the metal. In a further example, plasma immersion ion implantation can be used for this purpose. In plasma immersion ion implantation, plasma ions are implanted into a stent body upon pulsed charging to high negative voltages, The energy of the ions impinging upon the surface of the metal at least partially determines the depth of penetration by the ions into the metal, and thus the thickness of the porous layer. In one aspect of the present disclosure, ion implantation of an element is carried out with a sufficiently high flux, as measured in number of ions per unit area per unit time entering the metal, to result a concentration of the element in the metal exceeding the solubility limit of the element in the metal. Under these conditions, at least portions of the implanted element segregate into pockets of pressurized liquid within the metal. The pockets can migrate and coarsen in the metal, and reshape the surrounding metal when the pockets reach the surface of the metal or each other, thereby producing a porous structure in the metal.

Various elements can be used for creating porous layers on stent bodies. For example, argon, helium and xenon can be used. Formation of porous layers in a target metal can be more efficient with elements having lower solubility limits in the target metal than with elements having higher solubility limits in the target metal. For example, implantations of argon and helium have shown to be effective in forming porous structures in stainless steel. In certain applications, reactive gasses, such as oxygen and nitrogen, can be used as secondary implantation elements in smaller amount than the main implantation elements such as argon, helium and xenon. Chemical reactions between the secondary implanted elements, such as oxygen and nitrogen, with the target metal can also be utilized to achieve beneficial results. For example, oxide or nitride passivation layers can be formed on the surface of certain target metals, such as titanium. According to another aspect of the present disclosure, the secondary implantation elements can be implanted either simultaneously with the main implantation elements or after a porous structure has been formed by the implantation of the main implantation elements.

Processing parameters can be selected to achieve desired open pore sizes in the metal. Processing parameters affecting open pore sizes in a given metal include temperature of the metal, ion type, ion energy and ion flux.

Examples of porous structure produced by argon implantation into a stainless steel substrate are shown in FIGS. 3( a)-(b). The stainless steel in this case is 316 L. Argon implantation was carried out at an energy level of 35 keV, with a dosage of from 1×1018 cm−2 to 5×1018 cm−2, and at a substrate temperature of between 300 to 350° C. The porous layer produced by this example method has predominantly sub-micrometer-sized and networked stainless steel structures, with open pores of similar dimensions.

Additional examples of porous metal produced by ion bombardment are known in the art of metallurgy. For example, M. Tokitani et al., “Desorption of helium from austenitic stainless steel heavily bombarded by low energy He ions”, J. nucl. mater., 329-333 (2004) pp. 761-765 discloses formation of porous surface layers in stainless steel under helium radiation. N. Yoshida et al., “Impact of low energy helium irradiation on plasma facing metals”, J. nucl. mater., 337-339 (2005) pp. 946-950 discloses formation of porous surface layers in metals including stainless steel and tungsten under helium radiation. Both of the above-mentioned references are incorporated herein by reference.

According to another aspect of the present invention, combinations of processing methods can be used to achieve more complex morphologies of the porous layer. For example, argon implantation can be used first to produce a porous layer with relatively coarse structures. For example, surface structures of 0.1-3.0 micrometers in dimension can be produce by argon implantation. Argon implantation can be followed up with helium implantation to produce surface features of smaller scales on top of the relatively coarse structures. For example, structures of 50 nanometers or less in dimension can be produced by helium implantation on the surface structures produced by argon implantation. Such more complex morphologies further increase the surface areas of the porous layer and can enhance the bonding between the stent body and the ceramic drug reservoir layer.

B. Coating Ceramic Layers

After a porous surface layer has been made in the stent body, one or more coatings of ceramic particles are applied on the porous layer. Ceramic materials are solids that have as their essential component, and are composed in large part of, inorganic nonmetallic materials. Examples of suitable ceramic materials include certain transition metal oxides, such as titanium (TiOx), tantalum oxide (TaOx) and iridium oxide (IrOx). Various methods known in the art of ceramic coating can be used. For example, suspensions of ceramic particles in water or organic solvents, such as ethanol, can be used to apply the ceramic particles. For example, as disclosed in J. Halme et al., “Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates”, Solar Energy Materials & Solar Cells 90 (2006) pp. 887-899 (hereinafter, “the Halme reference”), suspension of titanium oxide particles in ethanol or water can be sprayed, for example, by an airbrush, on a substrate, which can be heated. As another example, H. Lindström, “A new method for manufacturing nanostructured electrodes on glass substrates”, Solar Energy Materials & Solar Cells, 73 (2002) pp. 91-101 (hereinafter, “the Lindström reference”), discloses applying a suspension of titanium oxide particles in ethanol by a blade. Both the Halme and Lindström references are incorporated herein by reference. In one aspect of the disclosure, Titanium oxide suspensions can be obtained by stirring titanium oxide powers in ethanol or water for several hours. Examples of titanium oxide powders include the commercial product Degussa P25, which is reported to contain predominately anatase and rutile (mineral forms of titanium oxide) particles sized under 100 nm, typically between 20 to 40 nm.

The ceramic suspension applied to the porous surface is then dried. Examples of useful processes for drying the suspension include heating, including heating the stent body material while the suspension is being applied. The drying temperature is set to be sufficiently high to dry the suspension and yet sufficiently low to prevent significant agitation of the ceramic particle in the suspension or driving off a significant portion of any drugs loaded into the layer of ceramic particles before heating. For example, stent body material can be heated to between 80-100° C. to dry an ethanol suspension. Additional examples of useful heating processes include convection heating and heating by UV, IR and microwave radiation.

The application and drying of a coating of ceramic particles can be repeated to form a layer of stacked coatings, according to one aspect of the present disclosure. For example, a suspension of ceramic particles can be applied to a piece heated stent body material intermittently, allowing the solvent in the suspension to dry between heating. Forming a layer of ceramic particles from multiple coatings facilitates the formation of a ceramic layer of desirable thickness (e.g., on the order of micrometers) for drug reservoirs in stents while minimizing crack formation in the ceramic layer.

C. Compression of Layer of Ceramic Particles

According to a further aspect of the present disclosure, after the layer of ceramic particles is formed on the porous surface of the stent body material, the layer is compressed to achieve the desired density of the ceramic layer and strengthen the bonding between the ceramic layer and the stent body material. Compression forces ceramic particles in the ceramic layer into the open pores of the porous layer in the stent body material, as discussed above. Such a process can increase the interface area between the stent body material and the ceramic layer, or result in interlocking structures between the ceramic particles and the porous layer, or both. Bonding between the two materials is thus enhanced. At the same time, compression also reduces the porosity of the ceramic layer, thereby decreasing the drug release rate from the ceramic layer. Compression further increases the integrity of the ceramic layer.

A variety of methods suitable for compressing powdered masses can be used for compressing the layer of ceramic particles. Mechanical presses can be used for this purpose. For example, both the Halme and Lindström references incorporated herein disclose pressing assemblies of titanium oxide films on substrate between solid surfaces of steel plates. Releasing agents, such as Teflon films and aluminum foils, can also be used between a ceramic film-substrate assembly and the plates for releasing the assembly from the plates after compression is complete.

In another example configuration, as shown in FIG. 4, a ceramic layer 38 in a tubular stent 20 is compressed between two plates 42, 44 under a compressional force p. Each plate 42 or 44 has a recess with a cylindrical wall portion 42 a or 44 a, respectively, for accommodating a portion of the stent 20 and forming a finite contact area with the ceramic layer 38. The stent 20 is internally supported by a pin 46. Compression of portions of the ceramic layer 38 is thus achieved by the compressive stress applied to the stent by the cylindrical wall portions 42 a and 44 a and the pin 46. The assembly of the stent 20 and pin 46 can be compressed between the plates 42 and 44 and then released. The steps of compressing and release can be repeated, with the stent 20 rotated about its longitudinal axis between the steps, until the entire ceramic layer 38 has been compressed. Furthermore, the ceramic layer 38 can be compressed in multiple stages, with the pressing incremented with each successive stage, to gradually compress the ceramic layer 38 to the desired porosity.

In another example configuration, stent 20 can be place relative the compression plates 40 and 42 such that the stent 20 is compressed to a first porosity along only a portion of the length of the stent 20. Portions of the stent 20 can further be compressed along other portions of the stent's length to achieve a second porosity that is different from the first. Thus, a stent 20 with different porosity levels along its length can be produced.

Porosity of the ceramic film generally decreasing with increasing applied pressure. For example, the Lindström reference discloses that the porosity of the titanium oxide film decreases from 70% to 50% when pressure increases from 250 kg/cm2 to 2000 kg/cm2. In one aspect of the present disclosure, the layer of ceramic particles is compressed first to a relatively low pressure to result in a ceramic layer that has sufficient integrity for drug loading and yet a relatively high porosity for efficient absorption of drugs into the ceramic layer. For example, a pressure of 200-300 kg/cm2 can be applied for this purpose. The porosity at this stage can be 60%, 70% or higher. After the drugs is loaded into the ceramic layer (e.g., by contacting the ceramic layer with the drugs in solution), the ceramic layer can be further compressed to a higher pressure to result in a relatively low porosity to achieve a desired drug release rate. In one aspect of the present disclosure, a pressure of 1000-2000 kg/cm2 or higher can be applied to result in a porosity of 50% or lower.

The processes described in the examples above are capable of producing a sufficiently thick ceramic layer on a stent body for storing desired amount of drugs. In one aspect of the present disclosure, a ceramic layer of 1-20 micrometers in final compressed thickness can be produced. In another aspect, the thickness can be 2-15 micrometers. In a further aspect, the thickness can be 5-10 micrometers.

It is noted that the example processes described above, including surface treatment, coating of ceramic layers, compression of the ceramic layers and drug loading, can be carried out on stock material, such as stainless tubes or sheets, used for making stents. Openings in the coated stock material can subsequently be cut out to form the desired patterns of bands and connectors, such as those (22 and 24) shown in FIG. 1. For example, lasers, including femtosecond lasers, can be used to cut the stock material. Examples of forming stents by cutting coated metal structure using laser ablation are disclosed in the U.S. Pat. No. 6,517,888, which is incorporated herein by reference.

D. Additional Example Configurations

Various materials and processes can be used to suit specific stent applications. In one aspect of the present disclosure, various materials can be used for manufacturing stents with at least one layer of ceramic particles compressed on the stent bodies. A stent body, for example, can be made of a variety of materials that are known, or later found, to be suitable for endoluminal implantation applications. For example, a variety of metals that have requisite mechanical properties (such as strength and deformability) are biocompatible and suitable as substrates for forming ceramic coatings can be used. Such metals include various alloys and other metals. In one configuration, the stent body is made of stainless steel.

In another aspect of the present disclosure, specific surface morphologies of the ceramic layer can be created during the compression process for certain stent applications such as promoting cell growth. For example, recesses (such as grooves and pits) or protuberances (such as ridges) can be formed on the surface of the ceramic layer by providing complementary structures in the plates used to compress the ceramic layer. For example, ridges on the compression plates can be used to produce grooves in the ceramic layer.

In another aspect of the present disclosure, at least two stacked ceramic layers can be manufactured by the processes described above, each loaded with a different drug or drug concentration so as to achieve a desired time profile of drug release. Each layer can be compressed to the final density after the drug for the layer is loaded but before the next layer is applied. Alternatively, at least two stacked ceramic layers can be loaded with their respective drugs before the layers are compressed to the final density.

In a further aspect of the present disclosure, drugs can be loaded into the ceramic layer or layers by incorporating the drugs into the suspensions of ceramic particles. This process is particularly useful for drugs that have high solubility in water or organic solvent (e.g., ethanol) used to make the suspensions and are stable under the conditions for drying the suspension.

In an additional aspect of the present disclosure, other types of particles, including polymeric particles, metal particles and mixtures of any of polymer, metal and ceramic particles can be used to produce the layer or layers over the stent body to suit specific applications.

III. Summary

Thus, according to the present disclosure, at least a surface portion of a stent body material can be made porous by, for example, ion implantation. At least one layer of ceramic or other types of particles can be deposited on the porous surface portion and compressed to form a strong bond with the stent body material. At least one drug can be loaded into the layer of particles. In one aspect, the layer of particles can be compressed to a first density. At least one drug can be loaded into the layer while the layer is at the first density. The layer can then be further compressed to a second density to achieve a desired drug release rate.

The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US37512838 mars 19717 août 1973Remington Arms Co IncArmored metal tools and production thereof
US375839631 août 197111 sept. 1973Research CorpItion preparation of immobilized enzymemembrane complexes by electrocodepos
US391081919 févr. 19747 oct. 1975California Inst Of TechnTreatment of surfaces to stimulate biological cell adhesion and growth
US394825428 août 19746 avr. 1976Alza CorporationNovel drug delivery device
US395233429 nov. 197427 avr. 1976General Atomic CompanyBiocompatible carbon prosthetic devices
US39704452 mai 197420 juil. 1976Caterpillar Tractor Co.Chromium, boron, iron
US399307217 oct. 197523 nov. 1976Alza CorporationMicroporous drug delivery device
US40444041 août 197530 août 1977Imperial Chemical Industries LimitedFibrillar lining for prosthetic device
US41019845 mai 197625 juil. 1978Macgregor David CCardiovascular prosthetic devices and implants with porous systems
US414366112 déc. 197713 mars 1979Andros IncorporatedPower supply for body implant and method for operation
US420205512 mai 197713 mai 1980Battelle-Institut E.V.Anchorage for highly stressed endoprostheses
US423755911 mai 19799 déc. 1980General Electric CompanyBone implant embodying a composite high and low density fired ceramic construction
US430886827 mai 19805 janv. 1982The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationImplantable electrical device
US43213117 janv. 198023 mars 1982United Technologies CorporationColumnar grain ceramic thermal barrier coatings
US433089128 févr. 198025 mai 1982Branemark Per IngvarElement for implantation in body tissue, particularly bone tissue
US433432721 déc. 197915 juin 1982University Of UtahUreteral prosthesis
US440154625 mars 198230 août 1983Nihon Shinku Gijutsu Kabushiki KaishaFerromagnetic high speed sputtering apparatus
US440769529 mars 19824 oct. 1983Exxon Research And Engineering Co.Etching monolayer of colloidal particles
US447597222 avr. 19829 oct. 1984Ontario Research FoundationThermoplastic vascular graft
US456574430 nov. 198321 janv. 1986Rockwell International CorporationWettable coating for reinforcement particles of metal matrix composite
US458565219 nov. 198429 avr. 1986Regents Of The University Of MinnesotaElectrochemical controlled release drug delivery system
US465577111 avr. 19837 avr. 1987Shepherd Patents S.A.Prosthesis comprising an expansible or contractile tubular body
US465754418 avr. 198414 avr. 1987Cordis CorporationCardiovascular graft and method of forming same
US466589622 juil. 198519 mai 1987Novacor Medical CorporationImplantable blood pump system
US470550231 déc. 198610 nov. 1987The Kendall CompanySuprapubic catheter with dual balloons
US47336657 nov. 198529 mars 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US473874021 nov. 198519 avr. 1988Corvita CorporationExtrucing continuous fiber-forming biocompatible polymeric material while winding on mandrel, applying electrostatic forces
US474325213 janv. 198610 mai 1988Corvita CorporationComposite grafts
US47846593 mars 198715 nov. 1988Intermedicat GmbhSealing pores
US480088213 mars 198731 janv. 1989Cook IncorporatedEndovascular stent and delivery system
US484250520 mars 198727 juin 1989EthiconApparatus for producing fibrous structures electrostatically
US488606219 oct. 198712 déc. 1989Medtronic, Inc.Intravascular radially expandable stent and method of implant
US490229029 juil. 198820 févr. 1990B. Braun-Ssc AgProcess for the preparation of a vessel prosthesis impregnated with crosslinked gelatin
US495412628 mars 19894 sept. 1990Shepherd Patents S.A.Prosthesis comprising an expansible or contractile tubular body
US497669225 sept. 198911 déc. 1990Travenol Laboratories (Israel) Ltd.Catheter particularly useful for inducing labor and/or for the application of a pharmaceutical substance to the cervix of the uterus
US499407122 mai 198919 févr. 1991Cordis CorporationBifurcating stent apparatus and method
US506127529 déc. 198929 oct. 1991Medinvent S.A.Self-expanding prosthesis
US506191427 juin 198929 oct. 1991Tini Alloy CompanyShape-memory alloy micro-actuator
US50733651 juin 198917 déc. 1991Advanced Polymer SystemsClinical and personal care articles enhanced by lubricants and adjuvants
US509120522 déc. 198925 févr. 1992Union Carbide Chemicals & Plastics Technology CorporationCoating with polyisocyanate primer and acrylic acid polymer; smoothness; medical equipment
US510240318 juin 19907 avr. 1992Eckhard AltTherapeutic medical instrument for insertion into body
US512032213 juin 19909 juin 1992Lathrotec, Inc.Method and apparatus for treatment of fibrotic lesions
US512597129 juin 199030 juin 1992Tdk CorporationLiving hard tissue replacement, its preparation
US514737012 juin 199115 sept. 1992Mcnamara Thomas ONitinol stent for hollow body conduits
US516395813 août 199117 nov. 1992Cordis CorporationCarbon coated tubular endoprosthesis
US517160729 janv. 199015 déc. 1992Bausch & Lomb IncorporatedMethod of depositing diamond-like carbon film onto a substrate having a low melting temperature
US519596926 avr. 199123 mars 1993Boston Scientific CorporationCo-extruded medical balloons and catheter using such balloons
US52059214 févr. 199127 avr. 1993Queen's University At KingstonMethod for depositing bioactive coatings on conductive substrates
US521961130 sept. 199115 juin 1993Cornell Research Foundation, Inc.Adding to solution of titanium tetraalkoxide and solvent water to cause hydrolysis and condensation, forming into film or monolith, curing
US523244421 juin 19893 août 1993Just HansjoergDilatation catheter
US52364137 mai 199017 août 1993Feiring Andrew JMethod and apparatus for inducing the permeation of medication into internal tissue
US524270631 juil. 19917 sept. 1993The United States Of America As Represented By The Secretary Of The NavyLaser-deposited biocompatible films and methods and apparatuses for producing same
US5250242 *17 avr. 19905 oct. 1993Nkk CorporationMethod of producing ceramic sintered body having dense ceramic membrane
US52700869 juil. 199114 déc. 1993Schneider (Usa) Inc.Multilayer extrusion of angioplasty balloons
US527929213 févr. 199218 janv. 1994Implex GmbhCharging system for implantable hearing aids and tinnitus maskers
US529058510 juin 19921 mars 1994C. R. Bard, Inc.Lubricious hydrogel coatings
US530241419 mai 199012 avr. 1994Anatoly Nikiforovich PapyrinGas-dynamic spraying method for applying a coating
US530412122 nov. 199119 avr. 1994Boston Scientific CorporationCatheter
US53144536 déc. 199124 mai 1994Spinal Cord SocietyPosition sensitive power transfer antenna
US532252012 nov. 199221 juin 1994Implemed, Inc.Iontophoretic structure for medical devices
US53263542 juil. 19935 juil. 1994Howmedica Inc.Method for forming attachment surfaces on implants
US534855318 déc. 199120 sept. 1994Whitney Douglass GMethod for promoting blood vessel healing
US536650413 juil. 199222 nov. 1994Boston Scientific CorporationTubular medical prosthesis
US536888110 juin 199329 nov. 1994Depuy, Inc.Prosthesis with highly convoluted surface
US53781461 déc. 19923 janv. 1995Ormco CorporationPolyurethane biomedical devices & method of making same
US53802987 avr. 199310 janv. 1995The United States Of America As Represented By The Secretary Of The NavyMedical device with infection preventing feature
US538393528 sept. 199324 janv. 1995Shirkhanzadeh; MortezaPorous means with biocompatible electrolyte, anodes in housing for electrical contact
US53973077 déc. 199314 mars 1995Schneider (Usa) Inc.Drug delivery PTCA catheter and method for drug delivery
US54053673 mars 199311 avr. 1995Alfred E. Mann Foundation For Scientific ResearchStructure and method of manufacture of an implantable microstimulator
US543944630 juin 19948 août 1995Boston Scientific CorporationStent and therapeutic delivery system
US544349615 oct. 199322 août 1995Medtronic, Inc.Intravascular radially expandable stent
US544772415 nov. 19935 sept. 1995Harbor Medical Devices, Inc.Has tissue exposed portion to release agent inhibiting adverse reaction to its presence; polymeric surface layer over reservoir; blood oxygenator
US544937317 mars 199412 sept. 1995Medinol Ltd.Articulated stent
US54493822 mars 199412 sept. 1995Dayton; Michael P.Minimally invasive bioactivated endoprosthesis for vessel repair
US546445021 mars 19947 nov. 1995Scimed Lifesystems Inc.Biodegradable drug delivery vascular stent
US546465026 avr. 19937 nov. 1995Medtronic, Inc.Intravascular stent and method
US547479710 févr. 199412 déc. 1995Spire CorporationVapor ionizing process
US550001313 janv. 199519 mars 1996Scimed Life Systems, Inc.Biodegradable drug delivery vascular stent
US552733722 févr. 199418 juin 1996Duke UniversityBioabsorbable stent and method of making the same
US554520821 déc. 199313 août 1996Medtronic, Inc.Intralumenal drug eluting prosthesis
US555195412 oct. 19943 sept. 1996Scimed Life Systems, Inc.Biodegradable drug delivery vascular stent
US55694637 juin 199529 oct. 1996Harbor Medical Devices, Inc.Medical device polymer
US55780751 juin 199526 nov. 1996Michael Peck DaytonMinimally invasive bioactivated endoprosthesis for vessel repair
US558750731 mars 199524 déc. 1996Rutgers, The State UniversitySynthesis of tyrosine derived diphenol monomers
US559122415 sept. 19947 janv. 1997Medtronic, Inc.Bioelastomeric stent
US560355620 nov. 199518 févr. 1997Technical Services And Marketing, Inc.Rail car load sensor
US560569630 mars 199525 févr. 1997Advanced Cardiovascular Systems, Inc.Drug loaded polymeric material and method of manufacture
US560746330 mars 19934 mars 1997Medtronic, Inc.Containing at least one tisue contacting surface comprising base material and thin layer of group five/b metal; prosthetics
US560746723 juin 19934 mars 1997Froix; MichaelExpandable polymeric stent with memory and delivery apparatus and method
US56096297 juin 199511 mars 1997Med Institute, Inc.Coated implantable medical device
US561454930 janv. 199525 mars 1997Enzon, Inc.High molecular weight polymer-based prodrugs
US56244117 juin 199529 avr. 1997Medtronic, Inc.Intravascular stent and method
US56499516 juin 199522 juil. 1997Smith & Nephew Richards, Inc.Corrosion resisant, bio- and hemocompatible, durable and stable protective coating; anchoring
US564997722 sept. 199422 juil. 1997Advanced Cardiovascular Systems, Inc.Metal reinforced polymer stent
US567224231 janv. 199630 sept. 1997Integrated Device Technology, Inc.High selectivity nitride to oxide etch process
US567419223 juil. 19937 oct. 1997Boston Scientific CorporationDrug delivery
US567424215 nov. 19967 oct. 1997Quanam Medical CorporationEndoprosthetic device with therapeutic compound
US567944023 mars 199521 oct. 1997Dai Nippon Printing Co., Ltd.Optical card
US568119617 nov. 199528 oct. 1997Lucent Technologies Inc.Spaced-gate emission device and method for making same
US56906706 juin 199525 nov. 1997Davidson; James A.Stents of enhanced biocompatibility and hemocompatibility
US6200685 *2 févr. 199913 mars 2001James A. DavidsonTitanium molybdenum hafnium alloy
US6287628 *3 sept. 199911 sept. 2001Advanced Cardiovascular Systems, Inc.Fluid penetration of pores
US6517888 *28 nov. 200011 févr. 2003Scimed Life Systems, Inc.Using ultrashort energy pulses to form high precision openings in stents; nondamaging; no polishing or cleaning required
US7163715 *30 déc. 200216 janv. 2007Advanced Cardiovascular Systems, Inc.Spray processing of porous medical devices
US20060129215 *9 déc. 200415 juin 2006Helmus Michael NMedical devices having nanostructured regions for controlled tissue biocompatibility and drug delivery
Citations hors brevets
Référence
1"Cyclic voltammetry"-from Wikipedia, (http://en.wikipedia.org/wiki/Cyclic-voltammetry) (downloaded [2007]).
2"Electrophoretic deposition"-from Wikipedia, (http://en.wikipedia.org/wiki/electrophoretic-deposition) (downloaded [2007]).
3"Impressive Progress In Interventional Cardiology-From 1st Balloon Inflation To First Bioabsorbable Stent," Medical News Today, May 15, 2006, (http://www.medicalnewstoday.com/articles/43313.php).
4"JOMED Starts Clinical Studies on Tacrolimus-Eluting Coronary Stents," Jomed Press Release, 2 pages, Jan. 14, 2002.
5"Nano PLD," PVD Products, Inc. Wilmington, MA, (2003).
6"Sputtering," Wikipedia.com, (http://en.wikipedia.org/wiki/Sputtering) (downloaded [2009]).
7"Ultraviolet-Ozone Surface Treatment," Three Bond Technical News #17, pp. 1-10, Issued Mar. 20, 1987, (http://www.threebond.co.jp/en/technical/technicalnews/pdf/tech17.pdf).
8"Cyclic voltammetry"—from Wikipedia, (http://en.wikipedia.org/wiki/Cyclic—voltammetry) (downloaded [2007]).
9"Electrophoretic deposition"—from Wikipedia, (http://en.wikipedia.org/wiki/electrophoretic—deposition) (downloaded [2007]).
10"Impressive Progress In Interventional Cardiology—From 1st Balloon Inflation To First Bioabsorbable Stent," Medical News Today, May 15, 2006, (http://www.medicalnewstoday.com/articles/43313.php).
11A New Method for Manufacturing Nanostructured Electrodes on Glass Substrates; Solar Energy Materials & Solar Cells 73 (2002); pp. 91-101.
12Abbott et al., "Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid," Electrochimica Acta, vol. 51, pp. 4420-4425, (2006).
13Abstract: "Edelstahlfreier stent aus niobium mit iridiumoxyd (IrOx)-beschichtung: Erste Ergebnisse der LUSTY-studie", (Stainless steel-free Stent out of niobium with iridiumoxyd (IrOx)-coating: Initial results of the LUSTY-study), Annual Meeting of the German Society for Cardiology, Apr. 24-26, 2003.
14Adanur et al., "Nanocomposite Fiber Based Web and Membrane Formation and Characterization," Journal of Industrial Textiles, vol. 36, No. 4, pp. 311-327, Apr. 2007.
15Advincula et al., "Surface modification of surface sol-gel derived titanium oxide films by self-assembled monolayers (SAMs) and non-specific protein adsorption studies," Colloids and Surfaces B: Biointerfaces, vol. 42, pp. 29-43, (2005).
16Akhras, "Bare metal stent, lunar IrOx2 coated or drug-eluting stent for patients with CAD?", PowerPoint presentation, Oct. 2006.
17Akhras, Comparison of Iridiumoxide Coated Stent with Paclitaxel-Eluting Stent and a Bare Metal Stent in Patients With Coronary Artery Disease; Abstract, Oct. 2006.
18Al-Lamee, "Programmable Elution Profile Coating for Drug-Eluting Stents," Medical Device Technology: Materials, pp. 12-15, Mar. 2005.
19Amanatides et al., "Electrical and optical properties of CH4/H2 RF plasmas for diamond-like thin film deposition," Diamond & Related materials, vol. 14, pp. 292-295, (2005).
20Amberg et al., "Silver Deposition on Temperature Sensitive Substrates by Means of an Inverted Cylindrical Magnetron," Poster, 2003.
21Anders, "Ion Plating and Beyond: Pushing the Limits of Energetic Deposition," Vacuum Technology & Coating, pp. 41-46, Dec. 2002.
22Andersson et al., "Influence of Systematically Varied Nanoscale Topography on the Morphology of Epithelial Cells," IEEE Transactions on Nanobioscience, vol. 2, No. 2, pp. 49-57, Jun. 2003.
23Andersson et al., "Nanoscale features influence epithelial cell morphology and cytokine production," Biomaterials, 2003. vol. 24, No. 20, pp. 3427-3436, (2003).
24Annis et al., "An Elastomeric Vascular Prosthesis," Transactions-American Society for Artificial Internal Organs. vol. XXIV, pp. 209-214, (1978).
25Annis et al., "An Elastomeric Vascular Prosthesis," Transactions—American Society for Artificial Internal Organs. vol. XXIV, pp. 209-214, (1978).
26Ansell et al., "X-Ray Rhotoelectron Spectroscopic Studies of Tin Electrodes after Polarization in Sodium Hydroxide Solution," Journal of Electrochemical Society: Electrochemical Science and Technology, vol. 124, No. 9, pp. 1360-1364, Sep. 1977.
27Antunes et al., "Characterization of Corrosion Products Formed on Steels in The First Months of Atmospheric Exposure", Materia, vol. 8, No. 1, pp. 27-34, (2003).
28Armani et al., "Microfabrication Technology for Polycaprolactone, a Biodegradable Polymer," Journal of Micromechanics and Microengineering, vol. 10, pp. 80-84, (2000).
29Arnold et al., "Activation of Integrin Function by Nanopatterned Adhesive Interface," ChemPhysChem, vol. 5, pp. 383-388, (2004).
30Ashfold et al., "Pulsed laser ablation and deposition of thin films," Chem. Soc. Rev., vol. 33, pp. 23-31, (2004).
31Asoh et al., "Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured A1," Journal of the Electrochemical Society, vol. 148, pp. B152-B156, (2001).
32Atanasoska et al., "XPS Studies on Conducting Polymers: Polypyrrole Films Doped with Perchlorate and Polymeric Anions," Chemistry Materials vol. 4, pp. 988-994, (1992).
33Aughenbaugh et al., "Silica sol-gel for the controlled release of antibiotics. II. The effect of synthesis parameters on the in vitro release kinetics of vancomycin," Journal of Biomedical Materials Research, vol. 57, No. 3, pp. 321-326, Dec. 5, 2001.
34Awad et al., "Deposition of duplex A12O3/TiN coatings on aluminum alloys for tribological applications using a combined microplasma oxidation (MPO) and arc ion plating (AIP)," Wear, vol. 260, pp. 215-222, (2006).
35AxynTec product review, AxynTec Dunnschichttechnik GmbH (www.axyntec.de) (2002).
36Ayon et al., "Drug loading of nonopouros TiO2 films," Institute of Physics Publishing, Biomedical Materials, vol. 1, pp. L11-L15, (2006).
37Azom, "Porous Coatings for Improved Implant Life-Total Hip Replacements," [downloaded Sep. 1, 2005], (http://www.azom.com/Details.asp?ArticleID=1900).
38Azom, "Porous Coatings for Improved Implant Life—Total Hip Replacements," [downloaded Sep. 1, 2005], (http://www.azom.com/Details.asp?ArticleID=1900).
39Bak et al., "Electrodeposition of polymer next to the three-phase boundary," Electrochemisty Communications, vol. 7, pp. 1098-1104, (2005).
40Balamuguran et al., "Bioactive Sol-Gel Hydroxyapatite Surface for Biomedical Applications-In Vitro Study," Trends in Biomaterials & Artificial Organs, vol. 16, No. 1, pp. 18-20, (2002).
41Balas et al., "Formation of Bone-Like Apatite on Organic Polymers Treated with a Silane-Coupling Agent and a Titania Solution," Biomaterials, vol. 27, pp. 1704-1710, (2006).
42Balaur et al., "Tailoring the wettability of TiO2 nanotube layers," Electrochemistry Communications, vol. 7, pp. 1066-1070, (2005).
43Banks et al., "Femtosecond Laser-Induced Forward Transfer (LIFT): A Technique for Versatile Micro-Printing Applications," European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, Jun. 17-22, 2007.
44Banks et al., "Nano-droplets Deposited in Microarrays by Femtosecond Ti:Saphire Laser-Induced Forward Transfer," Optoelectronics Reaserch Centre, University of Southhampton, Applied Physics Letters, vol. 89, Issue 19, (2006).
45Barbucci et al, Micro and nano-structured surfaces,: Journal Of Materials Science: Materials In Medicine, vol. 14, No. 8, pp. 721-725, (2003).
46Bates et al. "Description of research activites: Block copolymers," Organization for Minnesota Nanotechnology Institute, University of Minnesota, (2002).
47Bayoumi et al., "Formation of self-organized titania nano-tubes by dealloying and anodic oxidation," Electrochemistry Communications, vol. 8, pp. 38-44, (2006).
48Békési et al., "Efficient Submicron Processing of Metals with Femtosecond UV Pulses," Applied Physics A, vol. 76, pp. 355-357 (2003).
49Benson, "Drug Delivery Technology and Access," Polygenetics, Inc., pp. 1-10, Oct. 2005.
50Benson, "Highly Porous Polymers," American Laboratory, pp. 1-14, Apr. 2003.
51Berg et al., "Controlled Drug Release from Porous Polyelectrolyte Multilayers," Biomacromolecules, vol. 7, pp. 357-364, (2006).
52Berkland et al., "Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(D,L-lactide-co-glycolide)," Biomaterials, vol. 25, pp. 5649-5658, (2004).
53Berry et al., "The fibroblast response to tubes exhibiting internal nanotopography," Biomaterials, vol. 26, No. 24, pp. 4985-4992, (2005).
54Biederman et al. "Plasma Polymer-Metal Composite Films," Plasma Deposition, Treatment and Etching of Polymers, pp. 269-320, (1990).
55Bock et al., "Anion and water involvement in hydrous Ir oxide redox reactions in acidic solutions," Journal of Electroanalytical Chemistry, vol. 475, pp. 20-27, (1999).
56Bolle et al., "Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet laser radiation," Journal of Applied Physics, vol. 73, No. 7, pp. 3516-3524, Apr. 1, 1993.
57Bolzán et al., "The Potentiodynamic behaviour of iridium electrodes in aqueous 3.7 M H2SO4 in the 293-195 K Range," Journal of Electroanalytical Chemistry, vol. 461, pp. 40-51, (1999).
58Boulmedais et la., "Controlled Electrodissolution of Polyelectrolyte Multilayers: A Platform Technology Towards the Surface-Initiated Delivery of Drugs," Advanced Functional Materials, vol. 63, pp. 63-70, (2006).
59Boura et al., "Endothelial cell-interactions with polyelectrolyte multilayer films," Biomaterials, vol. 26. pp. 4568-4575, (2005).
60Boura et al., "Endothelial cell—interactions with polyelectrolyte multilayer films," Biomaterials, vol. 26. pp. 4568-4575, (2005).
61Bradley et al., "Visuotopic Mapping Through a Multichannel Stimulating Implant in Primate V1," Journal of Neurophysiology, vol. 93, pp. 1659-1670, (2005).
62Bretagnol et al., "Functional Micropatterning Surface by Combination of Plasma Polymerization and Lift-Off Process," Plasma Process and Polymers, vol. 3, pp. 30-38, Nov. 14, 2005.
63Bretagnol et al., "Surface Functionalization and Patterning Techniques to Design Interfaces for Biomedical and Biosensor Applications," Plasma Processes and Polymers, vol. 3, pp. 443-455, (2006).
64Brody et al., "Characterization Nanoscale topography of the Aortic Heart Valve Basement Membrane for Tissue Engineering Heart Valve Scaffold Design," Tissue Engineering, vol. 12, No. 2, pp. 413-421, Nov. 2, 2006.
65Brukner et al., "Metal plasma immersion ion implantation and deposition (MPIIID): chromium on magnesium," Surface and Coatings Technology vol. 103-104, pp. 227-230, (1998).
66Brunetti et al., "Oxide/hydroxide films on tin. Part I: Kinetic aspects of the electroformation and electroreductions of the films," Journal of Electroanalytical Chemisty, (2007).
67Bu et al., "Preparation of nanocrystalline TiO2 porour films from terpineol-ethanol-PEG system," Journal of Materials Science, vol. 41, pp. 2067-2073, (2006).
68Bu et al., "Synthesis of TiO2 Porous Thin Films by Polythylene Glycol Templating and Chemistry of the Process," Journal of the European Ceramic Society, vol. 25, pp. 673-679 (2005).
69Burmeister et al., "Colloid Monolayers as Versatile Lithographic Masks," Langmuir, vol. 13, pp. 2983-2987, (1997).
70Buster et al., "Crystal habits of the Magnesium Hydroxide mineral Brucite within Coral Skeletons," American Geophysical Union Annual Meeting, Abstract and Poster, (2006).
71Buttiglieri et al., "Endothelization and adherence of leucocytes to nanostructured surfaces," Biomaterials, vol. 24, pp. 2731-2738, (2003).
72Calcagno et al., "Structural modification of polymer films by ion irradiation," Nuclear Instruments and Methods in Physics Research, vol. B65, pp. 413-422, (1992).
73Carp et al., "Photoinduced Reactivity of Titanium Dioxide," Progress in Solid State Chemistry, vol. 32, pp. 33-177, (2004).
74Caruso, "Nanoscale Particle Modifications via Sequential Electrostatic Assembly," Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles, pp. 266-269, Mar. 19, 2004.
75Cassak, "ART: Bucking the Trend in Bioabsorbable Stents", Windhover Information Inc., In Vivo Jun. 2008.
76Catledge et al, "Structure and Mechanical Properties of Functionally-Graded Nanostructured Metalloceramic Coatings," Mat. Res. Soc. Symp. Proc. vol. 778, pp. U7.8.1-U7.8.6, (2003).
77Catledge et al., "Structural and mechanical properties of nanostructured metalloceramic coatings on cobalt chrome alloys," Applied Physics Letters, vol. 82, No. 10, pp. 1625-1627, Mar. 10, 2003.
78Caves et al., "The evolving impact of microfabrication and nanotechnology on stent design," Journal of Vascular Surgery, pp. 1363-1368, Dec. 2006.
79Caves et al., "The evolving impact of microfabrication and nanotechnology on stent design," Journal of Vascular Surgury, vol. 44, pp. 1363-1368, (2006).
80Cernigoj et al., "Photocatalytically Active TiO2 Thin Films Produced by Surfactant-Assistant Sol-Gel Processing," Thin Solid Films, vol. 495, pp. 327-332, (2006).
81Ceruti et al., "Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing water-soluble prodrugs of paclitaxel," Journal of Controlled Release, vol. 63, pp. 141-153, (2000).
82Champagne et al., "Nanometer-scale scanning sensors fabricated using stencil lithography," Applied Physics Letters, vol. 82, No. 7, pp. 1111-1113, Feb. 17, 2003.
83Chandra et al., "Biodegradable Polymers," Progress in Polymer Science, vol. 23, pp. 1273-1335, (1998).
84Chang et al., "Preparation and Characterization of Nanostructured Tin Oxide Films by Electrochemical Deposition," Electrochemical and Solid-State Letters, vol. 5, No. 8, pp. C71-C74, (2002).
85Chen et al., "Behavior of Cultured Human Umbilical Vein Endothelial Cells on Titanium Oxie Films Fabricated by Plasma Immersion Ion Implantation and Deposition," Surface & Coatings Technology, vol. 186, pp. 270-276, (2004).
86Chen et al., "Blood compatiblity and sp3/sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition," Surface and Coatings Technology, vol. 156, pp. 289-294, (2002).
87Chen et al., "Fabrication of micro-field emitters on ceramic substrates," Microelectronic Engineering, vol. 84, pp. 94-100, (2007).
88Cheng et al., "Anatase Coating on NiTi Via a Low-Temperature Sol-Gel Route for Improving Corrosion Resistance," Scripta Materialia, vol. 51, pp. 1041-1045, (2004).
89Cho et al., "A Novel Route to Three-Dimensionally Ordered Macroporous Polymers by Electron Irradiation of Polymer Colloids" Advanced Materials, vol. 17, No. 1, pp. 120-125, Jan. 6, 2005.
90Cho et al., "Influence of Silica on Shape Memory Effect and Mechanical Properties of Polyurethane-Silica Hybrid," European Polymer Journal, vol. 40, pp. 1343-1348, (2004).
91Cho et al., "Preparation and Characterization of Iridium Oxide Thin Films Grown by DC Reactive Sputtering," Japanese Journal of Applied Physics, vol. 36, Part 1, No. 3B, pp. 1722-1727, Mar. 1997.
92Choi et al., "Synthesis and Characterization of Diamond-Like Carbon Protective AR Coating," Journal of the Korean Physical Society, vol. 45, p. S864, Dec. 2004.
93Chougnet et al., "Substrates do influence the ordering of mesoporous thin films," Journal of Materials Chemistry, vol. 15, pp. 3340-3345, (2005).
94Chougnet et al., "The Influence of the Nature of the Substrate on the Ordering of Mesoporous Thin Films," Thin Solid Films, vol. 495, pp. 40-44, (2006).
95Chow et al., "Nanostructured Films and Coating by Evaporation, Sputtering, Thermal Spraying, Electro and Electroless Deposition," Handbook of Nanophase and Nanostructured Materials, vol. 1, Chapter 9, pp. 246-272, (2003).
96Chow et al., "Preliminary Evaluation of KEM for Fabrication," Proceedings of the 12th General Meeting of JOWOG 31, Livermore, CA, University of California, (1996).
97Chronakis, "Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review," Journal of Materials Processing Technology, vol. 167, pp. 283-293, (2005).
98Chronakis, "Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review," Journal of Materials Processing Technology, vol. 167, pp. 283-293, (2005).
99Chu, "Recent developments and applications of plasma immersion ion implantation," Journal of Vacuum Science Technology, vol. B22, No. 1, pp. 289-296, Jan./Feb. 2004.
100Chuang et al., "Titanium Oxide and Polyaniline Core-Shell Nanocomposites," Synthetic Metals, vol. 152, pp. 361-364, (2005).
101Chung et al., "Roles of discontinuities in bio-inspired adhesive pads," Journal of The Rolyal Society: Interface, vol. 2, pp. 55-61, Feb. 8, 2005.
102Clark, "Micropatterning Cell Adhesiveness", Immobilized Biomolecules in Analysis, Oxford University Press, pp. 95-111, (1998).
103Clevy et al., "Micromanipulation and Micro-Assembly Systems," IEEE/RAS International Advanced Robotics Program, IARP'06, Paris, France, (2006).
104Colina et al., "DNA deposition through laser induced forward transfer," Biosensors and Bioelectronics, vol. 20, pp. 1638-1642, (2005).
105Costanzo et al., "Model-Based Simulations to Engineer Nanoporous Thin Films," LPCM Research, Pennsylvania State University, (2004), (http://lpcm.esm.psu.edu/˜tjy107/research.htm).
106Course: C-103, "An Introduction to Physical Vapor Deposition (PVD) Processes," Society of Vacuum Coaters, SVC Education Programs: course description and syllabus, Apr. 19, 2008.
107Course: C-208, "Sputter Deposition in Manufacturing" Society of Vacuum Coaters, SVC Education Programs: course description and syllabus, Apr. 22, 2008.
108Csete et al., "The existence of sub-micrometer micromechanical modulation generated by polarized UV laser illumination on polymer surfaces," Materials Science and Engineering C, vol. 23, pp. 939-944, (2003).
109Csete et al., "The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films," Thin Solid Films, vol. 453-454, pp. 114-120, (2004).
110Curtis et al. "Cells react to nanoscale order and symmetry in their surroundings," IEEE Transactions On Nanobioscience, vol. 3, No. 1, pp. 61-65, Mar. 2004.
111Curtis et al., "Nantotechniques and approaches in biotechnology," Trends in Biotechnology, vol. 19, No. 3, pp. 97-101, Mar. 2001.
112Curtis et al., "New Depths in Cell Behaviour: Reactions of Cells to Nanotopography," Biochem, Soc, Symp, vol. 65, pp. 15-26, (1999).
113Curtis et al., "New depths in cell behaviour: Reactions of cells to nanotopography," Biochemical Society Symposium, No. 65, pp. 15-26 (1997).
114Curtis et al., "Topographical Controls of Cells," Biomaterials, vol. 18, pp. 1573-1583, (1997).
115Curtis, "Tutorial on the biology of nanotopography," IEEE Transactions On Nanobioscience, vol. 3, No. 4, pp. 293-295, Dec. 2004.
116Cyster et al., "The effect of surface chemistry and nanotopography of titanium nitride (TiN) films on 3T3-L1 fibroblasts," Journal of Biomedical Materials Research: A., vol. 67, No. 1, pp. 138-147, Oct. 2003.
117Cyster et al., "The effect of surface chemistry and nanotopography of titanium nitride (TiN) films on primary hippocampal neurones," Biomaterials, vol. 25, pp. 97-107, (2004).
118da Cruz et al., "Preparation, structure and electrochemistry of a polypyrrole hybrid film with [Pd(dmit)2]2-, bis(1,3-dithiole-2-thione-4,5-dithiolate)palladate(II)," Electrochimica Acta, vol. 52, pp. 1899-1909, (2007).
119Dalby et al., "In vitro reaction of endothelial cells to polymer demixed nanotopography," Biomaterials, vol. 23, No. 14, pp. 2945-2954, (2002).
120Dalby, "Topographically induced direct cell mechanotransduction," Medical Engineering & Physics, vol. 27, No. 9, pp. 730-742, (2005).
121Damen et al., "Paclitaxel Esters of Malic Acid as Prodrugs with Improved Water Solubility," Bioorganic & Medicinal Chemistry, vol. 8, pp. 427-432, (2000).
122D'Aquino, "Good Drug Therapy: It's Not Just the Molecule—It's the Delivery," CEP Magazine, (www.cepmagazine.org), 3 pages, Feb. 2004.
123Datta et al., "Fundamental aspects and applicatio of electrochemical microfabrication," Electrochimica Acta, vol. 45, pp. 2535-2558, (2000).
124Daxini et al., "Micropatterned polymer surface inprove retention of endothelial cells exposed to flow-induced shear stress," Biorheology, vol. 43, pp. 45-55, (2006).
125De Aza et al., "Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses," Biomaterials, vol. 23, No. 3, pp. 937-945, Feb. 2002.
126Deakin et al., "De-alloying of type 316 stainless steel in hot, concentrated sodium hydroxide solution," Corrosion Science, vol. 46, pp. 2117-2133, (2004).
127Debiotech, "Debiostar, An Innovative Solution for Sustained Drug Delivery," Copyright 2001, (http://www.debiotech.com/products/drugdd/stent—page—1.html).
128Debiotech, "Debiostent: An Innovatice Ceramic Coating for Implantable Medical Devices," [first downloaded on Sep. 1, 2005], (http://www.debiotech.com/products/drugdd/stent—page—1.html).
129Debiotech, "Debiostent: Polymer free drug eluting coating," Jun. 14, 2007, (www.debiotech.com/products/druggd/stent—page—1.html).
130Debiotech, "Debiotech Obtains Exclusive Rights to an Innovative Drug Eluting Stent Technology," Press release, 1 page, Mar. 7, 2003.
131Demisse, "Computational Investigation of Conducting Polythiophenes and Substituted Polythiophenes," A Thesis Submitted to the School of Graduate Studies of Addis Ababa University, Ethiopia, Jun. 2007.
132Deniau et al., "Study of the polymers obtained by electroreduction of methacrylonitrile," Journal of Electroanalytical Chemistry, vol. 505, pp. 33-43, (2001).
133Desai et al., "Characterization of micromachined silicon membranes for imrnunoisolation and bioseparation applications," Journal of Membrane Science, vol. 159, pp. 221-231, (1999).
134Desai et al., "Use of Microfabricated ‘Nanopore’ Membranes as a Rate-Limiting Barrier to Diffusion of Small and Large Molecules: Possible Role in Drug Delivery" BioMEMs and Nanotechnology World, (2001).
135Desai, Integrating Cells with Microsystems: Application in Tissue Engineering and Cell-Based Delivery, PowerPoint presentation, May 10, 2002.
136Desorption of Helium from Austenitic Stainless Steel Heavily Bombarded by Low Energy He Ions; Journal of Nuclear Materials 329-333 (2004); pp. 761-765.
137Di Mario et al., "Drug-eluting bioabsorbable magnesium stent," Journal of Interventional Cardiology, vol. 17, Issue 6, Dec. 2004.
138Di Mario et al., "Moonlight: a controlled registry of an iridium oxide-coated stent with angographic follow-up," International Journal of Cardiology, vol. 95, pp. 329-331, (2004).
139Di Mario, The Moonlight Study: Multicenter Objective Observational Lunar Iridium Oxide Intimal Growth Trial, PowerPoint presentation in 2002.
140Dibra et al., "Influence of the stent surface topology on the outcomes of patients undergoing coronary stenting: a randomized double-blind controlled trial", Catheterization and Cardiovascular Interventions, vol. 65, pp. 374-380, (2005).
141Dittmar et al., "Nanostructured Smart Drug Delivery Coatings," European Cells and Materials, vol. 31, Suppliment 2, p. 73, (2007).
142Dong et al., "Preparation of Submicron Polypyrrole/Poly(methly methacrylate) Coaxial Fibers and conversion to Polypyrrole Tubes and Carbon Tubes," Langmuir, vol. 22, pp. 11384-11387, (2006).
143Doraiswamy et al., "Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer," Applied Surface Science, vol. 252, pp. 4743-4747, (2006).
144DTI Technology Group: Materials-Coating, "Kinetic spray coating method," www.delphi.com, Jul. 2004.
145Dumas et al., "Characterization of magnesium fluride thin films produced by argon ion beam-assisted deposition," Thin Solid Films, vol. 382, pp. 61-68, (2001).
146Duncan et al., "Polymer-drug conjugates, PDEPT and PELT: basic principals for design and transfer from laboratory to clinic," Journal of Controlled Release, vol. 74, pp. 135-146, (2001).
147Duncan, "The Dawning Era of Polymer Therapeutics," Nature Reviews: Drug Discovery, vol. 2, pp. 347-360, May 2003.
148Dutta et al., "Self-Organization of Colloidal Nanoparticles," Encyclopedia of Nanoscience and Nanotechnology, vol. 9, pp. 617-640, (2003).
149Duwez et al., "Mechanochemistry: targeted delivery of single molecules," Nature Nanotechnology, vol. 1, pp. 122-125, (2006).
150EAG Technical Note, "Functional Sites on Non-polymeric Materials: Gas Plasma Treatment and Surface Analysis," Evans Analytical Group, (2003).
151Eberli et al., "The Lunar Coronary Stent System," Handbook of coronary stents, 4th edition, Chapter 17 (Martin Dunitz Ltd 2002).
152Eesley et al., "Thermal properties of kinetics spray A1-SiC metal-matrix composite," Journal of Materials Research, vol. 18, No. 4, pp. 855-860, Apr. 2003.
153Egerhazi et al., "Thickness distribution of carbon nitride films grown by inverse-pulsed laster deposition," Applied Surface Science, vol. 247, pp. 182-187, (2005).
154Electropolymerization, (http://intel.ucc.ie/sensors/Electropolym.htm) (downloaded [2007]).
155Erlebacher et al., "Evolution of nonoporosity in dealloying," Nature, vol. 410, pp. 450-453, Mar. 22, 2001.
156Esrom et al., "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Applied Surface Science, vol. 86, pp. 202-207, (1995).
157Faupel et al., "Microstructure of pulsed laser deposited ceramic-metal and polymer-metal nanocomposite thin films," Applied Physics A, vol. 79, pp. 1233-1235 (2004).
158Faust et al., "Biofunctionalised Biocompatible Titania Coatings for Implants," Euro Ceramics VII, Key Engineering Materials, vol. 206, No. 2, pp. 1547-1550, (2006).
159Fernandez-Pradas et al., "Laser-induced forward transfer of biomolecules," Thin Solid Films, vol. 453-454, pp. 27-30, (2004).
160Ferraz et al., "Influence of nanoporesize on platelet adhesion and activation," Journal of Materials Science: Materials in Medicine, vol. 19, pp. 3115-3121, (2008).
161Figallo et al., "Micropatterned Biopolymer 3D Scaffold for Static and Dynamic Culture of Human Fibroblasts," Biotechnology Progress, vol. 23, pp. 210-216, (2007).
162Flemming et al., "Effects of synthetic micro- and nano-structured surfaces on cell behavior," Biomaterials, vol. 20, No. 6, pp. 573-588, (1999).
163Fogarassy et al., "Laser-induced forward transfer: A new approach for the deposition of high Tc superconducting thin films," Journal of Materials Research, vol. 4, No. 5, pp. 1082-1086, Sep./Oct. 1989.
164Fonseca et al., "Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity," Journal of Controlled Release, vol. 83 pp. 273-286, (2002).
165Forty, "Corrosion micromorphology of noble metal alloys and depletion gilding," Nature, vol. 282, pp. 597-598, Dec. 6, 1979.
166Frechet, "Functional Polymers: from Plastic Electronics to Polymer-Assisted Therapeutics," Progress in Polymer Science, vol. 30, pp. 844-857, (2005).
167Free Online Dictionary, "Aperture," definition, [first viewed Oct. 9, 2009].
168Freitas et al., "Nimesulide PLA microsphere as a potential sustained release system for the treatment of inflammatory diseases," International Journal of Pharmaceutics, Vo. 295, pp. 201-211, (2005).
169Freitas, "Nanomedicine, vol. I: Basic Capabilities," Landes Bioscience, pp. 87, 90, 255 and 265, (1999).
170Friedrich et al., "Developing Interdisciplinary Undergraduate and Graduate Courses Through the Integration of Recent Research Results into the Curricula," (http://www.ineer.org/Events/ICEE1997/Proceedings/paper326.htm), 10 pages, [first downloaded Mar. 10, 2005.].
171Fu et al., "Effects of mesh-assisted carbon plasma immersion ion implantation on the surface propoerties of insulating silicon carbide ceramics," Journal of Vacuum Science Technology, vol. A22, No. 2, pp. 356-360, Mar./Apr. 2004.
172Fu et al., "Influence of thickness and dielectric properties on implantation efficacy in plasma immersion ion implantation of insulators," Journal of Applied Physics, vol. 95, No. 7, pp. 3319-3323, Apr. 1, 2004.
173Fujisawa et al., "A novel textured surface for blood-contact," Biomaterials, vol. 20, pp. 955-962, (1999).
174Fulton, "Ion-Assisted Filtered Cathodic Arc Deposition (IFCAD) System for Volume Production of Thin-Film Coatings," Society of Vacuum Coaters, 42nd Annual Technical Conference Proceedings, (1999).
175Gabel et al., "Solid-State Spray Forming of Aluminum Near-Net Shapes," Journal of Metals, vol. 49, No. 8, pp. 31-33, (1997).
176Gabel, "Low Temperature Metal Coating Method," Lawrence Livermore National Laboratory, Apr. 3, 2000.
177Gadegaard et al., "Tubes with Controllable Internal Nanotopography," Advanced Materials, vol. 16, No. 20, pp. 1857-1860, Oct. 18, 2004.
178Galinski et al., "Ionic liquids as electrolytes," Electrochimica Acta, vol. 51, 5567-5580, (2006).
179Gao, "Chemical Vapor Deposition," Handbook of Nanophase and Nanostructured Materials, vol. 1: Synthesis, Chapter 5, (2003).
180Geretovszky et al., "Correlation of compositional and structural changes during pulsed laser deposition of tantalum oxide films," Thin Solid Films, vol. 453-454, pp. 245-250, (2004).
181Gillanders et al., "A Composite Sol-Gel/Fluoropolymer Matrix for Dissolved Oxygen Optical Sensing," Journal of Photochemistry and Photobiology A: Chemistry, vol. 163, pp. 193-199, (2004).
182Glocker et al., "AC Reactive Sputtering with Inverted Cylindrical Magnetrons," Society of Vacuum Coaters, 43rd Annual Technical Conference Proceedings—Denver, pp. 81-85, Apr. 15-20, 2000.
183Glocker et al., "Recent developments in inverted cylindrical magnetron sputtering," PowerPoint presentation, (2001).
184Glocker et al., "Recent developments in inverted cylindrical magnetron sputtering," Surface and Coatings Technology, vol. 146-147, pp. 457-462, (2001).
185Goddard et al., "Polymer surface modification for the attachmend of bioactive compounds," Progress in Polymer Science, vol. 32, pp. 698-725, (2007).
186Goh et al., "Nanostructuring Titania by Embossing with Polymer Molds Made from Anodic Alumina Templates," Nano Letters, vol. 5, No. 8, pp. 1545-1559, (2005).
187Gollwitzer et al., "Titania Coating as Local "Drug" Delivery System with Antibacterial and Biocompatible Properties," (2003).
188Gong et al., "Controlled molecular release using nanopourous alumina capsules," Biomedical Microdevices, vol. 5, No. 1, pp. 75-80, Mar. 2003.
189Gong et al., "Titanium oxide nanotube arrays prepared by anodic oxidation," Journal of Material Research, vol. 16, No. 12, pp. 3331-3334, (2001).
190Goodison et al., "CD44 cell adhesion molecules," Journal of Clinical Pathology: Molecular Pathology, vol. 52, pp. 189-196, (1999).
191Goodman et al., "Three-dimensional extracellular matrix textured biomaterials," Biomaterials, vol. 17, pp. 2087-2295, (1996).
192Gorb et al., "Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the unltrastructure of a highly deformable material," Proceeding of the Royal Society, London series B, vol. 267, pp. 1239-1244, (2000).
193Gotszalk et al., "Diagnostics of micro- and nanostructure using the scanning probe microscopy," Journal of Telecommunications and Information Technology, pp. 41-46, (2005).
194Granqvist et al., "Biodegradable and bioactive hybrid organic-inorganic PEG-siloxane fibers: Preparation and Characterization," Colloid Polymer Science, vol. 282, pp. 495-501, (2004).
195Greeley et al., "Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations," Electrochimica Acta, vol. 52, pp. 5829-5836, (2007).
196Green et al., "XPS Characterisation of Surface Modified Ni-Ti Shape Memory Alloy," Materials Science and Engineering, vol. A224, pp. 21-26, (1997).
197Gressel-Michel et al., "From a Microwave Flash-Synthesized TiO2 Colloidal Suspension to TiO2 Thin Films," Journal of Colloid and Interface Science, vol. 285, pp. 674-679, (2005).
198Groth et al., "Layer-by-Layer Deposition of Polyelectrolytes—A Versatile Tool for the In Vivo Repair of Blood Vessels," Angewandte Chemie, International Edition, vol. 43, pp. 926-928, (2004).
199Grubmuller, "What happens if the Room at the Bottom Runs Out? A Close Look at Small Water Pores," PNAS, vol. 100, No. 13, pp. 7421-7422, Jun. 24, 2003.
200Gu et al., "Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity," Applied Physics Letters, vol. 85, No. 21, pp. 5067-5069 (2004).
201Guangliang et al., "The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating," Journal of Alloys and Compounds, vol. 345, pp. 169-200, (2002).
202Guo et al., "Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy," Thin Solid Films, vol. 485, pp. 53-58, (2005).
203Guo et al., "Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evalucation of corrosion resistance," Applied Surface Science, col. 246, pp. 229-238, (2005).
204Guo et al., "Investigation of corrosion behaviors of Mg-6Gd-3Y-0.4Zr alloy in NaC1 aqueous solutions," Electrochimica Acta, vol. 52, pp. 2570-2579, (2007).
205Guo et al., "Sol gel derived photocatalytic porous TiO2 thin films," Surface & Coatings Technology, vol. 198, pp. 24-29, (2005).
206GVD Corporation, "Nanocoatings for a New Era," [first downloaded Nov. 12, 2003].
207Haag et al., "Polymer Therapeutics: Concepts and Applications," Angewandte Chemie, vol. 45, pp. 1198-1215, (2006).
208Haberland et al., "Filling of micron-sized contact holes with copper by energetic cluster impact," Journal of Vacuum Science Technology A, vol. 12, No. 5, pp. 2925-2930, Sep./Oct. 1994.
209Haery et al., "Drug-eluting stents: The beginning of the end of restenosis?," Cleveland Clinic Journal of Medicine, vol. 71, No. 10, pp. 815-824, (2004).
210Hahn et al., "A novel approach for the formation of Mg(OH)2/MgO nanowhiskers on magnesium: Rapid anodization in chloride containing solutions", Electrochemistry Communications, vol. 10, pp. 288-292, (2008).
211Halme et al., "Spray Deposition and Compression of TiO2 Nanoparticle Films for Dye-Sensitized Solar Cells on Plastic Substrates," Solar Energy Materials & Solar Cells, vol. 90, pp. 887-899, (2006).
212Hamley et al., "Nanostructure fabrication using block copolymers," Nanotechnology, vol. 14, pp. R39-R54, (2003).
213Han et al., "Electron injection enhancement by diamond-like carbon film in organic electroluminescence devices," Thin Solid Films, vol. 420-421, pp. 190-194, (2002).
214Han et al., "Pourous nanocrystalline titania films by plasma electrolytic oxidation," Surface and Coatings Technology, vol. 154, pp. 314-318, (2002).
215Han et al., "Structure and in vitro bioactivity of titania-based films by micro-arc oxidation," Surface and Coatings Technology, vol. 168, pp. 249-258, (2003).
216Han et al., "Synthesis of nanocrystalline titaniaa films by micro-arc oxidation," Materials Letters, vol. 56, pp. 744-747, (2002).
217Hanley et al., "The growth and modification of materials via ion-surface processing," Surface Science, vol. 500, pp. 500-522, (2002).
218Harris et al., "Fabrication of Perforated Thin Films with Helical and Chevron Pore Shapes," Electrochemical and Solid-State Letters, vol. 4, pp. C39-C42, (2004).
219Harvard Nanopore, "Ion Beam Sculpting: Material Science—Fabricating Nanopores and Other Nanoscale Feature," [first downloaded Jul. 2, 2003], (http://www.mcb.harvard.edu.branton/projects-IonBeam/htm).
220Hattori et al., "Photoreactivity of Sol-Gel TiO2 Films Formed on Soda-Lime Glass Substrates: Effect of SiO2 Underlayer Containing Fluorine," Langmuir, vol. 15, pp. 5422-5425, (1999).
221Hau et al., "Surface-chemistry technology for microfluidics," Journal of Micromechanics and Microengineering, vol. 13, pp. 272-278, (2003).
222Hausleiter et al., "Prvention of restenosis by a novel drug-eluting stent system with a dose-adjustable, polymer-free, on-site stent coating," European Heart Journal, vol. 26, pp. 1475-1481, (2005).
223He et al., "Electrochemical Fabrication of Metal Nanowires," Encyclopedia of Nanoscience and Nanotechnology, vol. X, pp. 1-18, (2003).
224He et al., "Optical properties of diamond-like carbon synthesized by plasma immersion ion processing," Journal of Vacuum Science Technology, vol. B17, No. 2, pp. 822-827, Mar./Apr. 1999.
225Heidenau et al., "Structured Porous Titania as a Coating for Implant Materials," Key Eng Mater. vol. 192-195, pp. 87-90, (2001).
226Heinig et al., "Modeling and Simulation of Ion Beam Systhesis of Nanoclusters," 6 pages, [first downloaded Jan. 3, 2000], (http://www.fz-rossendorf.de/pls/rois/Cms?pOId=10960&pFunc=Print&pLang=de).
227Helmersson et al., "Ionized physical vapor deposition (IPVD): A review of technology and applications," Thin Solid Films, vol. 513, pp. 1-24, (2006).
228Helmus et al. "Surface Analysis of a Series of Copolymers of L-Glutamic Acid and L-Leucine," Journal of Colloid and Interface Science, vol. 89, No. 2, pp. 567-570, (1982).
229Helmus et al., "Plasma Interaction on Block Copolymers as Determined by Platelet Adhesion," Biomaterials: Interfacial Phenomena and Applications: Chapter 7, pp. 80-93, (1981).
230Helmus et al., "The Effect of Surface Charge on Arterial Thrombosis," Journal of Biomedical Materials Research, vol. 18, pp. 165-183, (1984).
231Hentze et al., "Porous polymers and resins for biotechnological and biomedical applications," Reviews in Molecular Biology, vol. 90, pp. 27-53, (2002).
232Hoa et al., "Preparation of porous meterials with ordered hole structure," Advances in Colloid and Interface Science, vol. 121, pp. 9-23, (2006).
233Hoffman, "Non-Fouling Surface Technologies," Journal of Biomaterials Science, Polymer Edition, vol. 10, No. 10, pp. 1011-1014, (1999).
234Hoglund, "Controllable Degradation Product Migration From Biomedical Polyester-ethers," KTH Chemical Science and Engineering, Stockholm, May 24, 2007.
235Holland et al., "Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids," Science, vol. 281, pp. 538-540, Jul. 24, 1998.
236Hong et al., "The super-hydrophilicities of Bi-TiO2, V-TiO2, and Bi-V-TiO2 nano-sized particles and their benzene photodecompositions with H2O addition," Materials Letters, vol. 60, pp. 1296-1305, (2006).
237Hopp et al., "Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia)," Journal of Applied Physics, vol. 96, No. 6, pp. 3478-3481, Sep. 15, 2004.
238Houbertz, "Laser interaction in sol-gel based materials—3-D lithography for photonic applications," Applied Surface Science, vol. 247, pp. 504-512, (2005).
239Houdayer et al., "Preparation of new antimony(0)/polyaniline nanocomposites by a one-pot solution phase method," Materials Letter, vol. 61, pp. 171-176, (2007).
240Hrudey et al., "Organic Alq3 Nanostructures Fabricated with Glancing Angle Depostion," Vacuum Technology & Coating, May 2006.
241Hsiao et al., "Soluble aromatic polyamides bearing asymmetrical diaryl ether groups," Polymer, vol. 45, pp. 7877-7885, (2004).
242Hu et al., "Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codeposting iridium oxide," Electrochimica Acta, vol. 45, pp. 2684-2696, (2000).
243Hu et al., "Voltammetric investigation of platinum oxides II. Efect of hydration on the reduction behavior," Electrochimica Acta, vol. 45, pp. 3063-3068, (2000).
244Hüppauff et al., "Valency and Structure of Iridium in Anodic Iridium Oxide Films," Journal of Electrochemical Society, vol. 140, No. 3, pp. 598-602, Mar. 1993.
245Hurley et al., "Nanopatterning of Alkynes on Hydrogen-Terminated Silicon Surfaces by Scanning Probe-Induced Cathodic Eletrografting," Journal of American Chemistry Society, vol. 125, pp. 11334-11339, (2003).
246Hussain et al., "Atomic force microscope study of three-dimensional nanostructure sidewalls," Nanotechnology, vol. 18, pp. 1-8, (2007).
247Ichinose et al., "A surface sol-gel process of TiO2 and other metal oxide films with molecular precision," Chem. Mater. vol. 9, pp. 1296-1298, (1997).
248Ichinose et al., "Ultrathin composite films: An indispensable resource for nanotechnology," Riken Review, No. 37, pp. 34-37, Jul. 2001.
249Ignatova et al., "Combination of Electrografting and Aton-Transfer Radical Polymerization for Making the Stainless Steel Surface Antibacterial and Protein Antiadhesive," Langmuir, vol. 22, pp. 255-262, (2006).
250Imai et al., "Preparation of Porous Anatase Coatings from Sol-Gel-Derived Titanium Dioxide and Titanium Dioxide-Silica by Water-Vapor Exposure," Journal of American Ceramics Society, vol. 82, No. 9, pp. 2301-2304, (1999).
251Impact of Low Energy Helium Irradiation on Plasma Facing Metals; Journal of Nuclear Materials 337-339 (2005); pp. 946-950.
252Inflow Dynamics starts "LUSTY" Study, Company Press Release: First clinical trial with Niobium stents, (www.tctmd.com/industry-news/one.html?news—id=3364), Jun. 25, 2002.
253Inoue et al., "Corrosion rate of magnesium and its alloys in buffered chloride solutions," Corrosion Science, vol. 44, pp. 603-610, (2002).
254Inovati, "Award Winning—Environmentally-Safe, High-Quality, Metal Spray Process," Press Release, (2002), (http://www.inovati.com/papers/KM-PressRelease.doc).
255Inovati, "Inovati to Develop Green Metal Coating Technology" Press Release, [first downloaded Sep. 1, 2005], (http://www.inovati.com/papers/bmdopr.html).
256Inovati, "Low temperature, high-speed sprays make novel coatings," [first downloaded on Mar. 18, 2003], (http://www.inovati.com/papers/ampmar01.html).
257Introduction to the Metal Printing Process: Future manufacturing equipment of advanced materials and complex geometrical shapes, (www.mpp.no/intro/intro.htm), downloaded Mar. 18, 2002.
258Irhayem et al., "Glucose Detection Based on Electrochemically Formed Ir Oxide Films," Journal of Electroanalytical Chemisty, vol. 538-539, pp. 153-164, (2002).
259Irvine et al., "Nanoscale clustering of RGD peptides at surfaces using comb polymers. 2. Surface segregation of comb polymers in polylactide," Biomacromolecules, vol. 2, No. 2, pp. 545-556, Summer 2001.
260Irvine et al., Nanoscale clustering of RGD peptides at surfaces using Comb polymers. 1. Synthesis and characterization of Comb thin films, Biomacromolecules, vol. 2, No. 1, pp. 85-94, Spring 2001.
261Ishizawa et al., "Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment," Journal of Biomedical Materials Research, vol. 29, pp. 1071-1079, (1995).
262Ishizawa et al., "Histomorphometric evalucation of the thin hydroxyapatite layer formed through anodization followed by hydrothermal treatment," Journal of Biomedical Materials Research, vol. 35, pp. 199-206, (1997).
263Isoflux Inc., "Isoflux specializes in vacuum coating equipment and coating process," http://www.isofluxinc.com/about.shtml, Jul. 2009.
264Iurhayem et al. "Glucose detection based on electrochemically formed Ir oxide films," Journal of Electroanalytical Chemistry, vol. 539-539, pp. 153-164, (2002).
265Jensen et al., "Low-temperature preparation of nanocrystalline anatase films through a sol-gel rout," Journal of Sol-Gel Science and Technology, vol. 39, pp. 229-233, (2006).
266Jewell et al., "Multilayered polyelectolyte films promote the direct and localized delivery of DNA to cells," Journal of Controlled Release, vol. 106, pp. 214-223, (2005).
267JMAR LLC, "Collimated Plasma Lithography (CPL)," [first downloaded Jul. 2, 2003], (http://www.jmar.com/co451.html).
268Johnson, "What's an Ionic Liquid?," The Electrochemical Society: Interface, pp. 38-41, Spring 2007.
269Juodkazis et al., "Alternative view of anodic surface oxidation of nobel metals," Electrochimica Acta, vol. 51, pp. 6159-6164, (2006).
270Kamei et al., "Hydrophobic drawings on hydrophilic surfaces of single crystalline titanium dioxide: surface wettability control by mechanochemical treatment," Surface Science Letters, vol. 463 pp. L609-L612, (2000).
271Kanda et al., "Characterization of Hard Diamond-Like Carbon Films Formed by Ar Gas Cluster Ion Beam-Assisted Fullerene Deposition," Japanese Journal of Applied Physics, vol. 41, Part 1, No. 6B, pp. 4295-4298, Jun. 2002.
272Kang et al., "Controlled drug release using nanoporous anodic aluminum oxide on stent," Thin Solid Films, vol. 515, pp. 5184-5187, (2007).
273Kaplan, "Cold Gass Plasma and Silanes," Presented at the 4th International Symposium on Silanes and Other Coupling Agents, Jul. 11-13, 2003.
274Karuppuchamy et al., "Cathodic Electrodeposition of Oxide Semiconductor Thin Films and their Application to Dye-Sensitized Solar Cells," Solid State Ionics, vol. 151, pp. 19-27, (2002).
275Karuppuchamy et al., "Photoinduced Hydrophilicity of Titanium Dioxide Thin Films Prepared by Cathodic Electrode position," Vacuum, vol. 80, pp. 494-498, (2006).
276Karuppuchamy et al., "Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition," Materials Chemisty and Physics, vol. 93, pp. 251-254, (2005).
277Karuri et al., "Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells," Journal of Cell Science, vol. 117, No. 15, pp. 3153-3164, (2004).
278Kasemo et al., "Implant surfaces and interface processes," Adv. Dent. Res. vol. 13, pp. 8-20 Jun. 1999.
279Kasemo, "Biological surface science," Surface Science, vol. 500, pp. 656-677, (2002).
280Kato et al., "N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates," Biomaterials, vol. 25, pp. 907-915, (2004).
281Katsumata et at., "Effect of Microstructure on Photoinduced Hydrophilicity of Transparent Anatase Thin Films," Surface Science, vol. 579, pp. 123-130, (2005).
282Katz, "Developments in Medical Polymers for Biomaterials Applications," Medical Device Link, Jan. 2001, (http://www.devicelink.com/mddi/archive/01/01/003.html).
283Kean et al. "The Analysis of Coatings Produced by Accelerated Nanoparticles," Mantis Deposition Ltd., Presentaction at NSTI Nano Tech 2006, Boston, May 7-11, 2006.
284Kesapragada et al., "Two-component nanopillar arrays grown by Glancing Angle Deposition," Thin Solid Films, vol. 494, pp. 234-239, (2006).
285Kesler etal., "Enhanced Strength of Endothelial Attachment on Polyester Elastomer and Polytetrafluoroethylene graft Surfaces with Fibronectin Substrate," Journal of Vascular Surgery, vol. 3, No. 1, pp. 58-64, (1986).
286Kesting, "Synthetic Polymeric Membranes—A Structural Perspective", Chapters 6-7, pp. 225-286, Oct. 1985.
287Kickelbick, "Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale," Progress in Polymer Science, vol. 28, pp. 81-114, (2003).
288Kidambi et al., "Selective Depositions on Polyelectrolyte Multilayers: Self-Assembled Monolayers on m-dPEG Acid as Molecular Template," Journal of the American Chemistry Society, vol. 82, No. 9, pp. 4697-4703, (2004).
289Kilian et al., "Plasma transglutaminase factor XIII induces microvessel ingrowth into biodegradable hydroxyapatite implants in rats," Biomaterials, vol. 26, pp. 1819-1827, (2005).
290Kim et al. "Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer," Biomaterials, vol. 24, pp. 3277-3284, (2003).
291Kim et al., "Adhesion of RF bias-sputtered Cr thin films onto photosensitivepolyimide substrates," IEEE, International Symposium on Eelectrical Materials and Pakaging, pp. 202-207, (2001).
292Kim et al., "Fabrication and Characterization of TiO2 Thin Film Prepared by a Layer-By-Layer Self-Assembly Method," Thin Solid Films, vol. 499, pp. 83-89, (2006).
293Kim et al., "Fabrication of WC-Co coatings by cold spray deposition," Surface & Coatings Technology, vol. 191, pp. 335-340, (2005).
294Kim et al., "Hollow Silica Spheres of Controlled Size and Porosity by Sol-Gel Processing," Journal of Americal Ceramic Society, vol. 74, Nol. 8, pp. 1987-1992, (1991).
295Kim et al., "Proton conducting polydimethylsiloxane/metal oxide hybrid membranes added with phosphotungstic acid(II)," Electrochimica Acta, vol. 49, pp. 3429-3433, (2004).
296Kitagawa et al., "Near-Edge X-Ray Absorption Fine Structure Study for Optimization of Hard Diamond-Like Carbon Film Formation with Ar Cluster Ion Beam," Japanese Journal of Applied Physics, vol. 42, pp. 3971-3975, (2003).
297Kitagawa et al., Optimum Incident Angle of Ar Cluster Ion Beam for Superhard Carbon Film Deposition, Japanese Journal of Applied Physics, vol. 43, No. 6B, pp. 3955-3958, (2004).
298Kittaka et al., "The Structure of Water Monolayers on a Hydroxylated Chromium Oxide Surface," Adsorption, vol. 11, pp. 103-107, (2005).
299Kleinertz et al., "LUSTY Studie: Lunar STF Study," PowerPoint presentation on Sep. 4, 2004.
300Kleisner et al., "A system based on metal alkyl species that forms chemically bound organic overlays on hydroxylated planar surfaces," Thin Solid Films, vol. 381, pp. 10-14, (2001).
301Kogure et al., "Microstructure of nemalite, fibrous iron-bearing brucite", Mineralogical Journal, vol. 20, No. 3, pp. 127-133, Jul. 1998.
302Kohli et al., "Arrays of lipid bilayers and liposomes on patterned polyelectrolyte templates," Journal of Colloid and Interface Science, vol. 301, pp. 461-469, (2006).
303Kokubo et al., "Novel bioactive materials with different mechanical properties," Biomaterials, vol. 24, pp. 2161-2175, (2003).
304Kommireddy et al., "Layer-by-Layer Assembly of TiO2 Nanoparticles for Stable Hydrophilic Biocompatible Coatings" Journal of Nanoscience and Nanotechnology, vol. 5, pp. 1081-1087, (2005).
305Kondyurin et al., "Plasma Immersion ion implantation of polyethylene," Vacuum, vol. 64, pp. 105-111, (2002).
306Kong et al., "Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly," Polymer, vol. 46, pp. 2472-2485, (2005).
307Konig et al., "Nanoprocessing with nanojoule near-infrared femtosecond laser pulses," Medical Laser Application, vol. 20, pp. 169-184, (2005).
308Konishi et al., "Morphology Control of Dy-Ni Alloy Films by Electrochemical Displantation," Electrochemical and Solid-State Letters, vol. 5, No. 12, pp. B37-B39, (2002).
309Koo et al., "Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus," Journal of Cellular Science, vol. 115, Part 7, pp. 1423-1433, Apr. 1, 2002.
310Kopanski et al., "Scanning Kelvin Force Microscopy For Characterizing Nanostructures in Atmosphere," Characterization and Metrology for Nanoelectronics: 2007 International Conference on Frontiers of Characterization and Metrology. American Institute of Physics Conference Proceedings, vol. 931, pp. 530-534, Sep. 26, 2007.
311Kostov et al., "Two Dimensional Computer Simulation of Plasma Immersion Ion Implantation," Brazilian Journal of Physics, vol. 34, No. 4B, pp. 1689-1695, Dec. 2004.
312Kötz et al., "XPS Studies of Oxygen Evolution on Ruand RuO2 Anodes," Journal of Electrochemical Society: Electrochemical Science and Technology, pp. 825-829, Apr. 1983.
313Kowalski et al., "Corrosion protection of steel by bi-layered polypyrrole doped with molybdophosphate and naphthalenedisulfonate anions," Corrosion Science, Vo. 49, pp. 1635-1644, ( 2007).
314Kraft et al., "Thin films from fast clusters: golden TiN layers on a room temperature substrate" Surface and Coatings Technology 158-159, pp. 131-135, (2002).
315Krumeich et al., "HyFraSurf-Advanced Surface Technology for Superior Electrode Performance," European Cells and Materials, vol. 1, Suppl. 1, p. 43, (2001).
316Kumar et al., "Influence of electric field type on the assembly of single walled carbon nanotubes," Chemical Physics Letters, vol. 383, pp. 235-239, (2004).
317Kumar et al., "Polyanhydrides: an overview," Advanced Drug Delivery Reviews, vol. 54, pp. 889-910, (2002).
318Kunitake et al., "Molecular imprinting in ultrathin titania gel films via surface sol-gel process," Analytica Chimica Acta, vol. 504, pp. 1-6, (2004).
319Kurth et al., "Multilayers on Solid Planar Substrates: From Structure to Function," Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Chapter 14, pp. 393-426, Mar. 7, 2003.
320Kutsenko et al., "Structural changes in Mg alloy induced by plasma immersion ion implantation of Ag," Acta Materialia, vol. 52, pp. 4329-4335, (2004).
321Kutz, "Biomaterials to Promote Tissue Regeneration," in Standard Handbook of Biomedical Engineering and Design, ISBN 0-07-135637-1, pp. 16.13-16.29, (2003).
322Kvastek et al., "Electochemical properties of hydrous rithenium oxide films formed and measured at different potentials," Journal of Electroanalytical Chemistry, vol. 511, pp. 65-78, (2001).
323Lakard et al., "Adhesion and proliferation of cells on new polymers modified biomaterials," Bioelectrochemistry, vol. 62, pp. 19-27, (2004).
324Lakatos-Varsanyi et al., "Cyclic voltammetry measurements of different single-, bi- and multilayer TiN and single layer CrN coatings on low-carbon-steel substrates," Corrosion Science, vol. 41, pp. 1585-1598, (1999).
325Lamaka et al., "TiOx self-assembled networks prepared by templating approach as nanostructured reservoirs for self-healing anticorrosion pre-treatments," Electrochemistry Comunications, vol. 8, pp. 421-428, (2006).
326Larner et al., "The Challenge of Plasma Processing—Its Diversity," Presented at the ASM Materials and Processes for Medical Devices Conference, Aug. 25-27, 2004.
327Laser-Induced Forward Transfer (LIFT): Paul Scherrer Institut, (http://materials.web.psi.ch/Research/Thin—Films/Methods/LIFT.htm), downloaded Dec. 7, 2006.
328Lau et al., "Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films," Thin Solid Films, vol. 395, pp. 288-291, (2001).
329LaVan et al., Small-scale systems for in vivo drug delivery, Nature Biotechnology, vol. 21, No. 10, pp. 1184-1191, Oct. 2003.
330Leary-Swan et al., "Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture," Journal of Biomedical Materials Research: Part A, vol. 72A, pp. 288-295, (2005).
331Lee et al., "A study on electrophoretic deposition of Ni nanoparticles on pitted Ni alloy 600 with surface fractality", Journal of Colloid and Interface Science, vol. 308, pp. 413-420, (2007).
332Lee et al., "A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic Nanotubes," Angewandte Chemie, vol. 44, pp. 6050-6054, (2005).
333Lee et al., "Biocompatibility and Charge Injection Property of Iridium Film Formed by Ion Beam Assisted Deposition," Biomaterials, vol. 24, pp. 2225-2231, (2003).
334Lee et al., "Structural characterization of porous low-k thin films prepared by different techniques using x-ray porosimetry," Journal Of Applied Physics, vol. 95, No. 5, Mar. 1, 2004.
335Lefaux et al., "Polyelectrolyte Spin Assembly: Influence of Ionic Strenght on the Growth of Multilayered Thin Films," Journal of Polymer Science Part B: Polymer Physics, vol. 42, pp. 3654-3666, (2004).
336Lei et al., "Fabrication of Highly Ordered Nanoparticle Arrays Using Thin Porous Alumina Masks," Advanced Materials for Micro- and Nano-Systems (AMMNS), Jan. 2001.
337Leng et al., "Mechanical properties and platelet adhesion behavior of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition," Surface Science, vol. 531, pp. 177-184, (2003).
338Lenza et al., "In vitro release kinetics of proteins from bioactive foams," Journal of Biomedical Materials Research: A, vol. 67, No. 1, pp. 121-129, Oct. 2003.
339Leoni et al., "Characterization of Nanoporous Membranes for immunoisolation: Diffusion Properties and Tissue Effects," Biomedical Microdevices, vol. 4, No. 2, pp. 131-139, (2002).
340Leoni et al., "Nanoporous Platforms for Cellular Sensing and Delivery," Sensors, 51(2), pp. 111-120, (2002).
341Leung et al., "Fabrication of photonic band gap crystal using microtransfer molded templates," Journal of Applied Physics, vol. 93, No. 10, pp. 5866-5870, May 15, 2003.
342Lewis et al., "Silicon nonopillars formed with gold colloidal partical masking," Journal of Vacuum Science Technology B, vol. 16, No. 6, pp. 2938-2941, Nov./Dec. 1998.
343Li et al., "A novel method for preparing surface-modified Mg(OH)2 nanocrystallines," Materials Science and Engineering A, 452-453, pp. 302-305, (2007).
344Li et al., "A simple approach to fabricate amorphous silicon pattern on single crystal silicon," Tribology International, vol. 40, pp. 360-364, (2007).
345Li et al., "Bioactive Hydroxyapatite Composite Coating Prepared by SOL-Gel Process," Journal of Sol-Gel Science and Technology, vol. 7, pp. 27-34, (1996).
346Li et al., "Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina," Advanced Materials, vol. 11, pp. 483-487, (1999).
347Li et al., "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, vol. 84, No. 11, pp. 6023-6026, Dec. 1, 1998.
348Li et al., "Improved biological performance of Ti implants due to surface modification by micro-arc oxidation," Biomaterials, vol. 25, pp. 2867-2875, (2004).
349Li et al., "On the growth of highly ordered pores in anodized aluminum oxide," Chem. Mater., vol. 10, pp. 2470-2480, (1999).
350Li et al., "pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA," Composites Science and Technology, vol. 65, pp. 2226-2232, (2005).
351Li et al., "Polycrystalline nanopore arrays with haxagonal ordering on aluminum," Journal of Vacuum Science Technology: A, vol. 17, pp. 1428-1431, (1999).
352Li, "Poly(L-glutamic acid)-anticancer drug conjugates," Advanced Drug Delivery Reviews, vol. 54, pp. 695-713, (2002).
353Liaw et al., "Process Monitoring of Plasma Electrolytic Oxidation," presented at the 16th World Conference on Nondestructive Testing, Montreal, Canada, Aug. 30-Sep. 3, 2004.
354Liebling et al., "Optical Properties of Fibrous Brucite from Asbestos, Quebec", American Mineralogist, vol. 57, pp. 857-864, (1972).
355Lim et al., "Systematic variation in osteoblast adheasion and phenotype with substratum surface characteristics," Journal of Biomedical Materials and Research, vol. 68A, No. 3, pp. 504-511, (2004).
356Lim et al., "UV-Driven Reversible Switching of a Roselike Vanadium Oxide Film between Superhydrophobicity and Superhydrophilicity," Journal of American Chemical Society, vol. 129, pp. 4126-4129, Mar. 15, 2007.
357Lin et al., "PWA-doped PEG/SiO2 proton-conducting hybrid membranes for fuel cell applications," Journal of Membrane Science, vol. 254, pp. 197-205, (2005).
358Lindstrom et al., "A New Method for Manufacturing Nanostructured Electrodes on Glass Substrates," Solar Energy Materials & Solar Cells, vol. 73, pp. 91-101 (2002).
359Lippert et al., "Chemical and Spectroscopic Aspects of Polymer Ablation: Special Features and Novel Directions," Chemical Reviews, vol. 103, pp. 453-485, (2003).
360Liu et al., "A metal plasma source ion implantation and deposition system," American Institute of Physics, Review of Scientific Instruments, vol. 70, No. 3, pp. 1816-1820, Mar. 1999.
361Liu et al., "Electrodeposition of Polypyrrole Films on Aluminum from Tartrate Aqueous Solution," Journal of Brazilian Chemical Society, vol. 18, No. 1, pp. 143-152, (2007).
362Liu et al., "Surface modification of titanium, titanium alloys, and related materials for biomedical applications," Materials Science and Engineering R, vol. 47, pp. 49-121, (2004).
363Lu et al., "Fabricating Conducting Polymer Electrochromic Devices Using Ionic Liquids," Journal of the Electrochemical Society, vol. 151, No. 2, pp. H33-H39, (2004).
364Lu et al., "Micro and nano-fabrication of biodegradable polymers for drug delivery," Advanced Drug Delivery Reviews, vol. 56, pp. 1621-1633, (2004).
365Lv et al., "Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method," Journal of Crystal Growth, vol. 267, pp. 676-684, (2004).
366Lv et al., "Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethyolene-vinyl acetate blends", Nanotechnology, vol. 15, pp. 1576-1581, (2004).
367Lv et al., "In situ synthesis of nanolamellas of hydrophobic magnesium hydroxide", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 296, pp. 97-103, (2007).
368Maeda et al., "Effect of Silica Addition on Crystallinity and Photo-Induced Hydrophilicity of Titania-Silica Mixed Films Prepared by Sol-Gel Process," Thin Solid Films, vol. 483, pp. 102-106, (2005).
369Maehara et al., "Buildup of Multilayer Structures of Organic-Inorganic Hybrid Ultra Thin Films by Wet Process," Thin Solid Films, vol. 438-439, pp. 65-69, (2003).
370Maheshwari et al., "Cell adhesion and motility depend on nanoscale RGD clustering," Journal of Cell Science, vol. 113, Part 10, pp. 1677-1686, May 2000.
371Maitz et al., "Blood Compatibility of Titanium Oxides with Various Crystal Structure and Element Doping," Journal of Biomaterials Applications, vol. 17, pp. 303-319, Apr. 2003.
372Manna et al., "Microstructural Evalution of Laser Surface Alloying of Titanium with Iridium," Scripta Materialia, vol. 37, No. 5, pp. 561-568, (1997).
373Manoharan et al., "Ordered macroporous rutile titanium dioxide by emulsion templating," Proceedings of SPIE, vol. 3937, pp. 44-50, (2000).
374Mantis Deposition Ltd., "Nanocluster Deposition," Thame, Oxforshire, United Kingdom, [downloaded on Feb. 2, 2007], (http://www.mantisdeposition.com/nanocluster.html).
375Martin et al., "Microfabricated Drug Delivery Systems: Concepts to Improve Clinical Benefit," Biomedical Microdevices, vol. 3, No. 2, pp. 97-107, Jun. 2001.
376Martin, "Pulsed Laser Deposition and Plasma Plume Investigations," Andor Technology, Ltd. (2003).
377Masuda et al., "Highly ordered nanochannel-array architecture in anodic alumina," Applied Physics Letters, vol. 71, pp. 2770-2772, (1997).
378Matijević, "Colloid Chemical Aspects of Corrosion of Metals", Pure & Applied Chemisty, vol. 52, pp. 1179-1193, (1980).
379Mattox, "Introduction: Physical Vapor Deposition (PVD) Processes," Vacuum Technology & Coating, pp. 60-63, Jul. 2002.
380Mattox, "The History of Vacuum Coating Technology: Part V," Vacuum Technology & Coating, pp. 32-37, Oct. 2002.
381Mattox, "The History of Vacuum Coating Technology: Part VI," Vacuum Technology & Coating, pp. 52-59, Oct. 2002.
382Mauritz Group Homepage, "Sol-Gel Chemistry and Technology," (htty://www.psrc.usin.edu/mauritz/solgel.html) (downloaded [2006]).
383McGuigan et al., "The influence of biomaterials on endothelial cell thrombogenicity," Biomaterials, vol. 28, pp. 2547-2571, (2007).
384McNally et at., "Cathodic Electrodeposition of Cobalt Oxide Films Using Polyelectrolytes," Materials Chemistry and Physics, vol. 91, pp. 391-398, (2005).
385Meijer et al., "Laser Machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons," Annals of CIRP 2002: Manufacturing Technology, vol. 51, No. 2, pp. 531-550, (2002).
386Meletis et al., "Electrolytic plasma processing for cleaning and metal-coating of steel surfaces," Surface and Coatings Technology, vol. 150, pp. 246-256, (2002).
387Merriam-Webster's Dictionary Website: For definition of Strut, [first cited Jul. 21, 2010], (http://www.merriam-webster.com/dictionary/strut).
388MicroFab Technologies Inc. "MicroFab: Biomedical Applications—Stents," [first downloaded Mar. 23, 2007], (http://www.microfab.com/technology/biomedical/Stents.html).
389Mikhaylova et al., "Nanowire formation by electrodeposition in modified nanoporous polycrystalline anodic alumina templates," Mat. Res. Soc. Symp. Proc., vol. 704, pp. w6.34.1-W6.34.6, (2002).
390Miller et al., "Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features," Biomaterials, vol. 25, No. 1, pp. 53-61, (2004).
391Miller et al., "Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films," Journal of Biomedical Materials Research A, vol. 73, No. 4, pp. 476-484, (2005).
392MIV Therapeutics, "Hydroxyapatite Coating," [first downloaded Jun. 25, 2003], (http://www.mivtherapeutics.com/technology/hap/).
393Mobedi et al., "Studying the Degradation of Poly(L-lactide) in Presence of Magnesium Hydroxide", Iranian Polymer Journal, vol. 15, No. 1, pp. 31-39, (2006).
394Mu et al., "A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS," Journal of Controlled Release, vol. 86, pp. 33-48, (2003).
395Mu et al., "Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres O for controlled release of paclitaxel (Taxol)", Journal of Controlled Release, vol. 80, pp. 129-144, (2002).
396Muller et al., "Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art," European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, pp. 161-177, (2000).
397Munchow et al., "Poly[(oligoethylene glycol) Dihydroxytitanate] as Organic-Inorganic Polymer-Electrolytes," Electrochimica Acta, vol. 45, pp. 1211-1221, (2000).
398Murray et al., "Electrosynthesis of novel photochemically active inherently conducting polymers using an ionic liquid electrolyte," Electrochimica Acta, vol. 51, pp. 2471-2476, (2006).
399Naganuma et al., "Preparation of Sol-Gel Derived Titanium Oxide Thin Films Using Vacuum Ultraviolet irradiation with a Xenon Excimer Lamp," Japanese Journal of Applied Physics, vol. 43, No. 9A, pp. 6315-6318, (2004).
400Nair et al., "Biodegradable polymers as biomaterials", Progress in Polymer Science, vol. 32, pp. 732-798, (2007).
401Nakajima et al., "Effect of Vacuum Ultraviolet Light Illumination on the Crystallization of Sol-Gel-Derived Titanium Dioxide Precursor Films," Surface & Coatings Technology, vol. 192, pp. 112-116, (2005).
402Nakayama et al., "Fabrication of drug-eluting covered stents with micropores and differential coating of heparin and FK506," Cardiovascular Radiation Medicine, vol. 4, pp. 77-82, (2003).
403NanoBiotech News, vol. 2, No. 26, Jun. 30, 2004.
404Nanoparticle coatings: Application note, "Antimicrobial Coatings," MANTIS Deposition Ltd, (2006).
405Nanu, "Nanostructured TiO2-CuInS2 based solar cells," Symposium D, Thin Film and Nano-Structured Materials for Photovoltaics, E-MRS Spring Meeting 2003, Jun. 10-13, 2003.
406NASA Glenn Research Center, "Fast Three-Dimensional Method of Modeling Atomic Oxygen Undercutting of Protected Polymers," [first downloaded on Jul. 3, 2003], (http://www.grc.nasa.gov/WWW/epbranch/suurtxt/surfaceabs.htm).
407Neves et al., "The morphology, mechanical properties and ageing behavior of porous injection molded starch-based blends for tissue engineering scafolding," Materials Science and Engineering, vol. C25, pp. 195-200, (2005).
408Newman et al., "Alloy Corrosion," MRS Bulletin, pp. 24-28, Jul. 1999.
409Ngaruiya et al., "Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films," Applied Physics Letters, vol. 85, No. 5, pp. 748-750, Aug. 2, 2004.
410Ngaruiya et al., "The reactive DC-Magnetron Sputtering Process," (circa 2004).
411Nicoll et al., "In vitro release kinetics of biologically active transforming growth factor-beta 1 from a novel porous glass carrier," Biomaterials, vol. 18, Issue 12, pp. 853-859, (1997).
412Nicoll et al., "Nanotechnology and Biomaterials—Drugs, Drug Delivery Systems, Quantum Dots and Disease Treatment," Azom.com, [first downloaded Mar. 22, 2004], (http://www.azom.com/details.asp?ArticleID=1853).
413Nie et al., "Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis," Surface Coatings Technology, vol. 125, pp. 407-414, (2000).
414Nishio et al., "Preparation and properties of electrochromic iridium oxide thin film by sol-gel process," Thin Solid Films, vol. 350, pp. 96-100, (1999).
415Noguera et al., "3D fine scale ceramic components formed by ink-jet prototyping process," Journal of the European Ceramic Society, vol. 25, pp. 2055-2059, (2005).
416O'Brien et al., "Passivation of Nitinol Wire for Vascular Implants-A Demonstration of the Benefits," Biomaterials, vol. 23, pp. 1739-1748, (2002).
417Oh et al., "Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method," Surface & Coatings Technology, vol. 198, pp. 247-252, (2005).
418Orloff et al., "Biodegradable implant strategies for inhibition of restenosis," Advanced Drug Delivery Reviews, vol. 24, pp. 3-9, (1997).
419Oxford Applied Research, "Nanocluster Deposition Systems—Nanodep60," [first downloaded Nov. 3, 2006], (http://www.oaresearch.co.uk.nanodep60.htm).
420Paik et al., "Micromachining of mesoporous oxide films for microelectromechanical system structures," Journal of Materials Research, vol. 17, pp. 2121-2129, (2002).
421Palasis et al., "Analysis of Adenoviral Transport Mechanisms in the Vessel Wall and Optimization of Gene Transfer Using Local Delivery Catheters," Human Gene Therapy, vol. 11, pp. 237-246, Jan. 20, 2000.
422Palasis et al., "Site-Specific Drug Delivery from Hydrogel Coated Angioplasty Catheters," Proceedings of the International Symposium on Controlled Release: Bioactive Materials, vol. 24, pp. 825-826, (1997).
423Palmaz et al., "Influence of surface topography on endothelialization of intravascular metallic material," Journal of Vascular and Interventional Radiology, vol. 10, No. 4, pp. 439-444, (1999).
424Pang et al., "Electrodeposition of composite hydroxyapatite-chitosan films," Materials Chemistry and Physics, vol. 94, pp. 245-251, (2005).
425Pang et al., "Electropolymerization of high quality electrochromic poly(3-alkyl-thiophene)s via a room termperature ionic liquid," Electrochimica Acta, vol. 52, pp. 6172-6177, (2007).
426Park et al., "Cathodic electrodeposition of RuO2 thin films from Ru(III)C13 solution", Materials Chemistry and Physics, vol. 87, pp. 59-66, (2004).
427Park et al., "Microstructural change and precipitation hardeningin melt-spun Mg-X-Ca alloys," Science and Technology of Advanced Materials, vol. 2, pp. 73-78, (2001).
428Park et al., "Multilayer Transfer Printing for Polyelectrolyte Multilayer Patterning: Direct Transfer of Layer-by-Layer Assembled Micropatterned Thin Films," Advanced Materials, vol. 16, No. 6, pp. 520-525, Mar. 18, 2004.
429Park et al., "Novel Phenylethynyl Imide Silanes as Coupling Agents for Titanium Alloy," The 22nd Annual Meeting of the Adhesion Society, Feb. 21-24, 1999.
430Pathan et al., "A chemical route to room-temperature synthesis of nanocrystalline TiO2 thin films," Applied Surface Science, vol. 246, pp. 72-76, (2005).
431Pelletier et al., "Plasma-based ion implantation and deposition: A review for physics, technology, and applications," Lawrence Berkeley and National Laboratory, pp. 1-68, May 16, 2005.
432Peng et al., "Role of polymers in improving the results of stenting in coronary arteries," Biomaterials, vol. 17, No. 7, pp. 658-694 (1996).
433Perlman et al., "Evidence for rapid onset of apoptosis in medial smooth muscle cells after balloon injury," Circulation, vol. 95, No. 4, pp. 981-987, Feb. 18, 1997.
434Pharmaceutical Science Technology, Chapter 6: Electropolymerization, pp. 24-28, (2007).
435Piazza et al., "Protective diamond-like carbon coatings for future optical storage disks," Diamond & Related Materials, vol. 14, pp. 994-999, (2005).
436Pitt et al., "Attachment of hyaluronan to metallic surfaces," Journal of Biomedical Materials Research, vol. 68A, pp. 95-106, (2004).
437Polygenetics, "Advanaced Drug Delivery," [first downloaded on May 4, 2007], 5 pages, (http://www.polygenetics.com/drug—delivery.htm).
438Ponte et al., "Porosity determination of nickel coatings on copper by anodic voltammetry," Journal of Applied Electrochemistry, vol. 32, pp. 641-646, (2002).
439Prior Clinicals, Boston Scientific memo, (more than a year prior to May 23, 2007).
440Prokopowicz et al., "Synthesis and Application of Doxorubicin-Loaded Silica Gels as Solid Materials for Spectral Analysis," Talanta, vol. 65, pp. 663-671, (2005).
441Prokopowicz et al., "Utilization of Standards Generated in the Process of Thermal Decomposition Chemically Modified Silica Gel or a Single Point Calibration of a GC/FID System," Talanta, vol. 44, pp. 1551-1561, (1997).
442Pulsed Laser Deposition, (http://www.physandtech.net), Apr. 28, 2001.
443PVD Materials—Materials Available for Physical Vapour Deposition (PVD) from Williams Advanced Materials. (www.azom.com), [first downloaded Apr. 28, 2006].
444Qasem et al., "Kinetics of Paclitaxel 2′-N-Methylpyridinium Mesylate Decomposition," AAPS PharmaSciTech, vol. 4, No. 2, Article 21, (2003).
445Qian et al., "Preparation, characterization and enzyme inhibition of methylmethacrylate copolymer nanoparticles with different hydrophilic polymeric chains," European Polyer Journal, vol. 42, pp. 1653-1661, (2006).
446Qiang et al., "Hard coatings (TiN, TiχAl1-χN) deposited at room temperature by energetic cluster impact," Surface and Coatings Technology, 100-101, pp. 27-32, (1998).
447Qiu et al., "Self-assembled growth of MgO nanosheet arrays via a micro-arc oxidations technique," Applied Surface Science vol. 253, pp. 3987-3990, (2007).
448Radin et al., "Biocompatible and Resorbable Silica Xerogel as a Long-Term Controlled Release Carrier of Vancomycin," Orthopaedic Research Society, 47th Annual Meeting, Feb. 25-28, 2001, San Francisco, CA.
449Radin et al., "Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release," Journal of Biomedical Materials Research, vol. 27, No. 2, pp. 313-320, Nov. 2001.
450Radin, S. et al., "In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials," Biomaterials. vol. 23, No. 15, pp. 3113-3122, Aug. 2002.
451Radtchenko et al., "A Novel Method for Encapsulation of Poorly Water-Soluble Drugs: precipitation in Polyelectrolyte multilayer shells", International Journal of Pharmaceutics, vol. 242, pp. 219-223, (2002).
452Razzacki et al., "Integrated microsystems for controlled drug delivery," Advanced Drug Delivery Reviews, vol. 56, pp. 185-198, (2004).
453Rees et al., "Glycoproteins in the Recognition of Substratum by Cultured Fibroblasts," Symposia of the Society for Experimental Biology: Cell-Cell Recognition, No. 32, pp. 241-260 (1978).
454Reyna-Gonzales et al., "Influence of the acidity level on the electropolymerization of N-vinylcarbazole: Electrochemical study and characterization of poly(3,6-N-vinylcarbazole)," Polymer, vol. 47, pp. 6664-6672, (2006).
455Rice, "Limitations of pore-stress concentrations on the mechanical properties of porous materials," Journal of Material Science, vol. 32, pp. 4731-4736, (1997).
456Ristoscu, "Thin Films and Nanostructured Materials." [first downloaded Jul. 3, 2003], (http://www..fisica.unile.it/radiazioni/ThinY02Ofilms%20and%20nanostmctured%20materials.htm).
457Robbie et al., "Advanced techniques for glancing angle deposition," Journal of Vacuum Science and Technology B, vol. 16, No. 3, pp. 1115-1122, (May/Jun. 1998).
458Robbie et al., "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," Journal of Vacuum Science Technology: A., vol. 15, pp. 1460-1465, (1997).
459Roder et al., "Tuning the microstructure of pulsed laser deposited polymer-metal nanocomposites," Applied Physics A. vol. 85, pp. 15-20 (2006).
460Rosen et al., "Fibrous Capsule Formation and Fibroblast Interactions at Charged Hydrogel Interfaces," Hydrogels or Medical and Related Applications, Chapter 24, pp. 329-343, Jun. 1, 1976.
461Rossi et al., "Pulsed Power Modulators for Surface Treatment by Plasma Immersion Ion Impantation," Brazilian Journal of Physics, vol. 34, No. 4B, pp. 1565-1571, Dec. 2004.
462Routkevitch, "Nano- and Microfabrication with Anodic Alumina: A Route to Nanodevices," Foresight Institute 9th Conference on Molecular Nanotechnology, Nov. 8-11, 2001, Santa Clara, CA.
463Ryu et al., "Biomimetic apatite induction on Ca-containing titania," Current Applied Physics, vol. 5, pp. 512-515, (2005).
464Santos et al., "Si-Ca-P xerogels and bone morphogenetic protein act synergistically on rat stromal marrow cell differentiation in vitro," Journal of Biomedical Materials Research, vol. 41, No. 1, pp. 87-94, Jul. 1998.
465Santos et al., "Sol-Gel Derived Carrier for the Controlled Release of Proteins," Biomaterials, vol. 20, pp. 1695-1700, (1999).
466Sardella et al., "Plasma-Aided Micro- and Nanopatterning Processes for Biomedical Applications," Plasma Processes and Polymers, vol. 3, pp. 456-469, (2006).
467Sasahara et al., "Macroporous and nanosized ceramic films prepared by modified sol-gel methods with PMMA microsphere templates," Journal of the European Ceramic Society, vol. 24, pp. 1961-1967, (2004).
468Sawitowski, "Nanoporous alumina for implant coating—A novel approach towards local therapy," NanoMed 3rd Workshop, Medical Applications of Nanotechnology, Berlin, Feb. 17-18, 2003.
469Sawyer et al., "The Role of Electrochemical Surface Properties in Thrombosis at Vascular Interfaces: Cumulative Experience of Studies in Animals and Man," Bulletin of the New York Academy of Medicine, Second Series, vol. 48, No. 2, pp. 235-256, (1972).
470Sawyer, "Electrode-Biologic Tissue Interreactions at Interfaces—A Review;" Biomat. Med. Dev. Art. Org., 12(3-4), pp. 161-196 (1984).
471Schetsky, "Shape Memory Alloys", Encyclopedia of Chemical Technology (3rd ed.), John Wiley & Sons, vol. 20, pp. 726-736, (1982).
472Schlottig et al., "Characterization of nanoscale metal structures obtained by template synthesis," Fresenius' Journal of Analytical Chemistry, vol. 361, pp. 684-686, (1998).
473Schneider, "Laser Cladding with Powder: Effect of some machining parameters on clad properties," Doctoral Thesis—University of Twente, The Netherlands, ISBN 9036510988, Mar. 1998.
474Schnitzler et al., "Organic/Inorganic Hybrid Materials Formed From TiO2 Nanoparticles and Polyaniline," Journal of Brazilian Chemistry Society, vol. 15, No. 3, pp. 378-384, (2004).
475Selective laser sintering, from Wikipedia, (http://en.wikipedia.org/wiki/Selective—laser—sintering), downloaded on Sep. 28, 2007.
476Senior et al., "Synthesis of tough nanoporous metals by controlled electrolytic dealloying," Nanotechnology, vol. 17, pp. 2311-2316, (2006).
477Serra et al., "Preparation of functional DNA microarrays through laser-induced forward transfer," Applied Physics Letters, vol. 85, No. 9, pp. 1639-1641, Aug. 30, 2004.
478Serruys et al., "The Effect of Variable Dose and Release Kinetics on Neointimal Hyperplasia Using a Novel Paclitaxel—Eluting Stent Platform," Journal of the American College of Cardiology, vol. 46, No. 2, pp. 253-260, Jul. 19, 2005.
479Sgura et al., The Lunar Stent: characteristics and clinical results, Herz, vol. 27, pp. 1-X, (2002).
480Shabalovskaya et al., "Surface Conditions of Nitinol Wires, Tubing, and As-Cast Alloys. The Effect of Chemical Etching, Aging in Boiling Water, and Heat Treatment," Wiley Periodicals, Inc., Journal of Biomedical Materials Research Part B: Appiled Biomaterials, vol. 65B: pp. 193-203, (2003).
481Shamiryan et al., "Comparative study of SiOCH low-k films with varied porosity interacting with etching and cleaning plasma," Journal of Vacuum Science Technology B, vol. 20, No. 5, pp. 1923-1928, Sep./Oct. 2002.
482Shang et al., "Structure and photocatalytic characters of TiO2 film photocatalyst coated on stainless steel webnet," Journal of Molecular Catalysis A: Chemical, vol. 202, pp. 187-1995, (2003).
483Shao et al., "Fiber mats of poly(vinyl alcohol)/silica composite via Electrospinning," Materials Letters, vol. 57, pp. 1579-1584, (2003).
484Shchukin et al., "Micron-scale hollow polyelectrolyte capsules with naosized magnetic Fe3O4 inside," Materials Letters, vol. 57, pp. 1743-1747, (2003).
485Shevchenko et al., "Porous Surface of NiTi Alloy Produced by Plasma Ion Implantation," Institute of Ion Beam Physics and Materials Research, May 2005.
486Shevchenko, "Formation of nonoporous structures on stainless steel surface," Report, Apr. 2007.
487Shibli et al., "Development of phosphate inter layered hydroxyapatite coating for stainless steel implants", Applied Surface Science, vol. 254, pp. 4103-4110, (2008).
488Shockravi et al., "Soluable and thermally stable polyamides bearing 1,1'-thiobis(2-naphthoxy) groups," European Polymer Journal, vol. 43, pp. 620-627, (2007).
489Shustak et al., "n-Alkanoic Acid Monolayers on 316L Stainless Steel Promote the Adhesion of electropolymerized Polypyrrole Films," Langmuir, vol. 22, pp. 5237-5240, (2006).
490Siegfried et al., "Reactive Cylindrical Magnatron Deposition of Titanium Nitride and Zirconium Nitride Films," Society of Vacuum Coaters, 39th Annual Technical Conference Proceedings, pp. 97-101, (1996).
491Silber et al., "A new stainless-steel-free stent with a potential of artifact free magnetic resonance compatibility: first clinical experience (Ein neuer Edelstahl-freier Stent mit Potential zur artefaktfreien MR-Kompatibilität: Erste klinische Erfahrungen)," German Society for Cardiology—Heart and Cardiovascular Research (Deutche Gesellschaft fur Kardiologie—Herz and Kreislaufforschung), Oct. 30, 2005.
492Silber et al., "A new stainless-steel-free stent with a potential of artifact free magnetic resonance compatibility: first clinical experience," Abstract and Poster, May 2006.
493Silber, "Ein edelstahfreier stent aus niobium mit iridiumoxyd (IrOx)-beschichtung: Erste Ergebnisse der LUSTY-studie" (Stainless steel-free Stent out of niobium with iridiumoxyd (IrOx)-coating: Initial results of the LUSTY-study), PowerPoint presentation on Oct. 15, 2004.
494Silber, "LUSTY-FIM Study: Lunar Starflex First In Man Study," PowerPoint presentation at the Paris Course on Revascularization, May 2003.
495Silber, "LUSTY-FIM Study: Lunar Starflex First In Man Study," PowerPoint presentation in 2003.
496Silber, "Niobium/iridiumoxide Stents: LUSTY randomized trial, LUNAR ROX registry," PowerPoint presentation in 2003.
497Silva et al., "Electrochemical characterisation of oxide films formed on Ti-6A1-4V alloy implanted with Ir for Bioengineering applications," Electrochimica Acta, vol. 43, Nos. 1-2, pp. 203-211, (1998).
498Simon et al., "Influence of topography on endothelialization of stents: Clues for new designs," Journal of Long-Term Effects Of Medical Implants, Voo. 10, No. 1-2, pp. 143-151, (2000).
499Singer, "Paclitaxel Poliglumex (XYOTAX, CT-2103): A Macromolecular Taxane," Journal of Controlled Release, vol. 109, 120-126, (2005).
500Singh et al., "Review: Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD)," Journal of Materials Science, vol. 40, pp. 1-26, (2005).
501Sniadecki et al., "Nanotechnology for Cell-Substrate Interactions," Annals of Biomedical Engineering, vol. 34, No. 1, pp. 59-74, Jan. 1, 2006.
502Sofield et al., "Ion beam modification of polymers," Nuclear Instruments and Methods in Physics Research, vol. B67, pp. 432-437, (1992).
503Soler-Illia et al., "Block Copolymer-Templated Mesoporous Oxides," Current Opinion in Colloid and Interface Science, vol. 8, pp. 109-126, (2003).
504Song et al., "Biomimetic apatite coatings on micro-arc oxidized titania," Biomaterials, vol. 25, pp. 3341-3349, (2004).
505Sousa et al., "New Frontiers in Cardiology: Drug-Eluting Stents: Part I," Circulation: Journal of the Americal Heart Associate, vol. 107, pp. 2274-2279, http/www.circ.ahajournals.org, (2003).
506Spasova et al., "Magnetic and optical tunable microspheres with a magnetite/gold nanoparticle shell," Journal of Material Chemisty, vol. 115, pp. 2095-2098, (2005).
507Sprague et al., "Endothelial cell migration onto metal stent surfaces under static and flow conditions," Journal of Long-Term Effects of Medical Implants, vol. 10, No. 1-2, pp. 97-110, (2000).
508Spray Deposition and Compression of TiO2 Nanoparticle Films for Dye-Sensitized Solar Cells on Plastic Substrates; Solar Energy Materials & Solar Cells 90 (2006) pp. 887-899.
509Startschuss fur "lusty" -studie, (Launch of "lusty" -study), Cardio News, Oct. 2002.
510Stucky "High Surface Area Materials," Published: Jan. 1998, WTEC Hyper-Librarian, (http://www.wtec.org/loyola/nano/US.Review/07—03.htm).
511Studart et al., "Colloidal Stabilization of Nanoparticles in Concentrated Suspensions," Langmuir, vol. 23, pp. 1081-1090, (2007).
512Sun et al., "Construction of Size-Controllable Hierarchical Nanoporous TiO2 Ring Arrays and Their Modifications," Chem. Mater, vol. 18, pp. 3774-3779, (2006).
513Sun et al., "Non-Fouling Biomaterial Surfaces: II Protein Adsorption on Radiation Grafted Polyethylene Glycol Methacrylate Copolymers," Polymer Preprints, vol. 28, No. 1, pp. 292-294, Apr. 1987.
514Sundararajan et al., "Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology," Surface and Coatings Technolgy, vol. 167, pp. 269-277, (2003).
515Sung et al., "Formation of Nanoporous and Nanocrystalline Anatase Films by Pyrolysis of PEO-TiO2 Hybrid Films," Journal of Crystal Growth, vol. 286, pp. 173-177, (2006).
516Szycher et al., "Drug-Eluting Stents to Prevent Coronary Restenosis," CardioTech International, (2002).
517Tabata et al., "Generalized Semiempirical Equations for the Extrapolated Range of Electronics," Nuclear Instruments and Methods, vol. 103, pp. 85-91, Mar. 28, 1972.
518Takitani et al., "Desorption of Helium from Austenitic Stainless Steel Heavily Bombarded by Low Energy He Ions," Journal of Nuclear Materials, vol. 329-333, pp. 761-765, (2004).
519Tamura et al., "Surface Hydroxyl Site Densities on Metal Oxides as a Measrure for the Ion-Exchange Capacity," Journal of Colloid and Interface Science, vol. 209, pp. 225-231, (1999).
520Tan et al., "Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation," Biomaterials, vol. 24, pp. 3931-3939, (2003).
521Tanaka et al., "Micrometer-scale fabrication and assembly using focused ion beam," Thin Solid Films, vol. 509, pp. 113-117, (2006).
522Tang et al., "Electrochemical Study of a Polarized Electrochemical Vapor Deposition Process," Journal of The Electrochemical Society, vol. 147, No. 9, pp. 3338-3344, (2000).
523Tang et al., "Fabrication of Macroporous Alumina with Tailored Porosity," Jornal of American Ceramic Society, vol. 86, No. 12, pp. 2050-2054, (2003).
524Tang et al., "Preparation of Porous anatase titania film," Materials Letters, vol. 58, pp. 1857-1860, (2004).
525Tapphorn et al., "The Solid-State Spray Forming of Low-Oxide Titanium Components," Journal of Metals, vol. 50, No. 9, pp. 45-46,76, (1998).
526Tassin et al., "Improvement of the Wear Resistance of 316 L Stainless Steel by Laser Surface Alloying," Surface and Coatings Technology, vol. 80, No. 9, pp. 207-210, (1996).
527Terlingen, "Functionalization of Polymer Surfaces," Europlasma Technical Paper, pp. 1-29, May 8, 2004.
528Terumo Europe, "Terumo Europe N.V. Enrols First Patient in Clinical Trial of the Nobori Drug-Eluting Coronary Stent," Press Release May 26, 2005, (http://www.terumo-europe.com/—press—release/may—26—2005.html.).
529Thierry et al., "Bioactive Coatings of Endovascular Stents Based on Polyelectrolyte Multilayers," Biomacromolecules, vol. 4, pp. 1564-1571, (2003).
530Thompson et al., "Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion," Biomaterials, vol. 26, pp. 6836-6845, (2005).
531Tierno et al., "Using Electroless Deposition for the Preparation of Micron Sized Polymer/Metal Core/Shell Particles and Hollow Metal Spheres," Journal of Physics Chemistry B, vol. 110, pp. 3043-3050, (2006).
532Tollon, "Fabrication of coated biodegradable polymer scaffolds and their effects on murin embryonic stem cells," Thesis presented to the University of Florida, (2005).
533Tonosaki et al., "Nano-indentation testing for plasma-based ion-implanted surface of plastics," Surface and Coatings Technology, vol. 136, pp. 249-251, (2001).
534Torres-Costa et al., "RBS Characterization of Porous Silicon Multilayer Interference Filters," Electrochemical and Solid-State Letters, vol. 7, No. 11, pp. G244-G249 (2004).
535Toth et al., "Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning," Applied Surface Science, vol. 69, pp. 317-320, (1993).
536Tsyganov et al., "Blood compatibilty of titanium-bases coatings prepared by metal plasma immersion ion implantation and deposition," Applied Surface Science, vol. 235, pp. 156-163, (2004).
537Tsyganov et al., "Correlation between blood compatibility and physical surface properties of titanium-based coatings," Surface & Coatings Technology, vol. 200, pp. 1041-1044, (2005).
538Tsyganov et al., "Structure and Properties of Titanium Oxide Layers prepared by Metal Plasma Immersion Ion Implantation and Deposition," Surface & Coatings Technology, vol. 174-175, pp. 591-596, (2003).
539U.S. Appl. No. 11/694,436, Mar. 30, 2007, Atanasoska et al.
540Uchida et al., "Apatite-forming ability of a zirconia/alumina nano-composite induced by chemical treatment," Journal of Biomedical Materials Research, vol. 60, No. 2, pp. 277-282, May 2002.
541University of Wisconsin, "Effect of Nano-Scale Textured Biomimetic Surfaces on Proliferation and Adhesion of Corneal Epithelial Cells," Materials Research Science and Engineering Center, (1997), (http://mrsec.wisc.edu/Past—proiects/seedproi4/Seedproi4.html).
542US 6,533,715, 03/2003, Hossainy et al. (withdrawn)
543Uyama et al., "Surface Modifications of Polymers by Grafting," Advances in Polymer Science, vol. 139, (1998).
544Valsesia et al., "Selective immobilization of protein clusters on polymeric nanocraters," Advanced Functional Materials, vol. 16, pp. 1242-1246, (2006).
545Valsesia, A. et al., "Fabrication of nanostructured polymeric surfaces for biosensing devices," Nanoletters, vol. 4, No. 6, pp. 1047-1050, (2004).
546Van Alsten, "Self-Assembled Monolayers on Engineering Metals: Structure, Derivatization, and Utility," Langmuir, vol. 15, pp. 7605-7614, (1999).
547Van Den Berg, "Nano particles play with electrons," [first downloaded on Nov. 12, 2003], (http://www.delftoutlook.tudelft.nl/info/index21fd.html?hoofdstuk=Article&ArtID=2243).
548van der Eijk et al., "Metal Printing Process Development of a New Rapid Manufacturing Process for Metal Parts," Proceedings of the World PM2004 Conference held in Vienna, Oct. 17-21, 2004.
549Van Steenkiste et al., "Kinetic spray coatings," Surface & Coatings Technology, Vol. 111, pp. 62-71, (1999).
550Vayssieres, "On the design of advanced metal oxide nanomaterials," International Journal of Nanotechnology, vol. 1, Nos. 1/2, (2004).
551Velev et al., "Colloidal crystals as templates for porous materials," Current Opinion in Colloid & Interface Science, vol. 5, pp. 56-63, (2000).
552Velev et al., "Porous silica via colloidal crystallization," Nature, vol. 389, pp. 447-448, Oct. 2, 1997.
553Verheye et al., "Reduced Thrombus Formation by Hyaluronic Acid Coating of Endovascular Devices," Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of The American Heart Association, vol. 20, pp. 1168-1172, (2000).
554Vidal et al., "Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system: influence of the operating conditions on analytical performance," Biosensors & Bioelectronics, vol. 13, No. 3-4, pp. 371-382, (1998).
555Vigil et al., "TiO2 Layers Grown from Flowing Precursor Solutions Using Microwave Heating," Langmuir, vol. 17, pp. 891-896, (2001).
556Viitala et al., "Surface properties of in vitro bioactive and non-bioactive sol-gel derived materials," Biomaterials, vol. 23, pp. 3073-3086, (2002).
557Vitte et al., "Is there a predictable relationship between surface physical-chemical properties and cell behaviour at the interface?" European Cells and Materials, vol. 7, pp. 52-63, (2004).
558Volkel et al., "Electrodeposition of coppeer and cobalt nanostructures using self-assembled monolayer templates," Surface Science, vol. 597, pp. 32-41, (2005).
559Vu et al., "Eletrophoretic deposition of nanocomposites formed from polythiophene and metal oxides," Electrochimica Acta, vol. 51, pp. 1117-1124, (2005).
560Vuković et al., "Anodic stability and electrochromism of electrodeposited ruthenium-iridium coatings on titanium," Journal of Electroanalytical Chemisty, vol. 330, pp. 663-673 (1992).
561Walboomers et al., "Effect of microtextured surfaces on the performance of percutaneous devices," Journal of Biomedical Materials Research Part A, vol. 74A, No. 3, pp. 381-387, (2005).
562Wang et al., "Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assistend deposidted yttria-stabilized-zirconia," Applied Physics Letters, vol. 71, No. 17, Issue 20, pp. 2955-2957, Nov. 17, 1997.
563Wang et al., "Effect of substrate temperature on structure and electrical resistivity of laser ablated IrO2 thin films," Applied Surface Science, vol. 253, pp. 2911-2914, (2006).
564Wang et al., "Effect of the discharge pulsating on microarc oxidation coating formed on Ti6A14V alloy," Materials Chemistry and Physics, vol. 90, pp. 128-133, (2005).
565Wang et al., "Novel Poly(3-nonylthiophene)-TiO2 Hybrid Materials for Photovoltaic Cells," Synthetic Metals, vol. 155, pp. 677-680, (2005).
566Wang et al., "Polyelectrolyte-Coated Colloid Spheres as Templates for Sol-Gel Reactions," Chem. Mater., vol. 14, pp. 1909-1913, (2002).
567Wang et al., "Pulsed laser deposition of organic thin films," This Solid Films, vol. 363, pp. 58-60, (2000).
568Wang et al., "Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres—A Novel Route to Tune Pore Morphology," Chem. Mater., vol. 13, pp. 364-371, (2001).
569Webster et al., "Increased osteoblast adhesion on nanophase metals: Ti, Ti6A14V, and CoCrMo," Biomaterials, vol. 25, No. 19, pp. 4731-4739, (2004).
570Webster et al., "Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics," Journal of Biomedical Materials Research, vol. 5, No. 51, pp. 475-483, Sep. 2000.
571Webster et al."Enhanced functions of osteoblasts on nanophase ceramics," Biomaterials, vol. 21, No. 17, pp. 1803-1810, Sep. 2000.
572Wei et al., "Structural Characterisation of Doped and Undoped Nanocrystalline Zinc Oxides Deposited by Ultrasonic Spray Assisted Chemical Vapour Deposition," Journal of Physics: Conference Series, vol. 26, pp. 183-186 (2006).
573Wells, "Patterned Plasma Immersion Exposure of Insulating Materials for the Purpose of Modifying Optical Properties," thesis submitted to the college of William and Mary, Williamsburg, Vriginia, Apr. 2000.
574Wesolowski et al., "Surface Charge and Ion Adsorption on Metal Oxides to 290°C," Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, (2001).
575Wessling et al., "RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants," Journal of Micromechanics and Microengineering, vol. 16, pp. S142-S148 (2006).
576Whelan, "Targeted Taxane Therapy for Cancer," Drug Discovery Today, vol. 7, No. 2, pp. 90-92, Jan. 2002.
577Which stent is right for you? (circa 2004).
578Wieneke et al., "Synergistic Effects of a Novel Nanoporous Stent Coating and Tacrolimus on Intima Proliferation in Rabbits," Catheterization and Cardiovascular Interventions, vol. 60, pp. 399-407, (2003).
579Wilkinson et al., "Nanofabrication in cellular engineering," Journal of Vacuum Science & Technology B, vol. 16, No. 6, pp. 3132-3136, (1998).
580Wilkinson et al., "The use of materials patterned on a nano- and micro-metric scale in cellular engineering," Materials Science & Engineering C, vol. 19, No. 1-2, pp. 263-269, (2002).
581Wilson et al., "Mediation of biomaterial-cell interactions by adsorbed proteins: A review," Tissue Engineering, vol. 11, No. 1-2, pp. 1-18, (2005).
582Wong et al., "Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response," Surface Science, vol. 570, No. 1-2, pp. 119-133, (2004).
583Wong et al., "Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures," Applied Physics A, vol. 65, pp. 519-523, (1997).
584Wood, "Next-generation drug-eluting stents tackle shortcomings of Cypher, Taxus," Heart Wire, Feb. 7, 2006, (http://www.theheart.org/article/641591.do.).
585World Reference definition, "Interconnected," WorldReference.com, [downloaded Jan. 21, 2010].
586Wu et al., "Characterization of Mesoporous Nanocrystalline TiO2 Photocatalysts Synthesized Via a Sol-Solvothermal Process at a Low Temperature," Journal of Solid State Chemistry, vol. 178, pp. 321-328, (2005).
587Wu et al., "Chitosan-Mediated and Spatially Selective Electrodeposition of Nanoscale Particles," Langmuir, vol. 21, pp. 3641-3646, (2005).
588Wu et al., "Corrosion resistance of BaTiO3 films prepared by plasma electrolytic oxidation," Surface and Coatings Technology, vol. 166, pp. 31-36, (2002).
589Wu et al., "Design of Doped Hybrid Xerogels for a Controlled Release of Brilliant Blue FCF," Journal of Non-Crystalline Solids, vol. 342, pp. 46-53, (2004).
590Wu et al., "The effects of cathodic and anodic voltages on the characteristics of purous nanocrystalline titania coatings fabricated by microarc oxidation," Materials Letters, vol. 59, pp. 370-375, (2005).
591Xia et al., "Monodispersed Colloidal Spheres: Old Materials with New Applications," Advanced Materials, vol. 12, No. 10, pp. 693-713, (2000).
592Xu et al., "An Improved Method to Strip Aluminum from Porous Anodic Alumina Films," Langmuir, vol. 19, pp. 1443-1445, (2003).
593Xu et al., "Cold spay deposition of thermoplastic powder," Surface & Coatings Technology, vol. 2001, pp. 3044-3050, (2006).
594Xu et al., "Synthesis of porosity controlled ceramic membranes," Journal of Material Research, vol. 6, No. 5, pp. 1073-1081, May 1991.
595Yamato et al. "Nanofabrication for micropatterned cell arrays by combining electron beam-irradiated polymer grafting and localized laser ablation," Journal of Biomedical Materials Research, vol. 67, No. 4, pp. 1065-1071, Dec. 15, 2003.
596Yan et al., "New MOCVD precursor for iridium thin films deposition," Materials Letters, vol. 61, pp. 216-218, (2007).
597Yan et al., "Sol-gel Processing," Handbook of Nanophase and Nanostructured Materials, vol. 1: Synthesis, Chapter 4, (2003).
598Yang et al., "Laser spray cladding of porous NiTi coatings on NiTi substrates," The Hong Kong Polytechnic University, Dec. 28, 2006.
599Yang et al., "Poly(L,L-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro," Polymer Degradation and Stability, vol. 91 pp. 3065-3073, (2006).
600Yang et al., "Solution phase synthesis of magnesium hydroxide sulfate hydrate nanoribbons", Nanotechology, vol. 15, pp. 1625-1627, (2004).
601Yang et al., "Thermal oxidation products and kinetics of polyethylene composites," Polymer Degradation and Stability, vol. 91, pp. 1651-1657, (2006).
602Yankov et al., "Reactive plasma immersion ion implantation for surface passivation," Surface and Coatings Technology, vol. 201, pp. 6752-6758, (2007).
603Yap et al., "Protein and cell micropatterning and its integration with micro/nanoparticles assembley," Biosensors and Bioelectronics, vol. 22, pp. 775-788, (2007).
604Yerokhin et al., "Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation," Applied Surface Science, vol. 200, pp. 172-184, (2002).
605Yerokhin et al., "Plasma electrolysis for surface engineering," Surface Coatings Technology, vol. 122, pp. 73-93, (1999).
606Yim et al., "Nanopattern-induced changes in morphology and motility of smooth muscle cells," Biomaterials, vol. 26, pp. 5405-5413, (2005).
607Yim et al., "Significance of synthetic nanostructures in dictating cellular response," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 1, No. 1, pp. 10-21, Mar. 1, 2005.
608Yoldi et al., "Electrophoretic deposition of colloidal crystals assisted by hydrodynamic flows," Journal of Materials Science, vol. 41, pp. 2964-2969, (2006).
609Yoshida et al., "Impact of Low Energy Helium Irradiation on Plasma Facing Metals," Journal of Nuclear Materials, vol. 337-339, pp. 946-950, (2005).
610Young et al., "Polarized electrochemical vapor deposition for cermet anodes in solid oxide fuel cells," Solid State Ionics, vol. 135, pp. 457-462, (2000).
611Yu et al., "Encapsulated cells: an atomic force microscopy study," Biomaterials, vol. 25, pp. 3655-3662, (2004).
612Yu et al., "Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment," Applied Catalysis B: Environmental, vol. 36, pp. 31, 43, (2002).
613Yu et al., "Enhanced photoinduced super-hydrophilicity of the sol-gel-derived TiO2 thin films by Fe-doping," Materials Chemistry and Physics, vol. 95, pp. 193-196, (2006).
614Yu et al., "Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films," Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, pp. 331-339, (2002).
615Yun et at., "Low-Temperature Coating of Sol-Gel Anatase Thin Films," Materials Letters, vol. 58, pp. 3703-3706, (2004).
616Zakharian et al., "A Fullerene- Paclitaxel Chemotherapeutic: Synthesis, Characterization, and Study of Biological Activity in Tissue Culture," Journal of American Chemistry Society, vol. 127, pp. 12508-12509, (2005).
617Zbroniec et al., "Laser ablation of iron oxide in various ambient gases," Applied Surface Science, vol. 197-198, pp. 883-886, (2002).
618Zeng et al., "Biodegradable electrospun fibers for drug delivery," Journal of Controlled Release, vol. 92, pp. 227-231, (2003).
619Zhang et al., "Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior," Journal of Biomedical Materials Research, vol. 68A, pp. 383-391, (2004).
620Zhang et al., "Surface treatment of magnesium hydroxide to improve its dispersion in organic phase by the ultrasonic technique", Applied Surface Science, vol. 253, pp. 7393-7397, (2007).
621Zhao et al., "Coating deposition by the kinetic spray process," Surface & Coatings Technology, vol. 200, pp. 4746-4754, (2006).
622Zhao et al., "Designing Nanostructions by Glancing Angle Deposition," Proceedings of SPIE, vol. 5219: Nanotubes and Nanowires, pp. 59-73, (2003).
623Zhao et al., "Formulation of a ceramic ink for a wide-array drop-on-demand ink-jet printer," Ceramics International, vol. 29, pp. 887-892, (2003).
624Zheng et al., "Substrate temperature dependent morphology and resistivity of pulsed laser deposited iridium oxide thin films," Thin Solid Films, vol. 496, pp. 371-375, (2006).
625Zheng et al., "Synthesis of Mesoporous Silica Materials via Nonsurfactant Templated Sol-Gel Route Using Mixture of Organic Compounds as Template," Journal of Sol-Gel Science and Technology, vol. 24. pp. 81-88, (2002).
626Zhitomirsky et al., "Cathodic electrodeposition of MnOx films for electrochemical supercapacitors," Electrochimica Acta, vol. 51, pp. 3039-3045, (2006).
627Zhitomirsky et al., "Electrodeposition of composite hydroxyapatite-chitosan films," Materials Chemistry and Physics, vol. 94, pp. 245-251, (2005).
628Zhou et al., "Branched Ta nanocolumns grown by glancing angle deposition," Applied Physics Letters, vol. 88, p. 203117, (2006).
629Zoppi et al., "Hybrid Films of Poly(ethylene oxide-b-amide 6) Containing Sol-Gel Silicon or Titanium Oxide as Inorganic Fillers: Effect of Morphology and Mechanical Properties on Gas Permeability," Polymer, vol. 41, pp. 5461-5470, (2000).
630Zou et al., "Highly textural lamellar mesostructured magnesium hydroxide via a cathodic electrodeposition process", Materials Letters, vol. 61, pp. 1990-1993, (2007).
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US8663317 *14 sept. 20124 mars 2014Boston Scientific Scimed, Inc.Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US86851061 mars 20121 avr. 2014Abraham LinMethod of a pharmaceutical delivery system for use within a joint replacement
US20130004650 *14 sept. 20123 janv. 2013Boston Scientific Scimed, Inc.Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
Classifications
Classification aux États-Unis427/2.24, 427/230, 427/191, 264/260, 427/556, 606/191, 427/2.25, 427/202, 427/307, 427/189, 427/553, 428/472.1, 427/287, 427/2.1, 427/554, 427/205, 427/555, 607/115, 427/2.28, 427/256, 427/2.3, 427/427
Classification internationaleA61L33/00
Classification coopérativeA61L2420/08, A61F2250/0067, A61F2/915, A61L2300/608, A61L31/16, A61L31/088, A61L31/022, A61F2002/91575
Classification européenneA61L31/02B, A61L31/16, A61L31/08B6, A61F2/915
Événements juridiques
DateCodeÉvénementDescription
24 janv. 2012CCCertificate of correction
13 avr. 2007ASAssignment
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEBER, JAN;REEL/FRAME:019157/0114
Effective date: 20070327