Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS8067386 B2
Type de publicationOctroi
Numéro de demandeUS 12/274,030
Date de publication29 nov. 2011
Date de dépôt19 nov. 2008
Date de priorité22 janv. 2004
Autre référence de publicationUS7468431, US20050196787, US20090082302, US20120149893
Numéro de publication12274030, 274030, US 8067386 B2, US 8067386B2, US-B2-8067386, US8067386 B2, US8067386B2
InventeursSanjay Bhanot, Kenneth W. Dobie, Ravi Jain
Cessionnaire d'origineIsis Pharmaceuticals, Inc.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Modulation of eIF4E-BP2 expression
US 8067386 B2
Résumé
Compounds, compositions and methods are provided for modulating the expression of eIF4E-BP2. The compositions comprise oligonucleotides, targeted to nucleic acid encoding eIF4E-BP2. Methods of using these compounds for modulation of eIF4E-BP2 expression and for diagnosis and treatment of diseases and conditions associated with expression of eIF4E-BP2 are provided.
Images(89)
Previous page
Next page
Revendications(55)
1. A pharmaceutical composition comprising a modified antisense compound 13 to 80 nucleobases in length targeted to a nucleic acid molecule encoding eIF4E-BP2, wherein said compound has at least an 8 nucleobase portion 100% complementary within nucleotides 1393-1599 of SEQ ID NO:4 encoding eIF4E-BP2, wherein said compound has at least 95% complementarity with SEQ ID NO:4 and inhibits the expression of eIF4E-BP2 mRNA; and a pharmaceutically acceptable carrier or diluent.
2. The pharmaceutical composition of claim 1, wherein said antisense compound is 13 to 50 nucleobases in length.
3. The pharmaceutical composition of claim 1, wherein said antisense compound is 15 to 30 nucleobases in length.
4. The pharmaceutical composition of claim 1, wherein said antisense compound comprises an oligonucleotide.
5. The pharmaceutical composition of claim 1, wherein said antisense compound comprises a DNA oligonucleotide.
6. The pharmaceutical composition of claim 1, wherein said antisense compound comprises an RNA oligonucleotide.
7. The pharmaceutical composition of claim 1, wherein said antisense compound is a double-stranded oligonucleotide.
8. The pharmaceutical composition of claim 1, wherein said antisense compound comprises a chimeric oligonucleotide.
9. The pharmaceutical composition of claim 1 wherein at least a portion of said compound hybridizes with RNA to form an oligonucleotide-RNA duplex.
10. The pharmaceutical composition of claim 1, wherein said antisense compound has at least 99% complementarity with said nucleic acid molecule encoding eIF4E-BP2.
11. The pharmaceutical composition of claim 1, wherein said antisense compound has at least one modified internucleoside linkage, sugar moiety, or nucleobase.
12. The pharmaceutical composition of claim 1, wherein said antisense compound has at least one 2′-O-methoxyethyl sugar moiety.
13. The pharmaceutical composition of claim 1, wherein said antisense compound has at least one phosphorothioate internucleoside linkage.
14. A modified antisense compound 13 to 80 nucleobases in length targeted to a nucleic acid molecule encoding eIF4E-BP2, wherein said antisense compound comprises at least a 13-nucleobase portion of SEQ ID NO: 72, 74, 75, 76, or 77 and inhibits the expression of eIF4E-BP2 mRNA.
15. The antisense compound of claim 14, wherein said antisense compound has a sequence selected from the group consisting of SEQ ID NOs: 72, 74, 75, 76, and 77.
16. The antisense compound of claim 15, wherein said antisense compound has the sequence of SEQ ID NO: 75.
17. The pharmaceutical composition of claim 1, wherein said antisense compound has 100% complementarity with said nucleic acid molecule encoding eIF4E-BP2.
18. The antisense compound of claim 14, wherein said antisense compound comprises at least a 13-nucleobase portion of SEQ ID NO: 72.
19. The antisense compound of claim 14, wherein said antisense compound comprises at least a 13-nucleobase portion of SEQ ID NO: 74.
20. The antisense compound of claim 14, wherein said antisense compound comprises at least a 13-nucleobase portion of SEQ ID NO: 75.
21. The antisense compound of claim 14, wherein said antisense compound comprises at least a 13-nucleobase portion of SEQ ID NO: 76.
22. The antisense compound of claim 14, wherein said antisense compound comprises at least a 13-nucleobase portion of SEQ ID NO: 77.
23. The antisense compound of claim 15, wherein said antisense compound has the sequence of SEQ ID NO: 72.
24. The antisense compound of claim 15, wherein said antisense compound has the sequence of SEQ ID NO: 74.
25. The antisense compound of claim 15, wherein said antisense compound has the sequence of SEQ ID NO: 76.
26. The antisense compound of claim 15, wherein said antisense compound has the sequence of SEQ ID NO: 77.
27. The antisense compound of claim 14, wherein said compound is a double-stranded oligonucleotide.
28. The antisense compound of claim 14, wherein said compound is a chimeric oligonucleotide.
29. The antisense compound of claim 15, wherein said compound is a double-stranded oligonucleotide.
30. The antisense compound of claim 15, wherein said compound is a chimeric oligonucleotide.
31. A modified antisense compound 13 to 80 nucleobases in length targeted to a nucleic acid molecule encoding eIF4E-BP2, wherein said antisense compound comprises at least a 13 nucleobase portion 100% complementary within SEQ ID NO: 71, 72, 73, 74, 75, 76, or 77 and inhibits the expression of eIF4E-BP2 mRNA.
32. The modified antisense compound of claim 31, wherein said antisense compound comprises at least a 13 nucleobase portion 100% complementary within SEQ ID NO: 71.
33. The modified antisense compound of claim 31, wherein said antisense compound comprises at least a 13 nucleobase portion 100% complementary within SEQ ID NO: 72.
34. The modified antisense compound of claim 31, wherein said antisense compound comprises at least a 13 nucleobase portion 100% complementary within SEQ ID NO: 73.
35. The modified antisense compound of claim 31, wherein said antisense compound comprises at least a 13 nucleobase portion 100% complementary within SEQ ID NO: 74.
36. The modified antisense compound of claim 31, wherein said antisense compound comprises at least a 13 nucleobase portion 100% complementary within SEQ ID NO: 75.
37. The modified antisense compound of claim 31, wherein said antisense compound comprises at least a 13 nucleobase portion 100% complementary within SEQ ID NO: 76.
38. The modified antisense compound of claim 31, wherein said antisense compound comprises at least a 13 nucleobase portion 100% complementary within SEQ ID NO: 77.
39. The antisense compound of claim 31, wherein said antisense compound has the sequence of SEQ ID NO: 71.
40. The antisense compound of claim 31, wherein said antisense compound has the sequence of SEQ ID NO: 73.
41. The antisense compound of claim 31, wherein said compound is a double-stranded oligonucleotide.
42. The antisense compound of claim 31, wherein said compound is a chimeric oligonucleotide.
43. A modified antisense compound 13 to 80 nucleobases in length targeted to a nucleic acid molecule encoding eIF4E-BP2, wherein said compound has at least an 8 nucleobase portion 100% complementary within nucleotides 1393-1599 of SEQ ID NO:4 encoding eIF4E-BP2, wherein said compound has at least 95% complementarity with SEQ ID NO:4 and inhibits the expression of eIF4E-BP2 mRNA, wherein said compound is a double-stranded oligonucleotide or comprises a chimeric oligonucleotide.
44. The modified antisense compound of claim 43, wherein said compound is a double-stranded oligonucleotide.
45. The modified antisense compound of claim 43, wherein said compound is a chimeric oligonucleotide.
46. The modified antisense compound of claim 43 which is 13 to 50 nucleobases in length.
47. The modified antisense compound of claim 43 which is 15 to 30 nucleobases in length.
48. The modified antisense compound of claim 43 comprising a DNA oligonucleotide.
49. The modified antisense compound of claim 43 comprising an RNA oligonucleotide.
50. The modified antisense compound of claim 43 wherein at least a portion of said compound hybridizes with RNA to form an oligonucleotide-RNA duplex.
51. The modified antisense compound of claim 43 having at least 99% complementarity with said nucleic acid molecule encoding eIF4E-BP2.
52. The modified antisense compound of claim 43 having 100% complementarity with said nucleic acid molecule encoding eIF4E-BP2.
53. The modified antisense compound of claim 43 having at least one modified internucleoside linkage, sugar moiety, or nucleobase.
54. The antisense compound of claim 43 having at least one 2′-O-methoxyethyl sugar moiety.
55. The antisense compound of claim 43 having at least one phosphorothioate internucleoside linkage.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 11/042,889 filed Jan. 24, 2005, now U.S. Pat. No. 7,468,431 which claims priority to U.S. Application Ser. No. 60/538,752, filed on Jan. 22, 2004, both of which are incorporated herein by reference in their entirety.

SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled RTS0731USC1SEQ.txt, created on Nov. 19, 2008 which is 100 Kb in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention provides compositions and methods for modulating the expression of eIF4E-BP2. In particular, this invention relates to antisense compounds, particularly oligonucleotide compounds, which, in preferred embodiments, hybridize with nucleic acid molecules encoding eIF4E-BP2. Such compounds are shown herein to modulate the expression of eIF4E-BP2.

BACKGROUND OF THE INVENTION

Eukaryotic gene expression must be regulated such that cells can rapidly respond to a wide range of different conditions. The process of mRNA translation is one step at which gene expression is highly regulated. In response to hormones, growth factors, cytokines and nutrients, animal cells generally activate translation in preparation for the proliferative response. The rate of protein synthesis typically decreases under stressful conditions, such as oxidative or osmotic stress, DNA damage or nutrient withdrawal. Activation or suppression of mRNA translation occurs within minutes and control over this process is thought to be exerted at the initiation phase of protein synthesis (Rosenwald et al., Oncogene, 1999, 18, 2507-2517; Strudwick and Borden, Differentiation, 2002, 70, 10-22).

Translation initiation necessitates the coordinated activities of several eukaryotic initiation factors (eIFs), proteins which are classically defined by their cytoplasmic location and ability to regulate the initiation phase of protein synthesis. One of these factors, eukaryotic initiation factor 4E (eIF4E), is present in limiting amounts relative to other initiation factors and is one component of the eIF4F initiation complex, which is also comprised of the scaffold protein eIF4G and the RNA helicase eIF4A. In the cytoplasm, eIF4E catalyzes the rate-limiting step of cap-dependent protein synthesis by specifically binding to the 5′ terminal 7-methyl GpppX cap structure present on nearly all mature cellular mRNAs, which serves to deliver the mRNAs to the eIF4F complex. Once bound, the eIF4F complex scans from the 5′ to the 3′ end of the cap, permitting the RNA helicase activity of eIF4A to resolve any secondary structure present in the 5′ untranslated region (UTR), thus revealing the translation initiation codon and facilitating ribosome loading onto the mRNA (Graff and Zimmer, Clin. Exp. Metastasis, 2003, 20, 265-273; Strudwick and Borden, Differentiation, 2002, 70, 10-22).

eIF4E availability for incorporation into the eIF4E complex is regulated through phosphorylation as well as through the binding of inhibitory proteins. eIF4E is a phosphoprotein that is phosphorylated on serine 209 by the mitogen-activated protein kinase-interacting kinase Mnk1, as well as by protein kinase C (Flynn and Proud, J. Biol. Chem., 1995, 270, 21684-21688; Wang et al., J. Biol. Chem., 1998, 273, 9373-9377; Waskiewicz et al., Embo J. 1997, 16, 1909-1920). The inhibitory eIF4E-binding proteins 1 and 2 (eIF4E-BP1 and eIF4E-BP2) act as effective inhibitors of cap-dependent translation by competing with eIF4G for binding to the dorsal surface of eIF4E (Pause et al., Nature, 1994, 371, 762-767; Ptushkina et al., Embo J., 1999, 18, 4068-4075). When complexed with bp1, eIF4E is not a substrate for phosphorylation by protein kinase C or Mnk1, indicating that dissociation of bp1 from eIF4E is a prerequisite for eIF4E phosphorylation (Wang et al., J. Biol. Chem., 1998, 273, 9373-9377; Whalen et al., J Biol Chem, 1996, 271, 11831-11837). Phosphorylation of eIF4E increases its affinity for mRNA caps, thus elevating translation rates (Waskiewicz et al., Mol. Cell Biol., 1999, 19, 1871-1880).

eIF4E-BP2 (also known as PHAS-II; 4EBP2; 4E-binding protein 2; EIF4EBP2) was cloned through use of the eIF4E protein in probing a cDNA expression library (Hu et al., Proc Natl Acad Sci USA, 1994, 91, 3730-3734; Pause et al., Nature, 1994, 371, 762-767). eIF4E-BP2 is ubiquitously expressed in human tissues, including heart, brain, placenta, lung, liver, kidney and spleen, as well as adipose tissue and skeletal muscle, the major insulin-responsive tissues (Hu et al., Proc Natl Acad Sci USA, 1994, 91, 3730-3734; Tsukiyama-Kohara et al., Genomics, 1996, 38, 353-363). The human gene maps to chromosome 10q21-q22 (Tsukiyama-Kohara et al., Genomics, 1996, 38, 353-363). The mouse bp1 gene consists of three exons, spans approximately 20 kb and maps to mouse chromosome 10 (Tsukiyama-Kohara et al., Genomics, 1996, 38, 353-363). The expression of eIF4E-BP2 does not appear to be altered in mice bearing a systemic disruption of bp1 (Blackshear et al., J Biol Chem, 1997, 272, 31510-31514).

Rather than preventing the binding of eIF4E to mRNA caps, eIF4E-BP2 prohibits the binding of eIF4E to eIF4G, thereby preventing formation of a complex that is necessary for efficient binding and proper positioning of the 40S ribosomal subunit on the target mRNA. When eIF4E-BP2 is bound to eIF4E, eIF4E does not serve as a substrate for phosphorylation by protein kinase C, suggesting that dissociation of eIF4E-BP2 from eIF4E is a prerequisite for phosphorylation of eIF4E (Whalen et al., J Biol Chem, 1996, 271, 11831-11837). The region to which eIF4E binds is a common motif shared by eIF4G and eIF4E-BP2, and point mutations in this region of eIF4E-BP2 abolish binding to eIF4E (Mader et al., Mol Cell Biol, 1995, 15, 4990-4997). Two conserved motifs are present in the eIF4E-BP2: the RAIP motif, which is found in the NH2-terminal region of EIF4E-BP2 and the TOS motif, which is formed by the last five amino acids of eIF4E-BP2 (Schalm and Blenis, Curr Biol, 2002, 12, 632-639; Tee and Proud, Mol Cell Biol, 2002, 22, 1674-1683).

Like eIF4E-BP1, insulin stimulates the phosphorylation of eIF4E-BP2 in cultured cells, which promotes the release of eIF4E-BP2 from eIF4E and allows for cap-dependent translation to proceed (Ferguson et al., J Biol Chem, 2003, 278, 47459-47465). Mitogen-activated protein kinase, the major insulin-stimulated kinase in rat adipocytes, can phosphorylate recombinant eIF4E-BP2 in vitro. However, treatment of 3T3-L1 rat adipocytes with rapamycin attenuates the effects of insulin on the phosphorylation of eIF4E-BP2, indicating that elements of the mTOR signaling pathway mediate the actions of insulin on eIF4E-BP2 (Lin and Lawrence, J Biol Chem, 1996, 271, 30199-30204). Additionally, serine-65 of eIF4E-BP2 represents an ideal consensus site for phosphorylation by cyclicAMP-dependent protein kinase. In rat 3T3-L1 adipocytes, where insulin or epidermal growth factor markedly increased the phosphorylation of eIF4E-BP2, compounds that increase cyclic AMP decrease the amount of radiolabeled phosphate incorporated into eIF4E-BP2, and attenuate the effects of insulin on increasing the phosphorylation of eIF4E-BP2. Incubation of eIF4E-BP2 with the catalytic subunit of cyclic AMP-dependent protein kinase results in the rapid phosphorylation of eIF4E-BP2. Together, these data suggest that increasing cyclic AMP may selectively increase eIF4E-BP2 phosphorylation (Lin and Lawrence, J Biol Chem, 1996, 271, 30199-30204).

Induction of cellular differentiation and reduction of cellular proliferation are concomitant with a reduction in translation rates, as is observed in conjunction with differential regulation of eIF4E-BPs during human myeloid cell differentiation. When induced to differentiate into monocytes/macrophages, cells from the HL-60 promyelocytic leukemia cell or U-937 monoblastic cell lines exhibit a decrease in the phosphorylation of bp1. In contrast, when HL-60 cells are stimulated to differentiate into granulocytic cells, the amount of bp1 is decreased, whereas phosphorylation of bp1 is not affected. Conversely, eIF4E-BP2 levels are markedly increased. These findings suggest that translation machinery is differentially regulated during human myeloid cell differentiation (Grolleau et al., J Immunol, 1999, 162, 3491-3497).

The disregulation of signaling networks that promote cell proliferation is often observed in association with cancer (Lawrence and Abraham, Trends Biochem Sci, 1997, 22, 345-349). Expression of excess eIF4E-BP2 in cells transformed by eIF4E or v-src results in significant reversion of the transformed phenotype, demonstrating that eIF4E-BP2 can function as an inhibitor of cell growth (Rousseau et al., Oncogene, 1996, 13, 2415-2420).

The U.S. Pat. No. 6,410,715 describes a purified human nucleic acid sequence encoding a cellular component that binds to eIF4E comprising a coding sequence for the protein eIF4E-BP2, and discloses a method for screening a non-hormone agent potentially useful to treat a hormone disorder (Sonenberg et al., 2000).

Currently, there are no known therapeutic agents that target eIF4E-BP2. Consequently, there remains a long felt need for agents capable of effectively inhibiting eIF4E-BP2. Antisense technology is an effective means of reducing the expression of specific gene products and therefore is uniquely useful in a number of therapeutic, diagnostic and research applications for the modulation of eIF4E-BP2 expression.

The present invention provides compositions and methods for inhibiting eIF4E-BP2 expression.

SUMMARY OF THE INVENTION

The present invention is directed to antisense compounds, especially nucleic acid and nucleic acid-like oligomers, which are targeted to a nucleic acid encoding eIF4E-BP2, and which modulate the expression of eIF4E-BP2. Pharmaceutical and other compositions comprising the compounds of the invention are also provided. Further provided are methods of screening for modulators of eIF4E-BP2 and methods of modulating the expression of eIF4E-BP2 in cells, tissues or animals comprising contacting said cells, tissues or animals with one or more of the compounds or compositions of the invention. Methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of eIF4E-BP2, thereby in some instances delaying onset of said disease or condition, are also set forth herein. Such methods comprise administering a therapeutically or prophylactically effective amount of one or more of the compounds or compositions of the invention to the person in need of treatment.

DETAILED DESCRIPTION OF THE INVENTION A. Overview of the Invention

The present invention employs antisense compounds, preferably oligonucleotides and similar species for use in modulating the function or effect of nucleic acid molecules encoding eIF4E-BP2. This is accomplished by providing oligonucleotides which specifically hybridize with one or more nucleic acid molecules encoding eIF4E-BP2. As used herein, the terms “target nucleic acid” and “nucleic acid molecule encoding eIF4E-BP2” have been used for convenience to encompass DNA encoding eIF4E-BP2, RNA (including pre-mRNA and mRNA or portions thereof) transcribed from such DNA, and also cDNA derived from such RNA. The hybridization of a compound of this invention with its target nucleic acid is generally referred to as “antisense”. Consequently, the preferred mechanism believed to be included in the practice of some preferred embodiments of the invention is referred to herein as “antisense inhibition.” Such antisense inhibition is typically based upon hydrogen bonding-based hybridization of oligonucleotide strands or segments such that at least one strand or segment is cleaved, degraded, or otherwise rendered inoperable. In this regard, it is presently preferred to target specific nucleic acid molecules and their functions for such antisense inhibition.

The functions of DNA to be interfered with can include replication and transcription. Replication and transcription, for example, can be from an endogenous cellular template, a vector, a plasmid construct or otherwise. The functions of RNA to be interfered with can include functions such as translocation of the RNA to a site of protein translation, translocation of the RNA to sites within the cell which are distant from the site of RNA synthesis, translation of protein from the RNA, splicing of the RNA to yield one or more RNA species, and catalytic activity or complex formation involving the RNA which may be engaged in or facilitated by the RNA. One preferred result of such interference with target nucleic acid function is modulation of the expression of eIF4E-BP2. In the context of the present invention, “modulation” and “modulation of expression” mean either an increase (stimulation) or a decrease (inhibition) in the amount or levels of a nucleic acid molecule encoding the gene, e.g., DNA or RNA. Inhibition is often the preferred form of modulation of expression and mRNA is often a preferred target nucleic acid.

In the context of this invention, “hybridization” means the pairing of complementary strands of oligomeric compounds. In the present invention, the preferred mechanism of pairing involves hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases (nucleobases) of the strands of oligomeric compounds. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. Hybridization can occur under varying circumstances.

An antisense compound is specifically hybridizable when binding of the compound to the target nucleic acid interferes with the normal function of the target nucleic acid to cause a loss of activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and under conditions in which assays are performed in the case of in vitro assays.

In the present invention the phrase “stringent hybridization conditions” or “stringent conditions” refers to conditions under which a compound of the invention will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances and in the context of this invention, “stringent conditions” under which oligomeric compounds hybridize to a target sequence are determined by the nature and composition of the oligomeric compounds and the assays in which they are being investigated.

“Complementary,” as used herein, refers to the capacity for precise pairing between two nucleobases of an oligomeric compound. For example, if a nucleobase at a certain position of an oligonucleotide (an oligomeric compound), is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, said target nucleic acid being a DNA, RNA, or oligonucleotide molecule, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be a complementary position. The oligonucleotide and the further DNA, RNA, or oligonucleotide molecule are complementary to each other when a sufficient number of complementary positions in each molecule are occupied by nucleobases which can hydrogen bond with each other. Thus, “specifically hybridizable” and “complementary” are terms which are used to indicate a sufficient degree of precise pairing or complementarity over a sufficient number of nucleobases such that stable and specific binding occurs between the oligonucleotide and a target nucleic acid.

It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. Moreover, an oligonucleotide may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin structure). It is preferred that the antisense compounds of the present invention comprise at least 70%, or at least 75%, or at least 80%, or at least 85% sequence complementarity to a target region within the target nucleic acid, more preferably that they comprise at least 90% sequence complementarity and even more preferably comprise at least 95% or at least 99% sequence complementarity to the target region within the target nucleic acid sequence to which they are targeted. For example, an antisense compound in which 18 of 20 nucleobases of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense compound which is 18 nucleobases in length having 4 (four) noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656).

Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489). In some preferred embodiments, homology, sequence identity or complementarity, between the oligomeric and target is between about 50% to about 60%. In some embodiments, homology, sequence identity or complementarity, is between about 60% to about 70%. In preferred embodiments, homology, sequence identity or complementarity, is between about 70% and about 80%. In more preferred embodiments, homology, sequence identity or complementarity, is between about 80% and about 90%. In some preferred embodiments, homology, sequence identity or complementarity, is about 90%, about 92%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or about 100%.

B. Compounds of the Invention

According to the present invention, antisense compounds include antisense oligomeric compounds, antisense oligonucleotides, siRNAs, external guide sequence (EGS) oligonucleotides, alternate splicers, primers, probes, and other oligomeric compounds which hybridize to at least a portion of the target nucleic acid. As such, these compounds may be introduced in the form of single-stranded, double-stranded, circular or hairpin oligomeric compounds and may contain structural elements such as internal or terminal bulges or loops. Once introduced to a system, the compounds of the invention may elicit the action of one or more enzymes or structural proteins to effect modification of the target nucleic acid.

One non-limiting example of such an enzyme is RNAse H, a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. It is known in the art that single-stranded antisense compounds which are “DNA-like” elicit RNAse H. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide-mediated inhibition of gene expression. Similar roles have been postulated for other ribonucleases such as those in the RNase III and ribonuclease L family of enzymes.

While the preferred form of antisense compound is a single-stranded antisense oligonucleotide, in many species the introduction of double-stranded structures, such as double-stranded RNA (dsRNA) molecules, has been shown to induce potent and specific antisense-mediated reduction of the function of a gene or its associated gene products. This phenomenon occurs in both plants and animals and is believed to have an evolutionary connection to viral defense and transposon silencing.

The first evidence that dsRNA could lead to gene silencing in animals came in 1995 from work in the nematode, Caenorhabditis elegans (Guo and Kempheus, Cell, 1995, 81, 611-620). Montgomery et al. have shown that the primary interference effects of dsRNA are posttranscriptional (Montgomery et al., Proc. Natl. Acad. Sci. USA, 1998, 95, 15502-15507). The posttranscriptional antisense mechanism defined in Caenorhabditis elegans resulting from exposure to double-stranded RNA (dsRNA) has since been designated RNA interference (RNAi). This term has been generalized to mean antisense-mediated gene silencing involving the introduction of dsRNA leading to the sequence-specific reduction of endogenous targeted mRNA levels (Fire et al., Nature, 1998, 391, 806-811). Recently, it has been shown that it is, in fact, the single-stranded RNA oligomers of antisense polarity of the dsRNAs which are the potent inducers of RNAi (Tijsterman et al., Science, 2002, 295, 694-697).

The antisense compounds of the present invention also include modified compounds in which a different base is present at one or more of the nucleotide positions in the compound. For example, if the first nucleotide is an adenosine, modified compounds may be produced which contain thymidine, guanosine or cytidine at this position. This may be done at any of the positions of the antisense compound. These compounds are then tested using the methods described herein to determine their ability to inhibit expression of eIF4E-BP2 mRNA.

In the context of this invention, the term “oligomeric compound” refers to a polymer or oligomer comprising a plurality of monomeric units. In the context of this invention, the term “oligonucleotide” refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics, chimeras, analogs and homologs thereof. This term includes oligonucleotides composed of naturally occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for a target nucleic acid and increased stability in the presence of nucleases.

While oligonucleotides are a preferred form of the antisense compounds of this invention, the present invention comprehends other families of antisense compounds as well, including but not limited to oligonucleotide analogs and mimetics such as those described herein.

The antisense compounds in accordance with this invention preferably comprise from about 8 to about 80 nucleobases (i.e. from about 8 to about 80 linked nucleosides). One of ordinary skill in the art will appreciate that the invention embodies compounds of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 nucleobases in length.

In one preferred embodiment, the antisense compounds of the invention are 13 to 50 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleobases in length.

In another preferred embodiment, the antisense compounds of the invention are 15 to 30 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleobases in length.

Particularly preferred compounds are oligonucleotides from about 12 to about 50 nucleobases, even more preferably those comprising from about 15 to about 30 nucleobases.

Antisense compounds 13-80 nucleobases in length comprising a stretch of at least thirteen (13) consecutive nucleobases selected from within the illustrative antisense compounds are considered to be suitable antisense compounds as well.

While oligonucleotides are one form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The compounds in accordance with this invention can comprise from about 8 to about 80 nucleobases. In another embodiment, the oligonucleotide is about 10 to 50 nucleotides in length. In yet another embodiment, the oligonucleotide is 12 to 30 nucleotides in length. In yet another embodiment, the oligonucleotide is 12 to 24 nucleotides in length. In yet another embodiment, the oligonucleotide is 19 to 23 nucleotides in length. Some embodiments comprise at least an 8-nucleobase portion of a sequence of an oligomeric compound which inhibits expression of eIF4E-BP1. dsRNA or siRNA molecules directed to eIF4E-BP1, and their use in inhibiting eIF4E-BP1 mRNA expression, are also embodiments within the scope of the present invention.

The oligonucleotides of the present invention also include variants in which a different base is present at one or more of the nucleotide positions in the oligonucleotide. For example, if the first nucleotide is an adenosine, variants may be produced which contain thymidine (or uridine if RNA), guanosine or cytidine at this position. This may be done at any of the positions of the oligonucleotide. Thus, a 20-mer may comprise 60 variations (20 positions×3 alternates at each position) in which the original nucleotide is substituted with any of the three alternate nucleotides. These oligonucleotides are then tested using the methods described herein to determine their ability to inhibit expression of eIF4E-BP1 mRNA.

Exemplary preferred antisense compounds include oligonucleotide sequences that comprise at least the 13 consecutive nucleobases from the 5′-terminus of one of the illustrative preferred antisense compounds (the remaining nucleobases being a consecutive stretch of the same oligonucleotide beginning immediately upstream of the 5′-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the oligonucleotide contains about 13 to about 80 nucleobases). Similarly preferred antisense compounds are represented by oligonucleotide sequences that comprise at least the 8 consecutive nucleobases from the 3′-terminus of one of the illustrative preferred antisense compounds (the remaining nucleobases being a consecutive stretch of the same oligonucleotide beginning immediately downstream of the 3′-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the oligonucleotide contains about 8 to about 80 nucleobases). It is also understood that preferred antisense compounds may be represented by oligonucleotide sequences that comprise at least 13 consecutive nucleobases from an internal portion of the sequence of an illustrative preferred antisense compound, and may extend in either or both directions until the oligonucleotide contains about 13 to about 80 nucleobases.

One having skill in the art armed with the preferred antisense compounds illustrated herein will be able, without undue experimentation, to identify further preferred antisense compounds.

C. Targets of the Invention

“Targeting” an antisense compound to a particular nucleic acid molecule, in the context of this invention, can be a multistep process. The process usually begins with the identification of a target nucleic acid whose function is to be modulated. This target nucleic acid may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target nucleic acid encodes eIF4E-BP2.

The targeting process usually also includes determination of at least one target region, segment, or site within the target nucleic acid for the antisense interaction to occur such that the desired effect, e.g., modulation of expression, will result. Within the context of the present invention, the term “region” is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic. Within regions of target nucleic acids are segments. “Segments” are defined as smaller or sub-portions of regions within a target nucleic acid. “Sites,” as used in the present invention, are defined as positions within a target nucleic acid.

Since, as is known in the art, the translation initiation codon is typically 5′-AUG (in transcribed mRNA molecules; 5′-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the “AUG codon,” the “start codon” or the “AUG start codon”. A minority of genes have a translation initiation codon having the RNA sequence 5′-GUG, 5′-UUG or 5′-CUG, and 5′-AUA, 5′-ACG and 5′-CUG have been shown to function in vivo. Thus, the terms “translation initiation codon” and “start codon” can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, “start codon” and “translation initiation codon” refer to the codon or codons that are used in vivo to initiate translation of an mRNA transcribed from a gene encoding eIF4E-BP2, regardless of the sequence(s) of such codons. It is also known in the art that a translation termination codon (or “stop codon”) of a gene may have one of three sequences, i.e., 5′-UAA, 5′-UAG and 5′-UGA (the corresponding DNA sequences are 5′-TAA, 5′-TAG and 5′-TGA, respectively).

The terms “start codon region” and “translation initiation codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5′ or 3′) from a translation initiation codon. Similarly, the terms “stop codon region” and “translation termination codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5′ or 3′) from a translation termination codon. Consequently, the “start codon region” (or “translation initiation codon region”) and the “stop codon region” (or “translation termination codon region”) are all regions which may be targeted effectively with the antisense compounds of the present invention.

The open reading frame (ORF) or “coding region,” which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Within the context of the present invention, a preferred region is the intragenic region encompassing the translation initiation or termination codon of the open reading frame (ORF) of a gene.

Other target regions include the 5′ untranslated region (5′UTR), known in the art to refer to the portion of an mRNA in the 5′ direction from the translation initiation codon, and thus including nucleotides between the 5′ cap site and the translation initiation codon of an mRNA (or corresponding nucleotides on the gene), and the 3′ untranslated region (3′UTR), known in the art to refer to the portion of an mRNA in the 3′ direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3′ end of an mRNA (or corresponding nucleotides on the gene). The 5′ cap site of an mRNA comprises an N7-methylated guanosine residue joined to the 5′-most residue of the mRNA via a 5′-5′ triphosphate linkage. The 5′ cap region of an mRNA is considered to include the 5′ cap structure itself as well as the first 50 nucleotides adjacent to the cap site. It is also preferred to target the 5′ cap region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as “introns,” which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as “exons” and are spliced together to form a continuous mRNA sequence. Targeting splice sites, i.e., intron-exon junctions or exon-intron junctions, may also be particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred target sites. mRNA transcripts produced via the process of splicing of two (or more) mRNAs from different gene sources are known as “fusion transcripts”. It is also known that introns can be effectively targeted using antisense compounds targeted to, for example, DNA or pre-mRNA.

It is also known in the art that alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as “variants”. More specifically, “pre-mRNA variants” are transcripts produced from the same genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and exonic sequence.

Upon excision of one or more exon or intron regions, or portions thereof during splicing, pre-mRNA variants produce smaller “mRNA variants”. Consequently, mRNA variants are processed pre-mRNA variants and each unique pre-mRNA variant must always produce a unique mRNA variant as a result of splicing. These mRNA variants are also known as “alternative splice variants”. If no splicing of the pre-mRNA variant occurs then the pre-mRNA variant is identical to the mRNA variant.

It is also known in the art that variants can be produced through the use of alternative signals to start or stop transcription and that pre-mRNAs and mRNAs can possess more that one start codon or stop codon. Variants that originate from a pre-mRNA or mRNA that use alternative start codons are known as “alternative start variants” of that pre-mRNA or mRNA. Those transcripts that use an alternative stop codon are known as “alternative stop variants” of that pre-mRNA or mRNA. One specific type of alternative stop variant is the “polyA variant” in which the multiple transcripts produced result from the alternative selection of one of the “polyA stop signals” by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites. Within the context of the invention, the types of variants described herein are also preferred target nucleic acids.

The locations on the target nucleic acid to which the preferred antisense compounds hybridize are hereinbelow referred to as “preferred target segments.” As used herein the term “preferred target segment” is defined as at least an 8-nucleobase portion of a target region to which an active antisense compound is targeted. While not wishing to be bound by theory, it is presently believed that these target segments represent portions of the target nucleic acid which are accessible for hybridization.

While the specific sequences of certain preferred target segments are set forth herein, one of skill in the art will recognize that these serve to illustrate and describe particular embodiments within the scope of the present invention. Additional preferred target segments may be identified by one having ordinary skill.

Target segments 8-80 nucleobases in length comprising a stretch of at least eight (8) consecutive nucleobases selected from within the illustrative preferred target segments are considered to be suitable for targeting as well.

Target segments can include DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 5′-terminus of one of the illustrative preferred target segments (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately upstream of the 5′-terminus of the target segment and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). Similarly preferred target segments are represented by DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 3′-terminus of one of the illustrative preferred target segments (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately downstream of the 3′-terminus of the target segment and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). It is also understood that preferred antisense target segments may be represented by DNA or RNA sequences that comprise at least 8 consecutive nucleobases from an internal portion of the sequence of an illustrative preferred target segment, and may extend in either or both directions until the oligonucleotide contains about 8 to about 80 nucleobases. One having skill in the art armed with the preferred target segments illustrated herein will be able, without undue experimentation, to identify further preferred target segments.

Once one or more target regions, segments or sites have been identified, antisense compounds are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

The oligomeric antisense compounds may also be targeted to regions of the target nucleobase sequence (e.g., such as those disclosed in Example 13) comprising nucleobases 1-80, 81-160, 161-240, 241-320, 321-400, 401-480, 481-560, 561-640, 641-720, 721-800, 801-880, 881-960, 961-1040, 1041-1120, 1121-1200, 1201-1280, 1281-1360, 1361-1440, 1441-1520, 1521-1600, 1601-1680, 1681-1760, 1761-1840, 1841-1920, 1921-2000, 2001-2080, 2081-2160, 2161-2240, 2241-2320, 2321-2400, 2401-2480, 2481-2560, 2561-2640, 2641-2720, 2721-2782, or any combination thereof.

In one embodiment of the invention, the antisense compounds are targeted to a nucleic acid molecule encoding human eIF4E-BP2, for example nucleotides 146-165 in the 5′ UTR, nucleotides 372-391, 420-520 or 544-593 in the coding region, nucleotides 589-608 in the stop codon region, nucleotides 623-766, 803-940, 1105-1599, 1868-1887, 1900-1919, 1962-1981, 2218-2242, 2377-2401, 2449-2490, 2536-2555 or 2578-2597 in the 3′ UTR, all of SEQ ID NO: 4; nucleotides 8892-8911 and 11559-11937 in intron 1, and nucleotides 17941-17960 in the intron 1:exon 2 junction, all of SEQ ID NO: 25; nucleotides 2088-2107 in the 3′ UTR of SEQ ID NO: 26; and nucleotides 697-716 in the 3′UTR of SEQ ID NO: 27, wherein said compound inhibits the expression of human eIF4E-BP2 mRNA.

In another embodiment of the invention, the antisense compounds are targeted to a nucleic acid molecule encoding mouse eIF4E-BP2, for example nucleotides 9-105 in the 5′UTR; nucleotides 132-480 in the coding region; nucleotides 473-492 in the stop codon region; and nucleotides 500-1175, 1222-1638, 1662-1780 in the 3′ UTR, all of SEQ ID NO: 11; nucleotides 365-384 in the 3′ UTR of SEQ ID NO: 107; and nucleotides 36-55 in the 5′ UTR of SEQ ID NO: 108; wherein said compound inhibits the expression of mouse eIF4E-BP2 mRNA.

In a further embodiment of the invention, antisense compounds are targeted to a nucleic acid molecule encoding rat eIF4E-BP2, for example nucleotides 7-26 in the 5′UTR, nucleotides 7-151, 164-247, 270-313, or 303-388 in the coding region; nucleotides 390-409 in the stop codon region and nucleotides 402-490 in the 3′ UTR, all of SEQ ID NO: 18;

wherein said compound inhibits the expression of rat eIF4E-BP2 mRNA.

D. Screening and Target Validation

In a further embodiment, the “preferred target segments” identified herein may be employed in a screen for additional compounds that modulate the expression of eIF4E-BP2. “Modulators” are those compounds that decrease or increase the expression of a nucleic acid molecule encoding eIF4E-BP2 and which comprise at least an 8-nucleobase portion which is complementary to a preferred target segment. The screening method comprises the steps of contacting a preferred target segment of a nucleic acid molecule encoding eIF4E-BP2 with one or more candidate modulators, and selecting for one or more candidate modulators which decrease or increase the expression of a nucleic acid molecule encoding eIF4E-BP2. Once it is shown that the candidate modulator or modulators are capable of modulating (e.g. either decreasing or increasing) the expression of a nucleic acid molecule encoding eIF4E-BP2, the modulator may then be employed in further investigative studies of the function of eIF4E-BP2, or for use as a research, diagnostic, or therapeutic agent in accordance with the present invention.

The preferred target segments of the present invention may be also be combined with their respective complementary antisense compounds of the present invention to form stabilized double-stranded (duplexed) oligonucleotides.

Such double stranded oligonucleotide moieties have been shown in the art to modulate target expression and regulate translation as well as RNA processing via an antisense mechanism. Moreover, the double-stranded moieties may be subject to chemical modifications (Fire et al., Nature, 1998, 391, 806-811; Timmons and Fire, Nature 1998, 395, 854; Timmons et al., Gene, 2001, 263, 103-112; Tabara et al., Science, 1998, 282, 430-431; Montgomery et al., Proc. Natl. Acad. Sci. USA, 1998, 95, 15502-15507; Tuschl et al., Genes Dev., 1999, 13, 3191-3197; Elbashir et al., Nature, 2001, 411, 494-498; Elbashir et al., Genes Dev. 2001, 15, 188-200). For example, such double-stranded moieties have been shown to inhibit the target by the classical hybridization of antisense strand of the duplex to the target, thereby triggering enzymatic degradation of the target (Tijsterman et al., Science, 2002, 295, 694-697).

The antisense compounds of the present invention can also be applied in the areas of drug discovery and target validation. The present invention comprehends the use of the compounds and preferred target segments identified herein in drug discovery efforts to elucidate relationships that exist between eIF4E-BP2 and a disease state, phenotype, or condition. These methods include detecting or modulating eIF4E-BP2 comprising contacting a sample, tissue, cell, or organism with the compounds of the present invention, measuring the nucleic acid or protein level of eIF4E-BP2 and/or a related phenotypic or chemical endpoint at some time after treatment, and optionally comparing the measured value to a non-treated sample or sample treated with a further compound of the invention. These methods can also be performed in parallel or in combination with other experiments to determine the function of unknown genes for the process of target validation or to determine the validity of a particular gene product as a target for treatment or prevention of a particular disease, condition, or phenotype.

E. Kits, Research Reagents, Diagnostics, and Therapeutics

The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. Furthermore, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes or to distinguish between functions of various members of a biological pathway.

For use in kits and diagnostics, the compounds of the present invention, either alone or in combination with other compounds or therapeutics, can be used as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes expressed within cells and tissues.

As one nonlimiting example, expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds which affect expression patterns.

Examples of methods of gene expression analysis known in the art include DNA arrays or microarrays (Brazma and Vilo, FEBS Lett., 2000, 480, 17-24; Celis, et al., FEBS Lett., 2000, 480, 2-16), SAGE (serial analysis of gene expression)(Madden, et al., Drug Discov. Today, 2000, 5, 415-425), READS (restriction enzyme amplification of digested cDNAs) (Prashar and Weissman, Methods Enzymol., 1999, 303, 258-72), TOGA (total gene expression analysis) (Sutcliffe, et al., Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 1976-81), protein arrays and proteomics (Celis, et al., FEBS Lett., 2000, 480, 2-16; Jungblut, et al., Electrophoresis, 1999, 20, 2100-10), expressed sequence tag (EST) sequencing (Celis, et al., FEBS Lett., 2000, 480, 2-16; Larsson, et al., J. Biotechnol., 2000, 80, 143-57), subtractive RNA fingerprinting (SuRF) (Fuchs, et al., Anal. Biochem., 2000, 286, 91-98; Larson, et al., Cytometry, 2000, 41, 203-208), subtractive cloning, differential display (DD) (Jurecic and Belmont, Curr. Opin. Microbiol., 2000, 3, 316-21), comparative genomic hybridization (Carulli, et al., J. Cell Biochem. Suppl., 1998, 31, 286-96), FISH (fluorescent in situ hybridization) techniques (Going and Gusterson, Eur. J. Cancer, 1999, 35, 1895-904) and mass spectrometry methods (To, Comb. Chem. High Throughput Screen, 2000, 3, 235-41).

The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding eIF4E-BP2. For example, oligonucleotides that are shown to hybridize with such efficiency and under such conditions as disclosed herein as to be effective eIF4E-BP2 inhibitors will also be effective primers or probes under conditions favoring gene amplification or detection, respectively. These primers and probes are useful in methods requiring the specific detection of nucleic acid molecules encoding eIF4E-BP2 and in the amplification of said nucleic acid molecules for detection or for use in further studies of eIF4E-BP2. Hybridization of the antisense oligonucleotides, particularly the primers and probes, of the invention with a nucleic acid encoding eIF4E-BP2 can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of eIF4E-BP2 in a sample may also be prepared.

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense compounds have been employed as therapeutic moieties in the treatment of disease states in animals, including humans. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that antisense compounds can be useful therapeutic modalities that can be configured to be useful in treatment regimes for the treatment of cells, tissues and animals, especially humans.

For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of eIF4E-BP2 is treated by administering antisense compounds in accordance with this invention. For example, in one non-limiting embodiment, the methods comprise the step of administering to the animal in need of treatment, a therapeutically effective amount of a eIF4E-BP2 inhibitor. The eIF4E-BP2 inhibitors of the present invention effectively inhibit the activity of the eIF4E-BP2 protein or inhibit the expression of the eIF4E-BP2 protein. In one embodiment, the activity or expression of eIF4E-BP2 in an animal is inhibited by about 10%. Preferably, the activity or expression of eIF4E-BP2 in an animal is inhibited by about 30%. More preferably, the activity or expression of eIF4E-BP2 in an animal is inhibited by 50% or more. Thus, the oligomeric antisense compounds modulate expression of eIF4E-BP2 mRNA by at least 10%, by at least 20%, by at least 25%, by at least 30%, by at least 40%, by at least 50%, by at least 60%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 98%, by at least 99%, or by 100%.

For example, the reduction of the expression of eIF4E-BP2 may be measured in serum, adipose tissue, liver or any other body fluid, tissue or organ of the animal. Preferably, the cells contained within said fluids, tissues or organs being analyzed contain a nucleic acid molecule encoding eIF4E-BP2 protein and/or the eIF4E-BP2 protein itself.

The antisense compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of a compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the compounds and methods of the invention may also be useful prophylactically.

The compounds of the present inventions are inhibitors of eIF4E-BP2 expression. Thus, the compounds of the present invention are believed to be useful for treating metabolic diseases and conditions, particularly diabetes, obesity, hyperlipidemia or metabolic syndrome X. The compounds of the invention are also believed to be useful for preventing or delaying the onset of metabolic diseases and conditions, particularly diabetes, obesity, hyperlipidemia or metabolic syndrome X. Metabolic syndrome, metabolic syndrome X or simply Syndrome X refers to a cluster of risk factors that include obesity, dyslipidemia, particularly high blood triglycerides, glucose intolerance, high blood sugar and high blood pressure. Scott, C. L., Am J Cardiol. 2003 Jul. 3; 92(1A):35i-42i. The compounds of the invention have surprisingly been found to be effective for lowering blood glucose, including plasma glucose, and for lowering blood lipids, including serum lipids, particularly serum cholesterol and serum triglycerides. The compounds of the invention are therefore particularly useful for the treatment, prevention and delay of onset of type 2 diabetes, high blood glucose and hyperlipidemia.

F. Modifications

As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base sometimes referred to as a “nucleobase” or simply a “base”. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2′, 3′ or 5′ hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn, the respective ends of this linear polymeric compound can be further joined to form a circular compound, however, linear compounds are generally preferred. In addition, linear compounds may have internal nucleobase complementarity and may therefore fold in a manner as to produce a fully or partially double-stranded compound. Within oligonucleotides, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3′ to 5′ phosphodiester linkage.

Modified Internucleoside Linkages (Backbones)

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Preferred modified oligonucleotide backbones containing a phosphorus atom therein include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriaminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates, 5′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3′ to 3′, 5′ to 5′ or 2′ to 2′ linkage. Preferred oligonucleotides having inverted polarity comprise a single 3′ to 3′ linkage at the 3′-most internucleotide linkage i.e. a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

Modified Sugar and Internucleoside Linkages-Mimetics

In other preferred antisense compounds, e.g., oligonucleotide mimetics, both the sugar and the internucleoside linkage (i.e. the backbone), of the nucleotide units are replaced with novel groups. The nucleobase units are maintained for hybridization with an appropriate target nucleic acid. One such compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

Preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2—NH—O—CH2—, —CH2—N(CH3)—O—CH2— [known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —O—N(CH3)—CH2—CH2— [wherein the native phosphodiester backbone is represented as —O—P—O—CH2—] of the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.

Modified Sugars

Modified antisense compounds may also contain one or more substituted sugar moieties. Preferred are antisense compounds, preferably antisense oligonucleotides, comprising one of the following at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Particularly preferred are O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3]2, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, as described in examples hereinbelow, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethyl-amino-ethoxy-ethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH3)2, also described in examples hereinbelow.

Other preferred modifications include 2′-methoxy (2′-O—CH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2), 2′-allyl (2′-CH2—CH═CH2), 2′-O-allyl (2′-O—CH2—CH═CH2) and 2′-fluoro (2′-F). The 2′-modification may be in the arabino (up) position or ribo (down) position. A preferred 2′-arabino modification is 2′-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide. Antisense compounds may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

A further preferred modification of the sugar includes Locked Nucleic Acids (LNAs) in which the 2′-hydroxyl group is linked to the 3′ or 4′ carbon atom of the sugar ring, thereby forming a bicyclic sugar moiety. The linkage is preferably a methylene (—CH2—)n group bridging the 2′ oxygen atom and the 4′ carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.

Natural and Modified Nucleobases

Antisense compounds may also include nucleobase (often referred to in the art as heterocyclic base or simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (—C≡C—CH3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine (1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3′,2′:4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are presently preferred base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; and 5,681,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference.

Conjugates

Another modification of the antisense compounds of the invention involves chemically linking to the antisense compound one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. These moieties or conjugates can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugate groups include cholesterols, lipids, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve uptake, enhance resistance to degradation, and/or strengthen sequence-specific hybridization with the target nucleic acid. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve uptake, distribution, metabolism or excretion of the compounds of the present invention. Representative conjugate groups are disclosed in International Patent Application PCT/US92/09196, filed Oct. 23, 1992, and U.S. Pat. No. 6,287,860, the entire disclosure of which are incorporated herein by reference. Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety. Antisense compounds of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic. Oligonucleotide-drug conjugates and their preparation are described in U.S. patent application Ser. No. 09/334,130 (filed Jun. 15, 1999) which is incorporated herein by reference in its entirety.

Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.

Chimeric Compounds

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide.

The present invention also includes antisense compounds which are chimeric compounds. “Chimeric” antisense compounds or “chimeras,” in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. Chimeric antisense oligonucleotides are thus a form of antisense compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, increased stability and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNAse H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide-mediated inhibition of gene expression. The cleavage of RNA:RNA hybrids can, in like fashion, be accomplished through the actions of endoribonucleases, such as RNAseL which cleaves both cellular and viral RNA. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

G. Formulations

The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor-targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption-assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof.

The term “pharmaceutically acceptable salts” refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto. For oligonucleotides, preferred examples of pharmaceutically acceptable salts and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. For oligonucleotides, presently preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine. Sodium salts are presently believed to be more preferred.

The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2′-O-methoxyethyl modification are believed to be particularly useful for oral administration. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, foams and liposome-containing formulations. The pharmaceutical compositions and formulations of the present invention may comprise one or more penetration enhancers, carriers, excipients or other active or inactive ingredients.

Emulsions are typically heterogenous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. Emulsions may contain additional components in addition to the dispersed phases, and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Microemulsions are included as an embodiment of the present invention. Emulsions and their uses are well known in the art and are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

Formulations of the present invention include liposomal formulations. As used in the present invention, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers. Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior that contains the composition to be delivered. Cationic liposomes are positively charged liposomes which are believed to interact with negatively charged DNA molecules to form a stable complex. Liposomes that are pH-sensitive or negatively-charged are believed to entrap DNA rather than complex with it. Both cationic and noncationic liposomes have been used to deliver DNA to cells.

Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome comprises one or more glycolipids or is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. Liposomes and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

The pharmaceutical formulations and compositions of the present invention may also include surfactants. The use of surfactants in drug products, formulations and in emulsions is well known in the art. Surfactants and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs. Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants. Penetration enhancers and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

One of skill in the art will recognize that formulations are routinely designed according to their intended use, i.e. route of administration.

Preferred formulations for topical administration include those in which the oligonucleotides of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Preferred lipids and liposomes include neutral (e.g. dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g. dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g. dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA).

For topical or other administration, oligonucleotides of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, oligonucleotides may be complexed to lipids, in particular to cationic lipids. Preferred fatty acids and esters, pharmaceutically acceptable salts thereof, and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Topical formulations are described in detail in U.S. patent application Ser. No. 09/315,298 filed on May 20, 1999, which is incorporated herein by reference in its entirety.

Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Preferred bile acids/salts and fatty acids and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Also preferred are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. Oligonucleotide complexing agents and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Oral formulations for oligonucleotides and their preparation are described in detail in U.S. application Ser. No. 09/108,673 (filed Jul. 1, 1998), Ser. No. 09/315,298 (filed May 20, 1999) and Ser. No. 10/071,822, filed Feb. 8, 2002, each of which is incorporated herein by reference in their entirety.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

Certain embodiments of the invention provide pharmaceutical compositions containing one or more oligomeric compounds and one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include but are not limited to cancer chemotherapeutic drugs such as daunorubicin, daunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bis-chloroethylnitrosurea, busulfan, mitomycin C, actinomycin D, mithramycin, prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentamethylmelamine, mitoxantrone, amsacrine, chlorambucil, methylcyclohexylnitrosurea, nitrogen mustards, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-azacytidine, hydroxyurea, deoxycoformycin, 4-hydroxyperoxycyclophosphoramide, 5-fluorouracil (5-FU), 5-fluorodeoxyuridine (5-FUdR), methotrexate (MTX), colchicine, taxol, vincristine, vinblastine, etoposide (VP-16), trimetrexate, irinotecan, topotecan, gemcitabine, teniposide, cisplatin and diethylstilbestrol (DES). When used with the compounds of the invention, such chemotherapeutic agents may be used individually (e.g., 5-FU and oligonucleotide), sequentially (e.g., 5-FU and oligonucleotide for a period of time followed by MTX and oligonucleotide), or in combination with one or more other such chemotherapeutic agents (e.g., 5-FU, MTX and oligonucleotide, or 5-FU, radiotherapy and oligonucleotide). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. Combinations of antisense compounds and other non-antisense drugs are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Alternatively, compositions of the invention may contain two or more antisense compounds targeted to different regions of the same nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially.

H. Dosing

The formulation of therapeutic compositions and their subsequent administration (dosing) is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 ug to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 100 g per kg of body weight, once or more daily, to once every 20 years.

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same. Each of the references, GenBank® accession numbers, and the like recited in the present application is incorporated herein by reference in its entirety.

EXAMPLES Example 1 Design and Screening of Duplexed Antisense Compounds Targeting eIF4E-BP2

In accordance with the present invention, a series of nucleic acid duplexes comprising the antisense compounds of the present invention and their complements can be designed to target eIF4E-BP2. The nucleobase sequence of the antisense strand of the duplex comprises at least a 8-nucleobase portion of an oligonucleotide in Table 1. The ends of the strands may be modified by the addition of one or more natural or modified nucleobases to form an overhang. The sense strand of the dsRNA is then designed and synthesized as the complement of the antisense strand and may also contain modifications or additions to either terminus. For example, in one embodiment, both strands of the dsRNA duplex would be complementary over the central nucleobases, each having overhangs at one or both termini. Overhangs can range from 2 to 6 nucleobases and these nucleobases may or may not be complementary to the target nucleic acid. In another embodiment, the duplexes may have an overhang on only one terminus.

For example, a duplex comprising an antisense strand having the sequence CGAGAGGCGGACGGGACCG (SEQ ID NO: 260) and having a two-nucleobase overhang of deoxythymidine (dT) would have the following structure:

In another embodiment, a duplex comprising an antisense strand having the same sequence CGAGAGGCGGACGGGACCG (SEQ ID NO: 260) may be prepared with blunt ends (no single stranded overhang) as shown:

The RNA duplex can be unimolecular or bimolecular; i.e., the two strands can be part of a single molecule or may be separate molecules.

RNA strands of the duplex can be synthesized by methods disclosed herein or purchased from Dharmacon Research Inc., (Lafayette, Colo.). Once synthesized, the complementary strands (or alternatively, the complementary portions of a single RNA strand in the case of a unimolecular duplex) are annealed. The single strands are aliquoted and diluted to a concentration of 50 uM. Once diluted, 30 uL of each strand is combined with 15 uL of a 5× solution of annealing buffer. The final concentration of said buffer is 100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4, and 2 mM magnesium acetate. The final volume is 75 uL. This solution is incubated for 1 minute at 90° C. and then centrifuged for 15 seconds. The tube is allowed to sit for 1 hour at 37° C. at which time the dsRNA duplexes are used in experimentation. The final concentration of the dsRNA duplex is 20 uM. This solution can be stored frozen (−20° C.) and freeze-thawed up to 5 times.

Once prepared, the duplexed antisense compounds are evaluated for their ability to modulate eIF4E-BP2 expression.

When cells reached 80% confluency, they are treated with duplexed antisense compounds of the invention. For cells grown in 96-well plates, wells are washed once with 200 μL OPTI-MEM™-1 reduced-serum medium (Invitrogen Life Technologies, Carlsbad, Calif.) and then treated with 130 μL of OPTI-MEM™-1 containing 12 μg/mL LIPOFECTIN™ (Invitrogen Life Technologies, Carlsbad, Calif.) per 200 nM of the desired duplex antisense compound. After 5 hours of treatment, the medium is replaced with fresh medium. Cells are harvested 16 hours after treatment, at which time RNA is isolated and target reduction measured by real-time PCR.

Example 2 Oligonucleotide Isolation

After cleavage from the controlled pore glass solid support and deblocking in concentrated ammonium hydroxide at 55° C. for 12-16 hours, the oligonucleotides or oligonucleosides are recovered by precipitation out of 1 M NH OAc with >3 volumes of ethanol. Synthesized oligonucleotides were analyzed by electrospray mass spectroscopy (molecular weight determination) and by capillary gel electrophoresis and judged to be at least 70% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in the synthesis was determined by the ratio of correct molecular weight relative to the −16 amu product (+/−32+/−48). For some studies oligonucleotides were purified by HPLC, as described by Chiang et al., J. Biol. Chem. 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

Example 3 Oligonucleotide Synthesis 96 Well Plate Format

Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a 96-well format. Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyl-diiso-propyl phosphoramidites were purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, Calif., or Pharmacia, Piscataway, N.J.). Non-standard nucleosides are synthesized as per standard or patented methods. They are utilized as base protected beta-cyanoethyldiisopropyl phosphoramidites.

Oligonucleotides were cleaved from support and deprotected with concentrated NH OH at elevated temperature (55-60° C.) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.

Example 4 Oligonucleotide Analysis 96-Well Plate Format

The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96-well format (Beckman P/ACE™ MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACE™ 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length.

Example 5 Cell Culture and Oligonucleotide Treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, ribonuclease protection assays, or real-time PCR.

T-24 Cells:

The human transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, Va.). T-24 cells were routinely cultured in complete McCoy's 5A basal media (Invitrogen Life Technologies, Carlsbad, Calif.) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies, Carlsbad, Calif.), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Invitrogen Life Technologies, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (e.g., Falcon-Primaria #353872, BD Biosciences, Bedford, Mass.) at a density of approximately 7000 cells/well for use in oligonucleotide transfection experiments and real-time PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

A549 Cells:

The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC) (Manassas, Va.). A549 cells were routinely cultured in DMEM basal media (Invitrogen Life Technologies, Carlsbad, Calif.) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies, Carlsbad, Calif.), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Invitrogen Life Technologies, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded onto 96-well plates (e.g., Falcon-Primaria #353872, BD Biosciences, Bedford, Mass.) at a density of approximately 5000 cells per well for use in oligonucleotide transfection experiments and real-time PCR analysis.

NHDF Cells:

Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville, Md.). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville, Md.) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

HEK Cells:

Human embryonic keratinocytes (HEK) were obtained from the Clonetics Corporation (Walkersville, Md.). HEKs were routinely maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville, Md.) formulated as recommended by the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier.

b.END Cells:

The mouse brain endothelial cell line b.END was obtained from Dr. Werner Risau at the Max Plank Instititute (Bad Nauheim, Germany). b.END cells were routinely cultured in DMEM, high glucose (Invitrogen Life Technologies, Carlsbad, Calif.) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (e.g., Falcon-Primaria #3872, BD Biosciences, Bedford, Mass.) at a density of approximately 3000 cells/well for use in oligonucleotide transfection experiments and real-time PCR analysis.

For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

A10 Cells:

The rat aortic smooth muscle cell line A10 was obtained from the American Type Culture Collection (Manassas, Va.). A10 cells were routinely cultured in DMEM, high glucose (American Type Culture Collection, Manassas, Va.) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached 80% confluence. Cells were seeded into 96-well plates (e.g., Falcon-Primaria #3872, BD Biosciences, Bedford, Mass.) at a density of approximately 2500 cells/well for use in oligonucleotide transfection experiments and real-time PCR analysis.

For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

EMT-6 Cells:

The mouse mammary epithelial carcinoma cell line EMT-6 was obtained from American Type Culture Collection (Manassus, Va.). They were grown in serial monolayer culture in DMEM, high glucose (Invitrogen Life Technologies, Carlsbad, Calif.) supplemented with 10% fetal bovine serum, (Invitrogen Life Technologies, Carlsbad, Calif.), 100 ug/ml penicillin and 100 ug/ml streptomycin (Invitrogen Life Technologies, Carlsbad, Calif.) in a humidified atmosphere of 90% air-10% CO2 at 37° C. Cells were routinely passaged by trypsinization and dilution when they reached 85-90% confluencey. Cells were seeded into 96-well plates (e.g., Falcon-Primaria #353872, BD Biosciences, Bedford, Mass.) at a density of approximately 1000 cells/well for use in oligonucleotide transfection experiments and real-time PCR analysis.

Treatment with Antisense Compounds:

When cells reached 65-75% confluency, they were treated with oligonucleotide. Oligonucleotide was mixed with LIPOFECTIN™ (Invitrogen Life Technologies, Carlsbad, Calif.) in OPTI-MEM™-1 reduced-serum medium (Invitrogen Life Technologies, Carlsbad, Calif.) to achieve the desired concentration of oligonucleotide and a concentration of 2.5 to 3 ug/mL LIPOFECTIN™ per 100 nM oligonucleotide. For cells grown in 96-well plates, wells were washed once with 100 μL OPTI-MEM™-1 reduced-serum medium and then treated with 130 μL of the LIPOFECTIN™/oligonucleotide mixture. Cells are treated and data are obtained in duplicate or triplicate. After 4-7 hours of treatment at 37° C., the medium was replaced with fresh medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is selected from either ISIS 13920 (TCCGTCATCGCTCCTCAGGG, SEQ ID NO: 1) which is targeted to human H-ras, or ISIS 18078, (GTGCGCGCGAGCCCGAAATC, SEQ ID NO: 2) which is targeted to human Jun-N-terminal kinase-2 (JNK2). Both controls are 2′-O-methoxyethyl gapmers (2′-O-methoxyethyls shown in bold) with a phosphorothioate backbone. For mouse or rat cells the positive control oligonucleotide is ISIS 15770, ATGCATTCTGCCCCCAAGGA, SEQ ID NO: 3, a 2′-O-methoxyethyl gapmer (2′-O-methoxyethyls shown in bold) with a phosphorothioate backbone which is targeted to both mouse and rat c-raf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-H-ras (for ISIS 13920), JNK2 (for ISIS 18078) or c-raf (for ISIS 15770) mRNA is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of c-H-ras, JNK2 or c-raf mRNA is then utilized as the oligonucleotide screening concentration in subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments. The concentrations of antisense oligonucleotides used herein are from 50 nM to 300 nM.

Example 6 Analysis of Oligonucleotide Inhibition of eIF4E-BP2 Expression

Antisense modulation of eIF4E-BP2 expression can be assayed in a variety of ways known in the art. For example, eIF4E-BP2 mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR. Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. The preferred method of RNA analysis of the present invention is the use of total cellular RNA as described in other examples herein. Methods of RNA isolation are well known in the art. Northern blot analysis is also routine in the art. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7600, 7700, or 7900 Sequence Detection System, available from PE-Applied Biosystems, Foster City, Calif. and used according to manufacturer's instructions.

Protein levels of eIF4E-BP2 can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), enzyme-linked immunosorbent assay (ELISA) or fluorescence-activated cell sorting (FACS). Antibodies directed to eIF4E-BP2 can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional monoclonal or polyclonal antibody generation methods well known in the art.

Example 7 Design of Phenotypic Assays for the Use of eIF4E-BP2 Inhibitors

Once eIF4E-BP2 inhibitors have been identified by the methods disclosed herein, the compounds are further investigated in one or more phenotypic assays, each having measurable endpoints predictive of efficacy in the treatment of a particular disease state or condition.

Phenotypic assays, kits and reagents for their use are well known to those skilled in the art and are herein used to investigate the role and/or association of eIF4E-BP2 in health and disease. Representative phenotypic assays, which can be purchased from any one of several commercial vendors, include those for determining cell viability, cytotoxicity, proliferation or cell survival (Molecular Probes, Eugene, Oreg.; PerkinElmer, Boston, Mass.), protein-based assays including enzymatic assays (Panvera, LLC, Madison, Wis.; BD Biosciences, Franklin Lakes, N.J.; Oncogene Research Products, San Diego, Calif.), cell regulation, signal transduction, inflammation, oxidative processes and apoptosis (Assay Designs Inc., Ann Arbor, Mich.), triglyceride accumulation (Sigma-Aldrich, St. Louis, Mo.), angiogenesis assays, tube formation assays, cytokine and hormone assays and metabolic assays (Chemicon International Inc., Temecula, Calif.; Amersham Biosciences, Piscataway, N.J.).

In one non-limiting example, cells determined to be appropriate for a particular phenotypic assay (i.e., MCF-7 cells selected for breast cancer studies; adipocytes for obesity studies) are treated with eIF4E-BP2 inhibitors identified from the in vitro studies as well as control compounds at optimal concentrations which are determined by the methods described above. At the end of the treatment period, treated and untreated cells are analyzed by one or more methods specific for the assay to determine phenotypic outcomes and endpoints.

Phenotypic endpoints include changes in cell morphology over time or treatment dose as well as changes in levels of cellular components such as proteins, lipids, nucleic acids, hormones, saccharides or metals. Measurements of cellular status which include pH, stage of the cell cycle, intake or excretion of biological indicators by the cell, are also endpoints of interest.

Measurement of the expression of one or more of the genes of the cell after treatment is also used as an indicator of the efficacy or potency of the eIF4E-BP2 inhibitors. Hallmark genes, or those genes suspected to be associated with a specific disease state, condition, or phenotype, are measured in both treated and untreated cells.

Example 8 RNA Isolation

Poly(A)+ mRNA isolation

Poly(A)+ mRNA was isolated according to Miura et al., (Clin. Chem., 1996, 42, 1758-1764). Other methods for poly(A)+ mRNA isolation are routine in the art. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 60 μL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 μL of lysate was transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine Calif.). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 μL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70° C., was added to each well, the plate was incubated on a 90° C. hot plate for 5 minutes, and the eluate was then transferred to a fresh 96-well plate.

Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

Total RNA Isolation

Total RNA was isolated using an RNEASY 96™ kit and buffers purchased from Qiagen Inc. (Valencia, Calif.) following the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 150 μL Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 150 μL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96™ well plate attached to a QIAVAC™ manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 1 minute. 500 μL of Buffer RW1 was added to each well of the RNEASY 96™ plate and incubated for 15 minutes and the vacuum was again applied for 1 minute. An additional 500 μL of Buffer RW1 was added to each well of the RNEASY 96™ plate and the vacuum was applied for 2 minutes. 1 mL of Buffer RPE was then added to each well of the RNEASY 96™ plate and the vacuum applied for a period of 90 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 3 minutes. The plate was then removed from the QIAVAC™ manifold and blotted dry on paper towels. The plate was then re-attached to the QIAVAC™ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 140 μL of RNAse free water into each well, incubating 1 minute, and then applying the vacuum for 3 minutes.

The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia Calif.). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

Example 9 Real-Time Quantitative PCR Analysis of eIF4E-BP2 mRNA Levels

Quantitation of eIF4E-BP2 mRNA levels was accomplished by real-time quantitative PCR using the ABI PRISM™ 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, Calif.) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., FAM or JOE, obtained from either PE-Applied Biosystems, Foster City, Calif., Operon Technologies Inc., Alameda, Calif. or Integrated DNA Technologies Inc., Coralville, Iowa) is attached to the 5′ end of the probe and a quencher dye (e.g., TAMRA, obtained from either PE-Applied Biosystems, Foster City, Calif., Operon Technologies Inc., Alameda, Calif. or Integrated DNA Technologies Inc., Coralville, Iowa) is attached to the 3′ end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3′ quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5′-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISM™ Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be “multiplexed” with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only (“single-plexing”), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed multiplexable. Other methods of PCR are also known in the art.

Isolated RNA is subjected to a reverse transcriptase (RT) reaction, for the purpose of generating complementary DNA (cDNA), which is the substrate for the real-time PCR. Reverse transcriptase and real-time PCR reagents were obtained from Invitrogen Life Technologies, (Carlsbad, Calif.). The RT reaction and real-time PCR were carried out by adding 20 μL PCR cocktail (2.5×PCR buffer minus MgCl2, 6.6 mM MgCl2, 375 μM each of dATP, dCTP, dCTP and dGTP, 375 nM each of forward primer and reverse primer, 125 nM of probe, 4 Units RNAse inhibitor, 1.25 Units PLATINUM® Taq, 5 Units MuLV reverse transcriptase, and 2.5×ROX dye) to 96-well plates containing 30 μL total RNA solution (20-200 ng). The RT reaction was carried out by incubation for 30 minutes at 48° C. Following a 10 minute incubation at 95° C. to activate the PLATINUM® Taq, 40 cycles of a two-step PCR protocol were carried out: 95° C. for 15 seconds (denaturation) followed by 60° C. for 1.5 minutes (annealing/extension).

Gene target quantities obtained by real-time PCR are normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreen™ (Molecular Probes, Inc. Eugene, Oreg.). GAPDH expression is quantified by real time real-time PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RiboGreen™ RNA quantification reagent (Molecular Probes, Inc. Eugene, Oreg.). Methods of RNA quantification by RiboGreen™ are taught in Jones, L. J., et al, (Analytical Biochemistry, 1998, 265, 368-374).

In this assay, 170 μL of RiboGreen™ working reagent (RiboGreen™ reagent diluted 1:350 in 10 mM Tris-HCl, 1 mM EDTA, pH 7.5) is pipetted into a 96-well plate containing 30 μL purified, cellular RNA. The plate is read in a CytoFluor 4000 (PE Applied Biosystems) with excitation at 485 nm and emission at 530 nm.

Probes and primers to human eIF4E-BP2 were designed to hybridize to a human eIF4E-BP2 sequence, using published sequence information (GenBank® accession number NM004096.3, incorporated herein as SEQ ID NO: 4). For human eIF4E-BP2 the PCR primers were:

forward primer: CCTCTAGTTTTGGGTGTGCATGT (SEQ ID NO: 5)

reverse primer: CCCATAGCAAGGCAGAATGG (SEQ ID NO: 6) and the PCR probe was: FAM-TGGAGTTTGTAGTGGGTGGTTTGTAAAACTGG-TAMRA (SEQ ID NO: 7) where FAM is the fluorescent dye and TAMRA is the quencher dye. For human GAPDH the PCR primers were:

forward primer: GAAGGTGAAGGTCGGAGTC (SEQ ID NO: 8)

reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO: 9) and the PCR probe was: 5′ JOE-CAAGCTTCCCGTTCTCAGCC-TAMRA 3′ (SEQ ID NO: 10) where JOE is the fluorescent reporter dye and TAMRA is the quencher dye.

Probes and primers to mouse eIF4E-BP2 were designed to hybridize to a mouse eIF4E-BP2 sequence, using published sequence information (GenBank® accession number NM010124.1, incorporated herein as SEQ ID NO: 11). For mouse eIF4E-BP2 the PCR primers were:

forward primer: GGCAAATTCAACGGCACAGT (SEQ ID NO: 12)

reverse primer: CGGACAGACGGACGATGAG (SEQ ID NO: 13) and the PCR probe was: FAM-CCTCCCAGGTCTCTCGCCCT-TAMRA

(SEQ ID NO: 14) where FAM is the fluorescent reporter dye and TAMRA is the quencher dye. For mouse GAPDH the PCR primers were:

forward primer: GGCAAATTCAACGGCACAGT (SEQ ID NO: 15)

reverse primer: GGGTCTCGCTCCTGGAAGAT (SEQ ID NO: 16) and the PCR probe was: 5′ JOE-AAGGCCGAGAATGGGAAGCTTGTCATC-TAMRA 3′ (SEQ ID NO: 17) where JOE is the fluorescent reporter dye and TAMRA is the quencher dye.

Probes and primers to rat eIF4E-BP2 were designed to hybridize to a rat eIF4E-BP2 sequence, using published sequence information (GenBank® accession number XM215414.1, incorporated herein as SEQ ID NO: 18). For rat eIF4E-BP2 the PCR primers were:

forward primer: AGTGAACAACTTGAACAACCTGAACA (SEQ ID NO: 19)

reverse primer: ACTGCAGCAGGGTCAGATGTC (SEQ ID NO: 20) and the PCR probe was: FAM-TCACGACAGGAAGCACGCAGTTGG-TAMRA

(SEQ ID NO: 21) where FAM is the fluorescent reporter dye and TAMRA is the quencher dye. For rat GAPDH the PCR primers were:

forward primer: TGTTCTAGAGACAGCCGCATCTT (SEQ ID NO: 22)

reverse primer: CACCGACCTTCACCATCTTGT (SEQ ID NO: 23) and the PCR probe was: 5′ JOE-TTGTGCAGTGCCAGCCTCGTCTCA-TAMRA 3′ (SEQ ID NO: 24) where JOE is the fluorescent reporter dye and TAMRA is the quencher dye.

Example 10 Northern Blot Analysis of eIF4E-BP2 mRNA Levels

Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOL™ (TEL-TEST “B” Inc., Friendswood, Tex.). Total RNA was prepared following manufacturer's recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, Ohio). RNA was transferred from the gel to HYBOND™-N+ nylon membranes (Amersham Pharmacia Biotech, Piscataway, N.J.) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST “B” Inc., Friendswood, Tex.). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKER UV Crosslinker 2400 (Stratagene, Inc, La Jolla, Calif.) and then probed using QUICKHYB™ hybridization solution (Stratagene, La Jolla, Calif.) using manufacturer's recommendations for stringent conditions.

To detect human eIF4E-BP2, a human eIF4E-BP2 specific probe was prepared by PCR using the forward primer CCTCTAGTTTTGGGTGTGCATGT (SEQ ID NO: 5) and the reverse primer CCCATAGCAAGGCAGAATGG (SEQ ID NO: 6). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, Calif.).

To detect mouse eIF4E-BP2, a mouse eIF4E-BP2 specific probe was prepared by PCR using the forward primer AGAGCAGCACAGGCTAAGACAGT (SEQ ID NO: 12) and the reverse primer CGGACAGACGGACGATGAG (SEQ ID NO: 13). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, Calif.).

To detect rat eIF4E-BP2, a rat eIF4E-BP2 specific probe was prepared by PCR using the forward primer AGTGAACAACTTGAACAACCTGAACA (SEQ ID NO: 19) and the reverse primer ACTGCAGCAGGGTCAGATGTC (SEQ ID NO: 20). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, Calif.).

Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGER™ and IMAGEQUANT™ Software V3.3 (Molecular Dynamics, Sunnyvale, Calif.). Data was normalized to GAPDH levels in untreated controls.

Example 11 Antisense Inhibition of Human eIF4E-BP2 Expression by Chimeric Phosphorothioate Oligonucleotides Having 2′-MOE Wings and a Deoxy Gap

In accordance with the present invention, a series of antisense compounds was designed to target different regions of the human eIF4E-BP2 RNA, using published sequences (GenBank® accession number NM004096.3, incorporated herein as SEQ ID NO: 4, nucleotides 20714677 to 20740000 of the sequence with GenBank® accession number NT008583.16, incorporated herein as SEQ ID NO: 25, GenBank® accession number AK057643.1, incorporated herein as SEQ ID NO: 26, GenBank® accession number AK001936.1, incorporated herein as SEQ ID NO: 27, and GenBank® accession number BF686401.1, incorporated herein as SEQ ID NO: 28). The compounds are shown in Table 1. “Target site” indicates the first (5′-most) nucleotide number on the particular target sequence to which the compound binds. All compounds in Table 1 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2′-deoxynucleotides, which is flanked on both sides (5′ and 3′ directions) by five-nucleotide “wings”. The wings are composed of 2′-O-methoxyethyl (2′-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P═S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on human eIF4E-BP2 mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from two experiments in which A549 cells were treated with 75 nM of the antisense oligonucleotides of the present invention. SEQ ID NO: 2 was used as the control oligonucleotide in this assay. If present, “N. D.” indicates “no data”.

TABLE 1
Inhibition of human eIF4E-BP2 mRNA levels by chimeric
phosphorothioate oligonucleotides having 2′-MOE wings
and a deoxy gap
TARGET SEQ
SEQ TARGET % ID
ISIS # REGION ID NO SITE SEQUENCE INHIB NO
232773 Coding 4 420 gccatgggagaattgcgacg 68 29
232776 Coding 4 493 tttggagtcttcaattaagg 31 30
232777 Coding 4 498 tctactttggagtcttcaat 2 31
232828 3′UTR 4 1962 gtctgtagtcatcttaaaaa 52 32
322947 Coding 4 501 acttctactttggagtcttc 60 33
347546 Intron 1 25 1836 tagaccgcaggagctgcgaa 0 34
347547 Intron 1 25 8892 agtgattctcaaactgcaga 38 35
347548 Intron 1 25 11559 tcttctgatccatggccacc 52 36
347549 Intron 1 25 11918 tcagcactatctgttgaaaa 39 37
347550 Intron 1: 25 16139 attcgagttcctggaaaaca 0 38
Exon 2
junction
347551 Exon 2: 25 16324 ttctcttaccaactgcatgt 0 39
Intron 2
junction
347552 Intron 2: 25 17941 gcatcatcccctagttagga 27 40
exon 3
junction
347553 5′UTR 4 146 cctcaggcggacggaaaagc 39 41
347554 Coding 4 332 cgggcgtggtgcaatagtca 63 42
347555 Coding 4 372 attcgagttcctcccggtgt 55 43
347556 Coding 4 392 gaaactttctgtcataaatg 0 44
347557 Coding 4 397 caacagaaactttctgtcat 15 45
347558 Coding 4 474 gtgccagggctagtgactcc 43 46
347559 Coding 4 526 attgttcaagttgttcaaat 0 47
347560 Coding 4 544 tgcatgtttcctgtcgtgat 59 48
347561 Coding 4 549 ccaactgcatgtttcctgtc 54 49
347562 Coding 4 558 gcatcatccccaactgcatg 54 50
347563 Coding 4 574 gtccatctcgaactgagcat 46 51
347564 Stop 4 589 gcaggagagtcagatgtcca 47 52
Codon
347565 3′UTR 4 623 aagtatcagtgttgctgctt 45 53
347566 3′UTR 4 635 tcaggtgcacacaagtatca 43 54
347567 3′UTR 4 734 atcatttggcacccagagga 54 55
347568 3′UTR 4 747 agctcatcttcccatcattt 38 56
347569 3′UTR 4 772 acagggagaagaaatggtca 13 57
347570 3′UTR 4 803 taacctgtttaactgggaag 59 58
347571 3′UTR 4 829 cagaaatacagcaagggcct 70 59
347572 3′UTR 4 851 ctctaagggctgcttagctc 71 60
347573 3′UTR 4 868 agagttgaactgttttcctc 78 61
347574 3′UTR 4 921 caaaattacagggtatgagg 63 62
347575 3′UTR 4 1085 aagaccccaagcccagactc 9 63
347576 3′UTR 4 1105 atttccccctgctggtttta 62 64
347577 3′UTR 4 1130 aagggaaagcagctctcttt 70 65
347578 3′UTR 4 1180 agagttgcacaagctgtgct 40 66
347579 3′UTR 4 1217 agtggacctcaaaacagtgt 64 67
347580 3′UTR 4 1303 tctgcacaaatgcactaagt 65 68
347581 3′UTR 4 1350 aaaactggttaccaagggct 34 69
347582 3′UTR 4 1357 gaagagcaaaactggttacc 27 70
347583 3′UTR 4 1393 ccagcaacgagatgcaagca 65 71
347584 3′UTR 4 1410 agtacaagaggactctgcca 56 72
347585 3′UTR 4 1458 tggtatggacctgctctagg 51 73
347586 3′UTR 4 1472 gtgcctctattacttggtat 48 74
347587 3′UTR 4 1533 ttcttaggcattatctgaca 70 75
347588 3′UTR 4 1541 agcggtcattcttaggcatt 59 76
347589 3′UTR 4 1580 acgactgagaccgggtactc 67 77
347590 3′UTR 4 1614 acaactaccacaatgctcac 0 78
347591 3′UTR 4 1664 attctgaaaatcaacttcaa 0 79
347592 3′UTR 4 1724 tcccagcagccaaacaaagc 0 80
347593 3′UTR 4 1868 atttgaaaaatggcctggta 47 81
347594 3′UTR 4 1892 acacttcaggtatctttgat 6 82
347595 3′UTR 4 1900 agataccaacacttcaggta 49 83
347596 3′UTR 4 1912 acagatattctcagatacca 0 84
347597 3′UTR 4 2018 atgtttaattaaaaagttgc 0 85
347598 3′UTR 4 2028 acactggaagatgtttaatt 17 86
347599 3′UTR 4 2173 cagttttacaaaccacccac 0 87
347600 3′UTR 4 2218 aagaatgaggctttcttgaa 47 88
347601 3′UTR 4 2223 cagaaaagaatgaggctttc 34 89
347602 3′UTR 4 2246 tgaatgcaaaagcgaaaggg 0 90
347603 3′UTR 4 2301 tcccgggattattatgctgc 0 91
347604 3′UTR 4 2377 gaaattcccaggacaccagt 63 92
347605 3′UTR 4 2382 aaccagaaattcccaggaca 47 93
347606 3′UTR 4 2389 caaatccaaccagaaattcc 0 94
347607 3′UTR 4 2449 ccaaatggcctgttactctc 26 95
347608 3′UTR 4 2471 aacaaacaggtttctttctt 40 96
347609 3′UTR 4 2492 cttttcatagttcaaaagaa 19 97
347610 3′UTR 4 2536 cagacatccttcctctcttt 33 98
347611 3′UTR 4 2564 ttgtggcagaaaacagaaca 0 99
347612 3′UTR 4 2578 aactattcacatttttgtgg 62 100
347613 3′UTR 4 2632 tggagatccagcttattcct 49 101
347614 3′UTR 26 1189 aagaatgaaaagcttcattc 0 102
347615 3′UTR 26 1336 tttaaatccattcctcaccg 0 103
347616 3′UTR 26 2088 ataactaatacaggtggaag 41 104
347617 3′UTR 27 697 ggtcatctgaaatctctaaa 45 105
347618 3′UTR 28 464 gcctcccacccttagaaagg 2 106

As shown in Table 1, SEQ ID NOs 29, 30, 32, 33, 35, 36, 37, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 81, 83, 88, 89, 92, 93, 95, 96, 98, 100, 101, 104 and 105 demonstrated at least 25% inhibition of human eIF4E-BP2 expression in this assay and are therefore preferred. The target regions to which these preferred sequences are complementary are herein referred to as “preferred target segments” and are therefore preferred for targeting by compounds of the present invention. These preferred target segments are shown in Table 5. These sequences are shown to contain thymine (T) but one of skill in the art will appreciate that thymine (T) is generally replaced by uracil (U) in RNA sequences. The sequences represent the reverse complement of the preferred antisense compounds disclosed herein. “Target site” indicates the first (5′-most) nucleotide number on the particular target nucleic acid to which the oligonucleotide binds. Also shown in Table 5 is the species in which each of the preferred target segments was found.

SEQ ID NOs 29, 30, 31 and 32 are cross species oligonucleotides which are also complementary to the mouse eIF4E-BP2 nucleic acid target. SEQ ID NOs 29 and 33 are cross species oligonucleotides which are also complementary to rat eIF4E-BP2.

Example 12 Antisense Inhibition of Mouse eIF4E-BP2 Expression by Chimeric Phosphorothioate Oligonucleotides Having 2′-MOE Wings and a Deoxy Gap

In accordance with the present invention, a second series of antisense compounds was designed to target different regions of the mouse eIF4E-BP2 RNA, using published sequences (GenBank® accession number NM010124.1, incorporated herein as SEQ ID NO: 11, GenBank® accession number BI696127.1, incorporated herein as SEQ ID NO: 107, and GenBank® accession number BE332409.1, incorporated herein as SEQ ID NO: 108). The compounds are shown in Table 2. “Target site” indicates the first (5′-most) nucleotide number on the particular target nucleic acid to which the compound binds. All compounds in Table 2 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2′-deoxynucleotides, which is flanked on both sides (5′ and 3′ directions) by five-nucleotide “wings”. The wings are composed of 2′-O-methoxyethyl (2′-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P═S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on mouse eIF4E-BP2 mRNA levels by quantitative real-time PCR as described in other examples herein. Data, shown in Table 2, are averages from two experiments in which b.END cells were treated with 150 nM of the antisense oligonucleotides of the present invention. SEQ ID NO: 2 was used as the control oligonucleotide in this assay. If present, “N.D.” indicates “no data”.

TABLE 2
Inhibition of mouse eIF4E-BP2 mRNA levels in b.END
cells by chimeric phosphorothioate oligonucleotides
having 2′-MOE wings and a deoxy gap
TARGET SEQ
SEQ TARGET % ID
ISIS # REGION ID NO SITE SEQUENCE INHIB NO
232759 5′UTR 11 9 tctcaactcgcctgctctcg 92 109
232760 5′UTR 11 26 ggctcctcacgctcggctct 81 110
232761 5′UTR 11 86 tcgaggctttgtgcagcagc 64 111
232762 Coding 11 132 gctggtggctaccaccggcc 49 112
232763 Coding 11 137 gctgggctggtggctaccac 72 113
232764 Coding 11 179 gtcgctgatagccacggtgc 77 114
232765 Coding 11 201 agtcctgaggtagctgcgcg 79 115
232766 Coding 11 211 gtggtgcagtagtcctgagg 81 116
232767 Coding 11 264 cataaatgattcgtgttcct 73 117
232768 Coding 11 269 tcggtcataaatgattcgtg 86 118
232769 Coding 11 274 aactttcggtcataaatgat 52 119
232770 Coding 11 281 caacagaaactttcggtcat 72 120
232771 Coding 11 286 cggtccaacagaaactttcg 84 121
232772 Coding 11 299 gggagaattgcgacggtcca 80 122
232773 Coding 11 304 gccatgggagaattgcgacg 83 29
232774 Coding 11 309 tctgcgccatgggagaattg 66 123
232775 Coding 11 354 caggactggtgactccaggg 87 124
232776 Coding 11 377 tttggagtcttcaattaagg 24 30
232777 Coding 11 382 tctactttggagtcttcaat 69 31
232778 Coding 11 388 ttcacttctactttggagtc 71 125
232779 Coding 11 449 aaactgagcctcatccccaa 89 126
232780 Coding 11 454 atctcaaactgagcctcatc 85 127
232781 Coding 11 461 gatgtccatctcaaactgag 73 128
232782 Stop 11 473 tggcagtagtcagatgtcca 91 129
Codon
232783 3′UTR 11 500 ggctgctccacgaggcctcc 90 130
232784 3′UTR 11 521 tgggccagtcaggtgcacac 77 131
232785 3′UTR 11 540 ctgtacactgtgttcctact 87 132
232786 3′UTR 11 607 atgtgatcagacagtgcaca 67 133
232787 3′UTR 11 614 cgggaagatgtgatcagaca 59 134
232788 3′UTR 11 696 ttcttctgtggactgtcagc 44 135
232789 3′UTR 11 787 gtgctgcttggagactgccc 54 136
232790 3′UTR 11 798 tacaagcagaggtgctgctt 47 137
232791 3′UTR 11 827 ggcactaaacctccttcacc 87 138
232792 3′UTR 11 835 acacaatgggcactaaacct 68 139
232793 3′UTR 11 845 gagcccaggaacacaatggg 61 140
232794 3′UTR 11 900 aatgtcccccacatccagcg 88 141
232795 3′UTR 11 909 ctgaggacaaatgtccccca 81 142
232796 3′UTR 11 927 caggactgtgctccagagct 78 143
232797 3′UTR 11 934 ggaggtacaggactgtgctc 69 144
232798 3′UTR 11 975 gaggctgctgtcacatgtcc 68 145
232799 3′UTR 11 998 aagccttcctcccagagaaa 81 146
232800 3′UTR 11 1020 tatcacacccaagacaagac 70 147
232801 3′UTR 11 1030 gatgatgagctatcacaccc 83 148
232802 3′UTR 11 1093 cccttcaggagggcttaaaa 70 149
232803 3′UTR 11 1127 cagacaggcaaagaccagct 85 150
232804 3′UTR 11 1156 tgcctacgggatgcaggtag 71 151
232805 3′UTR 11 1204 cttctgctctaaaagcagac 1 152
232806 3′UTR 11 1222 caggccaaggtgttggcact 57 153
232807 3′UTR 11 1250 gctgagagcaggctggactc 66 154
232808 3′UTR 11 1263 tctcaggcagaccgctgaga 54 155
232809 3′UTR 11 1276 gcccctgatgtattctcagg 72 156
232810 3′UTR 11 1282 tcagaggcccctgatgtatt 51 157
232811 3′UTR 11 1289 gtcctcttcagaggcccctg 89 158
232812 3′UTR 11 1303 tgcacggcggctcagtcctc 69 159
232813 3′UTR 11 1308 ctggctgcacggcggctcag 71 160
232814 3′UTR 11 1327 aaaaccatgacccccgaggc 92 161
232815 3′UTR 11 1340 tacacctggttttaaaacca 67 162
232816 3′UTR 11 1355 acacccaacgtaaggtacac 86 163
232817 3′UTR 11 1361 tgcaggacacccaacgtaag 85 164
232818 3′UTR 11 1381 aaactcaaggtatagtaacc 73 165
232819 3′UTR 11 1392 aagtcgactttaaactcaag 66 166
232820 3′UTR 11 1399 taagaggaagtcgactttaa 75 167
232821 3′UTR 11 1455 ctgtgctgctctctcagcag 21 168
232822 3′UTR 11 1467 cactgtcttagcctgtgctg 90 169
232823 3′UTR 11 1584 tggaaaatggcccggtggaa 82 170
232824 3′UTR 11 1619 tactaacatgggaggcatct 84 171
232825 3′UTR 11 1646 tgataaggagagactgatat 28 172
232826 3′UTR 11 1662 taaaaggtctctcctctgat 33 173
232827 3′UTR 11 1668 taaaaataaaaggtctctcc 24 174
232828 3′UTR 11 1682 gtctgtagtcatcttaaaaa 93 32
232829 3′UTR 11 1699 aacttatctaaaaataggtc 30 175
232830 3′UTR 11 1708 tgtactgaaaacttatctaa 74 176
232831 3′UTR 11 1749 atactggaagatgttttgtt 70 177
232832 3′UTR 11 1761 ataaccttcccaatactgga 82 178
232833 3′UTR 107 365 acagctcatggcaaggcaga 79 179
232834 3′UTR 107 437 aactgctcttctatgtgtgg 4 180
232835 3′UTR 107 454 tcgctgatagtctcttgaac 0 181
232836 5′UTR 108 36 ggctcttcacgctcggctct 73 182

As shown in Table 2, SEQ ID NOs 29, 31, 32, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 176, 177, 178, 179 and 182 demonstrated at least 44% inhibition of mouse eIF4E-BP2 expression in this experiment and are therefore preferred. The target regions to which these preferred sequences are complementary are herein referred to as “preferred target segments” and are therefore preferred for targeting by compounds of the present invention. These preferred target segments are shown in Table 4. These sequences are shown to contain thymine (T) but one of skill in the art will appreciate that thymine (T) is generally replaced by uracil (U) in RNA sequences. The sequences represent the reverse complement of the preferred antisense compounds disclosed herein. “Target site” indicates the first (5′-most) nucleotide number on the particular target nucleic acid to which the oligonucleotide binds. Also shown in Table 5 is the species in which each of the preferred target segments was found.

In a further embodiment, antisense oligonucleotides targeting mouse eIF4E-BP2 were tested in EMT-6 cells. The compounds were analyzed for their effect on mouse eIF4E-BP2 mRNA levels by quantitative real-time PCR as described in other examples herein. Data, shown in Table 3, are averages from two experiments in which EMT-6 cells were treated with 150 nM of the antisense oligonucleotides of the present invention. SEQ ID NO: 2 was used as the control oligonucleotide in this assay. If present, “N.D.” indicates “no data”.

TABLE 3
Inhibition of mouse eIF4E-BP2 mRNA levels in EMT-6
cells by chimeric phosphorothioate oligonucleotides
having 2′-MOE wings and a deoxy gap
TARGET SEQ
SEQ TARGET % ID
ISIS # REGION ID NO SITE SEQUENCE INHIB NO
232759 5′UTR 11 9 tctcaactcgcctgctctcg 95 109
232760 5′UTR 11 26 ggctcctcacgctcggctct 93 110
232761 5′UTR 11 86 tcgaggctttgtgcagcagc 96 111
232762 Coding 11 132 gctggtggctaccaccggcc 88 112
232763 Coding 11 137 gctgggctggtggctaccac 94 113
232764 Coding 11 179 gtcgctgatagccacggtgc 95 114
232765 Coding 11 201 agtcctgaggtagctgcgcg 97 115
232766 Coding 11 211 gtggtgcagtagtcctgagg 93 116
232767 Coding 11 264 cataaatgattcgtgttcct 92 117
232768 Coding 11 269 tcggtcataaatgattcgtg 98 118
232769 Coding 11 274 aactttcggtcataaatgat 80 119
232770 Coding 11 281 caacagaaactttcggtcat 84 120
232771 Coding 11 286 cggtccaacagaaactttcg 97 121
232772 Coding 11 299 gggagaattgcgacggtcca 95 122
232773 Coding 11 304 gccatgggagaattgcgacg 96  29
232774 Coding 11 309 tctgcgccatgggagaattg 93 123
232775 Coding 11 354 caggactggtgactccaggg 98 124
232776 Coding 11 377 tttggagtcttcaattaagg 73  30
232777 Coding 11 382 tctactttggagtcttcaat 85  31
232778 Coding 11 388 ttcacttctactttggagtc 93 125
232779 Coding 11 449 aaactgagcctcatccccaa 93 126
232780 Coding 11 454 atctcaaactgagcctcatc 92 127
232781 Coding 11 461 gatgtccatctcaaactgag 89 128
232782 Stop 11 473 tggcagtagtcagatgtcca 95 129
Codon
232783 3′UTR 11 500 ggctgctccacgaggcctcc 98 130
232784 3′UTR 11 521 tgggccagtcaggtgcacac 95 131
232785 3′UTR 11 540 ctgtacactgtgttcctact 98 132
232786 3′UTR 11 607 atgtgatcagacagtgcaca 89 133
232787 3′UTR 11 614 cgggaagatgtgatcagaca 75 134
232788 3′UTR 11 696 ttcttctgtggactgtcagc 59 135
232789 3′UTR 11 787 gtgctgcttggagactgccc 77 136
232790 3′UTR 11 798 tacaagcagaggtgctgctt 87 137
232791 3′UTR 11 827 ggcactaaacctccttcacc 91 138
232792 3′UTR 11 835 acacaatgggcactaaacct 87 139
232793 3′UTR 11 845 gagcccaggaacacaatggg 89 140
232794 3′UTR 11 900 aatgtcccccacatccagcg 95 141
232795 3′UTR 11 909 ctgaggacaaatgtccccca 92 142
232796 3′UTR 11 927 caggactgtgctccagagct 95 143
232797 3′UTR 11 934 ggaggtacaggactgtgctc 91 144
232798 3′UTR 11 975 gaggctgctgtcacatgtcc 95 145
232799 3′UTR 11 998 aagccttcctcccagagaaa 83 146
232800 3′UTR 11 1020 tatcacacccaagacaagac 80 147
232801 3′UTR 11 1030 gatgatgagctatcacaccc 91 148
232802 3′UTR 11 1093 cccttcaggagggcttaaaa 85 149
232803 3′UTR 11 1127 cagacaggcaaagaccagct 94 150
232804 3′UTR 11 1156 tgcctacgggatgcaggtag 95 151
232805 3′UTR 11 1204 cttctgctctaaaagcagac 36 152
232806 3′UTR 11 1222 caggccaaggtgttggcact 83 153
232807 3′UTR 11 1250 gctgagagcaggctggactc 82 154
232808 3′UTR 11 1263 tctcaggcagaccgctgaga 74 155
232809 3′UTR 11 1276 gcccctgatgtattctcagg 93 156
232810 3′UTR 11 1282 tcagaggcccctgatgtatt 86 157
232811 3′UTR 11 1289 gtcctcttcagaggcccctg 95 158
232812 3′UTR 11 1303 tgcacggcggctcagtcctc 86 159
232813 3′UTR 11 1308 ctggctgcacggcggctcag 91 160
232814 3′UTR 11 1327 aaaaccatgacccccgaggc 96 161
232815 3′UTR 11 1340 tacacctggttttaaaacca 93 162
232816 3′UTR 11 1355 acacccaacgtaaggtacac 95 163
232817 3′UTR 11 1361 tgcaggacacccaacgtaag 97 164
232818 3′UTR 11 1381 aaactcaaggtatagtaacc 89 165
232819 3′UTR 11 1392 aagtcgactttaaactcaag 96 166
232820 3′UTR 11 1399 taagaggaagtcgactttaa 96 167
232821 3′UTR 11 1455 ctgtgctgctctctcagcag 79 168
232822 3′UTR 11 1467 cactgtcttagcctgtgctg 96 169
232823 3′UTR 11 1584 tggaaaatggcccggtggaa 96 170
232824 3′UTR 11 1619 tactaacatgggaggcatct 95 171
232825 3′UTR 11 1646 tgataaggagagactgatat 60 172
232826 3′UTR 11 1662 taaaaggtctctcctctgat 67 173
232827 3′UTR 11 1668 taaaaataaaaggtctctcc 23 174
232828 3′UTR 11 1682 gtctgtagtcatcttaaaaa 98  32
232829 3′UTR 11 1699 aacttatctaaaaataggtc 69 175
232830 3′UTR 11 1708 tgtactgaaaacttatctaa 97 176
232831 3′UTR 11 1749 atactggaagatgttttgtt 89 177
232832 3′UTR 11 1761 ataaccttcccaatactgga 95 178
232833 3′UTR 107 365 acagctcatggcaaggcaga 96 179
232834 3′UTR 107 437 aactgctcttctatgtgtgg 40 180
232835 3′UTR 107 454 tcgctgatagtctcttgaac 23 181
232836 5′UTR 108 36 ggctcttcacgctcggctct 88 182

As shown in Table 3, SEQ ID NOs 29, 30, 31, 32, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 175, 176, 177, 178, 179 and 182 demonstrated at least 67% inhibition of mouse eIF4E-BP2 expression in this assay and are therefore preferred.

Example 13 Antisense Inhibition of Rat eIF4E-BP2 Expression by Chimeric Phosphorothioate Oligonucleotides Having 2′-MOE Wings and a Deoxy Gap

In accordance with the present invention, a third series of antisense compounds was designed to target different regions of the rat eIF4E-BP2 RNA, using published sequences (GenBank® accession number XM215414.1, incorporated herein as SEQ ID NO: 18). The compounds are shown in Table 4. “Target site” indicates the first (5′-most) nucleotide number on the particular target nucleic acid to which the compound binds. All compounds in Table 4 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2′-deoxynucleotides, which is flanked on both sides (5′ and 3′ directions) by five-nucleotide “wings”. The wings are composed of 2′-O-methoxyethyl (2′-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P═S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on rat eIF4E-BP2 mRNA levels by quantitative real-time PCR as described in other examples herein. Data, shown in Table 4, are averages from two experiments in which A10 cells were treated with 50 nM of the antisense oligonucleotides of the present invention. SEQ ID NO: 2 was used as the control oligonucleotide in this assay. If present, “N.D.” indicates “no data”.

TABLE 4
Inhibition of rat eIF4E-BP2 mRNA levels by chimeric
phosphorothioate oligonucleotides having 2′-MOE
wings and a deoxy gap
TARGET SEQ
SEQ TARGET % ID
ISIS # REGION ID NO SITE SEQUENCE INHIB NO
232773 Coding 11 304 gccatgggagaattgcgacg 90 29
322907 5′UTR 18 7 ggctcgtggctttgtgcagc 48 183
322908 Coding 18 48 tggtgtccaccaccggccga 49 184
322909 Coding 18 57 tggctgggctggtgtccacc 65 185
322910 Coding 18 59 tctggctgggctggtgtcca 50 186
322911 Coding 18 71 gaatggcgcggctctggctg 65 187
322912 Coding 18 93 ctaatagccacggtgcgtgt 65 188
322913 Coding 18 97 gtcgctaatagccacggtgc 83 189
322914 Coding 18 102 gctgcgtcgctaatagccac 80 190
322915 Coding 18 114 tgaggtagctgcgctgcgtc 62 191
322916 Coding 18 116 cctgaggtagctgcgctgcg 68 192
322917 Coding 18 120 tagtcctgaggtagctgcgc 77 193
322918 Coding 18 122 agtagtcctgaggtagctgc 75 194
322919 Coding 18 125 tgcagtagtcctgaggtagc 80 195
322920 Coding 18 127 ggtgcagtagtcctgaggta 85 196
322921 Coding 18 130 cgtggtgcagtagtcctgag 78 197
322922 Coding 18 132 ggcgtggtgcagtagtcctg 74 198
322923 Coding 18 159 ggtgttgtggagaacagcgt 35 199
322924 Coding 18 164 ctcccggtgttgtggagaac 48 200
322925 Coding 18 168 gttcctcccggtgttgtgga 78 201
322926 Coding 18 193 aaactttcggtcataaatga 53 202
322927 Coding 18 195 agaaactttcggtcataaat 41 203
322928 Coding 18 197 acagaaactttcggtcataa 65 204
322929 Coding 18 198 aacagaaactttcggtcata 79 205
322930 Coding 18 201 tccaacagaaactttcggtc 83 206
322931 Coding 18 203 ggtccaacagaaactttcgg 83 207
322932 Coding 18 208 gcgacggtccaacagaaact 80 208
322933 Coding 18 210 ttgcgacggtccaacagaaa 76 209
322934 Coding 18 213 gaattgcgacggtccaacag 78 210
322935 Coding 18 215 gagaattgcgacggtccaac 75 211
322936 Coding 18 218 tgggagaattgcgacggtcc 36 212
322937 Coding 18 223 cgccatgggagaattgcgac 73 213
322938 Coding 18 225 tgcgccatgggagaattgcg 52 214
322939 Coding 18 228 gtctgcgccatgggagaatt 67 215
322940 Coding 18 250 attgggcagatggcaaggtg 33 216
322941 Coding 18 265 ggtgactccagggatattgg 35 217
322942 Coding 18 270 ggactggtgactccagggat 74 218
322943 Coding 18 275 cgccaggactggtgactcca 83 219
322944 Coding 18 292 ggagtcttccattaaggcgc 64 220
322945 Coding 18 294 ttggagtcttccattaaggc 66 221
322946 Coding 18 298 tactttggagtcttccatta 27 222
322947 Coding 18 303 acttctactttggagtcttc 68 33
322948 Coding 18 304 cacttctactttggagtctt 64 223
322949 Coding 18 308 tgttcacttctactttggag 87 224
322950 Coding 18 313 caagttgttcacttctactt 80 225
322951 Coding 18 316 gttcaagttgttcacttcta 82 226
322952 Coding 18 323 tcaggttgttcaagttgttc 83 227
322953 Coding 18 326 tgttcaggttgttcaagttg 84 228
322954 Coding 18 329 gattgttcaggttgttcaag 68 229
322955 Coding 18 332 cgtgattgttcaggttgttc 95 230
322956 Coding 18 335 tgtcgtgattgttcaggttg 95 231
322957 Coding 18 339 ttcctgtcgtgattgttcag 88 232
322958 Coding 18 341 gcttcctgtcgtgattgttc 95 233
322959 Coding 18 343 gtgcttcctgtcgtgattgt 92 234
322960 Coding 18 348 actgcgtgcttcctgtcgtg 97 235
322961 Coding 18 350 caactgcgtgcttcctgtcg 91 236
322962 Coding 18 353 ccccaactgcgtgcttcctg 85 237
322963 Coding 18 355 atccccaactgcgtgcttcc 48 238
322964 Coding 18 358 ctcatccccaactgcgtgct 83 239
322965 Coding 18 360 gcctcatccccaactgcgtg 90 240
322966 Coding 18 362 gagcctcatccccaactgcg 94 241
322967 Coding 18 364 ctgagcctcatccccaactg 89 242
322968 Coding 18 369 tcaaactgagcctcatcccc 50 243
322969 Stop 18 390 cagcagggtcagatgtccat 81 244
Codon
322970 3′UTR 18 402 ccttcgacactgcagcaggg 88 245
322971 3′UTR 18 406 gccgccttcgacactgcagc 83 246
322972 3′UTR 18 428 gtgcacacgggccgtgtcag 76 247
322973 3′UTR 18 436 ccagtcaggtgcacacgggc 84 248
322974 3′UTR 18 439 ggtccagtcaggtgcacacg 86 249
322975 3′UTR 18 443 tactggtccagtcaggtgca 80 250
322976 3′UTR 18 446 tcctactggtccagtcaggt 72 251
322977 3′UTR 18 450 gtgttcctactggtccagtc 84 252
322978 3′UTR 18 454 cacggtgttcctactggtcc 83 253
322979 3′UTR 18 458 tgtacacggtgttcctactg 76 254
322980 3′UTR 18 462 tctctgtacacggtgttcct 89 255
322981 3′UTR 18 464 cttctctgtacacggtgttc 90 256
322982 3′UTR 18 469 tggagcttctctgtacacgg 90 257
322983 3′UTR 18 471 actggagcttctctgtacac 85 258

As shown in Table 4, SEQ ID NOs 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215, 218, 219, 220, 221, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257 and 258 demonstrated at least 48% inhibition of rat eIF4E-BP2 expression in this experiment and are therefore preferred. The target regions to which these preferred sequences are complementary are herein referred to as “preferred target segments” and are therefore preferred for targeting by compounds of the present invention. These sequences are shown to contain thymine (T) but one of skill in the art will appreciate that thymine (T) is generally replaced by uracil (U) in RNA sequences. The sequences represent the reverse complement of the preferred antisense compounds shown in tables above. “Target site” indicates the first (5′-most) nucleotide number on the particular target nucleic acid to which the compound binds.

“Preferred target segments,” as described in Table 5 of U.S. Patent Application No. 60/538,752, filed Jan. 22, 2004, which is herein incorporated by reference in its entirety, have been found by experimentation to be open to, and accessible for, hybridization with the antisense compounds of the present invention, one of skill in the art will recognize or be able to ascertain, using no more than routine experimentation, further embodiments of the invention that encompass other compounds that specifically hybridize to these preferred target segments and consequently inhibit the expression of eIF4E-BP2.

According to the present invention, antisense compounds include antisense oligomeric compounds, antisense oligonucleotides, siRNAs, external guide sequence (EGS) oligonucleotides, alternate splicers, primers, probes, and other short oligomeric compounds which hybridize to at least a portion of the target nucleic acid.

Example 14 Western Blot Analysis of eIF4E-BP2 Protein Levels

Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to eIF4E-BP2 is used, with a radiolabeled or fluorescently labeled secondary antibody directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGER™ (Molecular Dynamics, Sunnyvale Calif.).

Example 15 Reduction of Blood Glucose Levels in Ob/Ob Mice by Antisense Inhibition of eIF4E-BP2

Ob/ob mice have a mutation in the leptin gene which results in obesity and hyperglycemia. As such, these mice are a useful model for the investigation of obesity and diabetes and treatments designed to treat these conditions. In accordance with the present invention, compounds targeted to eIF4E-BP2 are tested in the ob/ob model of obesity and diabetes.

Seven-week old male C57Bl/6J-Lepr ob/ob mice (Jackson Laboratory, Bar Harbor, Me.) are fed a diet with a fat content of 10-15% and are subcutaneously injected with oligonucleotides at a dose of 25 mg/kg two times per week for 4 weeks. Saline-injected animals, leptin wildtype littermates (i.e. lean littermates) and ob/ob mice fed a standard rodent diet serve as controls. After the treatment period, mice are sacrificed and target levels are evaluated in liver, brown adipose tissue (BAT) and white adipose tissue (WAT). RNA isolation and target mRNA expression level quantitation are performed as described by other examples herein.

To assess the physiological effects resulting from antisense inhibition of target mRNA, the ob/ob mice that receive antisense oligonucleotide treatment are further evaluated at the end of the treatment period for serum lipids, serum free fatty acids, serum cholesterol, liver triglycerides, fat tissue triglycerides and liver enzyme levels. Hepatic steatosis, accumulation of lipids in the liver, is assessed by measuring the liver triglyceride content. Hepatic steatosis is assessed by routine histological analysis of frozen liver tissue sections stained with oil red O stain, which is commonly used to visualize lipid deposits, and counterstained with hematoxylin and eosin, to visualize nuclei and cytoplasm, respectively.

The effects of target inhibition on glucose and insulin metabolism are evaluated in the ob/ob mice treated with antisense oligonucleotides. Plasma glucose is measured at the start of the antisense oligonucleotide treatment and following two and four weeks of treatment. Both fed and fasted plasma glucose levels were measured. At start of study, the treatment groups of mice are chosen to have an average fed plasma glucose level of about 350 mg/dL. Plasma insulin is also measured at the beginning of the treatment, and following 2 weeks and 4 weeks of treatment. Glucose and insulin tolerance tests are also administered in fed and fasted mice. Mice receive intraperitoneal injections of either glucose or insulin, and the blood glucose and insulin levels are measured before the insulin or glucose challenge and at 15, 20 or 30 minute intervals for up to 3 hours.

In mice treated with ISIS 232828 (SEQ ID NO: 32), an antisense inhibitor of eIF4E-BP2, fed plasma glucose levels were approximately 355 mg/dL at week 0, 295 mg/dL at week 2 and 210 mg/dL at week 4. In contrast, mice treated with saline alone had fed plasma glucose levels of approximately 365 mg/dL at week 0, 425 mg/dL at week 2 and 410 mg/dL at week 4. Mice treated with a positive control oligonucleotide, ISIS 116847 (CTGCTAGCCTCTGGATTTGA; SEQ ID NO: 259), targeted to PTEN, had fed plasma glucose levels of approximately 360 mg/dL at week 0, 215 mg/dL at week 2 and 180 mg/dL at week 4.

Fasted plasma glucose was measured at week 3 of antisense treatment. Plasma glucose was approximately 330 mg/dL in saline treated mice, 245 mg/dL in mice treated with ISIS 232828 (inhibitor of eIF4E-BP2) and 195 mg/dL in mice treated with the positive control oligonucleotide, ISIS 116847.

At the end of the four week study, average liver weights were approximately 3.6 grams for saline treated mice, 3.2 grams for ISIS 232828-treated mice and 4.1 grams for positive control (ISIS 116847) treated mice. White adipose tissue weights were approximately 3.9 grams for saline treated mice, 3.8 grams for ISIS 232828-treated mice and 3.7 grams for positive control (ISIS 116847) treated mice.

At the end of the study, liver transaminases were found to be lower in mice treated with antisense to eIF4E-BP2 (ISIS 232828) than in mice treated with saline or the positive control oligonucleotide (ISIS 116847). AST levels were approximately 330 IU/L for saline treated mice, 110 IU/L for ISIS 232828-treated mice and 430 IU/L for ISIS 116847-treated mice. ALT levels were approximately 435 IU/L for saline treated mice, 140 IU/L for ISIS 232828-treated mice and 710 IU/L for ISIS 116847-treated mice.

Serum lipids were also measured at the end of the study. Cholesterol levels were approximately 230 mg/dL for saline treated mice, 210 mg/dL for ISIS 232828-treated mice and 260 mg/dL for ISIS 116847-treated mice. Triglycerides were approximately 135 mg/dL for saline treated mice, 80 mg/dL for ISIS 232828-treated mice and 110 mg/dL for ISIS 116847-treated mice.

eIF4E-BP2 mRNA levels in liver were measured at the end of study using RiboGreen™ RNA quantification reagent (Molecular Probes, Inc. Eugene, Oreg.) as taught in previous examples above. eIF4E-BP2 mRNA levels were reduced by approximately 90% in mice treated with ISIS 232828, compared to saline treatment. Target reduction in mice treated with ISIS 116847 was approximately 30%.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US368780814 août 196929 août 1972Univ Leland Stanford JuniorSynthetic polynucleotides
US442633020 juil. 198117 janv. 1984Lipid Specialties, Inc.Synthetic phospholipid compounds
US446986312 nov. 19804 sept. 1984Ts O Paul O PNonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US447630122 juin 19829 oct. 1984Centre National De La Recherche ScientifiqueOligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
US45348997 mars 198313 août 1985Lipid Specialties, Inc.Synthetic phospholipid compounds
US45870441 sept. 19836 mai 1986The Johns Hopkins UniversityLinkage of proteins to nucleic acids
US46057359 févr. 198412 août 1986Wakunaga Seiyaku Kabushiki KaishaNon radioactive affinity probe for nucleic acids; immunoassay; genetic engineering
US466702524 oct. 198519 mai 1987Wakunaga Seiyaku Kabushiki KaishaOligonucleotide derivatives
US476277913 juin 19859 août 1988Amgen Inc.Labeling by bonding a phosphoramidite of a hydroxylamine
US478973720 févr. 19876 déc. 1988Wakunaga Seiyaku Kabushiki KaishaOligonucleotide derivatives and production thereof
US482494125 janv. 198825 avr. 1989Julian GordonCoupling to immunogenic substance-vaccine
US48289798 nov. 19849 mai 1989Life Technologies, Inc.Biotinylated
US483526318 déc. 198630 mai 1989Centre National De La Recherche ScientifiqueNovel compounds containing an oligonucleotide sequence bonded to an intercalating agent, a process for their synthesis and their use
US48452058 janv. 19864 juil. 1989Institut Pasteur2,N6 -disubstituted and 2,N6 -trisubstituted adenosine-3'-phosphoramidites
US487633530 juin 198724 oct. 1989Wakunaga Seiyaku Kabushiki KaishaHybridization probe
US490458211 juin 198727 févr. 1990Synthetic GeneticsNovel amphiphilic nucleic acid conjugates
US49488824 mai 198714 août 1990Syngene, Inc.Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
US49580136 juin 198918 sept. 1990Northwestern UniversityCholesteryl modified oligonucleotides
US498195718 juil. 19851 janv. 1991Centre National De La Recherche ScientifiqueOligonucleotides with modified phosphate and modified carbohydrate moieties at the respective chain termini
US501355620 oct. 19897 mai 1991Liposome Technology, Inc.Lipids derivatized with polyoxyethylene glycol, drug delivery, antitumor agents
US501383012 févr. 19907 mai 1991Ajinomoto Co., Inc.Compounds for the cleavage at a specific position of RNA, oligomers employed for the formation of said compounds, and starting materials for the synthesis of said oligomers
US502324315 mai 198911 juin 1991Molecular Biosystems, Inc.Inhibiting synthesis of target proteins
US503450620 déc. 198923 juil. 1991Anti-Gene Development GroupUncharged morpholino-based polymers having achiral intersubunit linkages
US508283026 févr. 198821 janv. 1992Enzo Biochem, Inc.End labeled nucleotide probe
US510892128 mars 199028 avr. 1992Purdue Research FoundationMethod for enhanced transmembrane transport of exogenous molecules
US51091242 févr. 198928 avr. 1992Biogen, Inc.Nucleic acid probe linked to a label having a terminal cysteine
US511296314 nov. 198812 mai 1992Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V.Modified oligonucleotides
US511880027 févr. 19912 juin 1992California Institute Of TechnologyOligonucleotides possessing a primary amino group in the terminal nucleotide
US511880227 févr. 19912 juin 1992California Institute Of TechnologyDNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US513030220 déc. 198914 juil. 1992Boron Bilogicals, Inc.Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US513406629 août 198928 juil. 1992Monsanto CompanyImproved probes using nucleosides containing 3-dezauracil analogs
US513804527 juil. 199011 août 1992Isis PharmaceuticalsPolyamine conjugated oligonucleotides
US514979715 févr. 199022 sept. 1992The Worcester Foundation For Experimental BiologyMethod of site-specific alteration of rna and production of encoded polypeptides
US516631520 juin 199124 nov. 1992Anti-Gene Development GroupSequence-specific binding polymers for duplex nucleic acids
US51752731 juil. 198829 déc. 1992Genentech, Inc.Pyridinone or pyrimidinone nucleoside bases containing fused aromatic polycyclic rings
US517719616 août 19905 janv. 1993Microprobe CorporationUsed for diagnostic and chemotherapeutic purposes
US518544421 nov. 19919 févr. 1993Anti-Gene Deveopment GroupUncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US518889726 mars 199023 févr. 1993Temple University Of The Commonwealth System Of Higher EducationViricides, metabolic stability
US519459923 sept. 198816 mars 1993Gilead Sciences, Inc.Hydrogen phosphonodithioate compositions
US521380415 janv. 199125 mai 1993Liposome Technology, Inc.Localized delivery of antibiotic to tumor via bloodstream, encapsulation in liposome
US521413412 sept. 199025 mai 1993Sterling Winthrop Inc.Antisense agents, inhibition of gene expression
US521413620 févr. 199025 mai 1993Gilead Sciences, Inc.Anthraquinone-derivatives oligonucleotides
US52161416 juin 19881 juin 1993Benner Steven AOligonucleotide analogs containing sulfur linkages
US52181053 mars 19928 juin 1993Isis Pharmaceuticals3'-Phosphoramidating a 5'-aldehydic-protected nucleoside; forming a 5'-Schiff Base by reaction with a polyamine and reducing; reacting with a phosphorothioated oligonucleotide
US522000719 févr. 199215 juin 1993The Worcester Foundation For Experimental BiologyCleavage of an RNA molecule followed by excision of the selected target segment
US522717020 juin 199013 juil. 1993Vestar, Inc.Loading nucleotides into liposomes
US523503320 déc. 198910 août 1993Anti-Gene Development GroupAlpha-morpholino ribonucleoside derivatives and polymers thereof
US52450223 août 199014 sept. 1993Sterling Drug, Inc.Exonuclease resistant terminally substituted oligonucleotides
US525446917 sept. 199119 oct. 1993Eastman Kodak CompanyOligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures
US52567755 juin 199026 oct. 1993Gilead Sciences, Inc.Exonuclease-resistant oligonucleotides
US525850625 août 19892 nov. 1993Chiron CorporationPhotolabile reagents for incorporation into oligonucleotide chains
US52625365 déc. 199016 nov. 1993E. I. Du Pont De Nemours And CompanyReagents for the preparation of 5'-tagged oligonucleotides
US526422122 mai 199223 nov. 1993Mitsubishi Kasei CorporationLiposomes with maleimide groups bonded to thiol groups in proteins for antitumor agents
US526442316 nov. 199223 nov. 1993The United States Of America As Represented By The Department Of Health And Human ServicesPhosphorothioate, methyl phosphonate, phosphorotriester and phosphodiester oligodeoxyribonucleotide analogs; antitumor agents
US526456224 avr. 199123 nov. 1993Gilead Sciences, Inc.Oligonucleotide analogs with novel linkages
US526456430 juil. 199023 nov. 1993Gilead SciencesOligonucleotide analogs with novel linkages
US527225010 juil. 199221 déc. 1993Spielvogel Bernard FBoronated phosphoramidate compounds
US527601922 févr. 19884 janv. 1994The United States Of America As Represented By The Department Of Health And Human ServicesInhibitors for replication of retroviruses and for the expression of oncogene products
US527830218 nov. 199111 janv. 1994University Patents, Inc.Monophosphates
US528671716 nov. 199215 févr. 1994The United States Of America As Represented By The Department Of Health And Human ServicesInhibitors for replication of retroviruses and for the expression of oncogene products
US529287329 nov. 19898 mars 1994The Research Foundation Of State University Of New YorkNucleic acids labeled with naphthoquinone probe
US531709817 mars 198631 mai 1994Hiroaki ShizuyaNon-radioisotope tagging of fragments
US531908013 oct. 19927 juin 1994Ciba-Geigy CorporationAntiviral agents
US53211318 mars 199014 juin 1994Hybridon, Inc.Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US53548449 mars 199011 oct. 1994Boehringer Ingelheim International GmbhProtein-polycation conjugates
US53566337 oct. 199218 oct. 1994Liposome Technology, Inc.Method of treatment of inflamed tissues
US535904413 déc. 199125 oct. 1994Isis PharmaceuticalsDiagnosis, chemical intermediates
US536687824 mars 199322 nov. 1994The Worcester Foundation For Experimental BiologyMethod of site-specific alteration of RNA and production of encoded polypeptides
US536706624 juil. 199122 nov. 1994Chiron CorporationOligonucleotides with selectably cleavable and/or abasic sites
US537124119 juil. 19916 déc. 1994Pharmacia P-L Biochemicals Inc.Fluorescein labelled phosphoramidites
US539172316 févr. 199321 févr. 1995Neorx CorporationOligonucleotide conjugates
US539387817 mars 199428 févr. 1995Ciba-Geigy CorporationPyrimidine nucleosides having cyclopentafuran skeleton
US53956193 mars 19937 mars 1995Liposome Technology, Inc.Lipids joined to polymethyloxazoline
US539967630 juil. 199021 mars 1995Gilead SciencesOligonucleotides with inverted polarity
US54037116 juil. 19934 avr. 1995University Of Iowa Research FoundationNucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved
US540593823 nov. 199211 avr. 1995Anti-Gene Development GroupSequence-specific binding polymers for duplex nucleic acids
US540593916 juil. 199211 avr. 1995Temple University Of The Commonwealth System Of Higher Education2',5'-phosphorothioate oligoadenylates and their covalent conjugates with polylysine
US54140772 mai 19949 mai 1995Gilead SciencesNon-nucleoside linkers for convenient attachment of labels to oligonucleotides using standard synthetic methods
US541601613 mars 199216 mai 1995Purdue Research FoundationMethod for enhancing transmembrane transport of exogenous molecules
US541620326 juil. 199316 mai 1995Northwestern UniversitySteroid modified oligonucleotides
US541797829 juil. 199323 mai 1995Board Of Regents, The University Of Texas SystemLiposomal antisense methyl phosphonate oligonucleotides and methods for their preparation and use
US54322729 oct. 199011 juil. 1995Benner; Steven A.Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
US543425726 oct. 199318 juil. 1995Gilead Sciences, Inc.Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
US54461379 déc. 199329 août 1995Syntex (U.S.A.) Inc.Substituent selected from linking group containing modifiers such as biotin, reactive groups, nucleic acids, catalysts, DNA intercalators, minor groove binders, clevage agents, and detectable labels
US54514633 juin 199319 sept. 1995Clontech Laboratories, Inc.Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides
US545349615 oct. 199326 sept. 1995University Patents, Inc.Polynucleotide phosphorodithioate
US545523330 sept. 19923 oct. 1995University Of North CarolinaDetectors, antiinflammatory, antilipemic agents and antitumor agents
US54571878 déc. 199310 oct. 1995Board Of Regents University Of NebraskaOligonucleotides containing 5-fluorouracil
US545912716 sept. 199317 oct. 1995Vical, Inc.Cationic lipids for intracellular delivery of biologically active molecules
US545925529 nov. 199317 oct. 1995Isis Pharmaceuticals, Inc.For incorporation into oligonucleotides, cleaving RNA site specifically
US546285419 avr. 199331 oct. 1995Beckman Instruments, Inc.Amenable to enzymatic elongation from either, or most preferably both termini under appropriate conditions and in presence of polymerase enzyme
US546667728 févr. 199414 nov. 1995Ciba-Geigy CorporationDinucleoside phosphinates and their pharmaceutical compositions
US546678610 mai 199414 nov. 1995Gilead Sciences2'modified nucleoside and nucleotide compounds
US546985411 juin 199328 nov. 1995Imarx Pharmaceutical Corp.Methods of preparing gas-filled liposomes
US547096710 avr. 199028 nov. 1995The Dupont Merck Pharmaceutical CompanyOligonucleotide analogs with sulfamate linkages
US547692523 janv. 199519 déc. 1995Northwestern UniversityOligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
US548490826 nov. 199116 janv. 1996Gilead Sciences, Inc.Uracil or cytosine derivatives, detection of dna sequences
US548660322 juin 199223 janv. 1996Gilead Sciences, Inc.Oligonucleotide having enhanced binding affinity
US548967731 mars 19936 févr. 1996Isis Pharmaceuticals, Inc.Nuclease resistant oligonucleotide analogs
US6361940 *1 avr. 199826 mars 2002Qiagen Genomics, Inc.Compositions and methods for enhancing hybridization and priming specificity
US6365345 *9 déc. 19942 avr. 2002Biognostik Gesellscahft Für Biomokekulare Diagnostik mbHAntisense nucleic acids for the prevention and treatment of disorders in which expression of c-erbB plays a role
US7250496 *6 déc. 200231 juil. 2007Rosetta Genomics Ltd.Bioinformatically detectable group of novel regulatory genes and uses thereof
US7399852 *14 mars 200115 juil. 2008Gen-Probe IncorporatedKits and reaction mixtures containing modified probe molecules
US7618814 *16 nov. 200317 nov. 2009Rosetta Genomics Ltd.Microrna-related nucleic acids and uses thereof
WO1994001550A1 *2 juil. 199320 janv. 1994Sudhir AgrawalSelf-stabilized oligonucleotides as therapeutic agents
Citations hors brevets
Référence
1Bennett et al., "Antisense oligonucleotides as a tool for gene functionalization and target validation" Biochimica et Biophysica Acta (1999) 1489:19-30.
2Branch et al., "A good antisense molecule is hard to find" TIBS (1998) 23:45-50.
3Chiang et al., "Antisense Oligonucleotides Inhibit Intercellular Adhesion Molecule 1 Expression by Two Distinct Mechanisms" J. Biol. Chem. (1991) 266:18162-18171.
4Chin, "On the Preparation and Utilization of Isolated and Purified Oligonucleotides" Document purportedly located on a CD-ROM and contributed to the public collection of the Katherine R. Everett Law Library of the University of North Carolina on Mar. 14, 2002.
5Crooke et al., "Basic Principles of Antisense Therapeutics" Antisense Research and Application (1998) Chapter 1:1-50.
6Elbashir et al., "Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells" Nature (2001) 411:494-498.
7Elbashir et al., "RNA interference is mediated by 21- and 22-nucleotide RNAs" Genes Dev. (2001) 15:188-200.
8Ferguson et al., "Ser-64 and Ser-111 in PHAS-I are Dispensable for Insulin-stimulated Dissociation from eIF4E*" J. Biol. Chem. (2003) 278(48):47459-47465.
9Final Rejection for U.S. Appl. No. 11/042,899 dated Jan. 24, 2008.
10Fire et al., "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegens" Nature (1998) 391:806-811.
11Flynn & Proud, "Serine 209, Not Serine 53, Is the Major Site of Phosphorylation in Initiation Factor eIF-4E in Serum-treated Chinese Hamster Ovary Cells" J. Biol. Chem. (1995) 270:21684-21688.
12Grolleau et al., "Differential Regulation of 4E-BP1 and 4E-BP2, Two Repressors of Translation Initiation, During Human Myeloid Cell Differentiation" J. Immunol. (1999) 162:3491-3497.
13Hu et al., "Molecular cloning and tissue distribution of PHAS-I, an intracellular target for insulin and growth factors" PNAS (1994) 91:3730-3734.
14International Search Report for PCT/US2006/061175 dated Aug. 2, 2007.
15Lawrence & Abraham, "PHAS/4E-BPs as regulators of mRNA translation and cell proliferation" Trends Biochem. Sci. (1997) 22:345-349.
16Lin et al., "Control of the Translational Regulators PHAS-I and PHAS-II by Insulin and cAMP in 3T3-L1 Adipocytes" The Journal of Biological Chemistry (1996) 271(47):30199-30204.
17Mader et al., "The Translation Initiation Factor eIF-4E Binds to a Common Motif Shared by the Translation Factor eIF-4y and the Translation Repressors 4E-Binding Proteins" Mol. Cell Biol. (1995) 15:4990-4997.
18Martin et al., "Ein neuer Zugang zu 2'-O-Alkylribonucleosiden und Eigenschaften deren Oligonucleotide" Helv. Chim. Acta (1995) 78:486-504.
19Martin et al., "Ein neuer Zugang zu 2′-O-Alkylribonucleosiden und Eigenschaften deren Oligonucleotide" Helv. Chim. Acta (1995) 78:486-504.
20Montgomery et al., "RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans" PNAS (1998) 95:15502-15507.
21New England Biolabs, 1998/1999 Catalog, pp. 121 and 284.
22Nielsen et al., "Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide" Science (1991) 254:1497-1500.
23Office Action for U.S. Appl. No. 11/042,899 dated Jul. 3, 2007.
24Pause et al., "Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function" Nature (1994) 371:762-767.
25Pause et al., "Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function" Nature (1994) 371:762-767.
26Ptushkina et al., "Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state" EMBO J. (1999) 18:4068-4075.
27Reynolds et al., "Rational siRNA design for RNA interference" Nature Biotechnology (2004) 22(3):326-330.
28Rosenwald et al., "Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis" Oncogene (1999) 18:2507-2517.
29Rousseau et al., "The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth" Oncogene (1996) 13:2415-2420.
30Scott, "Diagnosis, Prevention, and Intervention for the Metabolic Syndrome" Am. J. Cardiol. (2003) 92(1A):35i-42i.
31Smith & Waterman, "Comparison of Biosequences" Adv. Appl. Math (1981) 2:482-489.
32Sreekumar et al., "Sodium aresnite-induced inhibition of eukaryotic translation initiation factore 4E (eIF4E) results in cytotoxicity and cell death" Molecular and Cellular Biochemistry (2005) 279:123-131.
33Strudwick & Borden, "The emerging roles of translation factor eIF4E in the nucleus" Differentiation (2002) 70:10-22.
34Tabara et al., "RNAi in C. elegans: Soaking in the Genome Sequence" Science (1998) 282:430-431.
35Tijsterman et al., "RNA Helicase MUT-14-Dependent Gene Silencing Triggered in C. elegans by Short Antisense RNAs" Science (2002) 295:694-697.
36Timmons & Fire, "Specific interference by ingesting dsRNA" Nature (1998) 395:854.
37Timmons et al., "Ingestion of bacterially expressed dsRNAs can produce specific potent genetic interference in Caenorhabditis elegans" Gene (2001) 263:103-112.
38Tsukiyama-Kohara et al., "Tissue Distribution, Genomic Structure, and Chromosome Mapping of Mouse and Human Eukaryotic Initiation Factor 4E-Binding Proteins 1 and 2" Genomics (1996) 38:353-363.
39Tuschl et al., "Targeted mRNA degradation by double-stranded RNA in vitro" Genes Dev. (1999) 13:3191-3197.
40U.S. Appl. No. 09/315,298, filed May 20, 1999, Teng et al.
41Wang et al., "The Phosphorylation of Eukaryotic Initiation Factor eIF4E in Response to Phorbol Esters, Cell Stresses, and Cytokineses is Mediated by Distinct MAP Kinase Pathways" J. Biol. Chem. (1998) 273:9373-9377.
42Waskiewicz et al., "Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2" Embo J. (1997) 16:1909-1920.
43Waskiewicz et al., "Phosphorylation of the Cap-Binding Protein Eukaryotic Translation Initiation Factor 4E by Protein Kinase Mnk1 In Vivo" Mol. Cell Biol. (1999) 19:1871-1880.
44Whalen et al., "Phosphorylation of eIF-4E on Serine 209 by Protein Kinase C is Inhibited by the Translational Repressors, 4E-binding Proteins" J. Biol. Chem. (1996) 271:11831-11837.
Classifications
Classification aux États-Unis514/44.00A, 536/23.1, 536/24.1, 536/24.5, 435/375
Classification internationaleA61K31/70, C12Q1/68, C07H21/04, C07H21/02, A61K48/00, C12N5/00
Classification coopérativeC12N2310/346, C12N2310/11, A61K48/00, C12N2310/315, C12N2310/321, C12N2310/341, C12N15/113
Classification européenneC12N15/113