US8961402B2 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
US8961402B2
US8961402B2 US13/923,423 US201313923423A US8961402B2 US 8961402 B2 US8961402 B2 US 8961402B2 US 201313923423 A US201313923423 A US 201313923423A US 8961402 B2 US8961402 B2 US 8961402B2
Authority
US
United States
Prior art keywords
bending
traction member
right direction
force amount
operation input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/923,423
Other versions
US20130338441A1 (en
Inventor
Yasuhiro Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp filed Critical Olympus Medical Systems Corp
Assigned to OLYMPUS MEDICAL SYSTEMS CORP. reassignment OLYMPUS MEDICAL SYSTEMS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKAMOTO, YASUHIRO
Publication of US20130338441A1 publication Critical patent/US20130338441A1/en
Application granted granted Critical
Publication of US8961402B2 publication Critical patent/US8961402B2/en
Assigned to OLYMPUS CORPORATION reassignment OLYMPUS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OLYMPUS MEDICAL SYSTEMS CORP.
Assigned to OLYMPUS CORPORATION reassignment OLYMPUS CORPORATION CHANGE OF ADDRESS Assignors: OLYMPUS CORPORATION
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0052Constructional details of control elements, e.g. handles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00039Operational features of endoscopes provided with input arrangements for the user
    • A61B1/00042Operational features of endoscopes provided with input arrangements for the user for mechanical operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0057Constructional details of force transmission elements, e.g. control wires
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports

Definitions

  • the present invention relates to an endoscope in which a bending portion is driven to be bent.
  • a bendable bending portion is provided on a distal end side of an insertion portion in the endoscope to make it easy to insert the endoscope into even a bent region.
  • the bending portion is coupled to an operation input portion for bending provided on a proximal end side of the insertion portion via a bending operation wire functioning as a traction member inserted through the insertion portion.
  • An operator can tow the bending operation wire and bend the bending portion by pivoting a bending knob configuring the operation input portion.
  • an endoscope of an electric assist system in which a traction member is towed via electric driving means by tilting operation of a manipulator such as an operation lever or a joystick configuring an operation input portion.
  • Japanese Patent Application Laid-Open Publication No. 2003-325437 discloses that a strained state of a bending operation wire corresponding to tilting operation fixed to a coupling member is changed by tilting a manipulator, whereby a C-ring member that is pivotably arranged on the outer side of a pulley rotated by a motor and around which the bending operation wire is wound is reduced in diameter, a friction force is generated between the C-ring member reduced in diameter and the pulley, the C-ring member is rotated together with the pulley, and the bending operation wire is moved in a direction of the rotation, whereby a bending portion is bent.
  • An endoscope includes: an insertion portion; a bending portion provided in the insertion portion and bendable in an up-down direction and a left-right direction; a traction member for bending the bending portion; an operation portion provided at a proximal end of the insertion portion and for grasping by an operator; an operation input portion provided in the operation portion, tiltable with respect to a direction for bending the bending portion in the up-down direction and a direction for bending the bending portion in the left-right direction, and for performing an operation input for acting on the traction member according to tilting operation and bending the bending portion; and an operation force amount adjusting portion configured to adjust an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the up-down direction and an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the left-right direction to be different.
  • FIG. 1 is a perspective view showing an endoscope in a first embodiment of the present invention.
  • FIG. 2 is a side view showing a configuration around an operation portion provided with an operation input portion in a state in which a side cover of an operation portion main body is grasped.
  • FIG. 3 is a perspective view showing a configuration of the operation input portion including a manipulator or the like for towing a traction member.
  • FIG. 4 is a top view showing the configuration of the operation input portion including the manipulator or the like for towing the traction member.
  • FIG. 5 is a side view of the operation input portion shown in FIG. 3 .
  • FIG. 6 is a perspective view showing a schematic shape of a wire guide.
  • FIG. 7 is an explanatory diagram of action in tilting the manipulator in an upward direction in a simplified form of FIG. 5 .
  • FIG. 8 is a characteristic chart showing a relation of an operation force amount with respect to a bending angle.
  • FIG. 9 is a diagram showing a schematic configuration of an operation input portion in a first modification of the first embodiment.
  • FIG. 10 is a diagram showing a state in which the manipulator is tilted in FIG. 9 .
  • FIG. 11 is a diagram showing a schematic configuration of an operation input portion in a second modification of the first embodiment.
  • FIG. 12 is a diagram showing a state in which the manipulator is tilted at a predetermined tilting angle or more in FIG. 11 .
  • FIG. 13 is a characteristic chart showing a relation of an operation force amount with respect to a bending angle.
  • FIG. 14 is a diagram showing a schematic configuration of a peripheral portion of a manipulator in a third modification of the first embodiment.
  • FIG. 15 is a side view showing a configuration near a manipulator in a second embodiment of the present invention.
  • FIG. 16 is a characteristic chart showing a distribution of an operation force amount obtained when a manipulator is tilted in a left-right direction and an up-down direction in the second embodiment.
  • FIG. 17 is a diagram showing a schematic configuration of an operation input portion configured to perform tilting operation in a left-right direction in a modification of the second embodiment.
  • an endoscope 1 of the present invention is an endoscope of an electric assist system.
  • the endoscope 1 includes an elongated insertion portion 2 , an operation portion 3 jointly provided to a proximal end of the insertion portion 2 , and a universal cord 4 extending from a side portion of the operation portion 3 .
  • the insertion portion 2 is formed by jointly providing, in order from a distal end side, a rigid distal end portion 2 a , a bending portion 2 b bendable in up-down and left-right directions, and a flexible tube portion 2 c having flexibility and formed long.
  • An illumination window and an observation widow are provided in the distal end portion 2 a . Illumination light is emitted from the illumination window.
  • a not-shown image pickup apparatus configured to pick up an image of an illuminated region is provided in the observation window.
  • the operation portion 3 includes a grasping portion 3 a jointly provided to a proximal end (a rear end) of the insertion portion 2 and an operation portion main body 3 b jointly provided to a proximal end of the grasping portion 3 a .
  • a longitudinal axis of the grasping portion 3 a and an insertion axis of the insertion portion 2 are in a coaxial or parallel positional relation.
  • An operation input portion 10 configured to perform an operation input for bending the bending portion 2 b is provided on an inner side covered with a cover member 7 in the operation portion main body 3 b .
  • a bar-like shaft portion 5 a of a manipulator 5 configuring the operation input portion 10 projects from the cover member 7 .
  • the manipulator 5 is provided to project in a Z-axis direction orthogonal to a longitudinal axis (a Y-axis direction in FIG. 2 ) of the operation portion main body 3 b (or the operation portion 3 ) from a manipulator projection port, which is an opening, provided on one surface of the operation portion main body 3 b .
  • the cover member 7 water-tightly closes the manipulator projection port and closely attaches to the shaft portion 5 a of the manipulator main body 5 and is formed of a flexible member such as rubber for holding the manipulator 5 to enable tilting operation of the manipulator 5 .
  • the longitudinal axis of the operation portion main body 3 b and the longitudinal axis of the grasping portion 3 a are in a coaxial or parallel positional relation.
  • bending operation wires (hereinafter abbreviated as bending wires) 8 u , 8 d , 8 l , and 8 r explained below functioning as a traction member inserted through the insertion portion 2 are towed and slacked.
  • the bending portion 2 b is configured to be able to be bent in an upward direction, a downward direction, a left direction, and a right direction on a towed side of the bending wires and arbitrary directions among the directions.
  • the bending portion 2 b is configured to be bendable in four directions of up, down, left, and right.
  • the present embodiment includes a traction member in the up-down direction and a traction member in the left-right direction.
  • the manipulator 5 has functions of a manipulator in the up-down direction that is tilted in the up-down direction and a manipulator in the left and right direction that is tilted in the left-right direction.
  • the present invention is not limited to the configuration in which the bending portion 2 b bends in the four directions of up, down, left, and right and may be a configuration in which the bending portion 2 b bends only in the up-down direction or the left-right direction.
  • the signs u, d, l, and r represent that the signs correspond to the up, down, left, and right directions, which are the bending directions of the bending portion 2 b .
  • a sign 8 u represents a bending wire for upward direction. The same applies to the other signs.
  • 9 d represents a rotating body for downward direction.
  • 9 d represents a rotating body for downward direction.
  • 9 d represents a rotating body for downward direction. The same applies to the other components.
  • an air feeding and water feeding button 6 b and a suction button 6 c are provided to project to a position set in advance as shown in FIG. 2 .
  • a channel insertion port 6 d communicating with a treatment instrument channel is provided near the proximal end of the grasping portion 3 a.
  • the manipulator 5 When the operator grasps the grasping portion 3 a of the operation portion 3 with a left hand in the same manner as grasping a conventional endoscope, the manipulator 5 is provided in a position where the manipulator 5 can be operated to be tilted by a thumb of the grasping hand of the operator and the air feeding and water feeding button 6 b and the suction button 6 c are provided in a position where the buttons can be operated by a finger other than the thumb of the grasping hand of the operator.
  • Distal ends of the bending wires 8 i inserted through along the respective directions of up-down and left-right in the insertion portion 2 are fixed to a not-shown bending piece at a most distal end configuring the bending portion 2 b.
  • Rear end sides of the bending wires 8 i inserted through the insertion portion 2 are coupled to a hanging arm 13 functioning as a coupling member provided at the proximal end of the manipulator 5 through a guide roller set or the like configuring the operation input portion 10 .
  • the operation input portion 10 mainly includes the four bending wires 8 u , 8 d , 8 l , and 8 r , the four rotating bodies 9 u , 9 d , 9 l , and 9 r , a pulley 11 , a motor 12 , the manipulator 5 coupled to the hanging arm 13 , a plurality of guide roller sets 41 , 42 , 43 , and 44 and a guide roller set 21 configured to change traveling routes of the four bending wires 8 u , 8 d , 8 l , and 8 r in the operation portion 3 , and wire guides 15 u , 15 d , 15 l , and 15 r forming an operation force amount adjusting portion configured to adjust an operation force amount.
  • the manipulator 5 includes the bar-like shaft portion 5 a and a finger rest portion 5 b that is formed in a spherical shape at an end portion on a terminal end side of the shaft portion 5 a and against which a finger of the operator is pressed.
  • a universal joint 14 forming a bearing configured to rotatably support the shaft portion 5 a according to up-down and left-right tilting with respect to the manipulator 5 is provided halfway in the shaft portion 5 a .
  • a hanging frame or the hanging arm 13 having a cross shape and extending in the four directions in a plane orthogonal to the shaft portion 5 a is coupled and fixed to an end on a proximal end side (a proximal end) of the shaft portion 5 a.
  • wire fixing portions 13 u 2 , 13 d 2 , 13 l 2 , and 13 r 2 are respectively provided. Respective hand side end portions (proximal ends) of the bending wires 8 i are fixed at the terminal end portions to be inserted through the hole portions of the wire fixing portions 13 i 2 .
  • wire guides 15 i forming an operation force amount adjusting portion configured to adjust an operation force amount in tilting the manipulator 5 and bending the bending portion 2 b are provided.
  • manipulator 5 and the hanging arm 13 functioning as the coupling member jointly provided to the proximal end side of the manipulator 5 may be defined as a manipulator or may be defined as separate members.
  • the pulley 11 and the motor 12 are arranged in the operation portion main body 3 b in a positional relation in which each of a longitudinal axis of the pulley 11 and a driving axis of the motor 12 is orthogonal to the longitudinal axis of the operation portion 3 (the grasping portion 3 a ) and such that the longitudinal axis of the pulley 11 and the driving axis of the motor 12 are orthogonal to an axis direction of the manipulator 5 in a state of a neutral position (a neutral state position) as well.
  • the pulley 11 and the motor 12 are separate bodies.
  • the pulley 11 and the motor 12 are disposed, for example, in a position parallel to the axis direction of the manipulator 5 (in FIG. 2 , adjacent in the up-down direction near a right end in the operation portion main body 3 b ).
  • a motor side gear (not shown) is provided in a shaft (not shown) of the motor 12 .
  • a pulley side gear 49 (see FIG. 4 ) configured to mesh with the motor side gear is provided in a position set in advance of the pulley 11 . Rotation of the motor 12 is transmitted to the pulley 11 via the motor side gear and the pulley side gear 49 , whereby the motor 12 rotates. Then, the pulley 11 also rotates.
  • FIGS. 3 and 4 the motor 12 is not shown.
  • portions of the hanging arm for upward direction 13 u and the hanging arm for downward direction 13 d of the hanging arm 13 are indicated by broken lines.
  • the pulley 11 in which the rotating bodies 9 u , 9 d , 9 l , and 9 r are arranged is shown with positions thereof shifted in the right direction in the figure from the fourth guide roller set 44 (which overlaps the pulley 11 in the top view) to show the traveling routes of the bending wires 8 u , 8 d , 8 l , and 8 r.
  • the traveling routes of the bending wires 8 i extended from the distal end side of the insertion portion 2 to the proximal end side thereof are changed to a direction of the second guide roller set 42 , which is arranged on a lower side in the axis direction of the manipulator 5 , by a first guide roller sets 41 A and 41 B arranged in the grasping portion 3 a.
  • the traveling routes of the bending wires 8 i passed through the second guide roller set 42 are further changed to a direction of the rotating body 9 of the pulley 11 by the third guide roller set 43 .
  • the traveling routes of the bending wires 8 i passed through the rotating body 9 are changed to a direction of the third guide roller set 42 .
  • the bending wires 8 i passed through the third guide roller set 42 pass through the guide roller set 21 coaxially provided with the third guide roller set 42 .
  • the bending wires 8 i respectively come into contact with the wire guides 15 i having a shape close to a substantial semispherical shape forming the operation force amount adjusting portion and respective rear ends of the bending wires 8 i are fixed to the wire fixing portions 13 i 2 provided at cross-shaped end portions of the hanging arm 13 provided at the proximal end of the manipulator 5 .
  • FIG. 7 serving as an explanatory diagram close to FIG. 5
  • the wire guide 15 d in an opposite direction of the wire guide 15 u is indicated by a broken line to make it easy to distinguish a difference between a case in which the wire guide 15 d is provided and a case in which the wire guide 15 d is not provided.
  • the first guide roller sets 41 A and 41 B are arranged adjacent to each other along a direction (a Z direction) substantially parallel to the axis direction of the manipulator 5 .
  • Each of the first guide roller sets 41 A and 41 B rotatably supports two guide rollers 41 u and 41 d or 41 l and 41 r with a roller shaft 41 p.
  • the bending wires 8 u , 8 d , 8 l , and 8 r are guided to the guide rollers 42 u and 42 d and 42 l and 42 r of the guide roller set 42 , which are arranged on the proximal end side of the manipulator 5 , by the guide rollers 41 u and 41 d and 41 l and 41 r .
  • the respective guide rollers 42 i of the guide roller set 42 are rotatably supported by a common roller shaft 42 p together with guide rollers 21 i of the guide roller set 21 .
  • the respective bending wires 8 i the traveling routes of which are changed by the respective guide rollers 42 i , pass through respective guide rollers 43 i rotatably supported by a roller shaft 43 p and are guided to the elastic rotating bodies 9 i having a C-ring shape pivotably arranged in an outer circumference of the pulley 11 .
  • the rotating bodies 9 i pivotably arranged in the outer circumference of the pulley 11 rotated by the motor 12 are in a loosely fit state in which there are slight gaps between the rotating bodies 9 i and an outer circumferential surface of the pulley 11 to prevent a friction force from acting.
  • a diameter of the rotating bodies 9 i is reduced by a traction force amount (a traction force) of the towing.
  • the rotating bodies 9 i change to a state in which inner circumferential surfaces of the rotating bodies 9 i come into contact with the outer circumferential surface of the pulley 11 and a friction force acts.
  • the rotating bodies 9 i rotate together with the pulley 11 in a direction in which the bending wires 8 i are towed and assist(support) a towing action for the bending wires 8 i .
  • the rotating bodies 9 i are formed in a C-ring shape having a cutout 9 c , which is formed by cutting out one place in the circumferential direction in an annular shape, to be easily reduced in diameter when the bending wires 8 i are towed.
  • the respective bending wires 8 i wound around the rotating bodies 9 i about once are arranged on a lower side along the Z direction of the rotating bodies 9 i .
  • the traveling routes of the bending wires 8 i are changed by guide rollers 44 i rotatably supported by a roller shaft 44 p.
  • the respective bending wires 8 i the traveling routes of which are changed by the guide rollers 44 i , passes through the respective guide rollers 21 i rotatably supported by the roller shaft 41 p and the traveling routes thereof are changed.
  • the bending wires 8 i reach the wire fixing portions 13 i 2 in the hanging arms 13 i.
  • FIG. 6 shows a schematic shape of the wire guide 15 u in which a contact portion 17 c is formed by a projecting surface 17 .
  • shapes of the other wire guides 15 d , 15 l , and 15 r are the same as the shape of the wire guide 15 u .
  • the wire guide 15 u having rigidity is divided into two along a surface passing near a center of a member having a shape close to an ellipsoid (including a sphere).
  • the projecting surface 17 is formed by swelling an outer surface of one end portion in a major axis or minor axis direction of the wire guide 15 u .
  • a shape viewed from a side direction orthogonal to a portion where the projecting surface 17 is provided is a fan shape as shown in FIG. 5 and the like.
  • a concave portion 17 a for receiving bent end portions of the hanging arms 13 i is provided near an upper surface on the projecting surface 17 in the wire guide 15 u .
  • a screw hole 17 b is formed near a substantial center in a longitudinal direction of the projecting surface 17 such that the longitudinal direction on the upper surface formed as a plane comes into contact with bottom surfaces of the hanging arms 13 i and can be attached (fixed) to the hanging arms 13 i .
  • an alternate long and two short dashes line indicates a state in which the bent end portions of the hanging arms 13 i are housed in the concave portion 17 a and a vicinity of a hand side end portion of the bending wire 8 u comes into contact with the projecting surface 17 to form the contact portion 17 c .
  • the contact portion 17 c moves according to a tilting angle of the manipulator 5 . More strictly, the contact portion 17 c , with which the vicinity of the hand side end portion of the bending wire 8 u actually comes into contact, is a linear range along an extending direction of the bending wire 8 u . The range changes according to the tilting angle of the manipulator 5 .
  • An operation force amount necessary for tilting operation of the manipulator 5 can be adjusted by an acting position 17 d where a traction force acts on the bending wire 8 u in the contact portion 17 c as explained below.
  • the acting position 17 d where the traction force acts on the bending wire 8 u in the contact portion 17 c can also be represented as a position with which the bending wires 8 i functioning as the traction member come into contact at a largest distance from a rotation axis in the contact portion 17 c with which the bending wires 8 i come into contact.
  • an end portion on a lower end side in the linear range of the contact portion 17 c is the acting position 17 d.
  • long holes 18 are provided along a longitudinal direction thereof to make it possible to adjust an attaching position of the wire guide 15 u to a longitudinal direction of the long holes 18 .
  • the projecting surface 17 adjacent to a lower side of the concave portion 17 a comes to be a contact surface or the contact portion 17 c that comes into contact with the bending wires 8 i.
  • a position where the wire guide 15 is attached in the longitudinal direction of the hanging arms 13 i is changed within a range of length of the long holes 18 attached to the hanging arms 13 i . Consequently, it is possible to easily adjust an operation force amount by changing a distance to the acting position 17 d of the contact portion 17 c in the wire guides 15 i , with which the hand side end portions of the bending wires 8 i come into contact from the universal joint 14 when the manipulator 5 is tilted and which transmits an operation force amount by the tilting operation of the manipulator 5 as a traction force (a traction force amount).
  • the operator places a finger of the hand grasping the grasping portion 3 a in the finger rest portion 5 b of the manipulator 5 to tilt the shaft portion 5 a of the manipulator 5 . Consequently, the manipulator 5 tilts with a rotation center (a tilting center) set in a position where the manipulator 5 is pivotably supported by the universal joint 14 functioning as a bearing with respect to the up-down and left-right directions.
  • a rotation center a tilting center
  • a hanging arm 13 j (j represents a specific hanging arm corresponding to the tilting of the upper end side of the manipulator 5 ) at the lower end side corresponding to the tilting of the upper end side of the manipulator 5 also tilts.
  • a bending wire 8 j is towed.
  • a rotating body 9 j around which the bending wire 8 j is wound is reduced in diameter by the towed bending wire 8 j.
  • the rotating body 9 j comes into contact with a pulley 11 j on an inner side thereof (which transmits a rotating force of the motor 12 ).
  • a friction force acts on the rotating body 9 j and the pulley 11 j and moves the bending wire 8 j in a rotating direction of the pulley 11 j .
  • the bending portion 2 b to which a distal end of the bending wire 8 j is fixed, can be bent in a bending direction corresponding to operation of tilting of the manipulator 5 .
  • an operation force amount in tilting the manipulator 5 can be adjusted by changing a distance in which a traction force amount for traction acts on the bending wires 8 i.
  • the operation force amount can be adjusted by changing the distance from a distance a 0 (a first distance) in which a traction force amount acts on the hand side end portions of the bending wires 8 i according to the tilting operation of the manipulator 5 when the wire guides 15 i are not provided to a distance a (a second distance) in which the traction force acts when the wire guides 15 i are provided.
  • the endoscope 1 in the present embodiment having such a configuration is characterized by including the insertion portion 2 including the bending portion 2 b , the bending wires 8 i functioning as the traction member for bending the bending portion 2 b through traction, the operation portion 3 provided at the proximal end of the insertion portion 2 and provided with the operation input portion 10 for performing an operation input for bending the bending portion 2 b , the manipulator 5 including the hanging arms 13 i functioning as the coupling members configuring the operation input portion 10 and provided to correspond to the bending direction of the bending portion 2 b to which the traction member is coupled, the manipulator 5 pivoting around the rotating shaft pivotably supported by the universal joint 14 provided in the operation portion 3 according to tilting operation for performing the operation input and towing the traction member in the tilting direction, and the operation force amount adjusting portion configured to act on the traction member according to the tilting operation of the manipulator 5 and adjust an operation force amount necessary for the tilting of the manipulator 5 .
  • the operation force amount adjusting portion can be configured by the wire guides 15 i including the projecting surface 17 forming the contact portion 17 c that brings the operation force amount adjusting portion into contact with the traction member extending from the coupling member and transmits an operation force amount by the tilting of the manipulator 5 to the traction member and configured to adjust an operation force amount necessary for the tilting of the manipulator 5 by changing the first distance a 0 between the position where the traction member is coupled in the coupling member and the rotating shaft to the second distance a between the acting position 17 d where the traction force acts on the traction member in the contact portion 17 c and the rotating shaft simultaneously with the tilting of the manipulator 5 .
  • the operation force amount adjusting portion instead of configuring the operation force amount adjusting portion with the wire guides 15 i configured to change the first distance a 0 to the second distance a between the acting position 17 d in the contact portion 17 c and the rotating shaft and adjust the operation force amount necessary for the tilting of the manipulator 5 , it is also possible to configure the operation force amount adjusting portion including springs 51 i provided in the manipulator 5 and functioning as elastic bodies for elastically urging the traction member extending from the coupling member with respect to the tilting of the manipulator 5 and configured to adjust the operation force amount necessary for the tilting of the manipulator 5 by elastically changing, with the elastic member, an acting direction of a traction force acting on the traction member extending from the coupling member.
  • FIG. 7 is a side view viewed from the same side direction as FIG. 5 .
  • an explanatory diagram is shown in which, when the manipulator 5 is tilted in a state in which the manipulator 5 is viewed from a side direction perpendicular to a plane including the shaft portion 5 a of the manipulator 5 in a neutral position state and the hanging arms 13 u and 13 d of the manipulator 5 , the manipulator 5 tilts with a rotation center or a rotation axis set in a position pivotably supported by the universal joint 14 in the shaft portion 5 a of the manipulator 5 .
  • Note that, in FIG. 7 only a guide roller related to the upward direction in the guide roller set indicated by sign 42 or the like is shown (the same applies in modifications and embodiments explained below).
  • an operation force amount obtained when the operator places a finger in the finger rest portion 5 b of the manipulator 5 and tilts the shaft portion 5 a in the upward direction in order to bend the bending portion 2 b in the upward direction is represented as Fu
  • a distance from a center of the universal joint 14 to the acting position (or the contact portion acting position) 17 d where the vicinity of the hand side end portion of the bending wire for upward direction 8 u comes into contact in the contact portion 17 c and a traction force amount Tu for towing the bending wire 8 u for upward direction acts in the wire guide for upward direction 15 u is represented as a
  • a distance (also referred to as operation side distance) from the center of the universal joint 14 to a center of the finger rest portion 5 b is represented as b.
  • a circle indicated by a solid line indicates a track drawn by the acting position 17 d when the manipulator 5 is tilted.
  • a circle indicated by an alternate long and two short dashes line indicates a track drawn by the wire fixing portion for upward direction 13 u 2 when the manipulator 5 is tilted.
  • the angle ⁇ is larger than the angle ⁇ 0 in a tilting range (a bending range).
  • ⁇ (and ⁇ 0 ) is smaller than 90°. Therefore, sin ⁇ >sin ⁇ 0 .
  • an operation force amount necessary in the tilting operation to bend the bending portion 2 b near the neutral position may be small (the tilting operation for the bending can be performed with a small operation force amount). Therefore, when small bending is about to be performed, it is necessary to perform the tilting operation with a fine operation force amount.
  • the distance a larger than the distance a 0 when the wire guides 15 i are not provided is set. Therefore, it is possible to perform the same tilting operation with a rougher operation force amount. It is possible to reduce a burden on the operator with a simple configuration and improve operability. Even when the operation portion 3 is reduced in size by, for example, reducing a length of the shaft portion 5 a of the manipulator 5 , it is possible to provide the endoscope 1 that can adjust an operation force amount. Further, by increasing an operation force amount near the neutral position (necessary for the tilting operation for bending the bending portion 2 b ), it is possible to prevent the bending portion 2 b from being bent by careless tilting operation.
  • FIG. 8 shows a characteristic chart showing a relation of an operation force amount (with respect to a bending angle or a tilting angle) necessary when the bending portion 2 b in the present embodiment is bent in the upward direction.
  • a dotted line indicates a characteristic in the case of the related art in which the wire guide 15 is not provided.
  • the operator needs to finely adjust an operation force amount as explained above.
  • the characteristic requires a larger operation force amount, it is possible to smoothly set the bending angle to a desired bending angle through tilting operation with a rougher operation force amount.
  • FIGS. 7 and 8 are explained in the case of the tilting operation for performing the bending in the upward direction. However, substantially the same action and effects are obtained in cases of the other directions.
  • the shape of the wire guides 15 i is one example and may be a shape different from the shape shown in the figure.
  • the wire guides 15 u , 15 d , 15 l , and 15 r are provided in both of the up-down direction and the left-right direction.
  • the wire guides 15 u and 15 d or 15 l and 15 r may be provided only in at least one of the up-down direction and the left-right direction.
  • FIG. 9 shows a configuration of a peripheral portion of an operation input portion 10 B in a first modification of the first embodiment.
  • resistance portions 31 i functioning as resistance in towing the bending wires 8 i are provided halfway in the traveling routes of the bending wires 8 i to form an operation force amount adjusting portion, whereby functions similar to the functions in the first embodiment are provided.
  • the resistance portion 31 i is configured by guide members 32 i attached to the bending wires 8 i , pairs of guide rollers 33 i and 34 i arranged to sandwich the bending wires 8 i on the traveling routes of the bending wires 8 i on which the guide members 32 i are towed and moved (by tilting operation of the manipulator 5 ), and springs 35 i configured to urge the one guide rollers 34 i to the other guide rollers 33 i side.
  • One ends of the springs 35 i are fixed to an inner wall of the operation portion 3 or a frame for retaining the operation input portion 10 B. The other ends are fixed to bearings of the guide rollers 34 i.
  • the guide members 32 i are set in a shape in which thickness on a distal end side in a direction of traction movement of the bending wires 8 i (in FIG. 9 , the left direction) is large and decreases toward a rear end side.
  • FIG. 10 shows a state in which the manipulator 5 in the neutral position state in FIG. 9 is tilted to the upward direction (tilted in a clockwise direction in FIG. 9 ) to be bent in the upward direction of the bending portion 2 b .
  • This modification is the same as a configuration in which the resistance portions 31 i are provided in the configuration in which the wire guides 15 i are not provided in the first embodiment.
  • a guide member for upward direction 32 u moves together with the movement of the bending wire for upward direction 8 u .
  • the guide member for upward direction 32 u is located between the pair of guide rollers 33 u and 34 u .
  • the guide member for upward direction 32 u passes between the guide rollers 33 u and 34 u while being pressed by the pair of guide rollers 33 u urged by the spring for upward direction 35 u.
  • the guide member 32 u functions as resistance for traction movement of the bending wire for upward direction 8 u .
  • an operation force amount necessary in tilting the manipulator 5 is increased.
  • resistance against traction movement is large in a state in which the guide member 32 u nearly starts to come into contact with the guide rollers 33 u and 34 u . Thereafter, the resistance decreases according to the traction movement.
  • this modification by arranging the guide member 32 u near the guide rollers 33 u and 34 u as shown in FIG. 9 , it is possible to increase an operation force amount in performing tilting operation near a bending range Wa closer to the neutral position of the manipulator 5 .
  • This modification has effects similar to the effects in the first embodiment.
  • the guide members 32 i may be formed in a rotation-symmetrical shape around the bending wires 8 i.
  • This modification may be applied to the first embodiment as well.
  • this modification is applied to the first embodiment, there is an effect that adjustment of an operation force amount can be performed in a wider range.
  • Shapes on a distal end side and a rear end side in the direction of traction movement shown in FIG. 9 may be reversed to set thickness on the distal end side in the direction of traction movement to be small and increase toward the rear end side.
  • the operation force amount adjusting portion is explained that adjusts (sets) the operation force amount to be large in the bending range close to the neutral position or the tilting range for performing operation of bending.
  • the present invention is not limited to such a case.
  • an operation force amount adjusting portion may be formed that reduces an operation force amount on a bending range side close to the neutral position.
  • FIG. 11 shows a configuration of a peripheral portion of an operation input portion 10 C in a second modification of the first embodiment.
  • an operation force amount adjusting portion 53 C is formed using the springs 51 i and the guide rollers 52 i coupled to the manipulator 5 instead of providing the wire guides 15 i in the first embodiment.
  • the operation force amount adjusting portion 53 C is formed that adjusts an operation force amount by changing, with respect to tilting operation of the manipulator 5 , using an elastic force of the springs 51 i , direction of a traction force acting on the hand side end portions of the bending wires 8 i functioning as the traction member.
  • a projecting piece 54 projecting downward piercing through a (not-shown) hole of the hanging arm 13 is provided in the manipulator 5 .
  • One ends of the springs 51 i are fixed to a lower end of the projecting piece 54 .
  • the one ends of the springs 51 i functioning as elastic bodies or elastic members are fixed to the proximal end or ends on the proximal end side of the manipulator 5 .
  • the projecting piece 54 may be projected from the hanging arm 13 .
  • the one ends of the springs 51 i may be fixed to, for example, a center position of a bottom surface of the hanging arm 13 functioning as a coupling member without providing the projecting piece 54 .
  • the other ends of the springs 51 i are attached to rotating shafts of the guide rollers 52 i configured to changeably hold the traveling routes of the bending wires 8 i extended from the guide rollers 21 i to the wire fixing portions 13 i 2 (the guide roller set 21 side) of the hanging arm 13 .
  • the rotating shafts of the guide rollers 52 i are movably held in a state in which the rotating shafts pulled to a lower end side of the projecting piece 54 (to which the one ends of the springs 51 i are fixed) with an elastic force by the springs 51 i .
  • the springs 51 i urge the guide rollers 21 i , to which the other ends of the springs 51 i are fixed, to be elastically towed to thereby urge the bending wires 8 i in positions where the bending wires 8 i are movably held by the guide rollers 21 i to be towed to the one end side of the spring 51 i .
  • springs 51 u and 51 d and guide rollers 52 u and 52 d are shown.
  • not-shown springs 51 l and 51 r and guide rollers 52 l and 52 r are provided in a vertical direction of a paper surface.
  • the spring 51 u extends according to an increase in a traction force amount (an increase in a bending load).
  • the spring 51 u extends because of an increased traction force amount.
  • the bending wire for upward direction 8 u extending from the guide roller for upward direction 21 u nearly linearly extends from a bent state with an elastic force of the spring 51 u to reach the wire fixing portion for upward direction 13 u 2 . Note that, in FIG. 12 , only members related to the bending wire for upward direction 8 u are shown.
  • the operation force amount adjusting portion 53 C is formed to adjust, near the neutral position, with the springs 51 i , an operation force amount such that the traction force amount for towing the bending wires 8 i acts in a different direction (from the related art in which the springs 51 i and the guide rollers 52 i are not provided), the springs 51 i extend as the traction force amount increases, and an operation force amount close to an operation force amount in the related art is obtained.
  • the operation force amount adjusting portion 53 C is set to a characteristic for making it possible to greatly change, near the neutral position, a direction in which a traction force or a traction force amount acts (from the case of the related art) and bend the bending portion 2 b with a smaller operation force amount than the case of the related art.
  • a traction force amount acting on (the hand side end portion of) the bending wire for upward direction 8 u when the manipulator 5 is tilted is Tu along a direction near a horizontal direction of the paper surface as bending wire for upward direction 8 u is pulled by the spring 51 u in this modification.
  • the traction force is Tu 0 along a direction indicated by a dotted line.
  • represents an angle (or a supplementary angle) formed by a direction from the center of the universal joint 14 to the wire fixing portion for upward direction 13 u 2 and a direction of the traction force amount Tu.
  • sin ⁇ sin (180° ⁇ ).
  • ⁇ 0 represents an angle (or an supplementary angle) formed by a direction from the center of the universal joint 14 to the wire fixing portion for upward direction 13 u 2 and a direction of the traction force amount Tu 0 .
  • Equation (4) is approximately the following Equation (5).
  • an operation force amount is adjusted to be sine (more accurately, sin ⁇ /sin ⁇ 0 ) times as large as an operation force amount in the related art by changing a direction in which a traction force amount acts.
  • FIG. 13 a schematic characteristic of an operation force amount with respect to a bending angle by this modification is indicated by a solid line and a schematic characteristic in the case of the related art is indicated by a dotted line.
  • a schematic characteristic in the case of the related art is indicated by a dotted line.
  • FIG. 14 shows a top view ( FIG. 14(A) ) and a side view ( FIG. 14(B) ) of a hanging arm coupled to a lower end of a manipulator in a third modification of the first embodiment.
  • an integrated wire guide 71 is attached to the hanging arm 13 as shown in FIG. 14 .
  • wire fixing portions 73 i configured to fix (attach) the hand side end portions of the respective bending wires 8 i to a vicinity of an upper surface end portion facing an inner side of the long grooves 72 i in the wire guide 71 are provided.
  • a size extending to a curved surface in the downward direction is set larger than a size in the horizontal direction.
  • a distance extending from the rotation center to the wire fixing portions of the hanging arms 13 i is a′. Therefore, a 0 >a′.
  • the bending wire for upward direction 8 u extended from the guide roller 21 u is fixed to a position of a hand side end portion 73 u as indicated by a solid line.
  • an alternate long and two short dashes line indicates a case in which the wire guide 71 is not provided and the bending wire for upward direction 8 u is fixed to a wire fixing portion of the hanging arm for upward direction 13 u .
  • a radius of an alternate long and short dash line indicates that the distance a 0 from the rotation center to the wire fixing portion of the hanging arm for upward direction 13 u is set as a radius.
  • members related to bending in the upward direction are shown. However, the same substantially applies in the case of bending in the downward direction. The same substantially applied in the case of the left-right direction.
  • this modification has a characteristic closer to the characteristic chart of FIG. 13 . That is, it is possible to reduce an operation force amount in the case of a small bending range. According to this modification, it is possible to form an operation force amount adjusting portion that can easily adjust an operation force amount. Note that, although the integrated wire guide 71 is used in this modification, the wire guide 71 may be formed by a plurality of wire guides without being integrated.
  • the bending portion 2 b can be bent in any bending direction in an up-down direction and a left-right direction by tilting operation by a finger.
  • a bending direction of bending in the up-down direction and the left-right direction is set by giving a difference to magnitudes of operation force amounts, whereby it is possible to easily distinguish (or sense) the bending direction with a finger for performing the tilting operation. Therefore, it is possible to improve operability for an operator.
  • an operation force amount necessary in performing tilting operation for bending the bending portion 2 b is set to be different in the up-down direction and the left-right direction to be easily distinguished (or sensed).
  • FIG. 15(A) shows a side view of a peripheral portion of an operation input portion 10 D in which the manipulator 5 in a neutral position state is viewed from a longitudinal direction of the hanging arm for left direction 131 .
  • FIG. 15(B) shows a side view of a peripheral portion of an operation input portion 10 E in which the manipulator 5 in the neutral position state is viewed from a longitudinal direction of the hanging arm for upward direction 13 u.
  • a wire guide 61 shown in FIG. 15 is provided instead of the four wire guides 15 i in the first embodiment to form an operation force amount adjusting portion 53 E functioning as a direction adjusting member set (adjusted) to be capable of sensing a magnitude of an operation force amount in the up-down direction and the left-right direction.
  • the wire guides 15 i are respectively provided in the portions of the four hanging arms 13 i .
  • the integral wire guide 61 is attached to the bottom surface of the hanging arm 13 .
  • the wire guide 61 is convex in the downward direction of the shaft portion 5 a as shown in FIG. 15(A) and is formed in a curved surface shape formed along a fixed distance r from a rotation center of a bearing in the shaft portion 5 a.
  • the wire guide 61 is convex in the downward direction of the shaft portion 5 a as shown in FIG. 15(B) but, near an end portion of the hanging arm 13 , is formed in a curved surface shape including projecting surfaces 61 l and 61 r projecting to an outer side at the distance r (e.g., the projecting surface 61 r has the distance r′).
  • curved surface shape portions shown in FIGS. 15(A) and 15(B) are respectively acting positions of a contact portion with which the hand side end portions of the bending wires 8 i come into contact. An operation force amount is determined according to the acting positions of the contact portion.
  • Portions of the projecting surfaces 61 l and 61 r have a shape close to the shape of the projecting surface of the wire guides 15 l and 15 r in the first embodiment.
  • a function of the portions is similar to the functions of the projecting surfaces in the first embodiment.
  • a curved surface between the projecting surfaces 61 l and 61 r i.e., a curved surface equivalent to the curved surface in the case of the up-down direction
  • a distribution of an operation force amount obtained when tilting operation is performed in the left-right direction and the up-down direction in the present embodiment has a characteristic like a characteristic chart shown in FIG. 16(A) .
  • an operation force amount in the left-right direction is larger than an operation force amount in the up-down direction. Therefore, the operator can distinguish (sense), from a difference between the operation force amounts, with operation by a finger, for bending operation in which bending direction of the left-right direction and the up-down direction the tilting operation is performed.
  • a shape of the acting position of the contact portion with which the hand side end portions of the bending wires 8 i of the wire guide 61 come into contact is formed to be different in the up-down direction and the left-right direction. Therefore, the operator can easily distinguish or sense, with a finger used for operation, in which direction of the up-down direction and the left-right direction bending operation is performed. Besides, as in the first embodiment, it is also possible to adjust a magnitude of an operation force amount with the wire guide 61 .
  • the present embodiment by giving a difference to magnitudes of operation force amounts in performing bending operation in the up-down direction and the left-right direction, it is possible to sense an operation direction with a finger used for operation and it is possible to adjust a magnitude of an operation force amount.
  • a characteristic obtained by interchanging the characteristic shown in FIG. 16 in the up-down direction and the left-right direction may be set.
  • a structure may be adopted in which the projecting surfaces 61 l and 61 r shown in FIG. 15(B) are provided on the wire guide 61 side shown in FIG. 15(A) and the projecting surfaces 61 l and 61 r are not provided on the wire guide 61 side shown in FIG. 15(B) .
  • an input operation portion 1 OF that makes it easy to sense operation force amounts in the up-down direction and the left-right direction may be formed by applying a configuration close to the second modification of the first embodiment (the structure in which the springs 51 i are used shown in FIG. 11 ) as shown in FIG. 17 referred to below.
  • a direction different from a direction (a direction close to horizontal in FIG. 11 ) in which the traction force amount Tu acts in the up-down direction shown in FIG. 11 is set by the springs 51 l and 51 r .
  • An angle (or a supplementary angle) formed by a direction of the distance a and a direction in which the traction force amount Tu acts is indicated by ⁇ 1.
  • the angle ⁇ formed by the direction extending from the center of the universal joint 14 to the wire fixing portion 13 u 2 and the direction of the traction force amount Tu is set.
  • the angle ⁇ 1 larger than the angle ⁇ is set. That is, ⁇ 1, where ⁇ 1 ⁇ 0 and sin ⁇ 1 ⁇ sin ⁇ 0 .
  • operation force amounts may be set to be different.
  • the operation force amounts are set in that way, when the tilting operation in the up-down direction or the left-right direction is performed, it is also possible to grasp a tilting direction from a difference in a magnitude of an operation force amount.

Abstract

An endoscope includes an insertion portion, a bending portion bendable in an up-down direction and a left-right direction, a traction member for bending the bending portion, an operation portion provided at a proximal end of the insertion portion, an operation input portion provided in the operation portion, tiltable with respect to a first direction for bending the bending portion in the up-down direction and a second direction for bending the bending portion in the left-right direction, and for performing an operation input for acting on the traction member according to tilting operation and bending the bending portion, and an operation force amount adjusting portion configured to adjust an operation force amount for tilting the operation input portion in the first direction and an operation force amount for tilting the operation input portion in the second direction to be different.

Description

CROSS REFERENCE TO RELATED APPLICATION
This application is a continuation application of PCT/JP2013/050142 filed on Jan. 9, 2013 and claims benefit of Japanese Application No. 2012-006303 filed in Japan on Jan. 16, 2012, the entire contents of which are incorporated herein by this reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an endoscope in which a bending portion is driven to be bent.
2. Description of the Related Art
In recent years, an endoscope has been widely used in a medical field and an industrial field. A bendable bending portion is provided on a distal end side of an insertion portion in the endoscope to make it easy to insert the endoscope into even a bent region.
The bending portion is coupled to an operation input portion for bending provided on a proximal end side of the insertion portion via a bending operation wire functioning as a traction member inserted through the insertion portion. An operator can tow the bending operation wire and bend the bending portion by pivoting a bending knob configuring the operation input portion.
When the bending portion is driven to be bent manually by the operator, a large operation force amount is necessary. Therefore, there is proposed an endoscope of an electric assist system in which a traction member is towed via electric driving means by tilting operation of a manipulator such as an operation lever or a joystick configuring an operation input portion.
For example, Japanese Patent Application Laid-Open Publication No. 2003-325437 discloses that a strained state of a bending operation wire corresponding to tilting operation fixed to a coupling member is changed by tilting a manipulator, whereby a C-ring member that is pivotably arranged on the outer side of a pulley rotated by a motor and around which the bending operation wire is wound is reduced in diameter, a friction force is generated between the C-ring member reduced in diameter and the pulley, the C-ring member is rotated together with the pulley, and the bending operation wire is moved in a direction of the rotation, whereby a bending portion is bent.
In this way, in the case of the endoscope of the electric assist system, compared with the manual bending of the bending portion, it is possible to bend the bending portion with a small operation force amount by the tilting operation of the manipulator.
SUMMARY OF THE INVENTION
An endoscope according to an aspect of the present invention includes: an insertion portion; a bending portion provided in the insertion portion and bendable in an up-down direction and a left-right direction; a traction member for bending the bending portion; an operation portion provided at a proximal end of the insertion portion and for grasping by an operator; an operation input portion provided in the operation portion, tiltable with respect to a direction for bending the bending portion in the up-down direction and a direction for bending the bending portion in the left-right direction, and for performing an operation input for acting on the traction member according to tilting operation and bending the bending portion; and an operation force amount adjusting portion configured to adjust an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the up-down direction and an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the left-right direction to be different.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view showing an endoscope in a first embodiment of the present invention.
FIG. 2 is a side view showing a configuration around an operation portion provided with an operation input portion in a state in which a side cover of an operation portion main body is grasped.
FIG. 3 is a perspective view showing a configuration of the operation input portion including a manipulator or the like for towing a traction member.
FIG. 4 is a top view showing the configuration of the operation input portion including the manipulator or the like for towing the traction member.
FIG. 5 is a side view of the operation input portion shown in FIG. 3.
FIG. 6 is a perspective view showing a schematic shape of a wire guide.
FIG. 7 is an explanatory diagram of action in tilting the manipulator in an upward direction in a simplified form of FIG. 5.
FIG. 8 is a characteristic chart showing a relation of an operation force amount with respect to a bending angle.
FIG. 9 is a diagram showing a schematic configuration of an operation input portion in a first modification of the first embodiment.
FIG. 10 is a diagram showing a state in which the manipulator is tilted in FIG. 9.
FIG. 11 is a diagram showing a schematic configuration of an operation input portion in a second modification of the first embodiment.
FIG. 12 is a diagram showing a state in which the manipulator is tilted at a predetermined tilting angle or more in FIG. 11.
FIG. 13 is a characteristic chart showing a relation of an operation force amount with respect to a bending angle.
FIG. 14 is a diagram showing a schematic configuration of a peripheral portion of a manipulator in a third modification of the first embodiment.
FIG. 15 is a side view showing a configuration near a manipulator in a second embodiment of the present invention.
FIG. 16 is a characteristic chart showing a distribution of an operation force amount obtained when a manipulator is tilted in a left-right direction and an up-down direction in the second embodiment.
FIG. 17 is a diagram showing a schematic configuration of an operation input portion configured to perform tilting operation in a left-right direction in a modification of the second embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Embodiments of the present invention are explained below with reference to the drawings.
First Embodiment
As shown in FIG. 1, an endoscope 1 of the present invention is an endoscope of an electric assist system. The endoscope 1 includes an elongated insertion portion 2, an operation portion 3 jointly provided to a proximal end of the insertion portion 2, and a universal cord 4 extending from a side portion of the operation portion 3.
The insertion portion 2 is formed by jointly providing, in order from a distal end side, a rigid distal end portion 2 a, a bending portion 2 b bendable in up-down and left-right directions, and a flexible tube portion 2 c having flexibility and formed long. An illumination window and an observation widow are provided in the distal end portion 2 a. Illumination light is emitted from the illumination window. A not-shown image pickup apparatus configured to pick up an image of an illuminated region is provided in the observation window.
The operation portion 3 includes a grasping portion 3 a jointly provided to a proximal end (a rear end) of the insertion portion 2 and an operation portion main body 3 b jointly provided to a proximal end of the grasping portion 3 a. A longitudinal axis of the grasping portion 3 a and an insertion axis of the insertion portion 2 are in a coaxial or parallel positional relation.
An operation input portion 10 (see FIG. 2) configured to perform an operation input for bending the bending portion 2 b is provided on an inner side covered with a cover member 7 in the operation portion main body 3 b. A bar-like shaft portion 5 a of a manipulator 5 configuring the operation input portion 10 projects from the cover member 7. The manipulator 5 is provided to project in a Z-axis direction orthogonal to a longitudinal axis (a Y-axis direction in FIG. 2) of the operation portion main body 3 b (or the operation portion 3) from a manipulator projection port, which is an opening, provided on one surface of the operation portion main body 3 b. Note that the cover member 7 water-tightly closes the manipulator projection port and closely attaches to the shaft portion 5 a of the manipulator main body 5 and is formed of a flexible member such as rubber for holding the manipulator 5 to enable tilting operation of the manipulator 5.
The longitudinal axis of the operation portion main body 3 b and the longitudinal axis of the grasping portion 3 a are in a coaxial or parallel positional relation.
According to tilting operation including a tilting direction in the up-down direction and the left-right direction and a tilting angle of the manipulator 5 by an operator such as a surgeon, bending operation wires (hereinafter abbreviated as bending wires) 8 u, 8 d, 8 l, and 8 r explained below functioning as a traction member inserted through the insertion portion 2 are towed and slacked. The bending portion 2 b is configured to be able to be bent in an upward direction, a downward direction, a left direction, and a right direction on a towed side of the bending wires and arbitrary directions among the directions.
In the present embodiment, the bending portion 2 b is configured to be bendable in four directions of up, down, left, and right. According to the configuration, the present embodiment includes a traction member in the up-down direction and a traction member in the left-right direction. The manipulator 5 has functions of a manipulator in the up-down direction that is tilted in the up-down direction and a manipulator in the left and right direction that is tilted in the left-right direction. The present invention is not limited to the configuration in which the bending portion 2 b bends in the four directions of up, down, left, and right and may be a configuration in which the bending portion 2 b bends only in the up-down direction or the left-right direction. The signs u, d, l, and r represent that the signs correspond to the up, down, left, and right directions, which are the bending directions of the bending portion 2 b. In the following explanation, for example, a sign 8 u represents a bending wire for upward direction. The same applies to the other signs.
For example, in rotating bodies 9 u, 9 d, 9 l, and 9 r explained below, for example, 9 d represents a rotating body for downward direction. The same applies to the other components.
For example, when this applies to respective bending wires in the bending wires 8 u, 8 d, 8 l, and 8 r, the bending wires are represented as bending wires 8 or 8 i (i=u, d, l, or r).
In an armor of the operation portion main body 3 b, besides the manipulator 5, an air feeding and water feeding button 6 b and a suction button 6 c are provided to project to a position set in advance as shown in FIG. 2. A channel insertion port 6 d communicating with a treatment instrument channel (not shown in the figure) is provided near the proximal end of the grasping portion 3 a.
When the operator grasps the grasping portion 3 a of the operation portion 3 with a left hand in the same manner as grasping a conventional endoscope, the manipulator 5 is provided in a position where the manipulator 5 can be operated to be tilted by a thumb of the grasping hand of the operator and the air feeding and water feeding button 6 b and the suction button 6 c are provided in a position where the buttons can be operated by a finger other than the thumb of the grasping hand of the operator.
Next, a configuration of the operation input portion 10 is explained with reference to FIGS. 2 to 6. Distal ends of the bending wires 8 i inserted through along the respective directions of up-down and left-right in the insertion portion 2 are fixed to a not-shown bending piece at a most distal end configuring the bending portion 2 b.
Rear end sides of the bending wires 8 i inserted through the insertion portion 2 are coupled to a hanging arm 13 functioning as a coupling member provided at the proximal end of the manipulator 5 through a guide roller set or the like configuring the operation input portion 10.
The operation input portion 10 mainly includes the four bending wires 8 u, 8 d, 8 l, and 8 r, the four rotating bodies 9 u, 9 d, 9 l, and 9 r, a pulley 11, a motor 12, the manipulator 5 coupled to the hanging arm 13, a plurality of guide roller sets 41, 42, 43, and 44 and a guide roller set 21 configured to change traveling routes of the four bending wires 8 u, 8 d, 8 l, and 8 r in the operation portion 3, and wire guides 15 u, 15 d, 15 l, and 15 r forming an operation force amount adjusting portion configured to adjust an operation force amount.
The manipulator 5 includes the bar-like shaft portion 5 a and a finger rest portion 5 b that is formed in a spherical shape at an end portion on a terminal end side of the shaft portion 5 a and against which a finger of the operator is pressed. A universal joint 14 forming a bearing configured to rotatably support the shaft portion 5 a according to up-down and left-right tilting with respect to the manipulator 5 is provided halfway in the shaft portion 5 a. A hanging frame or the hanging arm 13 having a cross shape and extending in the four directions in a plane orthogonal to the shaft portion 5 a is coupled and fixed to an end on a proximal end side (a proximal end) of the shaft portion 5 a.
At terminal end portions of hanging arms 13 u, 13 d, 13 l, and 13 r in the four directions in the hanging arm 13, wire fixing portions 13 u 2, 13 d 2, 13 l 2, and 13 r 2 (see FIG. 3, etc.), formed by, for example, hole portions, configured to respectively fix (attach) respective proximal ends of the bending wires 8 u, 8 d, 8 l, and 8 r are respectively provided. Respective hand side end portions (proximal ends) of the bending wires 8 i are fixed at the terminal end portions to be inserted through the hole portions of the wire fixing portions 13 i 2.
In the present embodiment, near the wire fixing portions 13 i 2 of the hanging arms 13 i, wire guides 15 i forming an operation force amount adjusting portion configured to adjust an operation force amount in tilting the manipulator 5 and bending the bending portion 2 b are provided.
Note that the manipulator 5 and the hanging arm 13 functioning as the coupling member jointly provided to the proximal end side of the manipulator 5 may be defined as a manipulator or may be defined as separate members.
In the present embodiment, the pulley 11 and the motor 12 are arranged in the operation portion main body 3 b in a positional relation in which each of a longitudinal axis of the pulley 11 and a driving axis of the motor 12 is orthogonal to the longitudinal axis of the operation portion 3 (the grasping portion 3 a) and such that the longitudinal axis of the pulley 11 and the driving axis of the motor 12 are orthogonal to an axis direction of the manipulator 5 in a state of a neutral position (a neutral state position) as well. The pulley 11 and the motor 12 are separate bodies. The pulley 11 and the motor 12 are disposed, for example, in a position parallel to the axis direction of the manipulator 5 (in FIG. 2, adjacent in the up-down direction near a right end in the operation portion main body 3 b).
A motor side gear (not shown) is provided in a shaft (not shown) of the motor 12. A pulley side gear 49 (see FIG. 4) configured to mesh with the motor side gear is provided in a position set in advance of the pulley 11. Rotation of the motor 12 is transmitted to the pulley 11 via the motor side gear and the pulley side gear 49, whereby the motor 12 rotates. Then, the pulley 11 also rotates.
Note that in FIGS. 3 and 4, the motor 12 is not shown. In FIG. 4, portions of the hanging arm for upward direction 13 u and the hanging arm for downward direction 13 d of the hanging arm 13 are indicated by broken lines. In FIG. 4, in the top view, the pulley 11 in which the rotating bodies 9 u, 9 d, 9 l, and 9 r are arranged is shown with positions thereof shifted in the right direction in the figure from the fourth guide roller set 44 (which overlaps the pulley 11 in the top view) to show the traveling routes of the bending wires 8 u, 8 d, 8 l, and 8 r.
The traveling routes of the bending wires 8 i extended from the distal end side of the insertion portion 2 to the proximal end side thereof are changed to a direction of the second guide roller set 42, which is arranged on a lower side in the axis direction of the manipulator 5, by a first guide roller sets 41A and 41B arranged in the grasping portion 3 a.
The traveling routes of the bending wires 8 i passed through the second guide roller set 42 are further changed to a direction of the rotating body 9 of the pulley 11 by the third guide roller set 43. The traveling routes of the bending wires 8 i passed through the rotating body 9 are changed to a direction of the third guide roller set 42.
The bending wires 8 i passed through the third guide roller set 42 pass through the guide roller set 21 coaxially provided with the third guide roller set 42. The bending wires 8 i respectively come into contact with the wire guides 15 i having a shape close to a substantial semispherical shape forming the operation force amount adjusting portion and respective rear ends of the bending wires 8 i are fixed to the wire fixing portions 13 i 2 provided at cross-shaped end portions of the hanging arm 13 provided at the proximal end of the manipulator 5.
Note that, in FIG. 7 serving as an explanatory diagram close to FIG. 5, the wire guide 15 d in an opposite direction of the wire guide 15 u is indicated by a broken line to make it easy to distinguish a difference between a case in which the wire guide 15 d is provided and a case in which the wire guide 15 d is not provided.
As shown in FIGS. 3 to 5, the first guide roller sets 41A and 41B are arranged adjacent to each other along a direction (a Z direction) substantially parallel to the axis direction of the manipulator 5. Each of the first guide roller sets 41A and 41B rotatably supports two guide rollers 41 u and 41 d or 41 l and 41 r with a roller shaft 41 p.
The bending wires 8 u, 8 d, 8 l, and 8 r are guided to the guide rollers 42 u and 42 d and 42 l and 42 r of the guide roller set 42, which are arranged on the proximal end side of the manipulator 5, by the guide rollers 41 u and 41 d and 41 l and 41 r. The respective guide rollers 42 i of the guide roller set 42 are rotatably supported by a common roller shaft 42 p together with guide rollers 21 i of the guide roller set 21.
The respective bending wires 8 i, the traveling routes of which are changed by the respective guide rollers 42 i, pass through respective guide rollers 43 i rotatably supported by a roller shaft 43 p and are guided to the elastic rotating bodies 9 i having a C-ring shape pivotably arranged in an outer circumference of the pulley 11.
In a normal state, the rotating bodies 9 i pivotably arranged in the outer circumference of the pulley 11 rotated by the motor 12 are in a loosely fit state in which there are slight gaps between the rotating bodies 9 i and an outer circumferential surface of the pulley 11 to prevent a friction force from acting. When the bending wires 8 i wound around the rotating bodies 9 i are towed, a diameter of the rotating bodies 9 i is reduced by a traction force amount (a traction force) of the towing. The rotating bodies 9 i change to a state in which inner circumferential surfaces of the rotating bodies 9 i come into contact with the outer circumferential surface of the pulley 11 and a friction force acts.
In the state in which the friction force acts, the rotating bodies 9 i rotate together with the pulley 11 in a direction in which the bending wires 8 i are towed and assist(support) a towing action for the bending wires 8 i. As shown in FIG. 3 and the like, the rotating bodies 9 i are formed in a C-ring shape having a cutout 9 c, which is formed by cutting out one place in the circumferential direction in an annular shape, to be easily reduced in diameter when the bending wires 8 i are towed.
The respective bending wires 8 i wound around the rotating bodies 9 i about once are arranged on a lower side along the Z direction of the rotating bodies 9 i. The traveling routes of the bending wires 8 i are changed by guide rollers 44 i rotatably supported by a roller shaft 44 p.
The respective bending wires 8 i, the traveling routes of which are changed by the guide rollers 44 i, passes through the respective guide rollers 21 i rotatably supported by the roller shaft 41 p and the traveling routes thereof are changed. The bending wires 8 i reach the wire fixing portions 13 i 2 in the hanging arms 13 i.
The bending wires 8 i extending from the guide rollers 21 i to the wire fixing portions 13 i 2 come into contact with curved surfaces of the wire guides 15 i, which are attached near the wire fixing portions 13 i 2 in the hanging arms 13 i, in the traveling routes immediately before the bending wires 8 i reach the wire fixing portions 13 i 2.
FIG. 6 shows a schematic shape of the wire guide 15 u in which a contact portion 17 c is formed by a projecting surface 17. Note that shapes of the other wire guides 15 d, 15 l, and 15 r are the same as the shape of the wire guide 15 u. The wire guide 15 u having rigidity is divided into two along a surface passing near a center of a member having a shape close to an ellipsoid (including a sphere). The projecting surface 17 is formed by swelling an outer surface of one end portion in a major axis or minor axis direction of the wire guide 15 u. A shape viewed from a side direction orthogonal to a portion where the projecting surface 17 is provided is a fan shape as shown in FIG. 5 and the like.
A concave portion 17 a for receiving bent end portions of the hanging arms 13 i is provided near an upper surface on the projecting surface 17 in the wire guide 15 u. For example, a screw hole 17 b is formed near a substantial center in a longitudinal direction of the projecting surface 17 such that the longitudinal direction on the upper surface formed as a plane comes into contact with bottom surfaces of the hanging arms 13 i and can be attached (fixed) to the hanging arms 13 i. Note that an alternate long and two short dashes line indicates a state in which the bent end portions of the hanging arms 13 i are housed in the concave portion 17 a and a vicinity of a hand side end portion of the bending wire 8 u comes into contact with the projecting surface 17 to form the contact portion 17 c. The contact portion 17 c, with which the vicinity of the hand side end portion of the bending wire 8 u actually comes into contact, moves according to a tilting angle of the manipulator 5. More strictly, the contact portion 17 c, with which the vicinity of the hand side end portion of the bending wire 8 u actually comes into contact, is a linear range along an extending direction of the bending wire 8 u. The range changes according to the tilting angle of the manipulator 5. An operation force amount necessary for tilting operation of the manipulator 5 can be adjusted by an acting position 17 d where a traction force acts on the bending wire 8 u in the contact portion 17 c as explained below. Note that the acting position 17 d where the traction force acts on the bending wire 8 u in the contact portion 17 c can also be represented as a position with which the bending wires 8 i functioning as the traction member come into contact at a largest distance from a rotation axis in the contact portion 17 c with which the bending wires 8 i come into contact. In the case of FIGS. 5, 6, and 7, an end portion on a lower end side in the linear range of the contact portion 17 c is the acting position 17 d.
On the other hand, in the hanging arms 13 i, long holes 18 are provided along a longitudinal direction thereof to make it possible to adjust an attaching position of the wire guide 15 u to a longitudinal direction of the long holes 18.
When the wire guides 15 i are attached to the hanging arms 13 i, the projecting surface 17 adjacent to a lower side of the concave portion 17 a comes to be a contact surface or the contact portion 17 c that comes into contact with the bending wires 8 i.
A position where the wire guide 15 is attached in the longitudinal direction of the hanging arms 13 i is changed within a range of length of the long holes 18 attached to the hanging arms 13 i. Consequently, it is possible to easily adjust an operation force amount by changing a distance to the acting position 17 d of the contact portion 17 c in the wire guides 15 i, with which the hand side end portions of the bending wires 8 i come into contact from the universal joint 14 when the manipulator 5 is tilted and which transmits an operation force amount by the tilting operation of the manipulator 5 as a traction force (a traction force amount).
The operator places a finger of the hand grasping the grasping portion 3 a in the finger rest portion 5 b of the manipulator 5 to tilt the shaft portion 5 a of the manipulator 5. Consequently, the manipulator 5 tilts with a rotation center (a tilting center) set in a position where the manipulator 5 is pivotably supported by the universal joint 14 functioning as a bearing with respect to the up-down and left-right directions.
In this case, according to the tilting of an upper end side of the manipulator 5, a hanging arm 13 j (j represents a specific hanging arm corresponding to the tilting of the upper end side of the manipulator 5) at the lower end side corresponding to the tilting of the upper end side of the manipulator 5 also tilts. According to the tilting of the hanging arm 13 j, a bending wire 8 j is towed. A rotating body 9 j around which the bending wire 8 j is wound is reduced in diameter by the towed bending wire 8 j.
As explained above, according to the reduction in diameter, the rotating body 9 j comes into contact with a pulley 11 j on an inner side thereof (which transmits a rotating force of the motor 12). A friction force acts on the rotating body 9 j and the pulley 11 j and moves the bending wire 8 j in a rotating direction of the pulley 11 j. According to the movement, the bending portion 2 b, to which a distal end of the bending wire 8 j is fixed, can be bent in a bending direction corresponding to operation of tilting of the manipulator 5.
By providing the wire guides 15 i, an operation force amount in tilting the manipulator 5 can be adjusted by changing a distance in which a traction force amount for traction acts on the bending wires 8 i.
As explained below with reference to FIG. 7, the operation force amount can be adjusted by changing the distance from a distance a0 (a first distance) in which a traction force amount acts on the hand side end portions of the bending wires 8 i according to the tilting operation of the manipulator 5 when the wire guides 15 i are not provided to a distance a (a second distance) in which the traction force acts when the wire guides 15 i are provided.
The endoscope 1 in the present embodiment having such a configuration is characterized by including the insertion portion 2 including the bending portion 2 b, the bending wires 8 i functioning as the traction member for bending the bending portion 2 b through traction, the operation portion 3 provided at the proximal end of the insertion portion 2 and provided with the operation input portion 10 for performing an operation input for bending the bending portion 2 b, the manipulator 5 including the hanging arms 13 i functioning as the coupling members configuring the operation input portion 10 and provided to correspond to the bending direction of the bending portion 2 b to which the traction member is coupled, the manipulator 5 pivoting around the rotating shaft pivotably supported by the universal joint 14 provided in the operation portion 3 according to tilting operation for performing the operation input and towing the traction member in the tilting direction, and the operation force amount adjusting portion configured to act on the traction member according to the tilting operation of the manipulator 5 and adjust an operation force amount necessary for the tilting of the manipulator 5.
More specifically, the operation force amount adjusting portion can be configured by the wire guides 15 i including the projecting surface 17 forming the contact portion 17 c that brings the operation force amount adjusting portion into contact with the traction member extending from the coupling member and transmits an operation force amount by the tilting of the manipulator 5 to the traction member and configured to adjust an operation force amount necessary for the tilting of the manipulator 5 by changing the first distance a0 between the position where the traction member is coupled in the coupling member and the rotating shaft to the second distance a between the acting position 17 d where the traction force acts on the traction member in the contact portion 17 c and the rotating shaft simultaneously with the tilting of the manipulator 5.
Note that, as explained with reference to FIG. 11 below, instead of configuring the operation force amount adjusting portion with the wire guides 15 i configured to change the first distance a0 to the second distance a between the acting position 17 d in the contact portion 17 c and the rotating shaft and adjust the operation force amount necessary for the tilting of the manipulator 5, it is also possible to configure the operation force amount adjusting portion including springs 51 i provided in the manipulator 5 and functioning as elastic bodies for elastically urging the traction member extending from the coupling member with respect to the tilting of the manipulator 5 and configured to adjust the operation force amount necessary for the tilting of the manipulator 5 by elastically changing, with the elastic member, an acting direction of a traction force acting on the traction member extending from the coupling member.
Next, action in the present embodiment is explained with reference to FIG. 7. FIG. 7 is a side view viewed from the same side direction as FIG. 5. In the figure, an explanatory diagram is shown in which, when the manipulator 5 is tilted in a state in which the manipulator 5 is viewed from a side direction perpendicular to a plane including the shaft portion 5 a of the manipulator 5 in a neutral position state and the hanging arms 13 u and 13 d of the manipulator 5, the manipulator 5 tilts with a rotation center or a rotation axis set in a position pivotably supported by the universal joint 14 in the shaft portion 5 a of the manipulator 5. Note that, in FIG. 7, only a guide roller related to the upward direction in the guide roller set indicated by sign 42 or the like is shown (the same applies in modifications and embodiments explained below).
In FIG. 7, an operation force amount obtained when the operator places a finger in the finger rest portion 5 b of the manipulator 5 and tilts the shaft portion 5 a in the upward direction in order to bend the bending portion 2 b in the upward direction is represented as Fu, a distance from a center of the universal joint 14 to the acting position (or the contact portion acting position) 17 d where the vicinity of the hand side end portion of the bending wire for upward direction 8 u comes into contact in the contact portion 17 c and a traction force amount Tu for towing the bending wire 8 u for upward direction acts in the wire guide for upward direction 15 u is represented as a, and a distance (also referred to as operation side distance) from the center of the universal joint 14 to a center of the finger rest portion 5 b is represented as b.
A distance from the center of the universal joint 14 to (a terminal end position of) the wire fixing portion for upward direction 13 u 2, which is a position where a traction force amount Tu0 for towing the bending wire for upward direction 8 u in the case in which the wire guide for upward direction 15 u is not provided is represented as a0.
In FIG. 7, a circle indicated by a solid line indicates a track drawn by the acting position 17 d when the manipulator 5 is tilted. A circle indicated by an alternate long and two short dashes line indicates a track drawn by the wire fixing portion for upward direction 13 u 2 when the manipulator 5 is tilted.
In a state in which the operation force amount Fu in the upward direction and the traction force amount Tu for towing the bending wire for upward direction 8 u are balanced when the manipulator 5 is tilted with the operation force amount Fu in the upward direction, the following Equation (1) holds:
Fu×b=Tu×a sin θ  (1)
where θ represents an angle formed by a direction from the center of the universal joint 14 to the acting position 17 d and a direction of the traction force amount Tu.
On the other hand, in the case of the related art in which the wire guide for upward direction 15 u is not provided, in the balanced state, the following Equation (2) holds:
Fu×b=Tu 0 ×a 0 sin θ0  (2)
where, θ0 represents an angle formed by a direction from the center of the universal joint 14 to a wire fixing portion and a direction of a traction force amount Tu0.
As it is evident from FIG. 7, when the tilting operation is performed by the wire guide for upward direction 15 u, the distance a acting as the traction force amount Tu for towing the bending wire for upward direction 8 u is larger even when the tilting angle is changed than in the case in which the wire guide for upward direction 15 u is not provided.
The angle θ is larger than the angle θ0 in a tilting range (a bending range). In the case of FIG. 7, θ (and θ0) is smaller than 90°. Therefore, sin θ>sin θ0.
When magnitudes of the traction force amounts Tu and Tu0 are set the same, a larger operation force amount is necessary when the wire guide for upward direction 15 u is provided than when the wire guide for upward direction 15 u is not provided.
When the endoscope 1 does not include the wire guide for upward directions 15 i, an operation force amount necessary in the tilting operation to bend the bending portion 2 b near the neutral position may be small (the tilting operation for the bending can be performed with a small operation force amount). Therefore, when small bending is about to be performed, it is necessary to perform the tilting operation with a fine operation force amount.
On the other hand, when the wire guides 15 i are provided, the distance a larger than the distance a0 when the wire guides 15 i are not provided is set. Therefore, it is possible to perform the same tilting operation with a rougher operation force amount. It is possible to reduce a burden on the operator with a simple configuration and improve operability. Even when the operation portion 3 is reduced in size by, for example, reducing a length of the shaft portion 5 a of the manipulator 5, it is possible to provide the endoscope 1 that can adjust an operation force amount. Further, by increasing an operation force amount near the neutral position (necessary for the tilting operation for bending the bending portion 2 b), it is possible to prevent the bending portion 2 b from being bent by careless tilting operation.
FIG. 8 shows a characteristic chart showing a relation of an operation force amount (with respect to a bending angle or a tilting angle) necessary when the bending portion 2 b in the present embodiment is bent in the upward direction.
Note that, in FIG. 8, a dotted line indicates a characteristic in the case of the related art in which the wire guide 15 is not provided. As it is seen from FIG. 8, when the wire guide 15 is not provided, in a bending range (a tilting range) Wa near the neutral position, the operator needs to finely adjust an operation force amount as explained above. However, according to the present embodiment, since the characteristic requires a larger operation force amount, it is possible to smoothly set the bending angle to a desired bending angle through tilting operation with a rougher operation force amount.
Note that FIGS. 7 and 8 are explained in the case of the tilting operation for performing the bending in the upward direction. However, substantially the same action and effects are obtained in cases of the other directions.
In this way, according to the present embodiment, by providing the wire guides 15 i, in particular, it is possible to set a bending force amount in bending the bending portion 2 b in a state close to the neutral position to an easily operable value and improve operability.
As shown in an enlarged view of FIG. 5, for example, by changing an attaching position of the wire guide for upward direction 15 u from the solid line as indicated by the alternate long and two short dashes line, it is possible to easily perform adjustment for, for example, changing a distanced from a position of a rotation center in performing tilting operation to the contact portion 17 c and changing a value of the operation force amount Fu. In the example shown in FIG. 5, it is possible to increase the value of the operation force amount Fu. If the attaching position of the wire guide for upward direction 15 u is shifted in an opposite direction, it is possible to reduce the value of the operation force amount Fu. Note that it is possible to adjust operation force amounts in the other directions in the same manner.
Note that the shape of the wire guides 15 i is one example and may be a shape different from the shape shown in the figure. In the example explained above, the wire guides 15 u, 15 d, 15 l, and 15 r are provided in both of the up-down direction and the left-right direction. However, the wire guides 15 u and 15 d or 15 l and 15 r may be provided only in at least one of the up-down direction and the left-right direction.
FIG. 9 shows a configuration of a peripheral portion of an operation input portion 10B in a first modification of the first embodiment. In this modification, resistance portions 31 i functioning as resistance in towing the bending wires 8 i are provided halfway in the traveling routes of the bending wires 8 i to form an operation force amount adjusting portion, whereby functions similar to the functions in the first embodiment are provided. Note that a case of i=u is shown in FIG. 9. However, the resistance portions 31 i are provided in the same manner in a case of i=d, l, r.
The resistance portion 31 i is configured by guide members 32 i attached to the bending wires 8 i, pairs of guide rollers 33 i and 34 i arranged to sandwich the bending wires 8 i on the traveling routes of the bending wires 8 i on which the guide members 32 i are towed and moved (by tilting operation of the manipulator 5), and springs 35 i configured to urge the one guide rollers 34 i to the other guide rollers 33 i side. One ends of the springs 35 i are fixed to an inner wall of the operation portion 3 or a frame for retaining the operation input portion 10B. The other ends are fixed to bearings of the guide rollers 34 i.
The guide members 32 i are set in a shape in which thickness on a distal end side in a direction of traction movement of the bending wires 8 i (in FIG. 9, the left direction) is large and decreases toward a rear end side.
FIG. 10 shows a state in which the manipulator 5 in the neutral position state in FIG. 9 is tilted to the upward direction (tilted in a clockwise direction in FIG. 9) to be bent in the upward direction of the bending portion 2 b. This modification is the same as a configuration in which the resistance portions 31 i are provided in the configuration in which the wire guides 15 i are not provided in the first embodiment.
Next, action of this modification is explained. When the operator tilts the manipulator 5, for example, in the upward direction, the hanging arm for upward direction 13 u rotates in the clockwise direction from the state shown in FIG. 9. Then, the hand side end portion of the bending wire for upward direction 8 u is towed and the bending wire for upward direction 8 u moves in a direction in which the hand side end portion is towed.
A guide member for upward direction 32 u moves together with the movement of the bending wire for upward direction 8 u. As shown in FIG. 10, the guide member for upward direction 32 u is located between the pair of guide rollers 33 u and 34 u. In this state, the guide member for upward direction 32 u passes between the guide rollers 33 u and 34 u while being pressed by the pair of guide rollers 33 u urged by the spring for upward direction 35 u.
In this case, the guide member 32 u functions as resistance for traction movement of the bending wire for upward direction 8 u. As a result, an operation force amount necessary in tilting the manipulator 5 is increased. In this modification, resistance against traction movement is large in a state in which the guide member 32 u nearly starts to come into contact with the guide rollers 33 u and 34 u. Thereafter, the resistance decreases according to the traction movement.
Therefore, in this modification, by arranging the guide member 32 u near the guide rollers 33 u and 34 u as shown in FIG. 9, it is possible to increase an operation force amount in performing tilting operation near a bending range Wa closer to the neutral position of the manipulator 5. This modification has effects similar to the effects in the first embodiment.
Note that, in the example shown in FIG. 9, the guide members 32 i (i=u) have a rotation-asymmetrical shape in which width changes in directions of the opposed guide rollers 33 i and 34 i in the bending wires 8 i. However, the guide members 32 i may be formed in a rotation-symmetrical shape around the bending wires 8 i.
This modification may be applied to the first embodiment as well. When this modification is applied to the first embodiment, there is an effect that adjustment of an operation force amount can be performed in a wider range.
By adjusting shapes and arranging positions of the guide rollers 33 i and 34 i and the guide members 32 i, it is also possible to adjust an operation force amount in a desired bending range not only in the bending range Wa near the neutral position of the manipulator 5 but also in a bending range in a wider range.
Shapes on a distal end side and a rear end side in the direction of traction movement shown in FIG. 9 may be reversed to set thickness on the distal end side in the direction of traction movement to be small and increase toward the rear end side. In this case, it is possible to set (adjust) an operation force amount such that the operation force amount near the bending range Wa close to the neutral position is small and the operation force amount is large on a bending range side deviating from the bending range Wa.
Note that, in the first embodiment and the first modification, the operation force amount adjusting portion is explained that adjusts (sets) the operation force amount to be large in the bending range close to the neutral position or the tilting range for performing operation of bending. However, the present invention is not limited to such a case.
For example, in the case of a use for mainly performing large bending operation, if an operation force amount in performing small bending is reduced, it is possible to reduce a burden on the operator in performing tilting operation.
In relation to such a case, as explained below, an operation force amount adjusting portion may be formed that reduces an operation force amount on a bending range side close to the neutral position.
FIG. 11 shows a configuration of a peripheral portion of an operation input portion 10C in a second modification of the first embodiment. In this modification, as in the first modification, an operation force amount adjusting portion 53C is formed using the springs 51 i and the guide rollers 52 i coupled to the manipulator 5 instead of providing the wire guides 15 i in the first embodiment.
In this modification, the operation force amount adjusting portion 53C is formed that adjusts an operation force amount by changing, with respect to tilting operation of the manipulator 5, using an elastic force of the springs 51 i, direction of a traction force acting on the hand side end portions of the bending wires 8 i functioning as the traction member.
As shown in FIG. 11, a projecting piece 54 projecting downward piercing through a (not-shown) hole of the hanging arm 13 is provided in the manipulator 5. One ends of the springs 51 i are fixed to a lower end of the projecting piece 54. In other words, the one ends of the springs 51 i functioning as elastic bodies or elastic members are fixed to the proximal end or ends on the proximal end side of the manipulator 5. Note that the projecting piece 54 may be projected from the hanging arm 13. The one ends of the springs 51 i may be fixed to, for example, a center position of a bottom surface of the hanging arm 13 functioning as a coupling member without providing the projecting piece 54.
The other ends of the springs 51 i are attached to rotating shafts of the guide rollers 52 i configured to changeably hold the traveling routes of the bending wires 8 i extended from the guide rollers 21 i to the wire fixing portions 13 i 2 (the guide roller set 21 side) of the hanging arm 13. The rotating shafts of the guide rollers 52 i are movably held in a state in which the rotating shafts pulled to a lower end side of the projecting piece 54 (to which the one ends of the springs 51 i are fixed) with an elastic force by the springs 51 i. In other words, the springs 51 i urge the guide rollers 21 i, to which the other ends of the springs 51 i are fixed, to be elastically towed to thereby urge the bending wires 8 i in positions where the bending wires 8 i are movably held by the guide rollers 21 i to be towed to the one end side of the spring 51 i. Note that, in FIG. 11, springs 51 u and 51 d and guide rollers 52 u and 52 d are shown. However, not-shown springs 51 l and 51 r and guide rollers 52 l and 52 r are provided in a vertical direction of a paper surface.
In this modification, when the manipulator 5 is tilted in the clockwise direction from the state shown in FIG. 11 (in order to bend the bending portion 2 b in the upward direction), the spring 51 u extends according to an increase in a traction force amount (an increase in a bending load).
Therefore, when the manipulator 5 is tilted, for example, at a predetermined angle or more in the upward direction, as shown in FIG. 12, the spring 51 u extends because of an increased traction force amount. The bending wire for upward direction 8 u extending from the guide roller for upward direction 21 u nearly linearly extends from a bent state with an elastic force of the spring 51 u to reach the wire fixing portion for upward direction 13 u 2. Note that, in FIG. 12, only members related to the bending wire for upward direction 8 u are shown.
In this way, in this modification, the operation force amount adjusting portion 53C is formed to adjust, near the neutral position, with the springs 51 i, an operation force amount such that the traction force amount for towing the bending wires 8 i acts in a different direction (from the related art in which the springs 51 i and the guide rollers 52 i are not provided), the springs 51 i extend as the traction force amount increases, and an operation force amount close to an operation force amount in the related art is obtained.
In particular, the operation force amount adjusting portion 53C is set to a characteristic for making it possible to greatly change, near the neutral position, a direction in which a traction force or a traction force amount acts (from the case of the related art) and bend the bending portion 2 b with a smaller operation force amount than the case of the related art. In the state shown in FIG. 11, a traction force amount acting on (the hand side end portion of) the bending wire for upward direction 8 u when the manipulator 5 is tilted is Tu along a direction near a horizontal direction of the paper surface as bending wire for upward direction 8 u is pulled by the spring 51 u in this modification. On the other hand, in the case of the related art in which the spring 51 u is not provided, the traction force is Tu0 along a direction indicated by a dotted line.
As explained in the first embodiment, in a state in which the operation force amount Fu in the upward direction and the traction force amount Tu for towing the bending wire 8 u in the upward direction are balanced when the manipulator 5 is tilted with the operation force amount Fu in the upward direction, the following Equation (3) holds:
Fu×b=Tu×a 0 sin θ  (3)
where θ represents an angle (or a supplementary angle) formed by a direction from the center of the universal joint 14 to the wire fixing portion for upward direction 13 u 2 and a direction of the traction force amount Tu. Note that sin θ=sin (180°−θ).
On the other hand, in the case of the related art, in the balanced state, the following Equation (4) holds:
Fu×b=Tu 0 ×a 0 sin θ0  (4)
where, θ0 represents an angle (or an supplementary angle) formed by a direction from the center of the universal joint 14 to the wire fixing portion for upward direction 13 u 2 and a direction of the traction force amount Tu0.
In the case of FIG. 11, since the angle θ0 is close to 90°, Equation (4) is approximately the following Equation (5).
Fu×b≅Tu 0×a0  (5)
Concerning the case in which the traction force amounts Tu and Tu0 are the same magnitude, in this modification, an operation force amount is adjusted to be sine (more accurately, sin θ/sin θ0) times as large as an operation force amount in the related art by changing a direction in which a traction force amount acts.
In FIG. 13, a schematic characteristic of an operation force amount with respect to a bending angle by this modification is indicated by a solid line and a schematic characteristic in the case of the related art is indicated by a dotted line. As shown in FIG. 13, in the bending range Wa close to the neutral position as shown in FIG. 13, tilting operation is performed with an operation force amount smaller than an operation force amount in the related art.
Note that the characteristic shown in FIG. 13 can be changed by adjusting the elastic force of the springs 51 i.
According to this modification, it is possible to reduce an operation force amount in performing small bending and reduce a burden on the operator in frequently using larger bending.
FIG. 14 shows a top view (FIG. 14(A)) and a side view (FIG. 14(B)) of a hanging arm coupled to a lower end of a manipulator in a third modification of the first embodiment. In this modification, an integrated wire guide 71 is attached to the hanging arm 13 as shown in FIG. 14.
In the hanging arms 13 i, long grooves 72 i extending long from respective end portions to the shaft portion 5 a side of the manipulator 5 on a center side of the hanging arms 13 i are formed. In the wire guide 71, wire fixing portions 73 i configured to fix (attach) the hand side end portions of the respective bending wires 8 i to a vicinity of an upper surface end portion facing an inner side of the long grooves 72 i in the wire guide 71 are provided.
As shown in the side view of FIG. 14(B), in the wire guide 71, a size extending to a curved surface in the downward direction is set larger than a size in the horizontal direction. A distance h extending from the rotation center of the manipulator 5 to a curved surface in a periphery in the downward direction is set to a distance a0 extending from the rotation center to the wire fixing portions of the hanging arms 13 i (i.e., h=a0). As shown in FIG. 14(B), in a state of the neutral position, a distance extending from the rotation center to the wire fixing portions of the hanging arms 13 i is a′. Therefore, a0>a′. Therefore, in the state of the neutral position, in this modification, it is possible to tilt the manipulator 5 and bend the bending portion 2 b with a smaller operation force amount than an operation force amount in the case of the related art in which the wire guide 71 is not provided. Similarly, in a small bending range close to the neutral position, it is possible to perform tilting operation for bending the bending portion 2 b with a smaller operation force amount than the operation force amount in the case of the related art.
As shown in FIG. 14(B), the bending wire for upward direction 8 u extended from the guide roller 21 u is fixed to a position of a hand side end portion 73 u as indicated by a solid line. On the other hand, an alternate long and two short dashes line indicates a case in which the wire guide 71 is not provided and the bending wire for upward direction 8 u is fixed to a wire fixing portion of the hanging arm for upward direction 13 u. A radius of an alternate long and short dash line indicates that the distance a0 from the rotation center to the wire fixing portion of the hanging arm for upward direction 13 u is set as a radius. In FIG. 14(B), members related to bending in the upward direction are shown. However, the same substantially applies in the case of bending in the downward direction. The same substantially applied in the case of the left-right direction.
Therefore, this modification has a characteristic closer to the characteristic chart of FIG. 13. That is, it is possible to reduce an operation force amount in the case of a small bending range. According to this modification, it is possible to form an operation force amount adjusting portion that can easily adjust an operation force amount. Note that, although the integrated wire guide 71 is used in this modification, the wire guide 71 may be formed by a plurality of wire guides without being integrated.
Second Embodiment
Next, a second embodiment of the present invention is explained with reference to FIG. 15. In the first embodiment explained above, the bending portion 2 b can be bent in any bending direction in an up-down direction and a left-right direction by tilting operation by a finger.
When such tilting operation is performed, a bending direction of bending in the up-down direction and the left-right direction is set by giving a difference to magnitudes of operation force amounts, whereby it is possible to easily distinguish (or sense) the bending direction with a finger for performing the tilting operation. Therefore, it is possible to improve operability for an operator.
In the present embodiment, in order to improve operability in this way, an operation force amount necessary in performing tilting operation for bending the bending portion 2 b is set to be different in the up-down direction and the left-right direction to be easily distinguished (or sensed).
FIG. 15(A) shows a side view of a peripheral portion of an operation input portion 10D in which the manipulator 5 in a neutral position state is viewed from a longitudinal direction of the hanging arm for left direction 131. FIG. 15(B) shows a side view of a peripheral portion of an operation input portion 10E in which the manipulator 5 in the neutral position state is viewed from a longitudinal direction of the hanging arm for upward direction 13 u.
In the present embodiment, a wire guide 61 shown in FIG. 15 is provided instead of the four wire guides 15 i in the first embodiment to form an operation force amount adjusting portion 53E functioning as a direction adjusting member set (adjusted) to be capable of sensing a magnitude of an operation force amount in the up-down direction and the left-right direction.
In the first embodiment, the wire guides 15 i are respectively provided in the portions of the four hanging arms 13 i. However, in the present embodiment, the integral wire guide 61 is attached to the bottom surface of the hanging arm 13.
With respect to the up-down direction, the wire guide 61 is convex in the downward direction of the shaft portion 5 a as shown in FIG. 15(A) and is formed in a curved surface shape formed along a fixed distance r from a rotation center of a bearing in the shaft portion 5 a.
On the other hand, with respect to the left-right direction, the wire guide 61 is convex in the downward direction of the shaft portion 5 a as shown in FIG. 15(B) but, near an end portion of the hanging arm 13, is formed in a curved surface shape including projecting surfaces 61 l and 61 r projecting to an outer side at the distance r (e.g., the projecting surface 61 r has the distance r′).
Note that curved surface shape portions shown in FIGS. 15(A) and 15(B) are respectively acting positions of a contact portion with which the hand side end portions of the bending wires 8 i come into contact. An operation force amount is determined according to the acting positions of the contact portion.
Portions of the projecting surfaces 61 l and 61 r have a shape close to the shape of the projecting surface of the wire guides 15 l and 15 r in the first embodiment. A function of the portions is similar to the functions of the projecting surfaces in the first embodiment. However, when tilted a predetermined angle, a curved surface between the projecting surfaces 61 l and 61 r (i.e., a curved surface equivalent to the curved surface in the case of the up-down direction) functions as an acting position of the contact portion.
Therefore, a distribution of an operation force amount obtained when tilting operation is performed in the left-right direction and the up-down direction in the present embodiment has a characteristic like a characteristic chart shown in FIG. 16(A). In a relatively narrow bending range Wa as shown in FIG. 16(A), an operation force amount in the left-right direction is larger than an operation force amount in the up-down direction. Therefore, the operator can distinguish (sense), from a difference between the operation force amounts, with operation by a finger, for bending operation in which bending direction of the left-right direction and the up-down direction the tilting operation is performed.
Note that, for example, by further narrowing the shape of the projecting surfaces 61 l and 61 r, it is also possible to obtain a different characteristic in a narrower bending range Wb like a characteristic chart shown in FIG. 16(B). Further, by further expanding the shape of the projecting surfaces 61 l and 61 r, it is also possible to vary a characteristic in a wider bending range.
In the present embodiment, as shown in FIG. 15, a shape of the acting position of the contact portion with which the hand side end portions of the bending wires 8 i of the wire guide 61 come into contact is formed to be different in the up-down direction and the left-right direction. Therefore, the operator can easily distinguish or sense, with a finger used for operation, in which direction of the up-down direction and the left-right direction bending operation is performed. Besides, as in the first embodiment, it is also possible to adjust a magnitude of an operation force amount with the wire guide 61.
Therefore, according to the present embodiment, by giving a difference to magnitudes of operation force amounts in performing bending operation in the up-down direction and the left-right direction, it is possible to sense an operation direction with a finger used for operation and it is possible to adjust a magnitude of an operation force amount. Note that a characteristic obtained by interchanging the characteristic shown in FIG. 16 in the up-down direction and the left-right direction may be set. In other words, a structure may be adopted in which the projecting surfaces 61 l and 61 r shown in FIG. 15(B) are provided on the wire guide 61 side shown in FIG. 15(A) and the projecting surfaces 61 l and 61 r are not provided on the wire guide 61 side shown in FIG. 15(B).
As a modification of the second embodiment, an input operation portion 1 OF that makes it easy to sense operation force amounts in the up-down direction and the left-right direction may be formed by applying a configuration close to the second modification of the first embodiment (the structure in which the springs 51 i are used shown in FIG. 11) as shown in FIG. 17 referred to below.
In the modification shown in FIG. 17, a direction different from a direction (a direction close to horizontal in FIG. 11) in which the traction force amount Tu acts in the up-down direction shown in FIG. 11 is set by the springs 51 l and 51 r. An angle (or a supplementary angle) formed by a direction of the distance a and a direction in which the traction force amount Tu acts is indicated by θ1. Specifically, in FIG. 11, the angle θ formed by the direction extending from the center of the universal joint 14 to the wire fixing portion 13 u 2 and the direction of the traction force amount Tu is set. In this modification, the angle θ1 larger than the angle θ is set. That is, θ<θ1, where θ1<θ0 and sin θ1<sin θ0.
In this way, a direction of a traction force amount acting on the hand side end portions of the bending wires 8 i is changed by an elastic force of the springs 51 i to form an operation force amount adjusting portion 53F configured to adjust an operation force amount in operating the manipulator 5. A distribution of an operation force amount in the case of FIG. 17 is substantially the same as the characteristic chart of FIG. 16.
By using the springs 51 i having different elastic forces are used in the up-down direction and the left-right direction, when tilting operation for bending in the up-down direction and the left-right direction is performed, operation force amounts are different. Therefore, the operator can easily distinguish a tilting direction from a difference in a magnitude of an operation force amount.
Note that, in the above explanation, when the tilting operation in the up-down direction or the left-right direction is further performed, operation force amounts may be set to be different. When the operation force amounts are set in that way, when the tilting operation in the up-down direction or the left-right direction is performed, it is also possible to grasp a tilting direction from a difference in a magnitude of an operation force amount.
Embodiments configured by, for example, partially combining the embodiments and the like explained above also belong to the present invention. Note that, in the present invention, contents of appended respective claims are substantially disclosed from described contents of the specification and the drawings.

Claims (10)

What is claimed is:
1. An endoscope comprising:
an insertion portion;
a bending portion provided in the insertion portion and bendable in an up-down direction and a left-right direction;
a traction member for bending the bending portion;
an operation portion provided at a proximal end of the insertion portion and for grasping by an operator;
an operation input portion provided in the operation portion, tiltable with respect to a direction for bending the bending portion in the up-down direction and a direction for bending the bending portion in the left-right direction, and for performing an operation input for acting on the traction member according to tilting operation and bending the bending portion; and
an operation force amount adjusting portion configured to adjust an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the up-down direction and an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the left-right direction to be different, wherein
the traction member includes an up-down direction traction member connected to the up-down direction side of the bending portion and inserted through the insertion portion and a left-right direction traction member connected to the left-right direction side of the bending portion and inserted through the insertion portion,
the operation input portion includes a coupling member coupled to the up-down direction traction member and the left-right direction traction member and configured to tow the up-down direction traction member and the left-right direction traction member,
the operation input portion has a pivoting axis and rotates around the pivoting axis,
the coupling member includes a cross-shaped arm corresponding to the up-down direction and the left-right direction, a hand side end portion of the traction member being fixed to the arm, and
the operation force amount adjusting portion is provided in the operation input portion, includes a contact portion configured to come into contact with the traction member extending from the coupling member and transmit an operation force amount due to titling of the operation input portion to the traction member, and enables an attachment position of the coupling member in a longitudinal direction of the arm to be changed so as to change a distance from the pivoting axis at the time when the traction member comes into contact with the contact portion near the coupling member and enable the operation force amount to be adjusted.
2. The endoscope according to claim 1, wherein the operation force amount adjusting portion further includes a resistor functioning as resistance in movement in a moving direction of the up-down direction traction member and the left and right direction traction member.
3. The endoscope according to claim 1, wherein
the coupling member includes a cross-shaped arm extended from a proximal end in the operation input portion having a bar shape in a direction orthogonal to a longitudinal direction of the operation input portion and including an up-down direction arm to which respective hand side end portions of the up-down direction traction member are fixed and a left-right direction arm to which respective hand side end portions of the left-right direction traction member are fixed, and
the operation force amount adjusting portion includes a first curved surface shape by an outer surface of an up-down direction traction member guide forming the contact portion, with which vicinities of hand side end portions of the up-down direction traction member provided at both ends in a longitudinal direction of the up-down direction arm come into contact, and a second curved surface shape by an outer surface of a left-right direction traction member guide forming the contact portion, with which vicinities of hand side ends of the left-right direction traction member provided at both ends in a longitudinal direction of the left-right direction arm come into contact, and respective portions in the first curved surface shape and the second curved surface shape are formed such that distances from the pivoting axis are different.
4. The endoscope according to claim 1, further comprising:
a C-ring shaped rotating body around which a wire configuring the traction member inserted through the insertion portion is wound, the rotating body being arranged to be loosely fit to an outer circumference of a pulley rotatable in the operation portion; and
a motor configured to rotate the pulley, wherein
the rotating body reduced in diameter according to a traction force acting on the wire comes into contact with an outer circumferential surface of the pulley in a rotating state such that a friction force is caused to act on the outer circumferential surface by the motor and tows, via the rotating body on which a rotating force acts in a rotating direction of the pulley, the wire wound around the rotating body in a direction in which the traction force acts.
5. An endoscope comprising:
an insertion portion;
a bending portion provided in the insertion portion and bendable in an up-down direction and a left-right direction;
a traction member for bending the bending portion;
an operation portion provided at a proximal end of the insertion portion and for grasping by an operator;
an operation input portion provided in the operation portion, tiltable with respect to a direction for bending the bending portion in the up-down direction and a direction for bending the bending portion in the left-right direction, and for performing an operation input for acting on the traction member according to tilting operation and bending the bending portion; and
an operation force amount adjusting portion configured to adjust an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the up-down direction and an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the left-right direction to be different, wherein
the operation force amount adjusting portion is provided in the operation input portion, includes a contact portion configured to come into contact with the traction member extending from the coupling member and transmit an operation force amount due to titling of the operation input portion to the traction member, and changes a first distance between a position to which the traction member in the coupling member is coupled simultaneously with the tilting of the operation input portion and the pivoting axis to a second distance between an acting position where a traction force acts on the traction member in the contact portion and the pivoting axis so as to adjust an operation force amount necessary for the tilting of the operation input portion.
6. The endoscope according to claim 5, wherein
the traction member includes an up-down direction traction member configured to bend the bending portion in the up-down direction and a left-right direction traction member configured to bend the bending portion in the left-right direction, and
the operation force amount adjusting portion is provided in the coupling member to which at least one of the up-down direction traction member and the left-right direction traction member is coupled and adjusts the first distance to be larger than the second distance.
7. The endoscope according to claim 5, wherein
the traction member includes an up-down direction traction member configured to bend the bending portion in the up-down direction and a left-right direction traction member configured to bend the bending portion in the left-right direction,
the operation input portion has tilting directions in the up-down direction and the left-right direction respectively corresponding to the bending in the up-down direction and the bending in the left-right direction, and
the operation force amount adjusting portion is provided in the coupling member to which at least one of the up-down direction traction member and the left-right direction traction member is coupled and adjusts the first distance to be smaller than the second distance.
8. An endoscope comprising:
an insertion portion;
a bending portion provided in the insertion portion and bendable in an up-down direction and a left-right direction;
a traction member for bending the bending portion;
an operation portion provided at a proximal end of the insertion portion and for grasping by an operator;
an operation input portion provided in the operation portion, tiltable with respect to a direction for bending the bending portion in the up-down direction and a direction for bending the bending portion in the left-right direction, and for performing an operation input for acting on the traction member according to tilting operation and bending the bending portion; and
an operation force amount adjusting portion configured to adjust an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the up-down direction and an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the left-right direction to be different, wherein
the operation force amount adjusting portion further includes a guide roller, to which the other end of an elastic body having elasticity, one end of which is fixed to the operation input portion, for movably holding the traction member and urging the traction member in a held position to be towed to the one end side by the elastic body, changes a direction of the traction force acting on a hand side end portion of the traction member simultaneously with the tilting of the operation input portion to adjust the operation force amount necessary for the tilting of the operation input portion.
9. An endoscope comprising:
an insertion portion;
a bending portion provided in the insertion portion and bendable in an up-down direction and a left-right direction;
a traction member for bending the bending portion;
an operation portion provided at a proximal end of the insertion portion and for grasping by an operator;
an operation input portion provided in the operation portion, tiltable with respect to a direction for bending the bending portion in the up-down direction and a direction for bending the bending portion in the left-right direction, and for performing an operation input for acting on the traction member according to tilting operation and bending the bending portion; and
an operation force amount adjusting portion configured to adjust an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the up-down direction and an operation force amount for tilting the operation input portion in the direction for bending the bending portion in the left-right direction to be different, wherein
the traction member includes an up-down direction traction member configured to bend the bending portion in the up-down direction and a left-right direction traction member configured to bend the bending portion in the left-right direction, and
the operation force amount adjusting portion further includes a plurality of guide rollers, to which the other ends of a plurality of elastic bodies having elasticity one ends of which are respectively fixed to the operation input portion, for movably holding the up-down direction traction member and the left-right direction traction member and urging the up-down direction traction member and the left-right direction traction member in held positions to be towed to the one ends side by the plurality of elastic bodies, and changes a direction of the traction force acting on respective hand side end portions of the up-down direction traction member and the left-right direction traction member simultaneously with the tilting of the operation input portion to adjust the operation force amount necessary for the tilting of the operation input portion in the up-down direction and the left-right direction.
10. The endoscope according to claim 9, wherein
the coupling member further includes a cross-shaped arm extended from a vicinity of a proximal end in the operation input portion having a bar shape in a direction orthogonal to a longitudinal direction of the operation input portion and including an up-down direction arm to respective arm end portions of which respective hand side end portions of the up-down direction traction member are fixed and a left-right direction arm to respective arm end portions of which respective hand side end portions of the left-right direction traction member are fixed, and
the guide roller includes four guide rollers configured to movably hold the up-down direction traction member and the left-right direction traction member respectively extended from the respective arm end portions.
US13/923,423 2012-01-16 2013-06-21 Endoscope Active US8961402B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012006303 2012-01-16
JP2012-006303 2012-01-16
PCT/JP2013/050142 WO2013108671A1 (en) 2012-01-16 2013-01-09 Endoscope

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050142 Continuation WO2013108671A1 (en) 2012-01-16 2013-01-09 Endoscope

Publications (2)

Publication Number Publication Date
US20130338441A1 US20130338441A1 (en) 2013-12-19
US8961402B2 true US8961402B2 (en) 2015-02-24

Family

ID=48799098

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/923,423 Active US8961402B2 (en) 2012-01-16 2013-06-21 Endoscope

Country Status (5)

Country Link
US (1) US8961402B2 (en)
EP (1) EP2692278B1 (en)
JP (1) JP5362155B1 (en)
CN (1) CN103547209B (en)
WO (1) WO2013108671A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140309625A1 (en) * 2012-01-16 2014-10-16 Olympus Medical Systems Corp. Insertion device
USD782658S1 (en) * 2015-02-02 2017-03-28 Indian Ocean Medical Inc. Airway device
US20190313886A1 (en) * 2017-02-22 2019-10-17 Olympus Corporation Endoscope operation section and endoscope including endoscope operation section
US11576563B2 (en) 2016-11-28 2023-02-14 Adaptivendo Llc Endoscope with separable, disposable shaft
USD979627S1 (en) * 2021-03-16 2023-02-28 Baker Hughes Holdings Llc Video borescope housing
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327873A (en) * 2011-02-28 2013-09-25 奥林巴斯医疗株式会社 Medical device equipped with bowing-section, and endoscope
CN104219987B (en) * 2012-03-23 2016-10-26 奥林巴斯株式会社 Insertion apparatus
US9462931B2 (en) 2013-03-05 2016-10-11 Boston Scientific Scimed, Inc. Control system for medical devices and related methods of use
EP2883491B1 (en) * 2013-12-12 2017-04-19 Panasonic Intellectual Property Management Co., Ltd. Endoscope
EP3047788A4 (en) * 2014-04-11 2017-07-12 Olympus Corporation Endoscope
CN105372808B (en) * 2015-09-08 2018-07-20 上海熠达光电科技有限公司 The portable endoscope of 360 ° of bent angles
CN108697305B (en) * 2016-03-17 2020-09-04 奥林巴斯株式会社 Bending operation device and endoscope using same
CN108685557B (en) * 2017-04-06 2021-03-19 香港中文大学 Endoscope system and handheld end thereof
CN107374570A (en) * 2017-09-04 2017-11-24 广州瑞派医疗器械有限责任公司 The soft uretero-renoscope of electronics

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656302U (en) 1979-10-06 1981-05-15
US4986257A (en) 1989-07-31 1991-01-22 Kabushiki Kaisha Machida Seisakusho Bending device
JPH0360625A (en) 1989-07-31 1991-03-15 Machida Seisakusho:Kk Curve operation device
JP2000126119A (en) 1998-10-28 2000-05-09 Olympus Optical Co Ltd Endoscof
US20030092965A1 (en) * 2001-09-05 2003-05-15 Yutaka Konomura Electric bending endoscope
JP2003325437A (en) 2002-05-17 2003-11-18 Olympus Optical Co Ltd Tractive member operating device
US20040193014A1 (en) * 2003-03-26 2004-09-30 Olympus Optical Co., Ltd. Electric bending endoscope
JP2004321492A (en) 2003-04-24 2004-11-18 Olympus Corp Endoscope
US20080207998A1 (en) * 2007-02-28 2008-08-28 Olympus Corporation Endoscope apparatus
JP2009101076A (en) 2007-10-25 2009-05-14 Olympus Corp Tractive member operating device and endoscope apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673012B2 (en) * 2000-04-19 2004-01-06 Pentax Corporation Control device for an endoscope
JP2004283618A (en) * 2000-10-02 2004-10-14 Olympus Corp Endoscope
JP4789597B2 (en) * 2005-11-22 2011-10-12 オリンパスメディカルシステムズ株式会社 Endoscope
EP2039284B1 (en) * 2007-09-19 2011-05-25 FUJIFILM Corporation Endoscope
CN103327873A (en) * 2011-02-28 2013-09-25 奥林巴斯医疗株式会社 Medical device equipped with bowing-section, and endoscope

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656302U (en) 1979-10-06 1981-05-15
US4986257A (en) 1989-07-31 1991-01-22 Kabushiki Kaisha Machida Seisakusho Bending device
EP0415553A1 (en) 1989-07-31 1991-03-06 Kabushiki Kaisha Machida Seisakusho Bending device
JPH0360625A (en) 1989-07-31 1991-03-15 Machida Seisakusho:Kk Curve operation device
JP2000126119A (en) 1998-10-28 2000-05-09 Olympus Optical Co Ltd Endoscof
US20030092965A1 (en) * 2001-09-05 2003-05-15 Yutaka Konomura Electric bending endoscope
JP2003325437A (en) 2002-05-17 2003-11-18 Olympus Optical Co Ltd Tractive member operating device
US20040193014A1 (en) * 2003-03-26 2004-09-30 Olympus Optical Co., Ltd. Electric bending endoscope
JP2004321492A (en) 2003-04-24 2004-11-18 Olympus Corp Endoscope
US20080207998A1 (en) * 2007-02-28 2008-08-28 Olympus Corporation Endoscope apparatus
JP2009101076A (en) 2007-10-25 2009-05-14 Olympus Corp Tractive member operating device and endoscope apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140309625A1 (en) * 2012-01-16 2014-10-16 Olympus Medical Systems Corp. Insertion device
US10172600B2 (en) * 2012-01-16 2019-01-08 Olympus Corporation Insertion apparatus
USD782658S1 (en) * 2015-02-02 2017-03-28 Indian Ocean Medical Inc. Airway device
US11576563B2 (en) 2016-11-28 2023-02-14 Adaptivendo Llc Endoscope with separable, disposable shaft
US20190313886A1 (en) * 2017-02-22 2019-10-17 Olympus Corporation Endoscope operation section and endoscope including endoscope operation section
US11805978B2 (en) * 2017-02-22 2023-11-07 Olympus Corporation Endoscope operation section and endoscope including endoscope operation section
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle
USD979627S1 (en) * 2021-03-16 2023-02-28 Baker Hughes Holdings Llc Video borescope housing

Also Published As

Publication number Publication date
EP2692278A1 (en) 2014-02-05
EP2692278A4 (en) 2015-06-03
WO2013108671A1 (en) 2013-07-25
CN103547209B (en) 2016-06-15
JPWO2013108671A1 (en) 2015-05-11
JP5362155B1 (en) 2013-12-11
US20130338441A1 (en) 2013-12-19
CN103547209A (en) 2014-01-29
EP2692278B1 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
US8961402B2 (en) Endoscope
JP5930255B2 (en) Endoscope
US11311178B2 (en) Endoscope
US10136800B2 (en) Bending operation device and endoscope
JP6116777B1 (en) Bending operation device and endoscope
JP6081684B1 (en) Endoscope
JP5309265B2 (en) Bending operation device
US20120302949A1 (en) Operation mechanism, endoscope apparatus, and guide catheter
CN108697303B (en) Bending operation device and endoscope
JP6465447B2 (en) Endoscope manufacturing method
US20220233057A1 (en) Bending operation mechanism for endoscope, and endoscope
JP2012100683A (en) Bending operation device for endoscope, and endoscopic apparatus using the bending operation device
WO2017158892A1 (en) Bending operation device and endoscope using same
JP7145982B2 (en) Endoscope

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLYMPUS MEDICAL SYSTEMS CORP., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OKAMOTO, YASUHIRO;REEL/FRAME:031142/0819

Effective date: 20130808

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: OLYMPUS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OLYMPUS MEDICAL SYSTEMS CORP.;REEL/FRAME:036276/0543

Effective date: 20150401

AS Assignment

Owner name: OLYMPUS CORPORATION, JAPAN

Free format text: CHANGE OF ADDRESS;ASSIGNOR:OLYMPUS CORPORATION;REEL/FRAME:039344/0502

Effective date: 20160401

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8