US8419727B2 - Impedance mediated power delivery for electrosurgery - Google Patents

Impedance mediated power delivery for electrosurgery Download PDF

Info

Publication number
US8419727B2
US8419727B2 US12/748,229 US74822910A US8419727B2 US 8419727 B2 US8419727 B2 US 8419727B2 US 74822910 A US74822910 A US 74822910A US 8419727 B2 US8419727 B2 US 8419727B2
Authority
US
United States
Prior art keywords
tissue
energy
impedance
level
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/748,229
Other versions
US20110238062A1 (en
Inventor
Tim Koss
Miriam H. Taimisto
Roseanne Varner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aesculap AG
Original Assignee
Aesculap AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aesculap AG filed Critical Aesculap AG
Priority to US12/748,229 priority Critical patent/US8419727B2/en
Assigned to ARAGON SURGICAL, INC. reassignment ARAGON SURGICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOSS, TIM, TAIMISTO, MIRIAM H., VARNER, ROSEANNE
Priority to US12/907,646 priority patent/US8827992B2/en
Priority to EP11760294.6A priority patent/EP2552335B1/en
Priority to PCT/US2011/029958 priority patent/WO2011119933A2/en
Priority to CN201180009484.0A priority patent/CN102834069B/en
Priority to MX2012008814A priority patent/MX2012008814A/en
Priority to US13/637,533 priority patent/US9277962B2/en
Priority to BR112012021212-5A priority patent/BR112012021212B1/en
Priority to AU2011230632A priority patent/AU2011230632A1/en
Priority to ES11760294.6T priority patent/ES2562269T3/en
Priority to RU2012145668/14A priority patent/RU2012145668A/en
Priority to JP2013501509A priority patent/JP5883844B2/en
Priority to KR1020127021689A priority patent/KR101818784B1/en
Priority to CA2793961A priority patent/CA2793961A1/en
Publication of US20110238062A1 publication Critical patent/US20110238062A1/en
Assigned to AESCULAP AG reassignment AESCULAP AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARAGON SURGICAL, INC.
Publication of US8419727B2 publication Critical patent/US8419727B2/en
Application granted granted Critical
Priority to US14/461,559 priority patent/US10130411B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance

Definitions

  • the invention relates to electrosurgery. More particularly, the invention relates to impedance mediated power delivery for electrosurgery.
  • Electrodes involves application of high radio frequency electrical current to a surgical site to cut, ablate, or coagulate tissue.
  • a source or active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode (e.g., a return pad) carries the current back to the generator.
  • a return electrode e.g., a return pad
  • the source electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated.
  • the patient return electrode is placed remotely from the active electrode to carry the current back to the generator.
  • one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode.
  • the return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps).
  • an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps).
  • the applied electrical current is limited to the body tissue positioned between the electrodes.
  • Bipolar electrosurgery generally involves the use of forceps.
  • a forceps is a pliers-like instrument which relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. So-called “open forceps” are commonly used in open surgical procedures whereas “endoscopic forceps” or “laparoscopic forceps” are, as the name implies, used for less invasive endoscopic surgical procedures.
  • Electrosurgical forceps (open or endoscopic) utilize mechanical clamping action and electrical energy to effect hemostasis on the clamped tissue.
  • the forceps include electrosurgical conductive plates which apply the electrosurgical energy to the clamped tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied through the conductive plates to the tissue, the surgeon can coagulate, cauterize and/or seal tissue.
  • Tissue or vessel sealing is a process of liquefying collagen, elastin and ground substances in tissue so that they reform into a fused mass with significantly-reduced demarcation between opposing tissue structures.
  • Cauterization involves the use of heat to destroy tissue and coagulation is a process of desiccating tissue wherein the tissue cells are ruptured and dried.
  • Tissue sealing procedures involve more than simply cauterizing or coagulating tissue to create an effective seal; the procedures involve precise control of a variety of factors. For example, in order to affect a proper seal in vessels or tissue, it has been determined that two predominant mechanical parameters must be accurately controlled: the pressure applied to the tissue; and the gap distance between the electrodes (i.e., distance between opposing jaw members or opposing sealing plates). In addition, electrosurgical energy must be applied to the tissue under controlled conditions to ensure creation of an effective vessel seal. Techniques have been developed whereby the energy applied to the tissue is varied during the tissue sealing process to achieve a desired tissue impedance trajectory. When a target tissue impedance threshold is reached, the tissue seal is deemed completed and the delivery of electrosurgical energy is halted.”
  • Wham et al takes the approach of incorporating a cooling period subsequent to a tissue reaction that occurs after the application of electrosurgical energy to the tissue, where such electrosurgical energy is applied to the tissue in accordance with an algorithm that reduces power with increasing tissue impedance (see Wham et al, FIG. 8 ).
  • this approach merely adjusts the amount of electrosurgical energy applied as it tracks tissue impedance vis a vis a target tissue impedance.
  • the approach does not take in to account the actual change of state within the tissue and thus does not address such issues as thermal damage to the tissue and defective sealing.
  • An embodiment of the invention provides an electrosurgical technique that addresses such issues as thermal damage to the tissue, partial coverage of the electrodes of the electrosurgical device by tissue, thin tissue, and defective sealing. This improvement is accomplished by use of an adaptive algorithm that monitors, inter alia, the rate of tissue impedance change.
  • An aspect of the invention thus examines impedance levels achieved within a specific timeframe to determine an impedance ramp and/or slope rate, which indicates the rate at which the target tissue is undergoing a phase or state change and, thus, indicates tissue processing.
  • the level of electrosurgical energy applied to the target tissue is adjusted in real time in accordance with such rate of impedance change.
  • Another embodiment of the invention determines impedance achieved within a specific interval and adjusts the electrosurgical energy applied to the tissue after a threshold impedance has been maintained or exceeded for a predetermined interval.
  • FIG. 1 is a block schematic diagram of an apparatus for impedance mediated power delivery for microsurgery according to the invention
  • FIG. 2 is a flow diagram showing an algorithm for impedance mediated power delivery for microsurgery according to a first embodiment of the invention
  • FIG. 3 is a flow diagram showing an algorithm for impedance mediated power delivery for microsurgery according to a second embodiment of the invention
  • FIG. 4 is a timing diagram showing an impedance mediated power delivery ramp for microsurgery according to the invention.
  • FIG. 5 is a timing diagram showing an impedance mediated power delivery interval for microsurgery according to the invention.
  • FIG. 6 is a timing diagram showing a modified power delivery profile according to the invention.
  • FIG. 7 is a timing diagram showing an endpoint detection profile according to the invention.
  • FIG. 8 is a timing diagram showing a partial tissue coverage mitigation profile according to the invention.
  • An embodiment of the invention provides an electrosurgical technique that addresses such issues as thermal damage to the tissue, partial coverage of the electrodes of the electrosurgical device by tissue, thin tissue, and defective sealing. This improvement is accomplished by use of an adaptive algorithm that monitors, inter alia, the rate of tissue impedance change.
  • An aspect of the invention thus examines impedance levels achieved within a specific timeframe to determine an impedance ramp and/or slope rate, which indicates the rate at which the target tissue is undergoing a phase or state change and, thus, indicates a desired rate of tissue processing.
  • the level of electrosurgical energy applied to the target tissue is adjusted in real time in accordance with such rate of impedance change and/or impedance thresholds reached.
  • Another embodiment of the invention determines impedance achieved within a specific interval and adjusts the electrosurgical energy applied to the tissue after a threshold impedance has been exceeded for a predetermined interval. This approach, in effect, determines when the tissue phase or state change has successfully occurred and that the application of energy can be halted.
  • FIG. 1 is a block schematic diagram of an apparatus for impedance mediated power delivery for microsurgery according to the invention.
  • an individual is shown undergoing a procedure in which electrosurgery is being performed on the individual's tissue 10 by an electrosurgical appliance 12 , as is known in the art.
  • a source of energy such as an RF generator 18 is coupled to the electrosurgical appliance by a control circuit 16 .
  • the control circuit is operable to adjust any of the current and voltage output and, in some embodiments, adjust the phase relation between the voltage and current, from the RF generator and, thus, to adjust the power output of the RF generator.
  • the control circuit can adjust the RF generator output up and/or down in steps and/or in a selected ramp and/or slope.
  • the effect of the electrosurgical appliance on the tissue is monitored at the site of tissue treatment by one or more sensors within or proximate to the electrosurgical appliance.
  • a signal produced by the one or more sensors is coupled to a sensor circuit 14 .
  • the sensors can monitor such factors as temperature, impedance, RF voltage, RF current, and the like. In the preferred embodiment, the sensor monitors the components of impedance and RF power.
  • the sensor circuit generates an output signal that is coupled to a processor 15 .
  • the processor operates under control of a program and adjusts the output of the RF generator by issuing control signals to the control circuit. In doing so, the processor applies the signal provided by the sensor circuit to the program and adjusts the RF power supplied to the tissue, for example, in real time in response to signal generation by the sensors.
  • the process of treating the tissue is monitored in real time and the effect of the treatment upon the tissue, as indicated by the sensors, is used to mediate the application of energy to the tissue.
  • the program may be retained in a memory 17 and includes both instructions for operating the processor and parameters that determine how to respond to signals from the sensor, timing information, and the like.
  • An important feature of the invention is the manner in which the processor operates the control circuit and, thus, the manner in which energy is supplied to the tissue, in response to signals provided to the processor from the one or more sensors via the sensor circuit.
  • the one or more sensors monitor the impedance of the tissue. As the tissue is processed by application of energy thereto, a phase or state change gradually occurs and this phase or state change results in a change in the impedance of the tissue. It is known in the art to monitor tissue impedance in connection with such treatments.
  • an embodiment of the invention provides an adaptive power ramp and/or slope by which a lower level of energy is initially supplied to the tissue.
  • the output of the RF generator supplied to the tissue is gradually increased to a higher level of energy and/or the rate of power output is increased or decreased.
  • This ramp and/or slope is provided for a predetermined interval.
  • the impedance of the tissue is monitored in real time and the change in impedance over time and/or threshold achieved is used to determine the slope or rate of a next ramp.
  • the change in impedance is thought to indicate the rate at which tissue phase or state change is progressing. If the rate of such change occurs too quickly, the tissue may be degraded as a result of thermal damage, for example where moisture in the tissue escapes too quickly or forcefully in the form of steam.
  • the rate of change of impedance tracks the rate of phase or state change of the tissue.
  • the processor is programmed to adjust the energy ramp and/or slope during each interval of energy application based upon this rate of change in impedance over time and/or by impedance thresholds achieved.
  • the ramp of energy output refers to the difference between the output level at the start of the ramp and the output level achieved at the end of the ramp, while the slope refers to the rate at which the energy output is increased over time.
  • One aspect of the invention allows a determination to be made if the electrosurgical appliance electrodes are partially covered by the tissue that is being treated, or if the tissue that is being treated is relatively thin, such as 0.5 mm or less. If the electrodes are partially covered by the tissue or if thinner tissue is being treated, the rate of change of impedance is greater because less tissue is being treated. Accordingly, the energy supplied or the interval over which energy is supplied can be adjusted. For example, in some embodiments, if the partial coverage of tissue or if thinner tissue is being treated, the energy ramp and/or slope is more gradual, whereas if the tissue is thick, then the rate of change of impedance is lesser, and the energy ramp and/or slope is steeper.
  • inventions adjust the power level and/or interval over which power is delivered to the tissue in accordance with, for example, rate of change of tissue impedance.
  • the invention applies the rate of change in impedance and/or threshold levels achieved, to mediate energy supplied to the tissue.
  • a target tissue impedance is established, based upon criteria stored in the memory and, once that impedance is reached, energy continues to be supplied for a predetermined interval. That is, a target tissue impedance is achieved and energy is supplied to the tissue for a period of time after the impedance is reached.
  • This embodiment of the invention determines a preferred tissue impedance for processing and then continues supplying energy to the tissue once this impedance is reached. This is accomplished by a ramp and/or slope mechanism similar to that described above, where a measure of sustained energy is maintained at a particular impedance. When a certain time has elapsed at this threshold impedance, tissue processing is considered complete.
  • the rate of change in impedance may be used to determine when sufficient tissue processing has occurred, that is when a threshold impedance is reached; and the threshold impedance may then be used to continue processing until the tissue is completely transformed. In this way, the tissue is processed at a rate that avoids thermal damage and defective sealing, and the tissue is processed sufficiently to complete phase or state change.
  • FIG. 2 is a flow diagram showing an algorithm for impedance mediated power delivery for microsurgery according to a first embodiment of the invention.
  • energy is applied to the tissue at an initial level ( 200 ) to begin tissue processing in a gentle fashion.
  • the energy level is ramped to a full energy level ( 210 ) in accordance with a ramp and slope that is established as a function of rate of change of impedance ( 220 ). If a threshold impedance is reached and maintained or exceeded over a predetermined amount of time, indicating that the tissue is fully processed ( 230 ), the process is complete ( 250 ) and energy is no longer supplied to the tissue. Else, the energy ramp is adjusted based upon the tissue impedance and the rate of change in the tissue impedance ( 240 ) and the process continues.
  • FIG. 3 is a flow diagram showing an algorithm for impedance mediated power delivery for microsurgery according to a second embodiment of the invention.
  • energy is applied to the tissue ( 300 ) and the tissue impedance is measured ( 310 ). If the threshold impedance is achieved, e.g. 250 Ohms ( 320 ), then energy is applied to the tissue for a predetermined, cumulative interval t, e.g. 1.5 seconds. At the end of this interval, tissue processing in complete ( 340 ). If the threshold impedance is not achieved, the tissue impedance is monitored as energy is applied to the tissue ( 330 ) and the process continues. Further, if thin tissue or partial tissue coverage is detected ( 350 ), then the energy level is reduced, e.g. voltage is reduced by 75% ( 350 ), and the process then continues as outlined above.
  • the threshold impedance e.g. 250 Ohms
  • the application of energy in the embodiment of FIG. 3 may be in accordance with a ramp and/or slope that is determined as a function of the rate of change of the tissue impedance and/or an impedance threshold achieved.
  • the interval of energy application to the tissue in the embodiment of FIG. 2 may be in accordance with the determination of a threshold impedance, that is the ramp may be eliminated once the threshold impedance is achieved, at which point energy is supplied to the tissue at a higher level.
  • FIG. 4 is a timing diagram showing an impedance mediated power delivery ramp for microsurgery according to the invention.
  • a first ramp 40 is shown over an interval of three seconds.
  • the ramp interval is three seconds and the same interval is used for each ramp.
  • Those skilled in the art will appreciate that other intervals may be used and that the intervals themselves may be varied as a result of the rate of impedance change.
  • the slope of the first ramp interval includes a first, steep portion, a shallow middle portion, and a relatively flat third portion. Thereafter, the energy is reduced and the next ramp is commenced.
  • each ramp is mediated in real time in view of the rate of change of tissue impedance, and can also include the absolute impedance (as in the embodiment of FIG. 3 ) as well.
  • the slope of the second ramp 42 includes less of a steep, initial portion; the slope of the third ramp 44 has a less pronounced slope; the slope of the fourth ramp 46 has an even shallower slope.
  • the area under each ramp indicates the total energy supplied to the tissue during the ramp.
  • the energy can be applied at a greater rate, thus reducing sealing time.
  • the ramp is increased, and the energy is supplied more quickly, i.e. the slope is increased.
  • either or both of the slope and ramp may be increased or decreased at the same time; one of the slope or ramp may be held constant, while the other of the slope or ramp is increased or decreased; one of the slope or ramp may be increased, while the other of the slope or ramp is increased; or the relative increase and/or decrease of the slope and/or ramp may be altered over time, all in accordance with the rate of phase or state change in the tissue. In this way, the rate of phase or state change in the tissue, as indicated by the rate of change of tissue impedance, is used to mediate the delivery of energy to the tissue.
  • FIG. 5 is a timing diagram showing an impedance mediated power delivery interval for microsurgery according to the invention.
  • an initial energy ramp 50 is supplied to the tissue.
  • a subsequent ramp need not be provided in this embodiment.
  • the energy supplied to the tissue 52 / 54 is maintained at a desired level for a predetermined interval of time.
  • RF energy is delivered to the target tissue in multiple pulses of energy.
  • the length of each pulse is defined as the RF Pulse Duration and the maximum number of pulses allowed for each seal is defined as the Max. RF Pulse Count. See FIG. 6 .
  • the first RF pulse for a seal starts at a power level defined as the RF Setpoint Start Value. See FIG. 6 .
  • the RF power level is then increased from the RF Setpoint Start Value by a rate defined as the RF Setpoint Ramp and/or slope rate until the power level reaches the upper level defined as the RF Setpoint End Value.
  • the RE power level remains at this value until the end of the pulse time is reached. See FIG. 6 .
  • tissue impedance value is calculated and recorded as the RF Pulse End Impedance and the power levels are then set to zero. See FIGS. 6 and 7 .
  • Typical Values and Ranges - Modified Power Delivery Value Typical Range RF Pulse Duration 3.0 sec. 0.5-10.0 sec. Max. RF Pulse Count 5 pulses 1-30 pulses RF Setpoint Start Value 50 watts 25-150 watt RF Setpoint Ramp and/or 50 watt/sec. 1-100 watt/sec. slope rate RF Setpoint End Value 150 watts 50-150 watt RF Pulse End Impedance based on tissue 2-900 ohms response RF Setpoint Ramp 50 ohms 5-250 ohms Impedance Threshold Endpoint Detection
  • the sealing cycle is terminated when the tissue impedance reaches a predetermined threshold for a specified length of time OR when a fault or error condition is detected.
  • a successful sealing cycle is defined here.
  • the tissue impedance is calculated using the signals from the RF monitoring hardware circuits.
  • a timer is started. If the calculated tissue impedance falls below the Impedance Endpoint Threshold, the timer is halted. See FIG. 7 .
  • the exemplary RF generator should seal tissue that is fully covered by the RF electrodes, as well as smaller tissue that is partially covered by the RF electrodes. Partially covered electrodes can create a challenge to RF delivery due to the increased rate at which the tissue desiccates. The following describes the mitigation incorporated in the RF delivery algorithm to address this issue.
  • the tissue impedance is calculated using the signals from the RF monitoring hardware circuits.
  • the RF delivery is reduced by decreasing the RF Voltage being delivered. See FIG. 8 .
  • the RF Voltage is reduced by a value defined as RF Voltage Cutback.

Abstract

An adaptive algorithm monitors the rate of tissue impedance change during an electrosurgical procedure. Impedance levels are examined to determine an impedance ramp and/or slope rate, which indicates the rate at which a target tissue is undergoing a phase or state change. The level of electrosurgical energy applied to the target tissue is adjusted in real time. Energy is applied to the target tissue at levels that allow tissue phase or state change to occur in an optimum fashion. Undesired results such as thermal damage and defective sealing are mitigated. Another embodiment determines impedance achieved within a specific interval and adjusts the electrosurgical energy applied to the tissue after a threshold impedance has been maintained or exceeded for a predetermined interval. A further aspect of the invention provides mitigation during processing for partial tissue coverage of device electrodes or thin tissue.

Description

BACKGROUND OF THE INVENTION
1. Technical Field
The invention relates to electrosurgery. More particularly, the invention relates to impedance mediated power delivery for electrosurgery.
2. Description of the Prior Art
The state of the art of electrosurgery is well summarized in U.S. patent publication no. 2009/0157071 (Wham et al), where it is stated:
“Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, or coagulate tissue. In monopolar electrosurgery, a source or active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode (e.g., a return pad) carries the current back to the generator. In monopolar electrosurgery, the source electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated. The patient return electrode is placed remotely from the active electrode to carry the current back to the generator.
In bipolar electrosurgery, one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode. The return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps). In this manner, the applied electrical current is limited to the body tissue positioned between the electrodes. When the electrodes are sufficiently separated from one another, the electrical circuit is open and thus inadvertent contact of body tissue with either of the separated electrodes does not cause current to flow.
Bipolar electrosurgery generally involves the use of forceps. A forceps is a pliers-like instrument which relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. So-called “open forceps” are commonly used in open surgical procedures whereas “endoscopic forceps” or “laparoscopic forceps” are, as the name implies, used for less invasive endoscopic surgical procedures. Electrosurgical forceps (open or endoscopic) utilize mechanical clamping action and electrical energy to effect hemostasis on the clamped tissue. The forceps include electrosurgical conductive plates which apply the electrosurgical energy to the clamped tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied through the conductive plates to the tissue, the surgeon can coagulate, cauterize and/or seal tissue.
Tissue or vessel sealing is a process of liquefying collagen, elastin and ground substances in tissue so that they reform into a fused mass with significantly-reduced demarcation between opposing tissue structures. Cauterization involves the use of heat to destroy tissue and coagulation is a process of desiccating tissue wherein the tissue cells are ruptured and dried.
Tissue sealing procedures involve more than simply cauterizing or coagulating tissue to create an effective seal; the procedures involve precise control of a variety of factors. For example, in order to affect a proper seal in vessels or tissue, it has been determined that two predominant mechanical parameters must be accurately controlled: the pressure applied to the tissue; and the gap distance between the electrodes (i.e., distance between opposing jaw members or opposing sealing plates). In addition, electrosurgical energy must be applied to the tissue under controlled conditions to ensure creation of an effective vessel seal. Techniques have been developed whereby the energy applied to the tissue is varied during the tissue sealing process to achieve a desired tissue impedance trajectory. When a target tissue impedance threshold is reached, the tissue seal is deemed completed and the delivery of electrosurgical energy is halted.”
Wham et al takes the approach of incorporating a cooling period subsequent to a tissue reaction that occurs after the application of electrosurgical energy to the tissue, where such electrosurgical energy is applied to the tissue in accordance with an algorithm that reduces power with increasing tissue impedance (see Wham et al, FIG. 8). However, this approach merely adjusts the amount of electrosurgical energy applied as it tracks tissue impedance vis a vis a target tissue impedance. The approach does not take in to account the actual change of state within the tissue and thus does not address such issues as thermal damage to the tissue and defective sealing.
SUMMARY OF THE INVENTION
An embodiment of the invention provides an electrosurgical technique that addresses such issues as thermal damage to the tissue, partial coverage of the electrodes of the electrosurgical device by tissue, thin tissue, and defective sealing. This improvement is accomplished by use of an adaptive algorithm that monitors, inter alia, the rate of tissue impedance change. An aspect of the invention thus examines impedance levels achieved within a specific timeframe to determine an impedance ramp and/or slope rate, which indicates the rate at which the target tissue is undergoing a phase or state change and, thus, indicates tissue processing. The level of electrosurgical energy applied to the target tissue is adjusted in real time in accordance with such rate of impedance change. This approach, in effect, applies the energy at levels that allow tissue phase or state change to occur in an optimum fashion, for example allowing moisture to escape from the tissue slowly, and thus avoid thermal damage. As a result, such undesired results as thermal damage and defective sealing are mitigated.
Another embodiment of the invention determines impedance achieved within a specific interval and adjusts the electrosurgical energy applied to the tissue after a threshold impedance has been maintained or exceeded for a predetermined interval.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block schematic diagram of an apparatus for impedance mediated power delivery for microsurgery according to the invention;
FIG. 2 is a flow diagram showing an algorithm for impedance mediated power delivery for microsurgery according to a first embodiment of the invention;
FIG. 3 is a flow diagram showing an algorithm for impedance mediated power delivery for microsurgery according to a second embodiment of the invention;
FIG. 4 is a timing diagram showing an impedance mediated power delivery ramp for microsurgery according to the invention;
FIG. 5 is a timing diagram showing an impedance mediated power delivery interval for microsurgery according to the invention;
FIG. 6 is a timing diagram showing a modified power delivery profile according to the invention;
FIG. 7 is a timing diagram showing an endpoint detection profile according to the invention; and
FIG. 8 is a timing diagram showing a partial tissue coverage mitigation profile according to the invention.
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the invention provides an electrosurgical technique that addresses such issues as thermal damage to the tissue, partial coverage of the electrodes of the electrosurgical device by tissue, thin tissue, and defective sealing. This improvement is accomplished by use of an adaptive algorithm that monitors, inter alia, the rate of tissue impedance change. An aspect of the invention thus examines impedance levels achieved within a specific timeframe to determine an impedance ramp and/or slope rate, which indicates the rate at which the target tissue is undergoing a phase or state change and, thus, indicates a desired rate of tissue processing. The level of electrosurgical energy applied to the target tissue is adjusted in real time in accordance with such rate of impedance change and/or impedance thresholds reached. This approach, in effect, applies the energy at levels that allow tissue phase or state change to occur in an optimum fashion, for example allowing moisture to escape from the tissue slowly avoiding thermal damage and/or reducing energy for thin tissue or partially covered electrodes. As a result, such undesired results as thermal damage and defective sealing are mitigated.
Another embodiment of the invention determines impedance achieved within a specific interval and adjusts the electrosurgical energy applied to the tissue after a threshold impedance has been exceeded for a predetermined interval. This approach, in effect, determines when the tissue phase or state change has successfully occurred and that the application of energy can be halted.
FIG. 1 is a block schematic diagram of an apparatus for impedance mediated power delivery for microsurgery according to the invention. In FIG. 1, an individual is shown undergoing a procedure in which electrosurgery is being performed on the individual's tissue 10 by an electrosurgical appliance 12, as is known in the art. A source of energy, such as an RF generator 18 is coupled to the electrosurgical appliance by a control circuit 16. The control circuit is operable to adjust any of the current and voltage output and, in some embodiments, adjust the phase relation between the voltage and current, from the RF generator and, thus, to adjust the power output of the RF generator. The control circuit can adjust the RF generator output up and/or down in steps and/or in a selected ramp and/or slope.
The effect of the electrosurgical appliance on the tissue is monitored at the site of tissue treatment by one or more sensors within or proximate to the electrosurgical appliance. A signal produced by the one or more sensors is coupled to a sensor circuit 14. The sensors can monitor such factors as temperature, impedance, RF voltage, RF current, and the like. In the preferred embodiment, the sensor monitors the components of impedance and RF power.
The sensor circuit generates an output signal that is coupled to a processor 15. The processor operates under control of a program and adjusts the output of the RF generator by issuing control signals to the control circuit. In doing so, the processor applies the signal provided by the sensor circuit to the program and adjusts the RF power supplied to the tissue, for example, in real time in response to signal generation by the sensors. Thus, in some embodiments of the invention the process of treating the tissue is monitored in real time and the effect of the treatment upon the tissue, as indicated by the sensors, is used to mediate the application of energy to the tissue. The program may be retained in a memory 17 and includes both instructions for operating the processor and parameters that determine how to respond to signals from the sensor, timing information, and the like.
An important feature of the invention is the manner in which the processor operates the control circuit and, thus, the manner in which energy is supplied to the tissue, in response to signals provided to the processor from the one or more sensors via the sensor circuit. In a preferred embodiment, the one or more sensors monitor the impedance of the tissue. As the tissue is processed by application of energy thereto, a phase or state change gradually occurs and this phase or state change results in a change in the impedance of the tissue. It is known in the art to monitor tissue impedance in connection with such treatments. Uniquely, an embodiment of the invention provides an adaptive power ramp and/or slope by which a lower level of energy is initially supplied to the tissue. The output of the RF generator supplied to the tissue is gradually increased to a higher level of energy and/or the rate of power output is increased or decreased. This ramp and/or slope is provided for a predetermined interval. In some embodiments, during the interval, the impedance of the tissue is monitored in real time and the change in impedance over time and/or threshold achieved is used to determine the slope or rate of a next ramp. The change in impedance is thought to indicate the rate at which tissue phase or state change is progressing. If the rate of such change occurs too quickly, the tissue may be degraded as a result of thermal damage, for example where moisture in the tissue escapes too quickly or forcefully in the form of steam. Thus, key to the invention is a recognition that the rate of change of impedance tracks the rate of phase or state change of the tissue. The processor is programmed to adjust the energy ramp and/or slope during each interval of energy application based upon this rate of change in impedance over time and/or by impedance thresholds achieved. It should be appreciated that, for purpose of the discussion herein, the ramp of energy output refers to the difference between the output level at the start of the ramp and the output level achieved at the end of the ramp, while the slope refers to the rate at which the energy output is increased over time.
One aspect of the invention allows a determination to be made if the electrosurgical appliance electrodes are partially covered by the tissue that is being treated, or if the tissue that is being treated is relatively thin, such as 0.5 mm or less. If the electrodes are partially covered by the tissue or if thinner tissue is being treated, the rate of change of impedance is greater because less tissue is being treated. Accordingly, the energy supplied or the interval over which energy is supplied can be adjusted. For example, in some embodiments, if the partial coverage of tissue or if thinner tissue is being treated, the energy ramp and/or slope is more gradual, whereas if the tissue is thick, then the rate of change of impedance is lesser, and the energy ramp and/or slope is steeper. Other embodiments adjust the power level and/or interval over which power is delivered to the tissue in accordance with, for example, rate of change of tissue impedance. In this way, the invention applies the rate of change in impedance and/or threshold levels achieved, to mediate energy supplied to the tissue.
In an alternate or supplemental embodiment, a target tissue impedance is established, based upon criteria stored in the memory and, once that impedance is reached, energy continues to be supplied for a predetermined interval. That is, a target tissue impedance is achieved and energy is supplied to the tissue for a period of time after the impedance is reached. This embodiment of the invention determines a preferred tissue impedance for processing and then continues supplying energy to the tissue once this impedance is reached. This is accomplished by a ramp and/or slope mechanism similar to that described above, where a measure of sustained energy is maintained at a particular impedance. When a certain time has elapsed at this threshold impedance, tissue processing is considered complete.
The two embodiments of the invention may be used alone or in combination. For example, the rate of change in impedance may be used to determine when sufficient tissue processing has occurred, that is when a threshold impedance is reached; and the threshold impedance may then be used to continue processing until the tissue is completely transformed. In this way, the tissue is processed at a rate that avoids thermal damage and defective sealing, and the tissue is processed sufficiently to complete phase or state change.
FIG. 2 is a flow diagram showing an algorithm for impedance mediated power delivery for microsurgery according to a first embodiment of the invention. In FIG. 2, energy is applied to the tissue at an initial level (200) to begin tissue processing in a gentle fashion. The energy level is ramped to a full energy level (210) in accordance with a ramp and slope that is established as a function of rate of change of impedance (220). If a threshold impedance is reached and maintained or exceeded over a predetermined amount of time, indicating that the tissue is fully processed (230), the process is complete (250) and energy is no longer supplied to the tissue. Else, the energy ramp is adjusted based upon the tissue impedance and the rate of change in the tissue impedance (240) and the process continues.
FIG. 3 is a flow diagram showing an algorithm for impedance mediated power delivery for microsurgery according to a second embodiment of the invention. In FIG. 3, energy is applied to the tissue (300) and the tissue impedance is measured (310). If the threshold impedance is achieved, e.g. 250 Ohms (320), then energy is applied to the tissue for a predetermined, cumulative interval t, e.g. 1.5 seconds. At the end of this interval, tissue processing in complete (340). If the threshold impedance is not achieved, the tissue impedance is monitored as energy is applied to the tissue (330) and the process continues. Further, if thin tissue or partial tissue coverage is detected (350), then the energy level is reduced, e.g. voltage is reduced by 75% (350), and the process then continues as outlined above.
As discussed above, both techniques may be combined. For example, the application of energy in the embodiment of FIG. 3 may be in accordance with a ramp and/or slope that is determined as a function of the rate of change of the tissue impedance and/or an impedance threshold achieved. Likewise, the interval of energy application to the tissue in the embodiment of FIG. 2 may be in accordance with the determination of a threshold impedance, that is the ramp may be eliminated once the threshold impedance is achieved, at which point energy is supplied to the tissue at a higher level.
FIG. 4 is a timing diagram showing an impedance mediated power delivery ramp for microsurgery according to the invention. In FIG. 4, a first ramp 40 is shown over an interval of three seconds. For purpose of this embodiment of the invention, the ramp interval is three seconds and the same interval is used for each ramp. Those skilled in the art will appreciate that other intervals may be used and that the intervals themselves may be varied as a result of the rate of impedance change.
It can be seen that the slope of the first ramp interval includes a first, steep portion, a shallow middle portion, and a relatively flat third portion. Thereafter, the energy is reduced and the next ramp is commenced. In this embodiment, each ramp is mediated in real time in view of the rate of change of tissue impedance, and can also include the absolute impedance (as in the embodiment of FIG. 3) as well. The slope of the second ramp 42 includes less of a steep, initial portion; the slope of the third ramp 44 has a less pronounced slope; the slope of the fourth ramp 46 has an even shallower slope. The area under each ramp indicates the total energy supplied to the tissue during the ramp. In the preferred embodiment, as the tissue is processed and less moisture is retained in the tissue, the energy can be applied at a greater rate, thus reducing sealing time. Thus, as the tissue is processed in this embodiment, more energy is supplied to the tissue, i.e. the ramp is increased, and the energy is supplied more quickly, i.e. the slope is increased. In other embodiments, either or both of the slope and ramp may be increased or decreased at the same time; one of the slope or ramp may be held constant, while the other of the slope or ramp is increased or decreased; one of the slope or ramp may be increased, while the other of the slope or ramp is increased; or the relative increase and/or decrease of the slope and/or ramp may be altered over time, all in accordance with the rate of phase or state change in the tissue. In this way, the rate of phase or state change in the tissue, as indicated by the rate of change of tissue impedance, is used to mediate the delivery of energy to the tissue.
FIG. 5 is a timing diagram showing an impedance mediated power delivery interval for microsurgery according to the invention. In FIG. 5, an initial energy ramp 50 is supplied to the tissue. A subsequent ramp need not be provided in this embodiment. Once the desired impedance is reached, the energy supplied to the tissue 52/54 is maintained at a desired level for a predetermined interval of time.
EXAMPLES
Modified Power Delivery (Mitigation for Thermal Spread)
RF energy is delivered to the target tissue in multiple pulses of energy. The length of each pulse is defined as the RF Pulse Duration and the maximum number of pulses allowed for each seal is defined as the Max. RF Pulse Count. See FIG. 6.
Method:
1. The first RF pulse for a seal starts at a power level defined as the RF Setpoint Start Value. See FIG. 6.
2. The RF power level is then increased from the RF Setpoint Start Value by a rate defined as the RF Setpoint Ramp and/or slope rate until the power level reaches the upper level defined as the RF Setpoint End Value. The RE power level remains at this value until the end of the pulse time is reached. See FIG. 6.
3. At the end of each pulse, the tissue impedance value is calculated and recorded as the RF Pulse End Impedance and the power levels are then set to zero. See FIGS. 6 and 7.
4. For all pulses subsequent to the first, the following evaluations are made. See FIGS. 6 and 7:
    • If the RF Pulse End Impedance is less than a threshold defined as RF Setpoint Ramp Impedance Threshold, the RF power delivered is ramped identical to the first pulse.
    • If the RF Pulse End Impedance is greater than the RF Setpoint Ramp Impedance Threshold, the RF power delivered is not ramped but stepped directly to the RF Setpoint End Value.
TABLE 1
Typical Values and Ranges - Modified Power Delivery
Value Typical Range
RF Pulse Duration 3.0 sec. 0.5-10.0 sec.
Max. RF Pulse Count 5 pulses 1-30 pulses
RF Setpoint Start Value 50 watts 25-150 watt
RF Setpoint Ramp and/or 50 watt/sec. 1-100 watt/sec.
slope rate
RF Setpoint End Value 150 watts 50-150 watt
RF Pulse End Impedance based on tissue 2-900 ohms
response
RF Setpoint Ramp 50 ohms 5-250 ohms
Impedance Threshold

Endpoint Detection
The sealing cycle is terminated when the tissue impedance reaches a predetermined threshold for a specified length of time OR when a fault or error condition is detected. A successful sealing cycle is defined here.
Method:
1. The tissue impedance is calculated using the signals from the RF monitoring hardware circuits.
2. When the calculated tissue impedance exceeds a threshold level defined as the Impedance Endpoint Threshold, a timer is started. If the calculated tissue impedance falls below the Impedance Endpoint Threshold, the timer is halted. See FIG. 7.
3. If the above timer accumulates a value defined as the Seal Endpoint Time, the RF delivery is halted, the user is notified of the completed seal and the system is placed in the Ready state. See FIG. 7.
TABLE 2
Typical Values and Ranges - Endpoint Detection
Value Typical Range
Impedance Endpoint Threshold 250 ohms 100-750 ohms
Seal Endpoint Time 1.5 sec. 0.1-5.0 secs.

Partial Coverage Mitigation
The exemplary RF generator should seal tissue that is fully covered by the RF electrodes, as well as smaller tissue that is partially covered by the RF electrodes. Partially covered electrodes can create a challenge to RF delivery due to the increased rate at which the tissue desiccates. The following describes the mitigation incorporated in the RF delivery algorithm to address this issue.
Method:
1. The tissue impedance is calculated using the signals from the RF monitoring hardware circuits.
2. When the calculated tissue impedance exceeds a threshold level defined as the Impedance Cutback Threshold for a duration defined as the Impedance Cutback Time, the RF delivery is reduced by decreasing the RF Voltage being delivered. See FIG. 8.
3. The RF Voltage is reduced by a value defined as RF Voltage Cutback.
4. If the tissue impedance exceeds the Impedance Cutback Threshold a second time, the RF Voltage is reduced again by the value of the RF Voltage Cutback.
TABLE 3
Typical Values and Ranges - Partial coverage Mitigation
Value Typical Range
Impedance Cutback Threshold 700 ohms 100-900 ohms
Impedance Cutback Time 0.1 sec. 0.01-2.0 secs.
RF Voltage Cutback 35 volts 1-100 volts
Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the Claims included below.

Claims (12)

The invention claimed is:
1. An electrosurgery method, comprising the steps of:
applying energy to an individual's tissue with an electrosurgical appliance that comprises a plurality of electrosurgical appliance electrodes;
monitoring rate of tissue impedance change;
generating a signal indicative of said rate of tissue impedance change;
providing a processor configured to determine an impedance ramp and/or slope rate from said signal, said impedance ramp and/or slope rate indicates a rate at which said individual's tissue is undergoing a phase or state change;
said processor configured to continuously adjust a ramp and/or slope of energy applied to said individual's tissue via said electrosurgical appliance in real time, and to adjust a rate at which an ultimate level of energy is achieved while applying energy to said individual's tissue in accordance with said impedance ramp and/or slope rate; and
continuing to monitor said rate of tissue impedance change and to adjust said level of energy applied to said individual's tissue until tissue processing is complete;
wherein energy is applied to said individual's tissue at levels that allow tissue phase or state change to occur in an optimum fashion,
wherein a first radiofrequency, RF, pulse for a seal starts at a power level defined as start value,
the RF power level is then increased from the start value until the power level reaches an upper level and the RF power level remains at this upper level until the end of the pulse time is reached,
at the end of each pulse, the tissue impedance value is calculated and recorded as an RF Pulse End Impedance, and the power levels are then set to zero,
for all pulses subsequent to the first, the following evaluations are made,
if the RF Pulse End Impedance is less than a threshold, the RF power delivered is ramped similar to the first pulse, and
if the RF Pulse End Impedance is greater than said threshold, the RF power delivered is not ramped but stepped directly to said upper level.
2. The method of claim 1, further comprising the step of:
applying energy to said individual's tissue at an initial energy level and increasing said energy level to a terminal energy level.
3. The method of claim 2, further comprising the step of:
increasing said energy level from said initial energy level to said terminal energy level in any of a series of discrete steps or in a continuous fashion over time.
4. The method of claim 1, further comprising the steps of:
monitoring tissue impedance;
generating a signal indicative of said tissue impedance;
providing a processor configured to determine when a threshold impedance is reached within a specific interval;
said processor configured to apply a constant, predetermined level of energy to said individual's tissue after said threshold impedance is reached and to continue application of said constant, predetermined level of energy to said individual's tissue for a predetermined interval; and
said processor configured to discontinue application of energy to said individual's tissue after completion of said predetermined interval.
5. The method of claim 1, further comprising the step of:
providing a processor configured to determine if said electrosurgical appliance electrodes are partially covered by the individual's tissue or are covered by thin tissue by determining if a rate of change and/or impedance threshold is reached, and thereafter applying a decreasing ramp rate and/or power cutback to prevent over-processing of the tissue.
6. An electrosurgery method, comprising the steps of:
applying energy to an individual's tissue with an electrosurgical appliance;
monitoring tissue impedance;
generating a signal indicative of said tissue impedance;
providing a processor configured to determine when a threshold impedance is reached within a specific interval;
said processor configured to apply a constant, predetermined level of energy to said individual's tissue after said threshold impedance is reached and to continue application of said constant, predetermined level of energy to said individual's tissue for a predetermined interval; and
said processor configured to discontinue application of energy to said individual's tissue after completion of said predetermined interval,
wherein an impedance mediated power delivery ramp for microsurgery is provided,
a slope of said power delivery ramp of a first ramp interval including a first, steep portion, a shallow middle portion, and a relatively flat third portion,
whereafter, the energy is reduced and a second ramp is commenced wherein each ramp is mediated in real time in view of the rate of change of tissue impedance,
the slope of said second ramp includes less of a steep, initial portion,
wherein, as the tissue is processed, more energy is supplied to the tissue, i.e. the ramp is increased.
7. The method of claim 6, wherein said step of providing a processor configured to determine when a threshold impedance is reached within a specific interval comprises the step of providing a processor configured to:
determine when each of a plurality of threshold impedances is reached within a corresponding specific interval; and
discontinue application of energy to said individual's tissue after completion of a last of said corresponding predetermined intervals.
8. An electrosurgery apparatus, comprising:
an electrosurgical appliance for performing electrosurgery on an individual's tissue;
a source of energy coupled to the electrosurgical appliance by a control circuit, said control circuit configured to adjust any of the current and voltage output from said source of energy and, thus, to adjust power output of said source of energy, said control circuit configured to adjust said power output of said source of energy up and/or down in steps and/or in a selected ramp;
a sensor within or proximate to said electrosurgical appliance for monitoring an effect of said electrosurgical appliance on said individual's tissue and producing a tissue impedance signal therefrom;
a processor coupled to receive said tissue impedance signal from said sensor;
said processor operating under control of a program stored in a memory, said processor configured to adjust the output of said source of energy by issuing control signals to said source of energy, said processor configured to apply the signal from said sensor to said program and to adjust the energy supplied to said individual's tissue by said source of energy in real time in response to the signal generated by said sensor; and
said processor configured to operate said source of energy to provide an adaptive power ramp by which a lower level of energy is initially supplied to the individual's tissue and the output of source of energy supplied to the individual's tissue is gradually increased to a higher level of energy, wherein said power ramp is provided over a predetermined interval during which impedance of the individual's tissue is monitored in real time and change in impedance over time is used to determine a slope of a next power ramp; said processor configured to adjust said power ramp during each interval of energy application based upon a rate of change in impedance over time,
wherein a first radiofrequency, RF, pulse for a seal starts at a power level defined as start value,
the RF power level is then increased from the start value until the power level reaches an upper level and the RF power level remains at this upper level until the end of the pulse time is reached,
at the end of each pulse, the tissue impedance value is calculated and recorded as an RF Pulse End Impedance, and the power levels are then set to zero,
for all pulses subsequent to the first, the following evaluations are made,
if the RF Pulse End Impedance is less than a threshold, the RF power delivered is ramped similar to the first pulse, and
if the RF Pulse End Impedance is greater than said threshold, the RF power delivered is not ramped but stepped directly to said upper level.
9. The apparatus of claim 8, wherein the source of energy is configured to apply energy to said individual's tissue at an initial energy level and increase said energy level to a terminal energy level.
10. The apparatus of claim 9, wherein the source of energy is configured to increase said energy level from said initial energy level to said terminal energy level in any of a series of discrete steps or in a continuous fashion over time.
11. The apparatus of claim 8, further comprising a processor configured to determine when a threshold impedance is reached within a specific interval, said processor configured to apply a constant, predetermined level of energy to said individual's tissue after said threshold impedance is reached and to continue application of said constant, predetermined level of energy to said individual's tissue for a predetermined interval, said processor configured to discontinue application of energy to said individual's tissue after completion of said predetermined interval.
12. The apparatus of claim 8, further comprising a processor configured to determine if said electrosurgical appliance electrodes are partially covered by the individual's tissue or are covered by thin tissue by determining if a rate of change and/or impedance threshold is reached, and thereafter apply a decreasing ramp rate and/or power cutback to prevent over-processing of the tissue.
US12/748,229 2010-03-26 2010-03-26 Impedance mediated power delivery for electrosurgery Active 2031-06-24 US8419727B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US12/748,229 US8419727B2 (en) 2010-03-26 2010-03-26 Impedance mediated power delivery for electrosurgery
US12/907,646 US8827992B2 (en) 2010-03-26 2010-10-19 Impedance mediated control of power delivery for electrosurgery
AU2011230632A AU2011230632A1 (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery
JP2013501509A JP5883844B2 (en) 2010-03-26 2011-03-25 Impedance-mediated control of power transfer for electrosurgery
CN201180009484.0A CN102834069B (en) 2010-03-26 2011-03-25 For electrosurgical power delivery impedance regulable control
MX2012008814A MX2012008814A (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery.
US13/637,533 US9277962B2 (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery
BR112012021212-5A BR112012021212B1 (en) 2010-03-26 2011-03-25 ELECTROSURGICAL SYSTEM
EP11760294.6A EP2552335B1 (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery
ES11760294.6T ES2562269T3 (en) 2010-03-26 2011-03-25 Impedance-mediated power supply control for electrosurgery
RU2012145668/14A RU2012145668A (en) 2010-03-26 2011-03-25 POWER SUPPLY MANAGEMENT BASED ON IMPEDANCE FOR ELECTROSURGERY
PCT/US2011/029958 WO2011119933A2 (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery
KR1020127021689A KR101818784B1 (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery
CA2793961A CA2793961A1 (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery
US14/461,559 US10130411B2 (en) 2010-03-26 2014-08-18 Impedance mediated control of power delivery for electrosurgery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/748,229 US8419727B2 (en) 2010-03-26 2010-03-26 Impedance mediated power delivery for electrosurgery

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/907,646 Continuation-In-Part US8827992B2 (en) 2010-03-26 2010-10-19 Impedance mediated control of power delivery for electrosurgery
US13/637,533 Division US9277962B2 (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery

Publications (2)

Publication Number Publication Date
US20110238062A1 US20110238062A1 (en) 2011-09-29
US8419727B2 true US8419727B2 (en) 2013-04-16

Family

ID=44657256

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/748,229 Active 2031-06-24 US8419727B2 (en) 2010-03-26 2010-03-26 Impedance mediated power delivery for electrosurgery
US13/637,533 Active 2031-09-11 US9277962B2 (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/637,533 Active 2031-09-11 US9277962B2 (en) 2010-03-26 2011-03-25 Impedance mediated control of power delivery for electrosurgery

Country Status (1)

Country Link
US (2) US8419727B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130116677A1 (en) * 2011-11-08 2013-05-09 Covidien Lp Systems and methods for treatment of premenstrual dysphoric disorders
US20140221792A1 (en) * 2013-02-01 2014-08-07 Devin Warner Miller Hydration Monitoring Apparatus
US9924993B2 (en) 2013-04-28 2018-03-27 Kogent Surgical, LLC Electrosurgical system for tissue cauterization
US11058478B2 (en) 2006-05-02 2021-07-13 Aesculap Ag Laparoscopic radiofrequency surgical device
US11207123B2 (en) 2018-11-16 2021-12-28 Applied Medical Resources Corporation Electrosurgical system
US11666372B2 (en) 2019-05-09 2023-06-06 Gyrus Acmi, Inc. Alternate power correction outputs in electrosurgical systems

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
AU2005295010B2 (en) 2004-10-08 2012-05-31 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
US9333025B2 (en) 2011-10-24 2016-05-10 Ethicon Endo-Surgery, Llc Battery initialization clip
CN103997979B (en) * 2011-12-12 2016-07-06 奥林巴斯株式会社 The method of operating of disposal system and disposal system
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
EP2914334B1 (en) * 2012-11-05 2019-08-28 Autonomix Medical, Inc. Systems and devices for monitoring and treatment of tissues within and/or through a lumen wall
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US9918669B2 (en) 2014-08-08 2018-03-20 Medtronic Xomed, Inc. Wireless nerve integrity monitoring systems and devices
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10039915B2 (en) 2015-04-03 2018-08-07 Medtronic Xomed, Inc. System and method for omni-directional bipolar stimulation of nerve tissue of a patient via a surgical tool
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
JP6246418B2 (en) 2015-07-30 2017-12-13 オリンパス株式会社 Power supply device operating method, power supply device, and high-frequency treatment system
WO2017018023A1 (en) * 2015-07-30 2017-02-02 オリンパス株式会社 Method for operating power supply device, power supply device, and high-frequency treatment system
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
GB2551140B (en) * 2016-06-07 2022-01-12 Dot Medical Ltd Apparatus and method for cardiac ablation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
KR102118639B1 (en) * 2018-02-26 2020-06-05 주식회사 루트로닉 A rf treatment apparatus and a method for controlling that
GB2574635B (en) 2018-06-13 2022-10-05 Gyrus Medical Ltd Bipolar electrosurgical instruments
GB2574634B (en) * 2018-06-13 2023-05-31 Gyrus Medical Ltd Bipolar electrosurgical instruments
CN112912023A (en) * 2018-11-07 2021-06-04 直观外科手术操作公司 RF electrosurgical tissue sealing systems and methods
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US20210196344A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Surgical system communication pathways
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
CN112914745B (en) * 2021-04-06 2022-06-10 湖南菁益医疗科技有限公司 Self-adaptive dynamic neutral electrode contact quality detection method
CN114886552B (en) * 2022-05-05 2023-07-04 以诺康医疗科技(苏州)有限公司 High-frequency electrotome tissue closing system, generator and high-frequency electrotome

Citations (494)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356408A (en) 1966-07-07 1967-12-05 Herbert D Sturtz Camper anchoring device
US3527224A (en) 1967-09-05 1970-09-08 American Cyanamid Co Method of surgically bonding tissue together
US3709215A (en) 1970-12-28 1973-01-09 S Richmond Anterior vaginal retractor for vaginal surgery
US3742955A (en) 1970-09-29 1973-07-03 Fmc Corp Fibrous collagen derived product having hemostatic and wound binding properties
US3845771A (en) 1973-04-24 1974-11-05 W Vise Electrosurgical glove
US3920021A (en) 1973-05-16 1975-11-18 Siegfried Hiltebrandt Coagulating devices
US3970088A (en) 1974-08-28 1976-07-20 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4018230A (en) 1974-04-04 1977-04-19 Kazuo Ochiai Cervical dilator
US4041952A (en) 1976-03-04 1977-08-16 Valleylab, Inc. Electrosurgical forceps
US4072153A (en) 1976-03-03 1978-02-07 Swartz William H Post hysterectomy fluid drainage tube
US4094320A (en) 1976-09-09 1978-06-13 Valleylab, Inc. Electrosurgical safety circuit and method of using same
US4231372A (en) 1974-11-04 1980-11-04 Valleylab, Inc. Safety monitoring circuit for electrosurgical unit
US4492231A (en) 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4532924A (en) 1980-05-13 1985-08-06 American Hospital Supply Corporation Multipolar electrosurgical device and method
US4590934A (en) 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
US4671274A (en) 1984-01-30 1987-06-09 Kharkovsky Nauchno-Issledovatelsky Institut Obschei I Bipolar electrosurgical instrument
US4972846A (en) 1989-01-31 1990-11-27 W. L. Gore & Associates, Inc. Patch electrodes for use with defibrillators
US4976717A (en) 1989-04-24 1990-12-11 Boyle Gary C Uterine retractor for an abdominal hysterectomy and method of its use
US4979948A (en) 1989-04-13 1990-12-25 Purdue Research Foundation Method and apparatus for thermally destroying a layer of an organ
US4998527A (en) 1989-07-27 1991-03-12 Percutaneous Technologies Inc. Endoscopic abdominal, urological, and gynecological tissue removing device
US5037379A (en) 1990-06-22 1991-08-06 Vance Products Incorporated Surgical tissue bag and method for percutaneously debulking tissue
EP0440385A2 (en) 1990-02-02 1991-08-07 Everest Medical Corporation Electrosurgical instrument for conducting endoscopic retrograde sphicterotomy
US5041101A (en) 1989-06-05 1991-08-20 Helix Medical, Inc. Hysterectomy drain appliance
US5059782A (en) 1988-10-19 1991-10-22 Astex Co., Ltd. Multi-function detection circuit for a photoelectric switch using an integrated circuit with reduced interconnections
US5078736A (en) 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5108408A (en) 1990-04-20 1992-04-28 Lally James J Uterine-ring hysterectomy clamp
EP0487269A1 (en) 1990-11-21 1992-05-27 Everest Medical Corporation Biopsy device with bipolar coagulation capability
US5133713A (en) 1990-03-27 1992-07-28 Huang Jong Khing Apparatus of a spinning type of resectoscope for prostatectomy
CA2061215A1 (en) 1991-02-15 1992-08-16 Ingemar H. Lundquist Torquable catheter and method
EP0502268A1 (en) 1989-09-29 1992-09-09 Everest Medical Corporation Electrosurgical instrument having needle cutting electrode and spot-coagulation electrode
US5151102A (en) 1989-05-31 1992-09-29 Kyocera Corporation Blood vessel coagulation/stanching device
US5156613A (en) 1991-02-13 1992-10-20 Interface Biomedical Laboratories Corp. Collagen welding rod material for use in tissue welding
WO1992022257A1 (en) 1991-06-07 1992-12-23 Hemostatix Corporation Bi-polar electrosurgical endoscopic instruments and methods of use
US5178618A (en) 1991-01-16 1993-01-12 Brigham And Womens Hospital Method and device for recanalization of a body passageway
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5207691A (en) 1991-11-01 1993-05-04 Medical Scientific, Inc. Electrosurgical clip applicator
WO1993008754A1 (en) 1991-11-01 1993-05-13 Medical Scientific, Inc. Electrosurgical cutting tool
US5217030A (en) 1989-12-05 1993-06-08 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5234425A (en) 1989-03-03 1993-08-10 Thomas J. Fogarty Variable diameter sheath method and apparatus for use in body passages
EP0562195A1 (en) 1992-03-23 1993-09-29 Everest Medical Corporation Monopolar polypectomy snare with coagulation electrode
US5250074A (en) 1992-07-14 1993-10-05 Wilk Peter J Surgical instrument assembly and associated technique
US5267998A (en) 1991-11-19 1993-12-07 Delma Elektro-Und Medizinische Apparatebau Gesellschaft Mbh Medical high frequency coagulation cutting instrument
US5269780A (en) 1990-10-12 1993-12-14 Delma Elektro- Und Medizinische Apparatebau Gesellschaft Mbh Electro-surgical devices
US5269782A (en) 1991-04-22 1993-12-14 Select Medizin-Technik Hermann Sutter Gmbh Bipolar medical coagulation and cauterizing instrument
US5273524A (en) 1991-10-09 1993-12-28 Ethicon, Inc. Electrosurgical device
WO1994000060A1 (en) 1992-06-30 1994-01-06 Valleylab, Inc. An electrosurgical tubular trocar
US5277201A (en) 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5282799A (en) 1990-08-24 1994-02-01 Everest Medical Corporation Bipolar electrosurgical scalpel with paired loop electrodes
US5290287A (en) 1991-09-11 1994-03-01 Richard Wolf Gmbh Endoscopic coagulation forceps
US5295990A (en) 1992-09-11 1994-03-22 Levin John M Tissue sampling and removal device
US5300068A (en) 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5300087A (en) 1991-03-22 1994-04-05 Knoepfler Dennis J Multiple purpose forceps
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5336237A (en) 1993-08-25 1994-08-09 Devices For Vascular Intervention, Inc. Removal of tissue from within a body cavity
US5336229A (en) 1993-02-09 1994-08-09 Laparomed Corporation Dual ligating and dividing apparatus
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5342381A (en) 1993-02-11 1994-08-30 Everest Medical Corporation Combination bipolar scissors and forceps instrument
US5352235A (en) 1992-03-16 1994-10-04 Tibor Koros Laparoscopic grasper and cutter
US5352223A (en) 1993-07-13 1994-10-04 Symbiosis Corporation Endoscopic instruments having distally extending lever mechanisms
US5354336A (en) 1991-01-29 1994-10-11 Autogenesis Technologies, Inc. Method for bonding soft tissue with collagen-based adhesives and sealants
US5356408A (en) 1993-07-16 1994-10-18 Everest Medical Corporation Bipolar electrosurgical scissors having nonlinear blades
WO1994026179A1 (en) 1993-05-13 1994-11-24 Surgical Innovations, Inc. Tissue and organ extractor
US5374277A (en) 1992-10-09 1994-12-20 Ethicon, Inc. Surgical instrument
US5377415A (en) 1993-12-10 1995-01-03 Gibson; John Sheet material punch
WO1995002371A2 (en) 1993-07-15 1995-01-26 Aws Shakir Mustafa Salim Rectal and rectosigmoid cancer tunnelling umbrella
US5391166A (en) 1991-06-07 1995-02-21 Hemostatic Surgery Corporation Bi-polar electrosurgical endoscopic instruments having a detachable working end
US5395369A (en) 1993-06-10 1995-03-07 Symbiosis Corporation Endoscopic bipolar electrocautery instruments
US5397320A (en) 1994-03-03 1995-03-14 Essig; Mitchell N. Dissecting surgical device and associated method
US5396900A (en) 1991-04-04 1995-03-14 Symbiosis Corporation Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5417687A (en) 1993-04-30 1995-05-23 Medical Scientific, Inc. Bipolar electrosurgical trocar
US5423814A (en) 1992-05-08 1995-06-13 Loma Linda University Medical Center Endoscopic bipolar coagulation device
EP0658333A1 (en) 1993-12-17 1995-06-21 United States Surgical Corporation Monopolar electrosurgical instruments
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
US5438302A (en) 1993-07-12 1995-08-01 Gyrus Medical Limited Electrosurgical radiofrequency generator having regulated voltage across switching device
US5443470A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Method and apparatus for endometrial ablation
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5445638A (en) 1993-03-08 1995-08-29 Everest Medical Corporation Bipolar coagulation and cutting forceps
US5447513A (en) 1992-05-06 1995-09-05 Ethicon, Inc. Endoscopic ligation and division instrument
US5449355A (en) 1993-11-24 1995-09-12 Valleylab Inc. Retrograde tissue splitter and method
US5456684A (en) 1994-09-08 1995-10-10 Hutchinson Technology Incorporated Multifunctional minimally invasive surgical instrument
US5458598A (en) 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
US5462546A (en) 1993-02-05 1995-10-31 Everest Medical Corporation Bipolar electrosurgical forceps
US5472442A (en) 1994-03-23 1995-12-05 Valleylab Inc. Moveable switchable electrosurgical handpiece
US5480399A (en) 1993-03-30 1996-01-02 Smiths Industries Public Limited Company Electrosurgery monitor and apparatus
US5482054A (en) 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5484435A (en) 1992-01-15 1996-01-16 Conmed Corporation Bipolar electrosurgical instrument for use in minimally invasive internal surgical procedures
US5484436A (en) 1991-06-07 1996-01-16 Hemostatic Surgery Corporation Bi-polar electrosurgical instruments and methods of making
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US5496317A (en) 1993-05-04 1996-03-05 Gyrus Medical Limited Laparoscopic surgical instrument
US5514134A (en) 1993-02-05 1996-05-07 Everest Medical Corporation Bipolar electrosurgical scissors
US5520698A (en) 1994-10-19 1996-05-28 Blairden Precision Instruments, Inc. Simplified total laparoscopic hysterectomy method employing colpotomy incisions
WO1996016605A1 (en) 1994-12-01 1996-06-06 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5540684A (en) 1994-07-28 1996-07-30 Hassler, Jr.; William L. Method and apparatus for electrosurgically treating tissue
US5540685A (en) 1995-01-06 1996-07-30 Everest Medical Corporation Bipolar electrical scissors with metal cutting edges and shearing surfaces
US5542945A (en) 1993-10-05 1996-08-06 Delma Elektro-U. Medizinische Apparatebau Gesellschaft Mbh Electro-surgical radio-frequency instrument
WO1996023449A1 (en) 1995-01-30 1996-08-08 Boston Scientific Corporation Electro-surgical tissue removal
US5549637A (en) 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
US5556397A (en) 1994-10-26 1996-09-17 Laser Centers Of America Coaxial electrosurgical instrument
US5558100A (en) 1994-12-19 1996-09-24 Ballard Medical Products Biopsy forceps for obtaining tissue specimen and optionally for coagulation
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5562700A (en) 1994-02-18 1996-10-08 Ethicon Endo-Surgery, Inc. Cable-actuated jaw assembly for surgical instruments
US5562720A (en) 1992-05-01 1996-10-08 Vesta Medical, Inc. Bipolar/monopolar endometrial ablation device and method
US5569243A (en) 1993-07-13 1996-10-29 Symbiosis Corporation Double acting endoscopic scissors with bipolar cautery capability
US5571100A (en) 1993-11-01 1996-11-05 Gyrus Medical Limited Electrosurgical apparatus
US5573535A (en) 1994-09-23 1996-11-12 United States Surgical Corporation Bipolar surgical instrument for coagulation and cutting
US5578052A (en) 1992-10-27 1996-11-26 Koros; Tibor Insulated laparoscopic grasper with removable shaft
US5599350A (en) 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5603700A (en) 1993-12-27 1997-02-18 Daneshvar; Yousef Suction and injection system
US5603711A (en) 1995-01-20 1997-02-18 Everest Medical Corp. Endoscopic bipolar biopsy forceps
US5611803A (en) 1994-12-22 1997-03-18 Urohealth Systems, Inc. Tissue segmentation device
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
US5637111A (en) 1995-06-06 1997-06-10 Conmed Corporation Bipolar electrosurgical instrument with desiccation feature
US5637110A (en) 1995-01-31 1997-06-10 Stryker Corporation Electrocautery surgical tool with relatively pivoted tissue engaging jaws
WO1997024074A1 (en) 1995-12-29 1997-07-10 Microgyn, Inc. Apparatus and method for electrosurgery
WO1997024073A1 (en) 1995-12-29 1997-07-10 Gyrus Medical Limited An electrosurgical instrument and an electrosurgical electrode assembly
US5653692A (en) 1995-09-07 1997-08-05 Innerdyne Medical, Inc. Method and system for direct heating of fluid solution in a hollow body organ
US5658281A (en) 1995-12-04 1997-08-19 Valleylab Inc Bipolar electrosurgical scissors and method of manufacture
US5662676A (en) 1992-06-24 1997-09-02 K.U. Leuven Research & Development Instrument set for laparoscopic hysterectomy
US5662662A (en) 1992-10-09 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical instrument and method
US5665085A (en) 1991-11-01 1997-09-09 Medical Scientific, Inc. Electrosurgical cutting tool
US5665100A (en) 1989-12-05 1997-09-09 Yoon; Inbae Multifunctional instrument with interchangeable operating units for performing endoscopic procedures
US5667526A (en) 1995-09-07 1997-09-16 Levin; John M. Tissue retaining clamp
US5669907A (en) 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
US5674220A (en) 1995-09-29 1997-10-07 Ethicon Endo-Surgery, Inc. Bipolar electrosurgical clamping device
US5674184A (en) 1994-03-15 1997-10-07 Ethicon Endo-Surgery, Inc. Surgical trocars with cutting electrode and viewing rod
US5675184A (en) 1995-04-05 1997-10-07 Mitsubishi Denki Kabushiki Kaisha Integrated circuit device
US5673841A (en) 1994-12-19 1997-10-07 Ethicon Endo-Surgery, Inc. Surgical instrument
US5681282A (en) 1992-01-07 1997-10-28 Arthrocare Corporation Methods and apparatus for ablation of luminal tissues
US5683385A (en) 1995-09-19 1997-11-04 Symbiosis Corporation Electrocautery connector for a bipolar push rod assembly
US5683388A (en) 1996-01-11 1997-11-04 Symbiosis Corporation Endoscopic bipolar multiple sample bioptome
US5688270A (en) 1993-07-22 1997-11-18 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
US5693051A (en) 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
US5697949A (en) 1995-05-18 1997-12-16 Symbiosis Corporation Small diameter endoscopic instruments
US5700261A (en) 1996-03-29 1997-12-23 Ethicon Endo-Surgery, Inc. Bipolar Scissors
US5702390A (en) 1996-03-12 1997-12-30 Ethicon Endo-Surgery, Inc. Bioplar cutting and coagulation instrument
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5707369A (en) 1995-04-24 1998-01-13 Ethicon Endo-Surgery, Inc. Temperature feedback monitor for hemostatic surgical instrument
US5709680A (en) 1993-07-22 1998-01-20 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5713896A (en) 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5715832A (en) 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US5718703A (en) 1993-09-17 1998-02-17 Origin Medsystems, Inc. Method and apparatus for small needle electrocautery
US5720719A (en) 1992-08-12 1998-02-24 Vidamed, Inc. Ablative catheter with conformable body
US5728143A (en) 1995-08-15 1998-03-17 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5733283A (en) 1996-06-05 1998-03-31 Malis; Jerry L. Flat loop bipolar electrode tips for electrosurgical instrument
WO1998012999A2 (en) 1996-09-24 1998-04-02 Gynecare, Inc. System and method for applying thermal energy to tissue
US5735849A (en) 1996-11-07 1998-04-07 Everest Medical Corporation Endoscopic forceps with thumb-slide lock release mechanism
US5735848A (en) 1993-07-22 1998-04-07 Ethicon, Inc. Electrosurgical stapling device
US5735289A (en) 1996-08-08 1998-04-07 Pfeffer; Herbert G. Method and apparatus for organic specimen retrieval
US5746750A (en) 1996-02-05 1998-05-05 Richard Wolf Gmbh Medical instrument for manipulation of the uterus
US5749895A (en) 1991-02-13 1998-05-12 Fusion Medical Technologies, Inc. Method for bonding or fusion of biological tissue and material
US5755717A (en) 1996-01-16 1998-05-26 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with improved coagulation feedback
US5776130A (en) 1995-09-19 1998-07-07 Valleylab, Inc. Vascular tissue sealing pressure control
US5788662A (en) 1994-12-07 1998-08-04 Plasmaseal Llc Methods for making concentrated plasma and/or tissue sealant
US5797941A (en) 1995-02-01 1998-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument with expandable cutting element
US5810811A (en) 1993-07-22 1998-09-22 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5817091A (en) 1997-05-20 1998-10-06 Medical Scientific, Inc. Electrosurgical device having a visible indicator
US5817092A (en) 1995-11-09 1998-10-06 Radio Therapeutics Corporation Apparatus, system and method for delivering radio frequency energy to a treatment site
WO1998043548A1 (en) 1997-04-03 1998-10-08 Sadler Cynthia D Hand-held forceps instrument
US5823066A (en) 1996-05-13 1998-10-20 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5827271A (en) * 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US5833689A (en) 1994-10-26 1998-11-10 Snj Company, Inc. Versatile electrosurgical instrument capable of multiple surgical functions
US5836990A (en) 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US5840077A (en) 1994-10-18 1998-11-24 Blairden Precision Instruments, Inc. Uterine manipulating assembly for laparoscopic hysterectomy
WO1998053750A1 (en) 1997-05-29 1998-12-03 Sports Link, Inc., Doing Business As Link Technology Electrosurgical electrode and methods for its use
US5855576A (en) 1995-03-24 1999-01-05 Board Of Regents Of University Of Nebraska Method for volumetric tissue ablation
US5860975A (en) 1994-12-21 1999-01-19 Gyrus Medical Limited Electrosurgical instrument
US5891142A (en) 1996-12-06 1999-04-06 Eggers & Associates, Inc. Electrosurgical forceps
US5893835A (en) 1997-10-10 1999-04-13 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having dual rotational positioning
US5893874A (en) 1997-02-07 1999-04-13 Smith & Nephew, Inc. Surgical instrument
WO1999023933A2 (en) 1997-11-12 1999-05-20 Valleylab, Inc. Bipolar electrosurgical instrument with replaceable electrodes
EP0923907A1 (en) 1997-12-19 1999-06-23 Gyrus Medical Limited An electrosurgical instrument
US5931836A (en) 1996-07-29 1999-08-03 Olympus Optical Co., Ltd. Electrosurgery apparatus and medical apparatus combined with the same
US5931835A (en) 1995-12-08 1999-08-03 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
US5954720A (en) 1996-10-28 1999-09-21 Endoscopic Concepts, Inc. Bipolar electrosurgical end effectors
WO1999052459A1 (en) 1998-04-15 1999-10-21 Boston Scientific Limited Electro-cautery catheter
US5976128A (en) 1996-06-14 1999-11-02 Gebrueder Berchtold Gmbh & Co. Electrosurgical high frequency generator
US5979453A (en) 1995-11-09 1999-11-09 Femrx, Inc. Needle myolysis system for uterine fibriods
WO1999056646A1 (en) 1998-05-06 1999-11-11 Arthrocare Corporation Systems and methods for electrosurgical treatment of the digestive system
US6004319A (en) 1995-06-23 1999-12-21 Gyrus Medical Limited Electrosurgical instrument
US6003517A (en) 1998-04-30 1999-12-21 Ethicon Endo-Surgery, Inc. Method for using an electrosurgical device on lung tissue
US6030384A (en) 1998-05-01 2000-02-29 Nezhat; Camran Bipolar surgical instruments having focused electrical fields
WO2000013192A1 (en) 1998-08-31 2000-03-09 General Science And Technology Corporation Medical devices incorporating at least one element made from a plurality of twisted and drawn wires at least one of the wires being a nickel-titanium alloy wire
WO2000013193A1 (en) 1998-08-31 2000-03-09 General Science And Technology Corp. Medical devices incorporating at least one element made from a plurality of twisted and drawn wires
US6050993A (en) 1998-07-27 2000-04-18 Quantum Therapeutics Corp. Medical device and methods for treating hemorrhoids
US6050995A (en) 1998-09-24 2000-04-18 Scimed Lifesystems, Inc. Polypectomy snare with multiple bipolar electrodes
US6056744A (en) 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US6059766A (en) 1998-02-27 2000-05-09 Micro Therapeutics, Inc. Gynecologic embolotherapy methods
US6059782A (en) 1995-11-20 2000-05-09 Storz Endoskop Gmbh Bipolar high-frequency surgical instrument
US6066139A (en) 1996-05-14 2000-05-23 Sherwood Services Ag Apparatus and method for sterilization and embolization
US6068626A (en) 1997-06-05 2000-05-30 Adiana, Inc. Method and apparatus for tubal occlusion
US6071281A (en) 1998-05-05 2000-06-06 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
US6074386A (en) 1995-12-29 2000-06-13 Gyrus Medical Limited Electrosurgical instrument and an electrosurgical electrode assembly
US6080149A (en) * 1998-01-09 2000-06-27 Radiotherapeutics, Corporation Method and apparatus for monitoring solid tissue heating
US6086586A (en) 1998-09-14 2000-07-11 Enable Medical Corporation Bipolar tissue grasping apparatus and tissue welding method
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6093186A (en) 1996-12-20 2000-07-25 Gyrus Medical Limited Electrosurgical generator and system
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US6099550A (en) 1989-12-05 2000-08-08 Yoon; Inbae Surgical instrument having jaws and an operating channel and method for use thereof
US6123701A (en) 1997-10-09 2000-09-26 Perfect Surgical Techniques, Inc. Methods and systems for organ resection
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
US6142992A (en) 1993-05-10 2000-11-07 Arthrocare Corporation Power supply for limiting power in electrosurgery
US6152932A (en) 1996-03-25 2000-11-28 Safe Conduct Ab Device for extraction of tissue
US6152920A (en) 1997-10-10 2000-11-28 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US6179832B1 (en) 1997-09-11 2001-01-30 Vnus Medical Technologies, Inc. Expandable catheter having two sets of electrodes
WO2001012090A1 (en) 1999-08-13 2001-02-22 The Trustees Of Columbia University In The City Of New York Electrothermal device for coagulating, sealing and cutting tissue during surgery
EP0833593B1 (en) 1995-06-23 2001-02-28 Gyrus Medical Limited An electrosurgical instrument
US6203542B1 (en) 1995-06-07 2001-03-20 Arthrocare Corporation Method for electrosurgical treatment of submucosal tissue
US6203541B1 (en) 1999-04-23 2001-03-20 Sherwood Services Ag Automatic activation of electrosurgical generator bipolar output
US6206877B1 (en) 1997-08-27 2001-03-27 Ethicon, Inc. Combined bipolar scissor and grasper and method of forming thereof
US6210406B1 (en) 1998-12-03 2001-04-03 Cordis Webster, Inc. Split tip electrode catheter and signal processing RF ablation system
US6212426B1 (en) 1995-07-28 2001-04-03 Scimed Life Systems, Inc. Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US6217894B1 (en) 1996-03-22 2001-04-17 Focal, Inc. Compliant tissue sealants
US6228084B1 (en) 1999-04-06 2001-05-08 Kirwan Surgical Products, Inc. Electro-surgical forceps having recessed irrigation channel
US6234178B1 (en) 1996-01-09 2001-05-22 Gyrus Medical Limited Electrosurgical instrument
WO2001035846A1 (en) 1999-11-16 2001-05-25 Ganz Robert A System and method of treating abnormal tissue in the human esophagus
US6241139B1 (en) 1997-09-23 2001-06-05 Keith L. Milliman Surgical stapling apparatus
US6245069B1 (en) 1995-12-22 2001-06-12 Karl Storz Gmbh & Co. Kg Cutting loop electrode for high-frequency instrument
US6254601B1 (en) 1998-12-08 2001-07-03 Hysterx, Inc. Methods for occlusion of the uterine arteries
US6258085B1 (en) 1999-05-11 2001-07-10 Sherwood Services Ag Electrosurgical return electrode monitor
WO2001054602A2 (en) 2000-01-31 2001-08-02 Cook Ireland Ltd Electrosurgical wire knife
WO2001058372A1 (en) 2000-02-07 2001-08-16 Boston Scientific Limted Electro-cautery catheter
WO2001058373A1 (en) 2000-02-11 2001-08-16 Iotek, Inc. Surgical devices and methods for use in tissue ablation procedures
US6277114B1 (en) 1998-04-03 2001-08-21 Gyrus Medical Limited Electrode assembly for an electrosurical instrument
US6283963B1 (en) 1997-10-08 2001-09-04 Ethicon, Inc. Bipolar electrosurgical scissors for fine or delicate surgical dissection
US6287304B1 (en) 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6290715B1 (en) 1996-08-13 2001-09-18 Oratec Interventions, Inc. Method for delivering energy adjacent the inner wall of an intervertebral disc
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US6293946B1 (en) 1999-08-27 2001-09-25 Link Technology, Inc. Non-stick electrosurgical forceps
US20010029367A1 (en) 1996-10-30 2001-10-11 Megadyne Medical Products, Inc. Pressure sore pad having self-limiting electrosurgical return electrode properties and optional heating/cooling capabilities
US6312430B1 (en) 1996-10-28 2001-11-06 Endoscopic Concepts, Inc. Bipolar electrosurgical end effectors
WO2001082812A1 (en) 2000-04-27 2001-11-08 Medtronic, Inc. Vibration sensitive ablation apparatus and method
US6322494B1 (en) 1998-04-03 2001-11-27 Gyrus Medical Limited Endoscope
US6327505B1 (en) 1998-05-07 2001-12-04 Medtronic, Inc. Method and apparatus for rf intraluminal reduction and occlusion
US6334861B1 (en) 1997-09-10 2002-01-01 Sherwood Services Ag Biopolar instrument for vessel sealing
US6350274B1 (en) 1992-05-11 2002-02-26 Regen Biologics, Inc. Soft tissue closure systems
US6361559B1 (en) 1998-06-10 2002-03-26 Converge Medical, Inc. Thermal securing anastomosis systems
WO2002024092A1 (en) 2000-09-20 2002-03-28 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
US6364879B1 (en) 1997-08-26 2002-04-02 Ethicon, Inc. Electrosurgical cutting instrument
US6371956B1 (en) 1996-10-28 2002-04-16 Endoscopic Concepts, Inc. Monopolar electrosurgical end effectors
US6391024B1 (en) 1999-06-17 2002-05-21 Cardiac Pacemakers, Inc. RF ablation apparatus and method having electrode/tissue contact assessment scheme and electrocardiogram filtering
US6391029B1 (en) 1995-03-07 2002-05-21 Enable Medical Corporation Bipolar electrosurgical scissors
US20020062136A1 (en) 2000-08-30 2002-05-23 Hillstead Richard A. Medical instrument
US20020062123A1 (en) 2000-03-06 2002-05-23 Mcclurken Michael E. Fluid-assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US6398781B1 (en) 1999-03-05 2002-06-04 Gyrus Medical Limited Electrosurgery system
US6398779B1 (en) 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
US6409722B1 (en) * 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
WO2002058542A2 (en) 2001-01-26 2002-08-01 Ethicon Endo-Surgery, Inc. Coagulating electrosurgical instrument with tissue dam
US6428550B1 (en) 1999-05-18 2002-08-06 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US20020107514A1 (en) 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
US6436096B1 (en) 1998-11-27 2002-08-20 Olympus Optical Co., Ltd. Electrosurgical apparatus with stable coagulation
WO2002067798A1 (en) 2001-02-26 2002-09-06 Ntero Surgical, Inc. System and method for reducing post-surgical complications
US20020124853A1 (en) 2000-04-21 2002-09-12 Fred Burbank Methods for minimally-invasive, non-permanent occlusion of a uterine artery
US20020128643A1 (en) 2000-12-28 2002-09-12 Simpson John A. Ablation system and method having multiple-sensor electrodes to assist in assessment of electrode and sensor position and adjustment of energy levels
US6464702B2 (en) 2001-01-24 2002-10-15 Ethicon, Inc. Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US20020151882A1 (en) 2000-03-01 2002-10-17 Alexei Marko Device for thermal ablation of a cavity
US6485489B2 (en) 1999-10-02 2002-11-26 Quantum Cor, Inc. Catheter system for repairing a mitral valve annulus
US6485486B1 (en) 1997-08-05 2002-11-26 Trustees Of Dartmouth College System and methods for fallopian tube occlusion
US20020177848A1 (en) 2001-05-24 2002-11-28 Csaba Truckai Electrosurgical working end for sealing tissue
US20020183738A1 (en) 1999-06-02 2002-12-05 Chee U. Hiram Method and apparatus for treatment of atrial fibrillation
US6491690B1 (en) 1997-07-18 2002-12-10 Gyrus Medical Limited Electrosurgical instrument
US6494881B1 (en) 1997-09-30 2002-12-17 Scimed Life Systems, Inc. Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6514252B2 (en) 1998-05-01 2003-02-04 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US6517530B1 (en) 1996-11-08 2003-02-11 Leiv Eiriksson Nyfotek As Probe device
US6520185B1 (en) 1999-03-17 2003-02-18 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
JP2003088534A (en) 2001-09-18 2003-03-25 Olympus Optical Co Ltd Endoscopic system
US6546933B1 (en) 2000-06-29 2003-04-15 Inbae Yoon Occlusion apparatus and method for necrotizing anatomical tissue structures
US20030078577A1 (en) 2001-10-22 2003-04-24 Csaba Truckai Electrosurgical jaw structure for controlled energy delivery
US6554829B2 (en) 2001-01-24 2003-04-29 Ethicon, Inc. Electrosurgical instrument with minimally invasive jaws
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
US6565560B1 (en) 1997-07-18 2003-05-20 Gyrus Medical Limited Electrosurgical instrument
US6564806B1 (en) 2000-02-18 2003-05-20 Thomas J. Fogarty Device for accurately marking tissue
US6584360B2 (en) 2000-04-27 2003-06-24 Medtronic Inc. System and method for assessing transmurality of ablation lesions
US20030144652A1 (en) 2001-11-09 2003-07-31 Baker James A. Electrosurgical instrument
US20030144653A1 (en) 2002-01-25 2003-07-31 Medtronic, Inc. System and method of performing an electrosurgical procedure
US20030158547A1 (en) 2002-02-19 2003-08-21 Phan Huy D. Apparatus for converting a clamp into an electrophysiology device
US6610074B2 (en) 2000-02-10 2003-08-26 Albert N. Santilli Aorta cross clamp assembly
US6616654B2 (en) 2001-07-27 2003-09-09 Starion Instruments Corporation Polypectomy device and method
US6616659B1 (en) 2001-07-27 2003-09-09 Starion Instruments Corporation Polypectomy device and method
US20030171745A1 (en) 2001-04-26 2003-09-11 Francischelli David E. Ablation system and method of use
US6619529B2 (en) 1991-10-18 2003-09-16 United States Surgical Corporation Surgical stapling apparatus
EP0873089B1 (en) 1996-01-09 2003-10-22 Gyrus Medical Limited Electrosurgical instrument
WO2003088806A2 (en) 2002-04-16 2003-10-30 Vivant Medical, Inc. Localization element with energized tip
EP0742696B1 (en) 1994-02-04 2003-11-05 Medical Corporation Apple Electrosurgical excisor for uterine cervix
US6645201B1 (en) 1998-02-19 2003-11-11 Curon Medical, Inc. Systems and methods for treating dysfunctions in the intestines and rectum
US6648839B2 (en) 2002-02-28 2003-11-18 Misonix, Incorporated Ultrasonic medical treatment device for RF cauterization and related method
US20030216726A1 (en) 1995-06-07 2003-11-20 Arthrocare Corporation Systems for epidermal tissue ablation
US6652518B2 (en) 2001-09-28 2003-11-25 Ethicon, Inc. Transmural ablation tool and method
US6656177B2 (en) 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US20030229344A1 (en) 2002-01-22 2003-12-11 Dycus Sean T. Vessel sealer and divider and method of manufacturing same
WO2003103522A1 (en) 2002-06-10 2003-12-18 Map Technologies Llc Methods and devices for electrosurgical electrolysis
US6666859B1 (en) 1996-10-30 2003-12-23 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode
US20030236549A1 (en) 2000-07-21 2003-12-25 Frank Bonadio Surgical instrument
US6673085B1 (en) 2000-05-23 2004-01-06 St. Jude Medical Atg, Inc. Anastomosis techniques
US20040006339A1 (en) 1995-06-07 2004-01-08 Arthrocare Corporation Method for treating obstructive sleep disorder includes removing tissue from the base of tongue
US6676660B2 (en) 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
US20040010245A1 (en) 1999-06-22 2004-01-15 Cerier Jeffrey C. Method and devices for tissue reconfiguration
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
JP2004049566A (en) 2002-07-19 2004-02-19 Olympus Corp Electrosurgical apparatus
US6695840B2 (en) 2001-01-24 2004-02-24 Ethicon, Inc. Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
US6699245B2 (en) 2001-02-05 2004-03-02 A-Med Systems, Inc. Anastomosis system and related methods
EP1041933B1 (en) 1997-11-25 2004-03-31 ArthroCare Corporation Systems for electrosurgical treatment of the skin
US20040068274A1 (en) 2002-10-02 2004-04-08 Hooven Michael D. Articulated clamping member
US6719754B2 (en) 1995-11-22 2004-04-13 Arthrocare Corporation Methods for electrosurgical-assisted lipectomy
US6722371B1 (en) 2000-02-18 2004-04-20 Thomas J. Fogarty Device for accurately marking tissue
WO2004032596A2 (en) 2002-10-08 2004-04-22 The Trustees Of Columbia University In The City Ofnew York Ringed forceps
WO2004032776A1 (en) 2002-10-04 2004-04-22 Sherwood Services Ag Electrosurgical instrument for sealing vessels
US6736814B2 (en) 2002-02-28 2004-05-18 Misonix, Incorporated Ultrasonic medical treatment device for bipolar RF cauterization and related method
US20040097919A1 (en) 2001-09-28 2004-05-20 Ethicon, Inc. Surgical device for clamping, ligating, and severing tissue
US6743229B2 (en) 1997-11-12 2004-06-01 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6746488B1 (en) 2002-03-19 2004-06-08 Biomet, Inc. Method and apparatus for hindering osteolysis in porous implants
US6752803B2 (en) 1997-09-11 2004-06-22 Vnus Medical Technologies, Inc. Method and apparatus for applying energy to biological tissue including the use of tumescent tissue compression
US6752154B2 (en) 2000-02-18 2004-06-22 Thomas J. Fogarty Device for accurately marking tissue
US20040122423A1 (en) 2001-04-06 2004-06-24 Dycus Sean T. Vessel sealer and divider with non-conductive stop members
EP1004277B1 (en) 1998-11-25 2004-07-21 Medsys S.A. An electrosurgical loop and instrument for laparoscopic surgery
US20040143263A1 (en) 2002-11-14 2004-07-22 Schechter David A. Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
EP0959786B1 (en) 1996-06-20 2004-09-22 Gyrus Medical Limited Electrosurgical instrument for underwater treatments
US20040199226A1 (en) 2000-12-09 2004-10-07 Shadduck John H. Thermotherapy device with superlattice cooling
EP0956827B1 (en) 1998-05-06 2004-10-13 Erbe Elektromedizin GmbH Electrosurgical apparatus
US6808525B2 (en) 2001-08-27 2004-10-26 Gyrus Medical, Inc. Bipolar electrosurgical hook probe for cutting and coagulating tissue
EP1472984A1 (en) 2003-05-01 2004-11-03 Sherwood Services AG Method and control system for performing electrosurgical procedures
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
WO2004098383A2 (en) 2003-05-01 2004-11-18 Sherwood Services Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US6821273B2 (en) 2002-01-03 2004-11-23 Starion Instruments Corporation Combined dissecting, cauterizing, and stapling device
US20040236320A1 (en) 2003-01-21 2004-11-25 Protsenko Dmitry E Method and apparatus for the control and monitoring of shape change in tissue
US6837888B2 (en) 1995-06-07 2005-01-04 Arthrocare Corporation Electrosurgical probe with movable return electrode and methods related thereto
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US20050010212A1 (en) 2000-03-06 2005-01-13 Tissuelink Medical. Inc. Fluid-assisted medical devices, systems and methods
US6843789B2 (en) 2000-10-31 2005-01-18 Gyrus Medical Limited Electrosurgical system
US20050015085A1 (en) 2002-02-12 2005-01-20 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US20050021027A1 (en) 2003-05-15 2005-01-27 Chelsea Shields Tissue sealer with non-conductive variable stop members and method of sealing tissue
US20050021026A1 (en) 2003-05-01 2005-01-27 Ali Baily Method of fusing biomaterials with radiofrequency energy
WO2005009213A2 (en) 2003-07-16 2005-02-03 Arthrocare Corporation Rotary electrosurgical apparatus and methods thereof
US6852108B2 (en) 2002-05-14 2005-02-08 Spiration, Inc. Apparatus and method for resecting and removing selected body tissue from a site inside a patient
US20050033277A1 (en) 2002-10-23 2005-02-10 Clague Cynthia T. Electrosurgical methods and apparatus for making precise incisions in body vessels
US20050033276A1 (en) 2003-07-07 2005-02-10 Olympus Corporation Blood vessel detection device
US20050033278A1 (en) 2001-09-05 2005-02-10 Mcclurken Michael Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US20050070895A1 (en) 2003-09-30 2005-03-31 Thomas Ryan Electrosurgical instrument and method for transecting an organ
US20050070978A1 (en) 1999-09-08 2005-03-31 Curon Medical, Inc. Systems and methods for monitoring and controlling use of medical devices
WO2005034729A2 (en) 2003-10-06 2005-04-21 Brian Kelleher Methods and devices for soft tissue securement
US20050090819A1 (en) 1999-01-15 2005-04-28 Gyrus Medical Limited Electrosurgical system and method
US6889089B2 (en) 1998-07-28 2005-05-03 Scimed Life Systems, Inc. Apparatus and method for treating tumors near the surface of an organ
US20050096645A1 (en) 2003-10-31 2005-05-05 Parris Wellman Multitool surgical device
US20050096694A1 (en) 2003-10-30 2005-05-05 Woojin Lee Surgical instrument
US6893435B2 (en) 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
US20050107781A1 (en) 2003-11-18 2005-05-19 Isaac Ostrovsky System and method for tissue ablation
US20050107784A1 (en) 2003-11-19 2005-05-19 Moses Michael C. Open vessel sealing instrument with cutting mechanism and distal lockout
US6896673B2 (en) 2000-04-27 2005-05-24 Atricure, Inc. Method for transmural ablation
US6896672B1 (en) 1995-11-22 2005-05-24 Arthrocare Corporation Methods for electrosurgical incisions on external skin surfaces
US20050113817A1 (en) 2003-11-21 2005-05-26 Isaacson James D. Tuned return electrode with matching inductor
US20050113820A1 (en) 2001-08-27 2005-05-26 Gyrus Medical Limited Electrosurgical generator and system
US20050119654A1 (en) 2003-12-02 2005-06-02 Swanson David K. Clamp based methods and apparatus for forming lesions in tissue and confirming whether a therapeutic lesion has been formed
JP2005144193A (en) 2003-11-19 2005-06-09 Sherwood Services Ag Blood vessel sealing instrument for open operation with cutting mechanism
US6905506B2 (en) 2001-03-28 2005-06-14 Vascular Control Systems, Inc. Multi-axial uterine artery identification, characterization, and occlusion pivoting devices and methods
US20050131390A1 (en) 2002-04-25 2005-06-16 Russell Heinrich Surgical instruments including mems devices
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
US20050149073A1 (en) 2003-12-17 2005-07-07 Arani Djavad T. Mechanisms and methods used in the anastomosis of biological conduits
US6918907B2 (en) 2003-03-13 2005-07-19 Boston Scientific Scimed, Inc. Surface electrode multiple mode operation
US6918909B2 (en) 2002-04-10 2005-07-19 Olympus Corporation Resectoscope apparatus
US6923803B2 (en) 1999-01-15 2005-08-02 Gyrus Medical Limited Electrosurgical system and method
US20050171533A1 (en) 2004-02-02 2005-08-04 Gyrus Medical, Inc. Surgical instrument
US6926712B2 (en) 2000-03-24 2005-08-09 Boston Scientific Scimed, Inc. Clamp having at least one malleable clamp member and surgical method employing the same
US6929642B2 (en) 2002-06-28 2005-08-16 Ethicon, Inc. RF device for treating the uterus
US20050187561A1 (en) 2004-02-25 2005-08-25 Femasys, Inc. Methods and devices for conduit occlusion
US6936048B2 (en) 2003-01-16 2005-08-30 Charlotte-Mecklenburg Hospital Authority Echogenic needle for transvaginal ultrasound directed reduction of uterine fibroids and an associated method
US20050192633A1 (en) 2004-01-23 2005-09-01 Montpetit Karen P. Tissue fastening and cutting tool, and methods
WO2005079901A1 (en) 2004-02-17 2005-09-01 Boston Scientific Limited Endoscopic multi-lumen devices and related methods of use
US6939346B2 (en) 1999-04-21 2005-09-06 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US20050196421A1 (en) 2003-11-20 2005-09-08 Angiotech International Ag Polymer compositions and methods for their use
US20050203504A1 (en) 1998-10-23 2005-09-15 Wham Robert H. Method and system for controlling output of RF medical generator
US20050203500A1 (en) 2004-03-09 2005-09-15 Usgi Medical Inc. Apparatus and methods for mapping out endoluminal gastrointestinal surgery
US20050209664A1 (en) 2003-11-20 2005-09-22 Angiotech International Ag Electrical devices and anti-scarring agents
US20050226682A1 (en) 2001-10-09 2005-10-13 David Chersky Method and apparatus for improved stiffness in the linkage assembly of a flexible arm
US20050256524A1 (en) 2004-05-14 2005-11-17 Long Gary L RF ablation device and method of use
US20050256522A1 (en) 2004-05-12 2005-11-17 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US20050261676A1 (en) 2004-05-20 2005-11-24 Gyrus Medical Limited Surgical instrument
WO2005115251A1 (en) 2004-05-25 2005-12-08 Christy Cummins Surgical stapler
US6981628B2 (en) 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
EP1621146A2 (en) 2004-07-28 2006-02-01 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation locking mechanism
US20060025812A1 (en) 2004-07-28 2006-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated pivoting articulation mechanism
US20060025765A1 (en) 2004-07-30 2006-02-02 Jaime Landman Electrosurgical systems and methods
US20060041254A1 (en) 2002-10-30 2006-02-23 Medtronic, Inc. Electrosurgical hemostat
US20060052779A1 (en) 2003-03-13 2006-03-09 Hammill Curt D Electrode assembly for tissue fusion
US20060064084A1 (en) 2004-09-20 2006-03-23 Dieter Haemmerich Electrode array for tissue ablation
EP1645237A1 (en) 2004-10-08 2006-04-12 Sherwood Services AG Endoscopic bipolar electrosurgical forceps
US20060079872A1 (en) 2004-10-08 2006-04-13 Eggleston Jeffrey L Devices for detecting heating under a patient return electrode
US7033356B2 (en) 2002-07-02 2006-04-25 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
WO2006060431A1 (en) 2004-11-30 2006-06-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
EP1293170B1 (en) 1995-09-26 2006-06-14 Erbe Elektromedizin GmbH Argon plasma flex-endoscopy coagulator
US20060167451A1 (en) 2005-01-26 2006-07-27 Ethicon Endo-Surgery, Inc. Medical instrument including an end effector having a medical-treatment electrode
US7090637B2 (en) 2003-05-23 2006-08-15 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US7090673B2 (en) 2001-04-06 2006-08-15 Sherwood Services Ag Vessel sealer and divider
US7090685B2 (en) 2001-06-25 2006-08-15 Ethicon Endo-Surgery, Inc. Surgical tool having a distal ratchet mechanism
EP1064886B1 (en) 1999-06-29 2006-08-16 Ethicon Endo-Surgery Multiple balloon electrosurgical catheter
US7094235B2 (en) 2001-04-26 2006-08-22 Medtronic, Inc. Method and apparatus for tissue ablation
US20060190029A1 (en) 2005-02-18 2006-08-24 Wales Kenneth S Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
US7101372B2 (en) 2001-04-06 2006-09-05 Sherwood Sevices Ag Vessel sealer and divider
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
US7101373B2 (en) 2001-04-06 2006-09-05 Sherwood Services Ag Vessel sealer and divider
US20060199999A1 (en) 2001-06-29 2006-09-07 Intuitive Surgical Inc. Cardiac tissue ablation instrument with flexible wrist
US20060217709A1 (en) 2003-05-01 2006-09-28 Sherwood Services Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US7118587B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealer and divider
US20060229665A1 (en) 2005-02-18 2006-10-12 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
US20060226196A1 (en) 2005-02-18 2006-10-12 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
US7125409B2 (en) 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US20060253117A1 (en) 1992-01-07 2006-11-09 Arthrocare Corporation Systems and methods for electrosurgical treatment of obstructive sleep disorders
US20060258954A1 (en) 2005-05-13 2006-11-16 Tyler Timberlake Biopsy forceps assemblies
US20060259034A1 (en) 2005-05-12 2006-11-16 Joseph Eder Apparatus for Tissue Cauterization
US20060259035A1 (en) 2005-05-12 2006-11-16 Camran Nezhat Method and Apparatus for Performing a Surgical Procedure
US20060271037A1 (en) 2005-05-25 2006-11-30 Forcept, Inc. Assisted systems and methods for performing transvaginal hysterectomies
US20060271042A1 (en) 2005-05-26 2006-11-30 Gyrus Medical, Inc. Cutting and coagulating electrosurgical forceps having cam controlled jaw closure
US20060287674A1 (en) 2000-01-05 2006-12-21 Ginn Richard S Closure system and methods of use
US20060289602A1 (en) 2005-06-23 2006-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with double pivot closure and single pivot frame ground
US20060293655A1 (en) 2005-06-28 2006-12-28 Sherwood Services Ag Electrode with rotatably deployable sheath
US20070005061A1 (en) 2005-06-30 2007-01-04 Forcept, Inc. Transvaginal uterine artery occlusion
WO2007002227A2 (en) 2005-06-23 2007-01-04 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7159750B2 (en) 2003-06-17 2007-01-09 Tyco Healtcare Group Lp Surgical stapling device
US7166102B2 (en) 1996-10-30 2007-01-23 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode
US7169146B2 (en) 2003-02-14 2007-01-30 Surgrx, Inc. Electrosurgical probe and method of use
US7179254B2 (en) 2004-03-09 2007-02-20 Ethicon, Inc. High intensity ablation device
US7195627B2 (en) 2003-01-09 2007-03-27 Gyrus Medical Limited Electrosurgical generator
EP1767164A1 (en) 2005-09-22 2007-03-28 Sherwood Services AG Electrode assembly for tissue fusion
US20070073340A1 (en) 2005-09-21 2007-03-29 Shelton Frederick E Iv Surgical stapling instruments with collapsible features for controlling staple height
US7220260B2 (en) 2002-06-27 2007-05-22 Gyrus Medical Limited Electrosurgical system
US20070129726A1 (en) 2005-05-12 2007-06-07 Eder Joseph C Electrocautery method and apparatus
US20070128174A1 (en) 2005-09-21 2007-06-07 Kleinsek Donald A Methods and compositions for organ and tissue functionality
US7238195B2 (en) 2002-05-10 2007-07-03 Tyco Healthcare Group Lp Wound closure material applicator and stapler
WO2007082061A2 (en) 2006-01-11 2007-07-19 Hyperbranch Medical Technology, Inc. Crosslinked gels comprising polyalkyleneimines, and their uses as medical devices
US20070173811A1 (en) 2006-01-24 2007-07-26 Sherwood Services Ag Method and system for controlling delivery of energy to divide tissue
US20070173805A1 (en) * 2006-01-24 2007-07-26 Craig Weinberg Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US20070173804A1 (en) 2006-01-24 2007-07-26 Wham Robert H System and method for tissue sealing
US7250048B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Ablation system and method of use
US20070179497A1 (en) 1992-01-07 2007-08-02 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US20070185482A1 (en) 2005-05-12 2007-08-09 Eder Joseph C Electrocautery method and apparatus
US20070208333A1 (en) * 2004-06-23 2007-09-06 Smith & Nephew, Inc. Electrosurgical generator
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7278991B2 (en) 2001-02-28 2007-10-09 Angiodynamics, Inc. Tissue surface treatment apparatus and method
US20070250113A1 (en) 2003-05-23 2007-10-25 Hegeman David E Tool with articulation lock
US7291143B2 (en) 2004-05-10 2007-11-06 Boston Scientific Scimed, Inc. Clamp based low temperature lesion formation apparatus, systems and methods
US20070265613A1 (en) 2006-05-10 2007-11-15 Edelstein Peter Seth Method and apparatus for sealing tissue
US20070282320A1 (en) 2006-05-30 2007-12-06 Sherwood Services Ag System and method for controlling tissue heating rate prior to cellular vaporization
US20070282318A1 (en) 2006-05-16 2007-12-06 Spooner Gregory J Subcutaneous thermolipolysis using radiofrequency energy
EP1518498B1 (en) 2003-09-29 2007-12-19 Ethicon Endo-Surgery, Inc. Endoscopic mucosal resection device
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7367972B2 (en) 2001-04-26 2008-05-06 Medtronic, Inc. Ablation system
EP1532933B1 (en) 2003-11-20 2008-05-07 Covidien AG Electrically conductive/insulative over-shoe for tissue fusion
EP1039862B1 (en) 1997-12-15 2008-05-21 ArthroCare Corporation Systems for electrosurgical treatment of the head and neck
EP1707143B1 (en) 2005-03-31 2008-06-04 Covidien AG Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US20080172052A1 (en) 2006-05-02 2008-07-17 Joseph Eder Surgical Tool
US20080188844A1 (en) 2007-02-01 2008-08-07 Mcgreevy Francis T Apparatus and method for rapid reliable electrothermal tissue fusion and simultaneous cutting
WO2008094554A2 (en) 2007-02-01 2008-08-07 Conmed Corporation Apparatus for rapid reliable electrothermal tissue fusion
US7410483B2 (en) 2003-05-23 2008-08-12 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
EP1518499B1 (en) 2003-09-29 2008-08-13 Ethicon Endo-Surgery, Inc. Endoscopic mucosal resection device with conductive tissue stop
US20080195093A1 (en) 2002-10-04 2008-08-14 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US20080221565A1 (en) 2005-05-12 2008-09-11 Joseph Charles Eder Electrocautery method and apparatus
WO2008124112A1 (en) 2007-04-06 2008-10-16 Stephen Flock Inductive heating of tissues using alternating magnetic fields and uses thereof
US20080275446A1 (en) 2007-05-02 2008-11-06 Messerly Jeffrey D Two-piece jaw for bipolar ablation device
US20080308607A1 (en) 2007-06-18 2008-12-18 Timm Richard W Surgical stapling and cutting instrument with improved closure system
US7494039B2 (en) 2003-06-17 2009-02-24 Tyco Healthcare Group Lp Surgical stapling device
US7506790B2 (en) 2004-07-28 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US20090138006A1 (en) 2007-11-28 2009-05-28 Bales Thomas O Cordless power-assisted medical cauterization and cutting device
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US20090157075A1 (en) 2006-01-24 2009-06-18 Covidien Ag System and Method for Tissue Sealing
US20090157072A1 (en) 2006-01-24 2009-06-18 Covidien Ag System and Method for Tissue Sealing
US20090157071A1 (en) 2006-01-24 2009-06-18 Covidien Ag System and Method for Tissue Sealing
US7549564B2 (en) 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US20090198272A1 (en) 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
EP1486177B1 (en) 2003-06-13 2009-08-12 Covidien AG Method of manufacturing jaw assembly
US20090209953A1 (en) 2008-02-15 2009-08-20 Tyco Healthcare Group Lp Multi-Layer Return Electrode
US20090240245A1 (en) 2008-03-19 2009-09-24 Derek Dee Deville Method for Powering a Surgical Instrument
EP2106764A2 (en) 1998-11-20 2009-10-07 Intuitive Surgical, Inc. System for performing cardiac surgery without cardioplegia
EP1747761B1 (en) 2005-07-28 2009-10-14 Covidien AG An electrode assembly with electrode cooling element for an electrosurgical instrument
US7624902B2 (en) 2007-08-31 2009-12-01 Tyco Healthcare Group Lp Surgical stapling apparatus
US20090299367A1 (en) 2008-05-27 2009-12-03 Maquet Cardiovascular Llc Surgical Instrument and Method
US7641651B2 (en) 2005-07-28 2010-01-05 Aragon Surgical, Inc. Devices and methods for mobilization of the uterus
US20100042093A9 (en) 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US20100076427A1 (en) 2008-09-25 2010-03-25 Tyco Healthcare Group Lp Seal and Separate Algorithm
US20100094282A1 (en) 2008-10-15 2010-04-15 Olympus Medical Systems Corp. Electrosurgical apparatus and method of controlling electrosurgical apparatus
US7703653B2 (en) 2007-09-28 2010-04-27 Tyco Healthcare Group Lp Articulation mechanism for surgical instrument
US7722601B2 (en) * 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US7794461B2 (en) 2006-03-08 2010-09-14 Aragon Surgical, Inc. Method and apparatus for surgical electrocautery
US20100280508A1 (en) 2009-05-01 2010-11-04 Joseph Charles Eder Method and Apparatus for RF Anastomosis
US20100298823A1 (en) 2005-12-06 2010-11-25 Hong Cao Assessment of electrode coupling for tissue ablation

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200104A (en) 1977-11-17 1980-04-29 Valleylab, Inc. Contact area measurement apparatus for use in electrosurgery
JP2555026B2 (en) 1986-05-23 1996-11-20 株式会社日立製作所 Variable capacity compressor
JP2547520B2 (en) * 1992-01-21 1996-10-23 ヴァリーラブ・インコーポレーテッド Electrosurgical controller for trocar
DE9422383U1 (en) 1993-05-10 2001-03-22 Thapliyal & Eggers Surgical cutting device
US5695494A (en) 1994-12-22 1997-12-09 Valleylab Inc Rem output stage topology
GB9600377D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
GB9600354D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
BR9815432A (en) 1997-10-03 2000-10-17 Megadyne Med Prod Inc Electrosurgical electrode concentrated in electric field
US6039735A (en) 1997-10-03 2000-03-21 Megadyne Medical Products, Inc. Electric field concentrated electrosurgical electrode
US6123702A (en) 1998-09-10 2000-09-26 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6796981B2 (en) * 1999-09-30 2004-09-28 Sherwood Services Ag Vessel sealing system
US20040167508A1 (en) * 2002-02-11 2004-08-26 Robert Wham Vessel sealing system
US7070595B2 (en) 1998-12-14 2006-07-04 Medwaves, Inc. Radio-frequency based catheter system and method for ablating biological tissues
US6423057B1 (en) 1999-01-25 2002-07-23 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures
WO2000051512A1 (en) 1999-03-01 2000-09-08 Sun Star Technology, Inc. Hollow hot tip catheter
US6582427B1 (en) 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
AU2002359840A1 (en) 1999-06-30 2003-07-09 Thermage, Inc. Liquid cooled RF handpiece
CA2376263C (en) 1999-08-25 2009-01-13 Dentsply International Inc. Shell mold binder composition and method
US6569160B1 (en) 2000-07-07 2003-05-27 Biosense, Inc. System and method for detecting electrode-tissue contact
GB0026586D0 (en) 2000-10-31 2000-12-13 Gyrus Medical Ltd An electrosurgical system
US7008421B2 (en) 2002-08-21 2006-03-07 Resect Medical, Inc. Apparatus and method for tissue resection
US7959626B2 (en) 2001-04-26 2011-06-14 Medtronic, Inc. Transmural ablation systems and methods
US20030015855A1 (en) 2001-07-05 2003-01-23 Mccoy Richard W. Fifth wheel hitch assembly with improved jaw mechanism
JP2005502423A (en) 2001-07-27 2005-01-27 スタリオン・インストゥルメンツ・コーポレイション Apparatus and method for polypectomy
US6733498B2 (en) * 2002-02-19 2004-05-11 Live Tissue Connect, Inc. System and method for control of tissue welding
US7112388B2 (en) 2002-06-27 2006-09-26 Hitachi Maxwell Ltd. Battery provided with terminals
US20060064086A1 (en) 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
GB0322766D0 (en) 2003-09-29 2003-10-29 Emcision Ltd Surgical resection device
JP4838499B2 (en) 2004-05-21 2011-12-14 オリンパス株式会社 User support device
US7553309B2 (en) 2004-10-08 2009-06-30 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US7655003B2 (en) 2005-06-22 2010-02-02 Smith & Nephew, Inc. Electrosurgical power control
US20070005053A1 (en) 2005-06-30 2007-01-04 Dando Jeremy D Ablation catheter with contoured openings in insulated electrodes
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US20080114351A1 (en) 2006-10-31 2008-05-15 Takashi Irisawa High-frequency operation apparatus and method for controlling high-frequency output based on change with time of electrical parameter
US8377059B2 (en) 2007-11-28 2013-02-19 Covidien Ag Cordless medical cauterization and cutting device

Patent Citations (533)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356408A (en) 1966-07-07 1967-12-05 Herbert D Sturtz Camper anchoring device
US3527224A (en) 1967-09-05 1970-09-08 American Cyanamid Co Method of surgically bonding tissue together
US3742955A (en) 1970-09-29 1973-07-03 Fmc Corp Fibrous collagen derived product having hemostatic and wound binding properties
US3709215A (en) 1970-12-28 1973-01-09 S Richmond Anterior vaginal retractor for vaginal surgery
US3845771A (en) 1973-04-24 1974-11-05 W Vise Electrosurgical glove
US3920021A (en) 1973-05-16 1975-11-18 Siegfried Hiltebrandt Coagulating devices
US4018230A (en) 1974-04-04 1977-04-19 Kazuo Ochiai Cervical dilator
US3970088A (en) 1974-08-28 1976-07-20 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4231372A (en) 1974-11-04 1980-11-04 Valleylab, Inc. Safety monitoring circuit for electrosurgical unit
US4072153A (en) 1976-03-03 1978-02-07 Swartz William H Post hysterectomy fluid drainage tube
US4041952A (en) 1976-03-04 1977-08-16 Valleylab, Inc. Electrosurgical forceps
US4094320A (en) 1976-09-09 1978-06-13 Valleylab, Inc. Electrosurgical safety circuit and method of using same
US4532924A (en) 1980-05-13 1985-08-06 American Hospital Supply Corporation Multipolar electrosurgical device and method
US4492231A (en) 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4590934A (en) 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
US4671274A (en) 1984-01-30 1987-06-09 Kharkovsky Nauchno-Issledovatelsky Institut Obschei I Bipolar electrosurgical instrument
US5059782A (en) 1988-10-19 1991-10-22 Astex Co., Ltd. Multi-function detection circuit for a photoelectric switch using an integrated circuit with reduced interconnections
US4972846A (en) 1989-01-31 1990-11-27 W. L. Gore & Associates, Inc. Patch electrodes for use with defibrillators
US5234425A (en) 1989-03-03 1993-08-10 Thomas J. Fogarty Variable diameter sheath method and apparatus for use in body passages
US4979948A (en) 1989-04-13 1990-12-25 Purdue Research Foundation Method and apparatus for thermally destroying a layer of an organ
US4976717A (en) 1989-04-24 1990-12-11 Boyle Gary C Uterine retractor for an abdominal hysterectomy and method of its use
US5151102A (en) 1989-05-31 1992-09-29 Kyocera Corporation Blood vessel coagulation/stanching device
US5041101A (en) 1989-06-05 1991-08-20 Helix Medical, Inc. Hysterectomy drain appliance
US4998527A (en) 1989-07-27 1991-03-12 Percutaneous Technologies Inc. Endoscopic abdominal, urological, and gynecological tissue removing device
EP0502268A1 (en) 1989-09-29 1992-09-09 Everest Medical Corporation Electrosurgical instrument having needle cutting electrode and spot-coagulation electrode
US6099550A (en) 1989-12-05 2000-08-08 Yoon; Inbae Surgical instrument having jaws and an operating channel and method for use thereof
US5217030A (en) 1989-12-05 1993-06-08 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5665100A (en) 1989-12-05 1997-09-09 Yoon; Inbae Multifunctional instrument with interchangeable operating units for performing endoscopic procedures
EP0440385A2 (en) 1990-02-02 1991-08-07 Everest Medical Corporation Electrosurgical instrument for conducting endoscopic retrograde sphicterotomy
US5133713A (en) 1990-03-27 1992-07-28 Huang Jong Khing Apparatus of a spinning type of resectoscope for prostatectomy
US5108408A (en) 1990-04-20 1992-04-28 Lally James J Uterine-ring hysterectomy clamp
US5078736A (en) 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5482054A (en) 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5037379A (en) 1990-06-22 1991-08-06 Vance Products Incorporated Surgical tissue bag and method for percutaneously debulking tissue
US5282799A (en) 1990-08-24 1994-02-01 Everest Medical Corporation Bipolar electrosurgical scalpel with paired loop electrodes
US5269780A (en) 1990-10-12 1993-12-14 Delma Elektro- Und Medizinische Apparatebau Gesellschaft Mbh Electro-surgical devices
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
EP0487269A1 (en) 1990-11-21 1992-05-27 Everest Medical Corporation Biopsy device with bipolar coagulation capability
US5178618A (en) 1991-01-16 1993-01-12 Brigham And Womens Hospital Method and device for recanalization of a body passageway
US5354336A (en) 1991-01-29 1994-10-11 Autogenesis Technologies, Inc. Method for bonding soft tissue with collagen-based adhesives and sealants
US5156613A (en) 1991-02-13 1992-10-20 Interface Biomedical Laboratories Corp. Collagen welding rod material for use in tissue welding
US5749895A (en) 1991-02-13 1998-05-12 Fusion Medical Technologies, Inc. Method for bonding or fusion of biological tissue and material
CA2061215A1 (en) 1991-02-15 1992-08-16 Ingemar H. Lundquist Torquable catheter and method
US5300087A (en) 1991-03-22 1994-04-05 Knoepfler Dennis J Multiple purpose forceps
US5396900A (en) 1991-04-04 1995-03-14 Symbiosis Corporation Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5269782A (en) 1991-04-22 1993-12-14 Select Medizin-Technik Hermann Sutter Gmbh Bipolar medical coagulation and cauterizing instrument
US5484436A (en) 1991-06-07 1996-01-16 Hemostatic Surgery Corporation Bi-polar electrosurgical instruments and methods of making
US5391166A (en) 1991-06-07 1995-02-21 Hemostatic Surgery Corporation Bi-polar electrosurgical endoscopic instruments having a detachable working end
US5324289A (en) 1991-06-07 1994-06-28 Hemostatic Surgery Corporation Hemostatic bi-polar electrosurgical cutting apparatus and methods of use
US5330471A (en) 1991-06-07 1994-07-19 Hemostatic Surgery Corporation Bi-polar electrosurgical endoscopic instruments and methods of use
WO1992022257A1 (en) 1991-06-07 1992-12-23 Hemostatix Corporation Bi-polar electrosurgical endoscopic instruments and methods of use
US5290287A (en) 1991-09-11 1994-03-01 Richard Wolf Gmbh Endoscopic coagulation forceps
US5273524A (en) 1991-10-09 1993-12-28 Ethicon, Inc. Electrosurgical device
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US6619529B2 (en) 1991-10-18 2003-09-16 United States Surgical Corporation Surgical stapling apparatus
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5665085A (en) 1991-11-01 1997-09-09 Medical Scientific, Inc. Electrosurgical cutting tool
US5207691A (en) 1991-11-01 1993-05-04 Medical Scientific, Inc. Electrosurgical clip applicator
WO1993008754A1 (en) 1991-11-01 1993-05-13 Medical Scientific, Inc. Electrosurgical cutting tool
US5713896A (en) 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5267998A (en) 1991-11-19 1993-12-07 Delma Elektro-Und Medizinische Apparatebau Gesellschaft Mbh Medical high frequency coagulation cutting instrument
US5681282A (en) 1992-01-07 1997-10-28 Arthrocare Corporation Methods and apparatus for ablation of luminal tissues
US20070179497A1 (en) 1992-01-07 2007-08-02 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US20060253117A1 (en) 1992-01-07 2006-11-09 Arthrocare Corporation Systems and methods for electrosurgical treatment of obstructive sleep disorders
US5484435A (en) 1992-01-15 1996-01-16 Conmed Corporation Bipolar electrosurgical instrument for use in minimally invasive internal surgical procedures
US5352235A (en) 1992-03-16 1994-10-04 Tibor Koros Laparoscopic grasper and cutter
EP0562195A1 (en) 1992-03-23 1993-09-29 Everest Medical Corporation Monopolar polypectomy snare with coagulation electrode
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5300068A (en) 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5562720A (en) 1992-05-01 1996-10-08 Vesta Medical, Inc. Bipolar/monopolar endometrial ablation device and method
US5277201A (en) 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5443470A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Method and apparatus for endometrial ablation
US5447513A (en) 1992-05-06 1995-09-05 Ethicon, Inc. Endoscopic ligation and division instrument
US5423814A (en) 1992-05-08 1995-06-13 Loma Linda University Medical Center Endoscopic bipolar coagulation device
US6350274B1 (en) 1992-05-11 2002-02-26 Regen Biologics, Inc. Soft tissue closure systems
US5662676A (en) 1992-06-24 1997-09-02 K.U. Leuven Research & Development Instrument set for laparoscopic hysterectomy
WO1994000060A1 (en) 1992-06-30 1994-01-06 Valleylab, Inc. An electrosurgical tubular trocar
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5250074A (en) 1992-07-14 1993-10-05 Wilk Peter J Surgical instrument assembly and associated technique
US5720719A (en) 1992-08-12 1998-02-24 Vidamed, Inc. Ablative catheter with conformable body
US5295990A (en) 1992-09-11 1994-03-22 Levin John M Tissue sampling and removal device
US5374277A (en) 1992-10-09 1994-12-20 Ethicon, Inc. Surgical instrument
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5662662A (en) 1992-10-09 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical instrument and method
US5578052A (en) 1992-10-27 1996-11-26 Koros; Tibor Insulated laparoscopic grasper with removable shaft
US5462546A (en) 1993-02-05 1995-10-31 Everest Medical Corporation Bipolar electrosurgical forceps
US5514134A (en) 1993-02-05 1996-05-07 Everest Medical Corporation Bipolar electrosurgical scissors
US5336229A (en) 1993-02-09 1994-08-09 Laparomed Corporation Dual ligating and dividing apparatus
US5342381A (en) 1993-02-11 1994-08-30 Everest Medical Corporation Combination bipolar scissors and forceps instrument
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
US5445638A (en) 1993-03-08 1995-08-29 Everest Medical Corporation Bipolar coagulation and cutting forceps
US5445638B1 (en) 1993-03-08 1998-05-05 Everest Medical Corp Bipolar coagulation and cutting forceps
US5480399A (en) 1993-03-30 1996-01-02 Smiths Industries Public Limited Company Electrosurgery monitor and apparatus
US5417687A (en) 1993-04-30 1995-05-23 Medical Scientific, Inc. Bipolar electrosurgical trocar
US5496317A (en) 1993-05-04 1996-03-05 Gyrus Medical Limited Laparoscopic surgical instrument
US6142992A (en) 1993-05-10 2000-11-07 Arthrocare Corporation Power supply for limiting power in electrosurgery
WO1994026179A1 (en) 1993-05-13 1994-11-24 Surgical Innovations, Inc. Tissue and organ extractor
US5395369A (en) 1993-06-10 1995-03-07 Symbiosis Corporation Endoscopic bipolar electrocautery instruments
US5438302A (en) 1993-07-12 1995-08-01 Gyrus Medical Limited Electrosurgical radiofrequency generator having regulated voltage across switching device
US5352223A (en) 1993-07-13 1994-10-04 Symbiosis Corporation Endoscopic instruments having distally extending lever mechanisms
US5741285A (en) 1993-07-13 1998-04-21 Symbiosis Corporation Endoscopic instrument having non-bonded, non-welded rotating actuator handle and method for assembling the same
US5569243A (en) 1993-07-13 1996-10-29 Symbiosis Corporation Double acting endoscopic scissors with bipolar cautery capability
WO1995002371A2 (en) 1993-07-15 1995-01-26 Aws Shakir Mustafa Salim Rectal and rectosigmoid cancer tunnelling umbrella
US5356408A (en) 1993-07-16 1994-10-18 Everest Medical Corporation Bipolar electrosurgical scissors having nonlinear blades
US5709680A (en) 1993-07-22 1998-01-20 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5735848A (en) 1993-07-22 1998-04-07 Ethicon, Inc. Electrosurgical stapling device
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5693051A (en) 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5688270A (en) 1993-07-22 1997-11-18 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
US5810811A (en) 1993-07-22 1998-09-22 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
WO1996005776A1 (en) 1993-08-16 1996-02-29 Vesta Medical, Inc. Coagulating forceps
US5336237A (en) 1993-08-25 1994-08-09 Devices For Vascular Intervention, Inc. Removal of tissue from within a body cavity
US5718703A (en) 1993-09-17 1998-02-17 Origin Medsystems, Inc. Method and apparatus for small needle electrocautery
US5542945A (en) 1993-10-05 1996-08-06 Delma Elektro-U. Medizinische Apparatebau Gesellschaft Mbh Electro-surgical radio-frequency instrument
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US5571100A (en) 1993-11-01 1996-11-05 Gyrus Medical Limited Electrosurgical apparatus
US5571100B1 (en) 1993-11-01 1998-01-06 Gyrus Medical Ltd Electrosurgical apparatus
US5449355A (en) 1993-11-24 1995-09-12 Valleylab Inc. Retrograde tissue splitter and method
US5458598A (en) 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
US5377415A (en) 1993-12-10 1995-01-03 Gibson; John Sheet material punch
EP0658333A1 (en) 1993-12-17 1995-06-21 United States Surgical Corporation Monopolar electrosurgical instruments
US5603700A (en) 1993-12-27 1997-02-18 Daneshvar; Yousef Suction and injection system
EP0742696B1 (en) 1994-02-04 2003-11-05 Medical Corporation Apple Electrosurgical excisor for uterine cervix
US5562700A (en) 1994-02-18 1996-10-08 Ethicon Endo-Surgery, Inc. Cable-actuated jaw assembly for surgical instruments
US5562702A (en) 1994-02-18 1996-10-08 Ethicon Endo-Surgery, Inc. Cable-actuated jaw assembly for surgical instruments
US5562701A (en) 1994-02-18 1996-10-08 Ethicon Endo-Surgery, Inc. Cable-actuated jaw assembly for surgical instruments
US5397320A (en) 1994-03-03 1995-03-14 Essig; Mitchell N. Dissecting surgical device and associated method
US5674184A (en) 1994-03-15 1997-10-07 Ethicon Endo-Surgery, Inc. Surgical trocars with cutting electrode and viewing rod
US5472442A (en) 1994-03-23 1995-12-05 Valleylab Inc. Moveable switchable electrosurgical handpiece
US6296636B1 (en) 1994-05-10 2001-10-02 Arthrocare Corporation Power supply and methods for limiting power in electrosurgery
US6056744A (en) 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US5540684A (en) 1994-07-28 1996-07-30 Hassler, Jr.; William L. Method and apparatus for electrosurgically treating tissue
US5456684A (en) 1994-09-08 1995-10-10 Hutchinson Technology Incorporated Multifunctional minimally invasive surgical instrument
US5573535A (en) 1994-09-23 1996-11-12 United States Surgical Corporation Bipolar surgical instrument for coagulation and cutting
US5840077A (en) 1994-10-18 1998-11-24 Blairden Precision Instruments, Inc. Uterine manipulating assembly for laparoscopic hysterectomy
US5520698A (en) 1994-10-19 1996-05-28 Blairden Precision Instruments, Inc. Simplified total laparoscopic hysterectomy method employing colpotomy incisions
US5833689A (en) 1994-10-26 1998-11-10 Snj Company, Inc. Versatile electrosurgical instrument capable of multiple surgical functions
US5556397A (en) 1994-10-26 1996-09-17 Laser Centers Of America Coaxial electrosurgical instrument
US5549637A (en) 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
WO1996016605A1 (en) 1994-12-01 1996-06-06 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5788662A (en) 1994-12-07 1998-08-04 Plasmaseal Llc Methods for making concentrated plasma and/or tissue sealant
US5673841A (en) 1994-12-19 1997-10-07 Ethicon Endo-Surgery, Inc. Surgical instrument
US5673840A (en) 1994-12-19 1997-10-07 Ethicon Endo-Surgery, Inc. Surgical instrument
US5558100A (en) 1994-12-19 1996-09-24 Ballard Medical Products Biopsy forceps for obtaining tissue specimen and optionally for coagulation
US5680982A (en) 1994-12-19 1997-10-28 Ethicon Endo-Surgery, Inc. Surgical instrument
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5860975A (en) 1994-12-21 1999-01-19 Gyrus Medical Limited Electrosurgical instrument
US5611803A (en) 1994-12-22 1997-03-18 Urohealth Systems, Inc. Tissue segmentation device
EP0717960B1 (en) 1994-12-22 2003-02-26 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5540685A (en) 1995-01-06 1996-07-30 Everest Medical Corporation Bipolar electrical scissors with metal cutting edges and shearing surfaces
US5603711A (en) 1995-01-20 1997-02-18 Everest Medical Corp. Endoscopic bipolar biopsy forceps
WO1996023449A1 (en) 1995-01-30 1996-08-08 Boston Scientific Corporation Electro-surgical tissue removal
US5637110A (en) 1995-01-31 1997-06-10 Stryker Corporation Electrocautery surgical tool with relatively pivoted tissue engaging jaws
US5797941A (en) 1995-02-01 1998-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument with expandable cutting element
US5669907A (en) 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
US5715832A (en) 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US6391029B1 (en) 1995-03-07 2002-05-21 Enable Medical Corporation Bipolar electrosurgical scissors
US5855576A (en) 1995-03-24 1999-01-05 Board Of Regents Of University Of Nebraska Method for volumetric tissue ablation
US5599350A (en) 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US5675184A (en) 1995-04-05 1997-10-07 Mitsubishi Denki Kabushiki Kaisha Integrated circuit device
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
EP0737446B1 (en) 1995-04-12 2002-12-11 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5707369A (en) 1995-04-24 1998-01-13 Ethicon Endo-Surgery, Inc. Temperature feedback monitor for hemostatic surgical instrument
US5697949A (en) 1995-05-18 1997-12-16 Symbiosis Corporation Small diameter endoscopic instruments
US5637111A (en) 1995-06-06 1997-06-10 Conmed Corporation Bipolar electrosurgical instrument with desiccation feature
US6837888B2 (en) 1995-06-07 2005-01-04 Arthrocare Corporation Electrosurgical probe with movable return electrode and methods related thereto
US20040006339A1 (en) 1995-06-07 2004-01-08 Arthrocare Corporation Method for treating obstructive sleep disorder includes removing tissue from the base of tongue
US6203542B1 (en) 1995-06-07 2001-03-20 Arthrocare Corporation Method for electrosurgical treatment of submucosal tissue
US20030216726A1 (en) 1995-06-07 2003-11-20 Arthrocare Corporation Systems for epidermal tissue ablation
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US6004319A (en) 1995-06-23 1999-12-21 Gyrus Medical Limited Electrosurgical instrument
US6416509B1 (en) 1995-06-23 2002-07-09 Gyrus Medical Limited Electrosurgical generator and system
EP0833593B1 (en) 1995-06-23 2001-02-28 Gyrus Medical Limited An electrosurgical instrument
US6212426B1 (en) 1995-07-28 2001-04-03 Scimed Life Systems, Inc. Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US5728143A (en) 1995-08-15 1998-03-17 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5667526A (en) 1995-09-07 1997-09-16 Levin; John M. Tissue retaining clamp
US5653692A (en) 1995-09-07 1997-08-05 Innerdyne Medical, Inc. Method and system for direct heating of fluid solution in a hollow body organ
US5683385A (en) 1995-09-19 1997-11-04 Symbiosis Corporation Electrocautery connector for a bipolar push rod assembly
US5776130A (en) 1995-09-19 1998-07-07 Valleylab, Inc. Vascular tissue sealing pressure control
US5827271A (en) * 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
EP1293170B1 (en) 1995-09-26 2006-06-14 Erbe Elektromedizin GmbH Argon plasma flex-endoscopy coagulator
EP1293169B1 (en) 1995-09-26 2006-07-26 Erbe Elektromedizin GmbH Argon plasma flex-endoscopy coagulator
US5674220A (en) 1995-09-29 1997-10-07 Ethicon Endo-Surgery, Inc. Bipolar electrosurgical clamping device
US5817092A (en) 1995-11-09 1998-10-06 Radio Therapeutics Corporation Apparatus, system and method for delivering radio frequency energy to a treatment site
US5979453A (en) 1995-11-09 1999-11-09 Femrx, Inc. Needle myolysis system for uterine fibriods
US6059782A (en) 1995-11-20 2000-05-09 Storz Endoskop Gmbh Bipolar high-frequency surgical instrument
US6896672B1 (en) 1995-11-22 2005-05-24 Arthrocare Corporation Methods for electrosurgical incisions on external skin surfaces
US6719754B2 (en) 1995-11-22 2004-04-13 Arthrocare Corporation Methods for electrosurgical-assisted lipectomy
US5658281A (en) 1995-12-04 1997-08-19 Valleylab Inc Bipolar electrosurgical scissors and method of manufacture
US5931835A (en) 1995-12-08 1999-08-03 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
US6245069B1 (en) 1995-12-22 2001-06-12 Karl Storz Gmbh & Co. Kg Cutting loop electrode for high-frequency instrument
WO1997024073A1 (en) 1995-12-29 1997-07-10 Gyrus Medical Limited An electrosurgical instrument and an electrosurgical electrode assembly
WO1997024074A1 (en) 1995-12-29 1997-07-10 Microgyn, Inc. Apparatus and method for electrosurgery
US6074386A (en) 1995-12-29 2000-06-13 Gyrus Medical Limited Electrosurgical instrument and an electrosurgical electrode assembly
EP0869742B1 (en) 1995-12-29 2003-05-21 Gyrus Medical Limited An electrosurgical instrument and an electrosurgical electrode assembly
EP0873089B1 (en) 1996-01-09 2003-10-22 Gyrus Medical Limited Electrosurgical instrument
US6234178B1 (en) 1996-01-09 2001-05-22 Gyrus Medical Limited Electrosurgical instrument
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US5683388A (en) 1996-01-11 1997-11-04 Symbiosis Corporation Endoscopic bipolar multiple sample bioptome
US5755717A (en) 1996-01-16 1998-05-26 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with improved coagulation feedback
US5746750A (en) 1996-02-05 1998-05-05 Richard Wolf Gmbh Medical instrument for manipulation of the uterus
US5702390A (en) 1996-03-12 1997-12-30 Ethicon Endo-Surgery, Inc. Bioplar cutting and coagulation instrument
US6217894B1 (en) 1996-03-22 2001-04-17 Focal, Inc. Compliant tissue sealants
US6152932A (en) 1996-03-25 2000-11-28 Safe Conduct Ab Device for extraction of tissue
US5700261A (en) 1996-03-29 1997-12-23 Ethicon Endo-Surgery, Inc. Bipolar Scissors
US5823066A (en) 1996-05-13 1998-10-20 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US6066139A (en) 1996-05-14 2000-05-23 Sherwood Services Ag Apparatus and method for sterilization and embolization
US5733283A (en) 1996-06-05 1998-03-31 Malis; Jerry L. Flat loop bipolar electrode tips for electrosurgical instrument
US5976128A (en) 1996-06-14 1999-11-02 Gebrueder Berchtold Gmbh & Co. Electrosurgical high frequency generator
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
EP0959786B1 (en) 1996-06-20 2004-09-22 Gyrus Medical Limited Electrosurgical instrument for underwater treatments
US5931836A (en) 1996-07-29 1999-08-03 Olympus Optical Co., Ltd. Electrosurgery apparatus and medical apparatus combined with the same
US5735289A (en) 1996-08-08 1998-04-07 Pfeffer; Herbert G. Method and apparatus for organic specimen retrieval
US6290715B1 (en) 1996-08-13 2001-09-18 Oratec Interventions, Inc. Method for delivering energy adjacent the inner wall of an intervertebral disc
WO1998012999A2 (en) 1996-09-24 1998-04-02 Gynecare, Inc. System and method for applying thermal energy to tissue
US5954720A (en) 1996-10-28 1999-09-21 Endoscopic Concepts, Inc. Bipolar electrosurgical end effectors
US6312430B1 (en) 1996-10-28 2001-11-06 Endoscopic Concepts, Inc. Bipolar electrosurgical end effectors
US6371956B1 (en) 1996-10-28 2002-04-16 Endoscopic Concepts, Inc. Monopolar electrosurgical end effectors
US6666859B1 (en) 1996-10-30 2003-12-23 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode
US20010029367A1 (en) 1996-10-30 2001-10-11 Megadyne Medical Products, Inc. Pressure sore pad having self-limiting electrosurgical return electrode properties and optional heating/cooling capabilities
US7166102B2 (en) 1996-10-30 2007-01-23 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode
US5735849A (en) 1996-11-07 1998-04-07 Everest Medical Corporation Endoscopic forceps with thumb-slide lock release mechanism
US6517530B1 (en) 1996-11-08 2003-02-11 Leiv Eiriksson Nyfotek As Probe device
US5891142A (en) 1996-12-06 1999-04-06 Eggers & Associates, Inc. Electrosurgical forceps
US6093186A (en) 1996-12-20 2000-07-25 Gyrus Medical Limited Electrosurgical generator and system
US5893874A (en) 1997-02-07 1999-04-13 Smith & Nephew, Inc. Surgical instrument
US6626901B1 (en) 1997-03-05 2003-09-30 The Trustees Of Columbia University In The City Of New York Electrothermal instrument for sealing and joining or cutting tissue
WO1998043548A1 (en) 1997-04-03 1998-10-08 Sadler Cynthia D Hand-held forceps instrument
EP0875209B1 (en) 1997-04-04 2006-05-24 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic and stapling device
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
US5817091A (en) 1997-05-20 1998-10-06 Medical Scientific, Inc. Electrosurgical device having a visible indicator
WO1998053750A1 (en) 1997-05-29 1998-12-03 Sports Link, Inc., Doing Business As Link Technology Electrosurgical electrode and methods for its use
US6068626A (en) 1997-06-05 2000-05-30 Adiana, Inc. Method and apparatus for tubal occlusion
US6491690B1 (en) 1997-07-18 2002-12-10 Gyrus Medical Limited Electrosurgical instrument
US6565560B1 (en) 1997-07-18 2003-05-20 Gyrus Medical Limited Electrosurgical instrument
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US6485486B1 (en) 1997-08-05 2002-11-26 Trustees Of Dartmouth College System and methods for fallopian tube occlusion
US6364879B1 (en) 1997-08-26 2002-04-02 Ethicon, Inc. Electrosurgical cutting instrument
US6206877B1 (en) 1997-08-27 2001-03-27 Ethicon, Inc. Combined bipolar scissor and grasper and method of forming thereof
EP0913126B1 (en) 1997-08-27 2004-10-13 Ethicon, Inc. Combined bipolar scissor and grasper
US6334861B1 (en) 1997-09-10 2002-01-01 Sherwood Services Ag Biopolar instrument for vessel sealing
US6682526B1 (en) 1997-09-11 2004-01-27 Vnus Medical Technologies, Inc. Expandable catheter having two sets of electrodes, and method of use
US6179832B1 (en) 1997-09-11 2001-01-30 Vnus Medical Technologies, Inc. Expandable catheter having two sets of electrodes
US6752803B2 (en) 1997-09-11 2004-06-22 Vnus Medical Technologies, Inc. Method and apparatus for applying energy to biological tissue including the use of tumescent tissue compression
US5836990A (en) 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US6241139B1 (en) 1997-09-23 2001-06-05 Keith L. Milliman Surgical stapling apparatus
US6494881B1 (en) 1997-09-30 2002-12-17 Scimed Life Systems, Inc. Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode
US6283963B1 (en) 1997-10-08 2001-09-04 Ethicon, Inc. Bipolar electrosurgical scissors for fine or delicate surgical dissection
US6123701A (en) 1997-10-09 2000-09-26 Perfect Surgical Techniques, Inc. Methods and systems for organ resection
US6152920A (en) 1997-10-10 2000-11-28 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body
US5893835A (en) 1997-10-10 1999-04-13 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having dual rotational positioning
US6743229B2 (en) 1997-11-12 2004-06-01 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
WO1999023933A2 (en) 1997-11-12 1999-05-20 Valleylab, Inc. Bipolar electrosurgical instrument with replaceable electrodes
EP1041933B1 (en) 1997-11-25 2004-03-31 ArthroCare Corporation Systems for electrosurgical treatment of the skin
EP1039862B1 (en) 1997-12-15 2008-05-21 ArthroCare Corporation Systems for electrosurgical treatment of the head and neck
EP0923907A1 (en) 1997-12-19 1999-06-23 Gyrus Medical Limited An electrosurgical instrument
US6080149A (en) * 1998-01-09 2000-06-27 Radiotherapeutics, Corporation Method and apparatus for monitoring solid tissue heating
US6645201B1 (en) 1998-02-19 2003-11-11 Curon Medical, Inc. Systems and methods for treating dysfunctions in the intestines and rectum
US6059766A (en) 1998-02-27 2000-05-09 Micro Therapeutics, Inc. Gynecologic embolotherapy methods
US6277114B1 (en) 1998-04-03 2001-08-21 Gyrus Medical Limited Electrode assembly for an electrosurical instrument
US6322494B1 (en) 1998-04-03 2001-11-27 Gyrus Medical Limited Endoscope
WO1999052459A1 (en) 1998-04-15 1999-10-21 Boston Scientific Limited Electro-cautery catheter
US6003517A (en) 1998-04-30 1999-12-21 Ethicon Endo-Surgery, Inc. Method for using an electrosurgical device on lung tissue
US6514252B2 (en) 1998-05-01 2003-02-04 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US6162220A (en) 1998-05-01 2000-12-19 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US6030384A (en) 1998-05-01 2000-02-29 Nezhat; Camran Bipolar surgical instruments having focused electrical fields
US6071281A (en) 1998-05-05 2000-06-06 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
EP0956827B1 (en) 1998-05-06 2004-10-13 Erbe Elektromedizin GmbH Electrosurgical apparatus
WO1999056646A1 (en) 1998-05-06 1999-11-11 Arthrocare Corporation Systems and methods for electrosurgical treatment of the digestive system
US6327505B1 (en) 1998-05-07 2001-12-04 Medtronic, Inc. Method and apparatus for rf intraluminal reduction and occlusion
US6361559B1 (en) 1998-06-10 2002-03-26 Converge Medical, Inc. Thermal securing anastomosis systems
US6409722B1 (en) * 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6050993A (en) 1998-07-27 2000-04-18 Quantum Therapeutics Corp. Medical device and methods for treating hemorrhoids
US6889089B2 (en) 1998-07-28 2005-05-03 Scimed Life Systems, Inc. Apparatus and method for treating tumors near the surface of an organ
WO2000013192A1 (en) 1998-08-31 2000-03-09 General Science And Technology Corporation Medical devices incorporating at least one element made from a plurality of twisted and drawn wires at least one of the wires being a nickel-titanium alloy wire
WO2000013193A1 (en) 1998-08-31 2000-03-09 General Science And Technology Corp. Medical devices incorporating at least one element made from a plurality of twisted and drawn wires
US6086586A (en) 1998-09-14 2000-07-11 Enable Medical Corporation Bipolar tissue grasping apparatus and tissue welding method
US6050995A (en) 1998-09-24 2000-04-18 Scimed Lifesystems, Inc. Polypectomy snare with multiple bipolar electrodes
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US20050203504A1 (en) 1998-10-23 2005-09-15 Wham Robert H. Method and system for controlling output of RF medical generator
US20100042093A9 (en) 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US6398779B1 (en) 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
EP2106764A2 (en) 1998-11-20 2009-10-07 Intuitive Surgical, Inc. System for performing cardiac surgery without cardioplegia
EP1004277B1 (en) 1998-11-25 2004-07-21 Medsys S.A. An electrosurgical loop and instrument for laparoscopic surgery
US6436096B1 (en) 1998-11-27 2002-08-20 Olympus Optical Co., Ltd. Electrosurgical apparatus with stable coagulation
US6210406B1 (en) 1998-12-03 2001-04-03 Cordis Webster, Inc. Split tip electrode catheter and signal processing RF ablation system
US6254601B1 (en) 1998-12-08 2001-07-03 Hysterx, Inc. Methods for occlusion of the uterine arteries
US20050090819A1 (en) 1999-01-15 2005-04-28 Gyrus Medical Limited Electrosurgical system and method
US6923803B2 (en) 1999-01-15 2005-08-02 Gyrus Medical Limited Electrosurgical system and method
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US6398781B1 (en) 1999-03-05 2002-06-04 Gyrus Medical Limited Electrosurgery system
US6645198B1 (en) 1999-03-17 2003-11-11 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
US6520185B1 (en) 1999-03-17 2003-02-18 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
US6228084B1 (en) 1999-04-06 2001-05-08 Kirwan Surgical Products, Inc. Electro-surgical forceps having recessed irrigation channel
US6939346B2 (en) 1999-04-21 2005-09-06 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6203541B1 (en) 1999-04-23 2001-03-20 Sherwood Services Ag Automatic activation of electrosurgical generator bipolar output
US6258085B1 (en) 1999-05-11 2001-07-10 Sherwood Services Ag Electrosurgical return electrode monitor
US6428550B1 (en) 1999-05-18 2002-08-06 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US20020183738A1 (en) 1999-06-02 2002-12-05 Chee U. Hiram Method and apparatus for treatment of atrial fibrillation
US6391024B1 (en) 1999-06-17 2002-05-21 Cardiac Pacemakers, Inc. RF ablation apparatus and method having electrode/tissue contact assessment scheme and electrocardiogram filtering
US20040010245A1 (en) 1999-06-22 2004-01-15 Cerier Jeffrey C. Method and devices for tissue reconfiguration
EP1064886B1 (en) 1999-06-29 2006-08-16 Ethicon Endo-Surgery Multiple balloon electrosurgical catheter
WO2001012090A1 (en) 1999-08-13 2001-02-22 The Trustees Of Columbia University In The City Of New York Electrothermal device for coagulating, sealing and cutting tissue during surgery
US6293946B1 (en) 1999-08-27 2001-09-25 Link Technology, Inc. Non-stick electrosurgical forceps
US20050070978A1 (en) 1999-09-08 2005-03-31 Curon Medical, Inc. Systems and methods for monitoring and controlling use of medical devices
US6485489B2 (en) 1999-10-02 2002-11-26 Quantum Cor, Inc. Catheter system for repairing a mitral valve annulus
US6287304B1 (en) 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
WO2001035846A1 (en) 1999-11-16 2001-05-25 Ganz Robert A System and method of treating abnormal tissue in the human esophagus
US20060287674A1 (en) 2000-01-05 2006-12-21 Ginn Richard S Closure system and methods of use
WO2001054602A2 (en) 2000-01-31 2001-08-02 Cook Ireland Ltd Electrosurgical wire knife
WO2001058372A1 (en) 2000-02-07 2001-08-16 Boston Scientific Limted Electro-cautery catheter
US6610074B2 (en) 2000-02-10 2003-08-26 Albert N. Santilli Aorta cross clamp assembly
WO2001058373A1 (en) 2000-02-11 2001-08-16 Iotek, Inc. Surgical devices and methods for use in tissue ablation procedures
US6722371B1 (en) 2000-02-18 2004-04-20 Thomas J. Fogarty Device for accurately marking tissue
US6564806B1 (en) 2000-02-18 2003-05-20 Thomas J. Fogarty Device for accurately marking tissue
US6752154B2 (en) 2000-02-18 2004-06-22 Thomas J. Fogarty Device for accurately marking tissue
US20020151882A1 (en) 2000-03-01 2002-10-17 Alexei Marko Device for thermal ablation of a cavity
US20050010212A1 (en) 2000-03-06 2005-01-13 Tissuelink Medical. Inc. Fluid-assisted medical devices, systems and methods
US20020062123A1 (en) 2000-03-06 2002-05-23 Mcclurken Michael E. Fluid-assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
US6926712B2 (en) 2000-03-24 2005-08-09 Boston Scientific Scimed, Inc. Clamp having at least one malleable clamp member and surgical method employing the same
US20020124853A1 (en) 2000-04-21 2002-09-12 Fred Burbank Methods for minimally-invasive, non-permanent occlusion of a uterine artery
WO2001082812A1 (en) 2000-04-27 2001-11-08 Medtronic, Inc. Vibration sensitive ablation apparatus and method
US6584360B2 (en) 2000-04-27 2003-06-24 Medtronic Inc. System and method for assessing transmurality of ablation lesions
US20020107514A1 (en) 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
US6896673B2 (en) 2000-04-27 2005-05-24 Atricure, Inc. Method for transmural ablation
US6673085B1 (en) 2000-05-23 2004-01-06 St. Jude Medical Atg, Inc. Anastomosis techniques
US6546933B1 (en) 2000-06-29 2003-04-15 Inbae Yoon Occlusion apparatus and method for necrotizing anatomical tissue structures
US20030236549A1 (en) 2000-07-21 2003-12-25 Frank Bonadio Surgical instrument
US20020062136A1 (en) 2000-08-30 2002-05-23 Hillstead Richard A. Medical instrument
WO2002024092A1 (en) 2000-09-20 2002-03-28 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
US6656177B2 (en) 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6893435B2 (en) 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
US6843789B2 (en) 2000-10-31 2005-01-18 Gyrus Medical Limited Electrosurgical system
US20040199226A1 (en) 2000-12-09 2004-10-07 Shadduck John H. Thermotherapy device with superlattice cooling
US20020128643A1 (en) 2000-12-28 2002-09-12 Simpson John A. Ablation system and method having multiple-sensor electrodes to assist in assessment of electrode and sensor position and adjustment of energy levels
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US6464702B2 (en) 2001-01-24 2002-10-15 Ethicon, Inc. Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US6554829B2 (en) 2001-01-24 2003-04-29 Ethicon, Inc. Electrosurgical instrument with minimally invasive jaws
US6623482B2 (en) 2001-01-24 2003-09-23 Ethicon, Inc. Electrosurgical instrument with minimally invasive jaws
US7063699B2 (en) 2001-01-24 2006-06-20 Ethicon, Inc. Electrosurgical instrument with minimally invasive jaws
US6695840B2 (en) 2001-01-24 2004-02-24 Ethicon, Inc. Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
WO2002058542A2 (en) 2001-01-26 2002-08-01 Ethicon Endo-Surgery, Inc. Coagulating electrosurgical instrument with tissue dam
US6699245B2 (en) 2001-02-05 2004-03-02 A-Med Systems, Inc. Anastomosis system and related methods
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
WO2002067798A1 (en) 2001-02-26 2002-09-06 Ntero Surgical, Inc. System and method for reducing post-surgical complications
US7278991B2 (en) 2001-02-28 2007-10-09 Angiodynamics, Inc. Tissue surface treatment apparatus and method
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
US6905506B2 (en) 2001-03-28 2005-06-14 Vascular Control Systems, Inc. Multi-axial uterine artery identification, characterization, and occlusion pivoting devices and methods
US7101373B2 (en) 2001-04-06 2006-09-05 Sherwood Services Ag Vessel sealer and divider
US7101372B2 (en) 2001-04-06 2006-09-05 Sherwood Sevices Ag Vessel sealer and divider
US20070062017A1 (en) 2001-04-06 2007-03-22 Dycus Sean T Vessel sealer and divider and method of manufacturing same
US7090673B2 (en) 2001-04-06 2006-08-15 Sherwood Services Ag Vessel sealer and divider
WO2004073490A2 (en) 2001-04-06 2004-09-02 Sherwood Services Ag Vessel sealer and divider and method of manufacturing same
US20040122423A1 (en) 2001-04-06 2004-06-24 Dycus Sean T. Vessel sealer and divider with non-conductive stop members
US7118587B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealer and divider
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
US7367972B2 (en) 2001-04-26 2008-05-06 Medtronic, Inc. Ablation system
US7094235B2 (en) 2001-04-26 2006-08-22 Medtronic, Inc. Method and apparatus for tissue ablation
US20030171745A1 (en) 2001-04-26 2003-09-11 Francischelli David E. Ablation system and method of use
US7250048B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Ablation system and method of use
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
US20020177848A1 (en) 2001-05-24 2002-11-28 Csaba Truckai Electrosurgical working end for sealing tissue
US7090685B2 (en) 2001-06-25 2006-08-15 Ethicon Endo-Surgery, Inc. Surgical tool having a distal ratchet mechanism
US20060199999A1 (en) 2001-06-29 2006-09-07 Intuitive Surgical Inc. Cardiac tissue ablation instrument with flexible wrist
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US6616654B2 (en) 2001-07-27 2003-09-09 Starion Instruments Corporation Polypectomy device and method
US6616659B1 (en) 2001-07-27 2003-09-09 Starion Instruments Corporation Polypectomy device and method
US20050113820A1 (en) 2001-08-27 2005-05-26 Gyrus Medical Limited Electrosurgical generator and system
US6808525B2 (en) 2001-08-27 2004-10-26 Gyrus Medical, Inc. Bipolar electrosurgical hook probe for cutting and coagulating tissue
US20050033278A1 (en) 2001-09-05 2005-02-10 Mcclurken Michael Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods
JP2003088534A (en) 2001-09-18 2003-03-25 Olympus Optical Co Ltd Endoscopic system
US6652518B2 (en) 2001-09-28 2003-11-25 Ethicon, Inc. Transmural ablation tool and method
US20040097919A1 (en) 2001-09-28 2004-05-20 Ethicon, Inc. Surgical device for clamping, ligating, and severing tissue
US20050226682A1 (en) 2001-10-09 2005-10-13 David Chersky Method and apparatus for improved stiffness in the linkage assembly of a flexible arm
US7125409B2 (en) 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US20030078577A1 (en) 2001-10-22 2003-04-24 Csaba Truckai Electrosurgical jaw structure for controlled energy delivery
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US20030144652A1 (en) 2001-11-09 2003-07-31 Baker James A. Electrosurgical instrument
US6821273B2 (en) 2002-01-03 2004-11-23 Starion Instruments Corporation Combined dissecting, cauterizing, and stapling device
US20030229344A1 (en) 2002-01-22 2003-12-11 Dycus Sean T. Vessel sealer and divider and method of manufacturing same
US6676660B2 (en) 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
US20030144653A1 (en) 2002-01-25 2003-07-31 Medtronic, Inc. System and method of performing an electrosurgical procedure
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US20050015085A1 (en) 2002-02-12 2005-01-20 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US20030158547A1 (en) 2002-02-19 2003-08-21 Phan Huy D. Apparatus for converting a clamp into an electrophysiology device
US6648839B2 (en) 2002-02-28 2003-11-18 Misonix, Incorporated Ultrasonic medical treatment device for RF cauterization and related method
US6736814B2 (en) 2002-02-28 2004-05-18 Misonix, Incorporated Ultrasonic medical treatment device for bipolar RF cauterization and related method
US6746488B1 (en) 2002-03-19 2004-06-08 Biomet, Inc. Method and apparatus for hindering osteolysis in porous implants
US6918909B2 (en) 2002-04-10 2005-07-19 Olympus Corporation Resectoscope apparatus
WO2003088806A2 (en) 2002-04-16 2003-10-30 Vivant Medical, Inc. Localization element with energized tip
US20050131390A1 (en) 2002-04-25 2005-06-16 Russell Heinrich Surgical instruments including mems devices
US7238195B2 (en) 2002-05-10 2007-07-03 Tyco Healthcare Group Lp Wound closure material applicator and stapler
US6852108B2 (en) 2002-05-14 2005-02-08 Spiration, Inc. Apparatus and method for resecting and removing selected body tissue from a site inside a patient
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
WO2003103522A1 (en) 2002-06-10 2003-12-18 Map Technologies Llc Methods and devices for electrosurgical electrolysis
US7220260B2 (en) 2002-06-27 2007-05-22 Gyrus Medical Limited Electrosurgical system
US6929642B2 (en) 2002-06-28 2005-08-16 Ethicon, Inc. RF device for treating the uterus
US7033356B2 (en) 2002-07-02 2006-04-25 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
JP2004049566A (en) 2002-07-19 2004-02-19 Olympus Corp Electrosurgical apparatus
US20040068274A1 (en) 2002-10-02 2004-04-08 Hooven Michael D. Articulated clamping member
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
WO2004032776A1 (en) 2002-10-04 2004-04-22 Sherwood Services Ag Electrosurgical instrument for sealing vessels
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US20080195093A1 (en) 2002-10-04 2008-08-14 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
WO2004032596A2 (en) 2002-10-08 2004-04-22 The Trustees Of Columbia University In The City Ofnew York Ringed forceps
US20050033277A1 (en) 2002-10-23 2005-02-10 Clague Cynthia T. Electrosurgical methods and apparatus for making precise incisions in body vessels
US20060041254A1 (en) 2002-10-30 2006-02-23 Medtronic, Inc. Electrosurgical hemostat
US20040143263A1 (en) 2002-11-14 2004-07-22 Schechter David A. Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7195627B2 (en) 2003-01-09 2007-03-27 Gyrus Medical Limited Electrosurgical generator
US6936048B2 (en) 2003-01-16 2005-08-30 Charlotte-Mecklenburg Hospital Authority Echogenic needle for transvaginal ultrasound directed reduction of uterine fibroids and an associated method
US20040236320A1 (en) 2003-01-21 2004-11-25 Protsenko Dmitry E Method and apparatus for the control and monitoring of shape change in tissue
US7169146B2 (en) 2003-02-14 2007-01-30 Surgrx, Inc. Electrosurgical probe and method of use
US6918907B2 (en) 2003-03-13 2005-07-19 Boston Scientific Scimed, Inc. Surface electrode multiple mode operation
US20060052779A1 (en) 2003-03-13 2006-03-09 Hammill Curt D Electrode assembly for tissue fusion
US20050021026A1 (en) 2003-05-01 2005-01-27 Ali Baily Method of fusing biomaterials with radiofrequency energy
US20060217709A1 (en) 2003-05-01 2006-09-28 Sherwood Services Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
WO2004098383A2 (en) 2003-05-01 2004-11-18 Sherwood Services Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
EP1472984A1 (en) 2003-05-01 2004-11-03 Sherwood Services AG Method and control system for performing electrosurgical procedures
US7722601B2 (en) * 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US20060052778A1 (en) 2003-05-01 2006-03-09 Chapman Troy J Incorporating rapid cooling in tissue fusion heating processes
US20050021027A1 (en) 2003-05-15 2005-01-27 Chelsea Shields Tissue sealer with non-conductive variable stop members and method of sealing tissue
US7090637B2 (en) 2003-05-23 2006-08-15 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US20070250113A1 (en) 2003-05-23 2007-10-25 Hegeman David E Tool with articulation lock
US7410483B2 (en) 2003-05-23 2008-08-12 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
EP1486177B1 (en) 2003-06-13 2009-08-12 Covidien AG Method of manufacturing jaw assembly
US7494039B2 (en) 2003-06-17 2009-02-24 Tyco Healthcare Group Lp Surgical stapling device
US7159750B2 (en) 2003-06-17 2007-01-09 Tyco Healtcare Group Lp Surgical stapling device
US20050033276A1 (en) 2003-07-07 2005-02-10 Olympus Corporation Blood vessel detection device
US6981628B2 (en) 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
WO2005009213A2 (en) 2003-07-16 2005-02-03 Arthrocare Corporation Rotary electrosurgical apparatus and methods thereof
EP1518498B1 (en) 2003-09-29 2007-12-19 Ethicon Endo-Surgery, Inc. Endoscopic mucosal resection device
EP1518499B1 (en) 2003-09-29 2008-08-13 Ethicon Endo-Surgery, Inc. Endoscopic mucosal resection device with conductive tissue stop
US20050070895A1 (en) 2003-09-30 2005-03-31 Thomas Ryan Electrosurgical instrument and method for transecting an organ
WO2005034729A2 (en) 2003-10-06 2005-04-21 Brian Kelleher Methods and devices for soft tissue securement
US20050096694A1 (en) 2003-10-30 2005-05-05 Woojin Lee Surgical instrument
US20050096645A1 (en) 2003-10-31 2005-05-05 Parris Wellman Multitool surgical device
US20050107781A1 (en) 2003-11-18 2005-05-19 Isaac Ostrovsky System and method for tissue ablation
US20050107784A1 (en) 2003-11-19 2005-05-19 Moses Michael C. Open vessel sealing instrument with cutting mechanism and distal lockout
JP2005144193A (en) 2003-11-19 2005-06-09 Sherwood Services Ag Blood vessel sealing instrument for open operation with cutting mechanism
US20050196421A1 (en) 2003-11-20 2005-09-08 Angiotech International Ag Polymer compositions and methods for their use
US20050209664A1 (en) 2003-11-20 2005-09-22 Angiotech International Ag Electrical devices and anti-scarring agents
EP1532933B1 (en) 2003-11-20 2008-05-07 Covidien AG Electrically conductive/insulative over-shoe for tissue fusion
US20050113817A1 (en) 2003-11-21 2005-05-26 Isaacson James D. Tuned return electrode with matching inductor
US20050119654A1 (en) 2003-12-02 2005-06-02 Swanson David K. Clamp based methods and apparatus for forming lesions in tissue and confirming whether a therapeutic lesion has been formed
US20050149073A1 (en) 2003-12-17 2005-07-07 Arani Djavad T. Mechanisms and methods used in the anastomosis of biological conduits
US20050192633A1 (en) 2004-01-23 2005-09-01 Montpetit Karen P. Tissue fastening and cutting tool, and methods
US20050171533A1 (en) 2004-02-02 2005-08-04 Gyrus Medical, Inc. Surgical instrument
WO2005079901A1 (en) 2004-02-17 2005-09-01 Boston Scientific Limited Endoscopic multi-lumen devices and related methods of use
US20050187561A1 (en) 2004-02-25 2005-08-25 Femasys, Inc. Methods and devices for conduit occlusion
US20050203500A1 (en) 2004-03-09 2005-09-15 Usgi Medical Inc. Apparatus and methods for mapping out endoluminal gastrointestinal surgery
US7179254B2 (en) 2004-03-09 2007-02-20 Ethicon, Inc. High intensity ablation device
US7291143B2 (en) 2004-05-10 2007-11-06 Boston Scientific Scimed, Inc. Clamp based low temperature lesion formation apparatus, systems and methods
US20050256522A1 (en) 2004-05-12 2005-11-17 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US20050256524A1 (en) 2004-05-14 2005-11-17 Long Gary L RF ablation device and method of use
US20050261676A1 (en) 2004-05-20 2005-11-24 Gyrus Medical Limited Surgical instrument
WO2005115251A1 (en) 2004-05-25 2005-12-08 Christy Cummins Surgical stapler
US20070208333A1 (en) * 2004-06-23 2007-09-06 Smith & Nephew, Inc. Electrosurgical generator
US7506790B2 (en) 2004-07-28 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
EP1621146A2 (en) 2004-07-28 2006-02-01 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation locking mechanism
US20060025812A1 (en) 2004-07-28 2006-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated pivoting articulation mechanism
US20060025765A1 (en) 2004-07-30 2006-02-02 Jaime Landman Electrosurgical systems and methods
EP1632192B1 (en) 2004-09-02 2009-03-18 Covidien AG Vessel sealing instrument with electrical cutting mechanism
US20060064084A1 (en) 2004-09-20 2006-03-23 Dieter Haemmerich Electrode array for tissue ablation
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
EP1645237A1 (en) 2004-10-08 2006-04-12 Sherwood Services AG Endoscopic bipolar electrosurgical forceps
US20060079872A1 (en) 2004-10-08 2006-04-13 Eggleston Jeffrey L Devices for detecting heating under a patient return electrode
WO2006060431A1 (en) 2004-11-30 2006-06-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20060167451A1 (en) 2005-01-26 2006-07-27 Ethicon Endo-Surgery, Inc. Medical instrument including an end effector having a medical-treatment electrode
US20060229665A1 (en) 2005-02-18 2006-10-12 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
US20060190029A1 (en) 2005-02-18 2006-08-24 Wales Kenneth S Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
US20060226196A1 (en) 2005-02-18 2006-10-12 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
EP1707143B1 (en) 2005-03-31 2008-06-04 Covidien AG Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US20060259035A1 (en) 2005-05-12 2006-11-16 Camran Nezhat Method and Apparatus for Performing a Surgical Procedure
US20080228179A1 (en) 2005-05-12 2008-09-18 Joseph Charles Eder Electrocautery method and apparatus
US20080221565A1 (en) 2005-05-12 2008-09-11 Joseph Charles Eder Electrocautery method and apparatus
US20070185482A1 (en) 2005-05-12 2007-08-09 Eder Joseph C Electrocautery method and apparatus
US7862565B2 (en) 2005-05-12 2011-01-04 Aragon Surgical, Inc. Method for tissue cauterization
US20060259034A1 (en) 2005-05-12 2006-11-16 Joseph Eder Apparatus for Tissue Cauterization
US20090182323A1 (en) 2005-05-12 2009-07-16 Aragon Surgical, Inc. Electrocautery method and apparatus
US20110202058A1 (en) 2005-05-12 2011-08-18 Joseph Eder Apparatus for Tissue Cauterization
US20070129726A1 (en) 2005-05-12 2007-06-07 Eder Joseph C Electrocautery method and apparatus
US20060258954A1 (en) 2005-05-13 2006-11-16 Tyler Timberlake Biopsy forceps assemblies
US20060271037A1 (en) 2005-05-25 2006-11-30 Forcept, Inc. Assisted systems and methods for performing transvaginal hysterectomies
US20060271042A1 (en) 2005-05-26 2006-11-30 Gyrus Medical, Inc. Cutting and coagulating electrosurgical forceps having cam controlled jaw closure
US20060289602A1 (en) 2005-06-23 2006-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with double pivot closure and single pivot frame ground
WO2007002227A2 (en) 2005-06-23 2007-01-04 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20060293655A1 (en) 2005-06-28 2006-12-28 Sherwood Services Ag Electrode with rotatably deployable sheath
US20070244538A1 (en) 2005-06-30 2007-10-18 Eder Joseph C Transvaginal Uterine Artery Occlusion
US20070005061A1 (en) 2005-06-30 2007-01-04 Forcept, Inc. Transvaginal uterine artery occlusion
EP1747761B1 (en) 2005-07-28 2009-10-14 Covidien AG An electrode assembly with electrode cooling element for an electrosurgical instrument
US7641651B2 (en) 2005-07-28 2010-01-05 Aragon Surgical, Inc. Devices and methods for mobilization of the uterus
US20070128174A1 (en) 2005-09-21 2007-06-07 Kleinsek Donald A Methods and compositions for organ and tissue functionality
US20070073340A1 (en) 2005-09-21 2007-03-29 Shelton Frederick E Iv Surgical stapling instruments with collapsible features for controlling staple height
EP1767164A1 (en) 2005-09-22 2007-03-28 Sherwood Services AG Electrode assembly for tissue fusion
US20100298823A1 (en) 2005-12-06 2010-11-25 Hong Cao Assessment of electrode coupling for tissue ablation
WO2007082061A2 (en) 2006-01-11 2007-07-19 Hyperbranch Medical Technology, Inc. Crosslinked gels comprising polyalkyleneimines, and their uses as medical devices
US20070173805A1 (en) * 2006-01-24 2007-07-26 Craig Weinberg Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US20070173804A1 (en) 2006-01-24 2007-07-26 Wham Robert H System and method for tissue sealing
US20090157075A1 (en) 2006-01-24 2009-06-18 Covidien Ag System and Method for Tissue Sealing
US20090157072A1 (en) 2006-01-24 2009-06-18 Covidien Ag System and Method for Tissue Sealing
US20090157071A1 (en) 2006-01-24 2009-06-18 Covidien Ag System and Method for Tissue Sealing
US20070173811A1 (en) 2006-01-24 2007-07-26 Sherwood Services Ag Method and system for controlling delivery of energy to divide tissue
US7803156B2 (en) 2006-03-08 2010-09-28 Aragon Surgical, Inc. Method and apparatus for surgical electrocautery
US7794461B2 (en) 2006-03-08 2010-09-14 Aragon Surgical, Inc. Method and apparatus for surgical electrocautery
US20080172052A1 (en) 2006-05-02 2008-07-17 Joseph Eder Surgical Tool
EP1852081B1 (en) 2006-05-05 2009-08-26 Covidien AG Vessel sealing instrument with electrical cutting mechanism
US20070265613A1 (en) 2006-05-10 2007-11-15 Edelstein Peter Seth Method and apparatus for sealing tissue
US20070282318A1 (en) 2006-05-16 2007-12-06 Spooner Gregory J Subcutaneous thermolipolysis using radiofrequency energy
US20070282320A1 (en) 2006-05-30 2007-12-06 Sherwood Services Ag System and method for controlling tissue heating rate prior to cellular vaporization
EP1862138A1 (en) 2006-05-30 2007-12-05 Covidien AG Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US20080188844A1 (en) 2007-02-01 2008-08-07 Mcgreevy Francis T Apparatus and method for rapid reliable electrothermal tissue fusion and simultaneous cutting
WO2008094554A2 (en) 2007-02-01 2008-08-07 Conmed Corporation Apparatus for rapid reliable electrothermal tissue fusion
WO2008124112A1 (en) 2007-04-06 2008-10-16 Stephen Flock Inductive heating of tissues using alternating magnetic fields and uses thereof
US20080275446A1 (en) 2007-05-02 2008-11-06 Messerly Jeffrey D Two-piece jaw for bipolar ablation device
US20080308607A1 (en) 2007-06-18 2008-12-18 Timm Richard W Surgical stapling and cutting instrument with improved closure system
US7549564B2 (en) 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US7624902B2 (en) 2007-08-31 2009-12-01 Tyco Healthcare Group Lp Surgical stapling apparatus
US7703653B2 (en) 2007-09-28 2010-04-27 Tyco Healthcare Group Lp Articulation mechanism for surgical instrument
US20090138006A1 (en) 2007-11-28 2009-05-28 Bales Thomas O Cordless power-assisted medical cauterization and cutting device
US20090198272A1 (en) 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US20090209953A1 (en) 2008-02-15 2009-08-20 Tyco Healthcare Group Lp Multi-Layer Return Electrode
US20090240245A1 (en) 2008-03-19 2009-09-24 Derek Dee Deville Method for Powering a Surgical Instrument
US20090299367A1 (en) 2008-05-27 2009-12-03 Maquet Cardiovascular Llc Surgical Instrument and Method
US20100076427A1 (en) 2008-09-25 2010-03-25 Tyco Healthcare Group Lp Seal and Separate Algorithm
US20100094282A1 (en) 2008-10-15 2010-04-15 Olympus Medical Systems Corp. Electrosurgical apparatus and method of controlling electrosurgical apparatus
US20100280508A1 (en) 2009-05-01 2010-11-04 Joseph Charles Eder Method and Apparatus for RF Anastomosis

Non-Patent Citations (60)

* Cited by examiner, † Cited by third party
Title
(Arthrocare); Arthrocare receives clearance to market coblation-based devices for gynecology and laparoscopic surgery: clearance includes plasma forceps and 21 specific indications; Business Wire; p. 524; Oct. 25, 2001.
(Business Wire); Radiofrequency energy proven effective against leading cause of obstructive sleep apnea; Business Wire; p09140175; Sep. 14, 1998.
(Curon); Curon announces the publication of data supporting durability and effectiveness of STRETTA® system-positive one year follow-up data of U.S. clinical trial published in gastrointestinal endoscopy; PR Newswire; pNYTH10307022002; Feb. 7, 2002.
(Curon); Curon announces the publication of data supporting durability and effectiveness of STRETTA® system—positive one year follow-up data of U.S. clinical trial published in gastrointestinal endoscopy; PR Newswire; pNYTH10307022002; Feb. 7, 2002.
(Curon); Curon medical announces presentation of positive clinical study results of STRETTA® procedure for gastroesophageal reflux disease (GERD); PR Newswire; pNYW07920032002; Mar. 20, 2002.
(Enable); Enable medical introduces second generation bipolar scissors; Health Industry Today; pNA; Dec. 1998.
(Everest) Everest medical announces introduction of 3mm bipolar forceps; PR Newswire; p1002MNW021; Oct. 2, 1996.
(Everest) Everest medical discusses patent status: forecasts $1 million revenue first quarter: introduces next generation bipolar scissors; PR Newswire; pN/A; Mar. 31, 1994.
(Everest) Everest medical introduces new QUADRIPOLAR} cutting forceps at the global congress for gynecologic endoscopy meeting; PR Newswire; p. 8927; Nov. 8, 1999.
(Everest) Everest medical reports record first quarter results: introduces next generation bipolar scissors; PR Newswire; pN/A; Apr. 19, 1994.
(Everest) Quadripolar cutting forceps introduced by Everest Medical; Health Industry Today; vol. 63; No. 1; pNA; Jan. 2000.
(Novare); U.S. patent issued for Novare Surgical Systems Cygnet® surgical clamp: Novare signs multi-year supply agreement with Boston Scientific; PR Newswire; pNA; Sep. 2, 2003.
Aoki et al.; Thoracoscopic resection of the lung with the ultrasonic scalpel; Ann thorac Surg; vol. 67; No. 4; pp. 1181-1183; Apr. 1999.
Bergamaschi et al.; Laparoscopic intracorporeal bowel resection with ultrasound versus electrosurgical dissection; JSLS; vol. 5; No. 1; pp. 17-20; Jan.-Mar. 2001.
Eder, Joseph C.; U.S. Appl. No. 12/200,798 entitled "Assisted systems and methods for performing transvaginal hysterectomies," filed Aug. 28, 2008.
Eichfeld et al.; Evaluation of ultracision in lung metastatic surgery; Ann Thorac Surg; vol. 70; No. 4; pp. 1181-1184; Oct. 2000.
ERBE Elektromedizin GmbH; ERBE BiClamp Brochure; http://www.erbe-med.com/erbe/media/Marketingmaterialien/85100-139-ERBE-EN-BiClamp-D024676.pdf; downloaded Jan. 24, 2011; 6 pgs.
ERBE Elektromedizin GmbH; ERBE BiClamp Brochure; http://www.erbe-med.com/erbe/media/Marketingmaterialien/85100-139—ERBE—EN—BiClamp—D024676.pdf; downloaded Jan. 24, 2011; 6 pgs.
Gyrus ACMI (an Olympus Company); PKS Seal (product page); http://www.gyrusacmi.com/user/display.cfm?display=product&pid=9024; downloaded Jan. 24, 2011; 1 page.
GYRUS Medical; Cutting Forceps (Product Information); downloaded Oct. 5, 2005.
GYRUS Medical; LP Scissors (Product Information); downloaded Oct. 5, 2005.
GYRUS Medical; Lyons} Dissecting Forceps (Product Information); downloaded Oct. 5, 2005.
GYRUS Medical; Micro/Macro-Jaw Forceps (Product Information); downloaded Oct. 5, 2005.
GYRUS Medical; Seal} Open Forceps (Product Information); downloaded Oct. 5, 2005.
Hayashi et al.; Experimental and clinical evaluation of the harmonic scalpel in thoracic surgery; Kurume Med J; vol. 46; No. 1; pp. 25-29; 1999.
Hefni et al.; Safety and efficacy of using the ligasure vessel sealing system for securing the pedicles in vaginal hysterectomy: randomized controlled trial; BJOG; vol. 112; No. 3; pp. 329-333; Mar. 2005.
Heniford et al.; Initial results with an electrothermal bipolar vessel sealer; Surg Endosc; vol. 15; No. 8; pp. 799-801; Aug. 2001.
Johnson & Johnson Gateway, LLC; The Gynecare Versapoint (Product Information); http://jnjgateway.com/home/jhtml?loc=USENG&page=viewContent&id=edea000100001747&parentid=fc0de00100000334; downloaded Oct. 20, 2005.
Kamat et al.; Superiority of electrocautery over the suture method for achieving cervical cone bed hemostasis; Obstet Gynecol; vol. 102; No. 4; pp. 726-730; Oct. 2003.
Kennedy et al.; High-burst-strength, feedback-controlled bipolar vessel sealing; Surg Endosc; vol. 12; No. 6; pp. 876-878; Jun. 1998.
Kerver et al.; U.S. Appl. No. 13/070,391 entitled "Articulable electrosurgical instrument with a stabilizable articulation actuator," filed Mar. 23, 2011.
Kim et al.; Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs); IEEE/ASME Trans on Mechatronics; vol. 10; No. 1; pp. 77-86; Feb. 2005.
Koss et al.; U.S. Appl. No. 12/907,646 entitled "Impedance mediated control of power delivery for electrosurgery," filed Oct. 19, 2010.
Kovac; Transvaginal hysterectomy: rationale and surgical approach; Obstet. Gynecol.; vol. 103; pp. 1321-1325; 2004.
Landman et al.; Evaluation of a vessel sealing system, bipolar electrosurgery, harmonic scalpel, . . . in a porcine model; J. urol; vol. 169; No. 2; pp. 697-700; Feb. 2003.
Levy, et al.; Update on hysterectomy: new technology and techniques; A Supp. to OBG Maganagement; Feb. 2003.
Levy, et al.; Use of a new vessel ligation device during vaginal hysterectomy (presentation abstract); presented at FIGO 2000; Washington, D.C.; 2000.
Lin et al.; Application of ultrasonic scalpel in gynecologic operative laparoscopy; Chin Med J (Engl.); vol. 114; No. 12; pp. 1283-1285; Dec. 2001.
Live Tissue Connect Technologies; company profile; (http://www.onemedplace.com/database/compdisplay-print.php?CompanyID=11508); 1 pg.; Oct. 19, 2010 (downloaded Feb. 7, 2011).
Live Tissue Connect Technologies; company profile; (http://www.onemedplace.com/database/compdisplay—print.php?CompanyID=11508); 1 pg.; Oct. 19, 2010 (downloaded Feb. 7, 2011).
Lyons et al.; An innovative bipolar instrument for laparoscopic surgery; JSLS; vol. 9; No. 1; pp. 39-41; Jan.-Mar. 2005.
McClurken et al.; Collagen shrinkage and vessel sealing; Technical brief #300. Dover, NH: Tissue Link Medical; 2001.
Nezhat et al.; U.S. Appl. No. 08/948,282 entitled "Method and systems for organ resection," filed Oct. 9, 1997.
Nojarov et al.; High-energy scissors mode; Phys Rev C Nucl Phys; vol. 51; No. 5; pp. 2449-2456; 1995 (http://arxiv.orgiabs/nucl-th/9502001v1).
Parikh et al.; Three dimensional virtual reality model of the normal female pelvic floor; Annals of Bimedical Engineering; vol. 32; pp. 292-296; Feb. 2004.
Refractec, Inc.; Medical use of radiofrequency (RF) energy; (http://www.locateadoc.com/Site-Tools/Print.cfm); 2 pgs.; Aug. 23, 2008 (downloaded Feb. 7, 2011).
Refractec, Inc.; Medical use of radiofrequency (RF) energy; (http://www.locateadoc.com/Site—Tools/Print.cfm); 2 pgs.; Aug. 23, 2008 (downloaded Feb. 7, 2011).
SAGES 2001 Hands-On Course I-Taking it the next level: advanced laparoscopic techniques; http://vvww.sages.org/01program/syllabi/ho1/ho1.html#schirme; 24 pgs.; downloaded Oct. 5, 2005.
SAGES 2001 Hands-On Course I—Taking it the next level: advanced laparoscopic techniques; http://vvww.sages.org/01program/syllabi/ho1/ho1.html#schirme; 24 pgs.; downloaded Oct. 5, 2005.
SAGES 2001 Nurses Program, Session 1; http://sages.org/01program/syllabi/nurse/nurse.html; downloaded Jan. 24, 2011; 5 pgs.
Srisombut et al.; Laparoscopic hysterectomy using laparoscopic coagulating shears: experience of 15 cases; J. Med Assoc Thai; vol. 83; No. 8; pp. 915-920; Aug. 2000.
SURGRX 510(K) Summary (# K031133), Palo Alto, CA; 5 pgs.; Jul. 3, 2003.
TREAT; A new thermal device for sealing and dividing blood vessels; http://www.starioninstruments.com/PDFs/Treat.pdf; downloaded Jun. 29, 2005; 2 pgs.
Tyco Healthcare; The LigaSure Vessel Sealing System (Brochure); Apr. 2002; 8 pgs.
Valleylab Products; Valleylab Products-Electrosurgical Forceps: The surgeon's choice for quality and precision (product information); http://www.valleylab.com/product/es/accessories/forceps-over.html; downloaded Oct. 20, 2005.
Valleylab Products; Valleylab Products—Electrosurgical Forceps: The surgeon's choice for quality and precision (product information); http://www.valleylab.com/product/es/accessories/forceps—over.html; downloaded Oct. 20, 2005.
Valleylab Products; Valleylab Products-Ligasure} vessel sealing system (product information); http://www.valleylab.com/product/vessel-seal/index.html; downloaded Oct. 20, 2005.
Valleylab Products; Valleylab Products—Ligasure} vessel sealing system (product information); http://www.valleylab.com/product/vessel—seal/index.html; downloaded Oct. 20, 2005.
Van Lue et al.; U.S. Appl. No. 13/110,848 entitled "Electrosurgical tissue sealing augmented with a seal-enhancing composition," filed May 18, 2011.
Walberg, Erik; U.S. Appl. No. 13/021,633 entitled "Laparoscopic radiofrequency surgical device," filed Feb. 4, 2011.

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11058478B2 (en) 2006-05-02 2021-07-13 Aesculap Ag Laparoscopic radiofrequency surgical device
US20130116677A1 (en) * 2011-11-08 2013-05-09 Covidien Lp Systems and methods for treatment of premenstrual dysphoric disorders
US9486243B2 (en) * 2011-11-08 2016-11-08 Covidien Lp Systems and methods for treatment of premenstrual dysphoric disorders
US20140221792A1 (en) * 2013-02-01 2014-08-07 Devin Warner Miller Hydration Monitoring Apparatus
US10463273B2 (en) * 2013-02-01 2019-11-05 Halo Wearables, Llc Hydration monitor
US9924993B2 (en) 2013-04-28 2018-03-27 Kogent Surgical, LLC Electrosurgical system for tissue cauterization
US11051869B2 (en) 2013-04-28 2021-07-06 Kogent Surgical, LLC Electrosurgical system for tissue cauterization
US11207123B2 (en) 2018-11-16 2021-12-28 Applied Medical Resources Corporation Electrosurgical system
US11666372B2 (en) 2019-05-09 2023-06-06 Gyrus Acmi, Inc. Alternate power correction outputs in electrosurgical systems
US11672588B2 (en) 2019-05-09 2023-06-13 Gyrus Acmi, Inc. Phase angle measurement techniques in electrosurgical systems
US11723711B2 (en) 2019-05-09 2023-08-15 Gyrus Acmi, Inc. Power-controlled waveform in electrosurgical systems
US11751933B2 (en) 2019-05-09 2023-09-12 Gyrus Acmi, Inc. Dwell time between pulses in electrosurgical systems
US11819258B2 (en) 2019-05-09 2023-11-21 Gyrus Acmi, Inc. Pulsing at the end of the drying cycle in electrosurgical systems
US11864726B2 (en) 2019-05-09 2024-01-09 Gyrus Acmi, Inc. Correction to measured tissue impedance to account for electrode temperature in electrosurgical systems
US11864813B2 (en) 2019-05-09 2024-01-09 Gyrus Acmi, Inc. Evaluation of consumed energy in electrosurgical systems
US11877787B2 (en) 2019-05-09 2024-01-23 Gyrus Acmi, Inc. Terminating a pulse based upon measurements taken within the pulse in electrosurgical systems
US11883088B2 (en) 2019-05-09 2024-01-30 Gyrus Acmi, Inc. Open circuit check in electrosurgical systems
US11918274B2 (en) 2019-05-09 2024-03-05 Gyrus Acmi, Inc. Incremental adjustment of a control parameter as a function of a monitored variable in electrosurgical systems

Also Published As

Publication number Publication date
US20130116678A1 (en) 2013-05-09
US9277962B2 (en) 2016-03-08
US20110238062A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
US8419727B2 (en) Impedance mediated power delivery for electrosurgery
US11154345B2 (en) System and method for tissue sealing
JP5085143B2 (en) System and method for terminating processing in an impedance feedback algorithm
US9375254B2 (en) Seal and separate algorithm
CA2575392C (en) System and method for tissue sealing
EP2649956B1 (en) Electrosurgical monopolar apparatus with arc energy vascular coagulation control
AU2014203332B2 (en) Systems and methods for operating an electrosurgical generator
US8333759B2 (en) Energy delivery algorithm for medical devices
JP4567812B2 (en) Electrosurgical device and control method of electrosurgical device
JP4519980B2 (en) Electrosurgical equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARAGON SURGICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOSS, TIM;TAIMISTO, MIRIAM H.;VARNER, ROSEANNE;REEL/FRAME:024280/0142

Effective date: 20100329

AS Assignment

Owner name: AESCULAP AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARAGON SURGICAL, INC.;REEL/FRAME:027042/0958

Effective date: 20110921

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8