US9248277B2 - Electrode array having concentric split ring electrodes and methods of making the same - Google Patents

Electrode array having concentric split ring electrodes and methods of making the same Download PDF

Info

Publication number
US9248277B2
US9248277B2 US14/525,023 US201414525023A US9248277B2 US 9248277 B2 US9248277 B2 US 9248277B2 US 201414525023 A US201414525023 A US 201414525023A US 9248277 B2 US9248277 B2 US 9248277B2
Authority
US
United States
Prior art keywords
split ring
electrodes
stimulating
ring electrodes
lead body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/525,023
Other versions
US20150045866A1 (en
Inventor
Roger Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Neuromodulation Corp
Original Assignee
Boston Scientific Neuromodulation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Neuromodulation Corp filed Critical Boston Scientific Neuromodulation Corp
Priority to US14/525,023 priority Critical patent/US9248277B2/en
Publication of US20150045866A1 publication Critical patent/US20150045866A1/en
Application granted granted Critical
Publication of US9248277B2 publication Critical patent/US9248277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0534Electrodes for deep brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0539Anchoring of brain electrode systems, e.g. within burr hole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the invention is directed to devices and methods for brain stimulation including deep brain stimulation.
  • the invention is directed to devices and method for brain stimulation using a lead having concentric split ring electrodes.
  • Deep brain stimulation can be useful for treating a variety of conditions including, for example, Parkinson's disease, dystonia, essential tremor, chronic pain, Huntington's Disease, levodopa-induced dyskinesias and rigidity, bradykinesia, epilepsy and seizures, eating disorders, and mood disorders.
  • a lead with a stimulating electrode at or near a tip of the lead provides the stimulation to target neurons in the brain.
  • Magnetic resonance imaging (MRI) or computerized tomography (CT) scans can provide a starting point for determining where the stimulating electrode should be positioned to provide the desired stimulus to the target neurons.
  • MRI Magnetic resonance imaging
  • CT computerized tomography
  • This stimulation is provided by electrodes, typically in the form of rings, disposed on the lead.
  • the current projects from each electrode similarly and in all directions at any given length along the axis of the lead. Because of the shape of the electrodes, radial selectivity of the current is minimal. This results in the unwanted stimulation of neighboring neural tissue, undesired side effects and an increased duration of time for the proper therapeutic effect to be obtained.
  • radially segmented electrode arrays have been developed to provide superior radial selectivity of current.
  • Radially segmented electrode arrays are useful for deep brain stimulation because the target structures in the deep brain are often not symmetric about the axis of the distal electrode array.
  • a target may be located on one side of a plane running through the axis of the lead.
  • a target may be located at a plane that is offset at some angle from the axis of the lead.
  • radially segmented electrode arrays may be useful for selectively simulating tissue. These radially segmented arrays may be made using concentric split ring electrodes.
  • a device for brain stimulation includes a lead body having a longitudinal surface and a distal end.
  • the device further includes at least one ring array.
  • the at least one ring array includes a plurality of split ring electrodes disposed on the distal end of the lead body.
  • Each of the plurality of split ring electrodes includes a stimulating portion and a base portion coupled to the stimulating portion.
  • the split ring electrodes of the at least one ring array are arranged about the circumference of the lead body. At least a portion of the base portion of at least one of the plurality of split ring electrodes is disposed below, and insulated from, at least a portion of the stimulating portion of another of the plurality of split electrodes.
  • a device for brain stimulation in another embodiment, includes a lead body having a longitudinal surface and a distal end.
  • the device further includes a plurality of split ring electrodes disposed on the distal end of the lead body.
  • Each of the plurality of split ring electrodes includes a stimulating portion and a base portion coupled to the stimulating portion.
  • the split ring electrodes are arranged such that the base portions are arranged around an inner circle having a first radius and the stimulating portions are arranged around an outer circle having a second radius, wherein the first radius is less than the second radius.
  • a method of manufacturing a device for brain stimulation includes forming a lead body having a longitudinal surface and a distal end. At least one ring array is formed. The at least one ring array includes a plurality of split ring electrodes at the distal end of the lead body. Each of the plurality of split ring electrodes includes a stimulating portion and a base portion coupled to the stimulating portion. The split ring electrodes of the at least one ring array are arranged about the circumference of the lead body. At least a portion of the base portion of at least one of the plurality of split ring electrodes is disposed below and insulated from, at least a portion of the stimulating portion of another of the plurality of split electrodes.
  • FIG. 1A is a schematic perspective view of one embodiment of a portion of a lead having a plurality of segmented electrodes and a ring electrode, according to the invention
  • FIG. 1B is a schematic perspective view of another embodiment of a lead having a plurality of segmented electrodes arranged in staggered orientation and a ring electrode, according to the invention
  • FIG. 2 is a schematic diagram of radial current steering along various electrode levels along the length of a lead, according to the invention
  • FIG. 3A is a schematic perspective view of one embodiment of a split ring electrode, according to the invention.
  • FIG. 3B is a schematic perspective view of another embodiment of a split ring electrode, according to the invention.
  • FIG. 3C is a schematic cross-sectional view of the split ring electrode of FIG. 3B , according to the invention.
  • FIG. 4 is a schematic cross-sectional view of one embodiment of a split ring electrode having an insulative coating, according to the invention.
  • FIG. 5 is a schematic cross-sectional view of a plurality of split ring electrodes arranged in a ring array, according to the invention.
  • FIG. 6 is a schematic perspective view of a plurality of ring arrays and a spacer, according to the invention.
  • FIG. 7 is a schematic cross-sectional view of one embodiment of a plurality of split ring electrodes having alignment tabs, according to the invention.
  • FIG. 8 is a schematic perspective view of a plurality of ring arrays having alignment tabs and separated by a spacer, according to the invention.
  • FIG. 9A is a schematic perspective view of one embodiment of a portion of a lead having a plurality of split ring electrodes and alignment tabs, according to the invention.
  • FIG. 9B is a schematic perspective view of another embodiment of a portion of a lead having a plurality of split ring electrodes and alignment tabs arranged in a staggered orientation, according to the invention.
  • FIG. 9C is a schematic perspective view of the portion of the lead of FIG. 9A after grinding of the alignment tabs, according to the invention.
  • FIG. 10 is a schematic side view of one embodiment of a device for brain stimulation, according to the invention.
  • the present invention is directed to the area of devices and methods for brain stimulation including deep brain stimulation.
  • the invention is directed to devices and method for brain stimulation using a lead having a plurality of split ring electrodes arranged in a ring array.
  • a lead for deep brain stimulation may include stimulation electrodes, recording electrodes, or a combination of both.
  • a practitioner may determine the position of the target neurons using the recording electrode(s) and then position the stimulation electrode(s) accordingly without removal of a recording lead and insertion of a stimulation lead.
  • the same electrodes can be used for both recording and stimulation.
  • separate leads can be used; one with recording electrodes which identify target neurons, and a second lead with stimulation electrodes that replaces the first after target neuron identification.
  • a lead may include recording electrodes spaced around the circumference of the lead to more precisely determine the position of the target neurons.
  • the lead is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.
  • Deep brain stimulation devices and leads are described in the art. See, for instance, U.S. Patent Publication 2006/0149335 A1 (“Devices and Methods For Brain Stimulation”), and co-pending U.S. patent application Ser. No. 12/237,888 (“Leads With Non-Circular-Shaped Distal Ends For Brain Stimulation Systems and Methods of Making and Using”). Each of these references is incorporated herein by reference in its respective entirety.
  • FIG. 10 illustrates one embodiment of a device for brain stimulation.
  • the device includes a lead 100 , segmented electrodes 1020 , a connector 1040 for connection of the electrodes to a control unit, and a stylet 1050 for assisting in insertion and positioning of the lead in the patient's brain.
  • the stylet 1050 can be made of a rigid material. Examples of suitable materials include tungsten, stainless steel, or plastic.
  • the stylet 1050 may have a handle 1060 to assist insertion into the lead, as well as rotation of the stylet 1050 and lead 100 .
  • access to the desired position in the brain can be accomplished by drilling a hole in the patient's skull or cranium with a cranial drill (commonly referred to as a burr), and coagulating and incising the dura mater, or brain covering.
  • the lead 100 can be inserted into the cranium and brain tissue with the assistance of the stylet 1050 .
  • the lead can be guided to the target location within the brain using, for example, a stereotactic frame and a microdrive motor system.
  • the microdrive motor system can be fully or partially automatic.
  • the microdrive motor system may be configured to perform one or more the following actions (alone or in combination): rotate the lead, insert the lead, or retract the lead.
  • measurement devices coupled to the muscles or other tissues stimulated by the target neurons or a unit responsive to the patient or clinician can be coupled to the control unit or microdrive motor system.
  • the measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrode(s) to further identify the target neurons and facilitate positioning of the stimulation electrode(s).
  • a measurement device can be used to observe the muscle and indicate changes in tremor frequency or amplitude in response to stimulation of neurons.
  • the patient or clinician may observe the muscle and provide feedback.
  • the lead 100 for deep brain stimulation can include stimulation electrodes, recording electrodes, or both.
  • the lead is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.
  • Stimulation electrodes may be disposed on the circumference of the lead to stimulate the target neurons. Stimulation electrodes may be ring-shaped so that current projects from each electrode equally in every direction at any given length along the axis of the lead. To achieve current steering, segmented electrodes can be utilized additionally or alternatively. Though the following description discusses stimulation electrodes, it will be understood that all configurations of the stimulation electrodes discussed may be utilized in arranging recording electrodes as well.
  • FIG. 1A illustrates one embodiment of a lead 100 for brain stimulation.
  • the device includes a lead body 110 , one or more ring electrodes 120 , and a plurality of segmented electrodes 130 .
  • the lead body 110 can be formed of a biocompatible, non-conducting material such as, for example, a polymeric material. Suitable polymeric materials include, but are not limited to, silicone, polyethylene, polyurethanes, polyureas, or polyurethane-ureas.
  • the lead may be in contact with body tissue for extended periods of time.
  • the lead has a cross-sectional diameter of no more than 1.5 mm and may be in the range of 0.75 to 1.5 mm.
  • the lead has a length of at least 10 cm and the length of the lead may be in the range of 25 to 70 cm.
  • Stimulation electrodes may be disposed on the lead body 110 . These stimulation electrodes may be made using a metal, alloy, conductive oxide, or any other suitable conductive material. Examples of suitable materials include, but are not limited to, platinum, iridium, platinum iridium alloy, stainless steel, titanium, or tungsten. Preferably, the stimulation electrodes are made of a material that is biocompatible and does not substantially corrode under expected operating conditions in the operating environment for the expected duration of use.
  • any of the electrodes can be used as an anode or cathode and carry anodic or cathodic current.
  • an electrode might be an anode for a period of time and a cathode for a period of time.
  • the identity of a particular electrode or electrodes as an anode or cathode might be fixed.
  • the lead contains a plurality of segmented electrodes 130 . Any number of segmented electrodes 130 may be disposed on the lead body 110 . In some embodiments, the segmented electrodes 130 are grouped in sets of segmented electrodes, each set disposed around the circumference of the lead at or near a particular longitudinal position.
  • the lead may have any number of sets of segmented electrodes. In at least some embodiments, the lead has one, two, three, four, five, six, seven, or eight sets of segmented electrodes. In at least some embodiments, each set of segmented electrodes contains the same number of segmented electrodes 130 . In some embodiments, each set of segmented electrodes contains three segmented electrodes 130 .
  • each set of segmented electrodes contains two, four, five, six, seven or eight segmented electrodes.
  • the segmented electrodes 130 may vary in size and shape. For example, in FIG. 1B , the segmented electrodes 130 are shown as portions of a ring or curved rectangular portions. In some other embodiments, the segmented electrodes 130 are curved square portions. The shape of the segmented electrodes 130 may also be substantially triangular, diamond-shaped, oval, circular or spherical. In some embodiments, the segmented electrodes 130 are all of the same size, shape, diameter, width or area or any combination thereof. In some embodiments, the segmented electrodes of each set (or even all segmented electrodes) may be identical in size and shape.
  • each set of segmented electrodes 130 may be disposed around the circumference of the lead body 110 to form a substantially or approximately cylindrical shape around the lead body 110 .
  • the spacing of the segmented electrodes 130 around the circumference of the lead body 110 may vary.
  • equal spaces, gaps or cutouts are disposed between each segmented electrodes 130 around the circumference of the lead body 110 .
  • the spaces, gaps or cutouts between segmented electrodes may differ in size or shape.
  • the spaces, gaps, or cutouts between segmented electrodes may be uniform for a particular set of segmented electrodes or for all sets of segmented electrodes.
  • the segmented electrodes 130 may be positioned in irregular or regular intervals around the lead body 110 .
  • Stimulation electrodes in the form of ring electrodes 120 may be disposed on any part of the lead body 110 , usually near a distal end of the lead.
  • FIG. 1A illustrates a portion of a lead having one ring electrode. Any number of ring electrodes may be disposed along the length of the lead body 110 .
  • the lead body may have one ring electrode, two ring electrodes, three ring electrodes or four ring electrodes. In some embodiments, the lead will have five, six, seven or eight ring electrodes. Other embodiments do not include ring electrodes.
  • the ring electrodes 120 are substantially cylindrical and wrap around the entire circumference of the lead body 110 .
  • the outer diameter of the ring electrodes 120 is substantially equal to the outer diameter of the lead body 110 .
  • the width of ring electrodes 120 may vary according to the desired treatment and the location of the target neurons. In some embodiments the width of the ring electrode 120 is less than or equal to the diameter of the ring electrode 120 . In other embodiments, the width of the ring electrode 120 is greater than the diameter of the ring electrode 120 .
  • Conductors that attach to or from the ring electrodes 120 and segmented electrodes 130 also pass through the lead body 110 . These conductors may pass through the material of the lead or through a lumen defined by the lead. The conductors are presented at a connector for coupling of the electrodes to a control unit (not shown).
  • the stimulation electrodes correspond to wire conductors that extend out of the lead body 110 and are then trimmed or ground down flush with the lead surface.
  • the conductors may be coupled to a control unit to provide stimulation signals, often in the form of pulses, to the stimulation electrodes.
  • FIG. 1B is a schematic perspective view of another embodiment of a lead having a plurality of segmented electrodes.
  • the plurality of segmented electrodes 130 may be arranged in different orientations relative to each other.
  • FIG. 1B displays another embodiment in which the three sets of segmented electrodes 130 are staggered.
  • the sets of segmented electrodes are staggered such that no segmented electrodes are aligned along the length of the lead body 110 .
  • the segmented electrodes may be staggered so that at least one of the segmented electrodes is aligned with another segmented electrode of a different set, and the other segmented electrodes are not aligned.
  • segmented electrodes 130 may be disposed on the lead body 110 in any number of sets.
  • FIGS. 1A and 1B illustrate embodiments including three sets of segmented electrodes. These three sets of segmented electrodes 130 may be disposed in different configurations. For example, three sets of segmented electrodes 130 may be disposed on the distal end of the lead body 110 , distal to a ring electrode 120 . Alternatively, three sets of segmented electrodes 130 may be disposed proximal to a ring electrode 120 . By varying the location of the segmented electrodes 130 , different coverage of the target neurons may be selected.
  • a specific configuration may be useful if the physician anticipates that the neural target will be closer to the distal tip of the lead body 110 , while another arrangement may be useful if the physician anticipates that the neural target will be closer to the proximal end of the lead body 110 .
  • the ring electrodes 120 alternate with sets of segmented electrodes 130 .
  • ring electrodes 120 and segmented electrodes 130 may be disposed on the lead.
  • the segmented electrodes are arranged in sets.
  • a lead may include a first ring electrode 120 , two sets of segmented electrodes, each set formed of three segmented electrodes 130 , and a final ring electrode 120 at the end of the lead.
  • This configuration may simply be referred to as a 1-3-3-1 configuration. It may be useful to refer to the electrodes with this shorthand notation.
  • Electrodes configurations include, for example, a 2-2-2-2 configuration, where four sets of segmented electrodes are disposed on the lead, and a 4-4 configuration, where two sets of segmented electrodes, each having four segmented electrodes 130 are disposed on the lead.
  • the lead will have 16 electrodes. Possible configurations for a 16-electrode lead include, but are not limited to 4-4-4-4, 8-8, 3-3-3-3-3-1 (and all rearrangements of this configuration), and 2-2-2-2-2-2-2-2-2-2.
  • FIG. 2 is a schematic diagram to illustrate radial current steering along various electrode levels along the length of a lead. While conventional lead configurations with ring electrodes are only able to steer current along the length of the lead (the z-axis), the segmented electrode configuration is capable of steering current in the x-axis, y-axis as well as the z-axis. Thus, the centroid of stimulation may be steered in any direction in the three-dimensional space surrounding the lead body 110 .
  • the radial distance, r, and the angle ⁇ around the circumference of the lead body 110 may be dictated by the percentage of anodic current (recognizing that stimulation predominantly occurs near the cathode, although strong anodes may cause stimulation as well) introduced to each electrode as will be described in greater detail below.
  • the configuration of anodes and cathodes along the segmented electrodes 130 allows the centroid of stimulation to be shifted to a variety of different locations along the lead body 110 .
  • the centroid of stimulation can be shifted at each level along the length of the lead.
  • the use of multiple sets of segmented electrodes 130 at different levels along the length of the lead allows for three-dimensional current steering.
  • the sets of segmented electrodes 130 are shifted collectively (i.e. the centroid of simulation is similar at each level along the length of the lead).
  • each set of segmented electrodes 130 is controlled independently.
  • Each set of segmented electrodes may contain two, three, four, five, six, seven, eight or more segmented electrodes. It will be understood that different stimulation profiles may be produced by varying the number of segmented electrodes at each level.
  • each set of segmented electrodes includes only two segmented electrodes, uniformly distributed gaps (inability to stimulate selectively) may be formed in the stimulation profile.
  • at least three segmented electrodes 130 are utilized to allow for true 360° selectivity.
  • a lead having segmented electrodes may provide several advantages.
  • the lead may provide for more directed stimulation, as well as less “wasted” stimulation (i.e. stimulation of regions other than the target region).
  • less “wasted” stimulation i.e. stimulation of regions other than the target region.
  • side effects may be reduced.
  • the battery in an implantable pulse generator may last for a longer period of time between recharging.
  • measurement devices coupled to the muscles or other tissues stimulated by the target neurons or a unit responsive to the patient or clinician can be coupled to the control unit or microdrive motor system.
  • the measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrodes to further identify the target neurons and facilitate positioning of the stimulation electrodes.
  • a measurement device can be used to observe the muscle and indicate changes in tremor frequency or amplitude in response to stimulation of neurons.
  • the patient or clinician may observe the muscle and provide feedback.
  • Radially segmented electrode arrays may be manufactured in a variety of ways.
  • a plurality of split ring electrodes are used to form an array of radially segmented electrodes.
  • the plurality of split ring electrodes may be modified to utilize different numbers of electrodes, to adjust the radial spacing between electrodes or to vary the longitudinal position between levels of electrodes.
  • FIG. 3A is a schematic perspective view of one embodiment of a split ring electrode 300 .
  • the split ring electrode 300 of FIG. 3A includes a stimulating portion 310 , a transition portion 320 and a base portion 330 .
  • the split ring electrode 300 may be unitarily formed from a metal, alloy, conductive oxide, or any other suitable conductive material. Alternatively, the split ring electrode 300 may be formed of distinct segmented that are subsequently coupled using welding or other suitable methods.
  • the stimulating portion 310 of the split ring electrode 300 may be formed in the shape of a portion of a cylinder.
  • the size and shape of the stimulating portion 310 will depend on the number of the split ring electrodes 300 that will be used and the configuration in which they will be used.
  • the cross-section of the stimulating portion 310 creates a semi-cylindrical portion, though it will be understood that the stimulating portion 310 may encompass any part of a cylinder, such as one-quarter, one-third, or two-thirds of a cylinder.
  • the arc length of the stimulating portion 310 encompasses a portion of a circle that is smaller than the reciprocal of the number of split ring electrodes 300 that will be used at a given level. For example, if three split ring electrodes 300 are disposed at a given longitudinal level, then the arc length of the stimulating portion of each split ring electrode may be less than one-third of a circle (i.e. less than 120 degrees). Thus, the sum of the arc lengths of the stimulating portions 310 will not equal 360 degrees so that gaps are formed between adjacent stimulating portions 310 . These gaps will separate the stimulating portions 310 from one another and allow the stimulating electrodes 310 to function independently.
  • the split ring electrode 300 also includes a base portion 330 .
  • the base portion 330 may be formed from the same material as the stimulating portion 310 (e.g. a metal, alloy, conductive oxide, or other conductive material). Alternatively, the base portion 330 may be formed of a non-conductive material that is coupleable to the stimulating portion 310 through the use of a transition portion 320 as will be described below or through any other suitable method. As seen in FIG. 3A , the base portion 330 may be formed in a shape similar to the stimulating portion 310 . In some embodiments, the base portion 330 has a cross-section in the shape of a portion of a cylinder.
  • the arc-length of this base portion 330 may be the same, greater than or less than that of the corresponding stimulating portion 310 . Furthermore, the radius of curvature of the stimulating portions 310 may be larger than that of the base portions 330 . As will be appreciated by one of ordinary skill in the art, the length, width and thickness of the base portion 330 and stimulating portion 310 may also be the same or different as desired. For example, in some embodiments, the base portion 330 is formed thicker than the stimulating portion 310 for overall reinforcement of the structure.
  • a transition portion 320 may be formed between the stimulating portion 310 and the base portion 330 .
  • the transition portion 320 is configured to allow the interlocking of the plurality of split ring electrodes 300 as will be described in greater detail below with reference to FIG. 5 .
  • the transition portion 320 is a slightly curved member that serves to join the stimulating portion 310 and the base portion 330 .
  • FIG. 3B is a schematic perspective view of another embodiment of a split ring electrode 300 .
  • the transition portion 320 may instead be formed of a substantially straight member that connects the stimulating portion 310 and the base portion 330 . It will be understood that the angle and length of the transition portion 320 may be modified.
  • FIG. 3C is a schematic cross-sectional view of the split ring electrode of FIG. 3B .
  • the split ring electrode 300 may be configured in a way such that the overall cross-sectional shape of the split ring electrode 300 resembles two portions of a cylinder assembled end-to-end at a transition portion 320 .
  • the shape of the split ring electrode 300 may be provided by stamping the piece into the appropriate shape, although alternatively other methods of manufacture may be used. Manufacturing the split ring electrodes 300 from a stamped unitary piece may be useful in reducing both the cost and the possibility of an electrode breakage or failure.
  • the transition portion 320 serves to couple a conductive stimulating portion 310 with a nonconductive base portion 330 .
  • FIG. 4 is a schematic perspective view of one embodiment of a split ring electrode 300 having an insulative coating 410 .
  • the base portion 330 is coated with an insulative coating 410 .
  • the insulative coating 410 may include any suitable insulator such as, for example, silicone, polyurethane, polyetheretherketone, polysulfone, nylon, polytetrafluoroethylene (e.g., Teflon®), or some other implant grade non-conductive material.
  • the insulative coating 410 may be applied using a dip molding process or any other suitable method. As previously indicated, applying an insulative coating 410 to the base portion 330 may be useful in electrically separating one split ring electrode 300 from an adjacent split ring electrode 300 .
  • the insulative coating 410 covers the entirety or a substantial portion of the base portion 330 .
  • the insulative coating 410 is applied to cover a portion of the base portion 330 that would otherwise be in contact with a stimulating portion 310 of an adjacent split ring electrode 300 .
  • the insulative coating 410 is applied to both the base portion 330 and the transition portion 320 .
  • the insulative coating 410 may be applied to only part of the transition portion 320 or to only one side of the transition portion 320 .
  • the bottom of the base portion 330 , or a part of the base portion 330 might not be insulated.
  • a conductor (e.g. a wire) 420 may be attached to any portion of the split ring electrode 300 . As seen in FIG. 4 , a conductor 420 may be attached to the base portion 310 of the split ring electrode 300 . Thus, in some embodiments, a piece of the insulative coating 410 may be removed so that that conductor 420 can properly attach to the base portion 310 of the split ring electrode 300 . Any method of removing a fragment of the insulative coating 410 may be used. In some embodiments, an ablation process is used to remove a part of the insulative coating 410 so that a conductor 420 may be welded to the base portion 330 . Alternatively, the conductor 420 may be coupled to the transition portion 320 or the stimulating portion 330 . If the transition portion 320 is coated with an insulative coating 410 , portions of the insulative coating 410 may need to be removed as described herein.
  • FIG. 5 is a schematic cross-sectional view of a plurality of split ring electrodes 300 arranged in a ring array.
  • three split ring electrodes 300 are assembled into a ring array 500 .
  • the split ring electrodes 300 may be positioned such that the base portion 330 of one split ring electrode 300 is disposed underneath or radially inward of the stimulating portion 310 of a split ring electrode 300 that is adjacent to the first in the counter-clockwise direction. It will be appreciated from the cross-section of the ring array 500 that the result of this arrangement define two concentric cylinders.
  • the first cylinder is disposed on the inside of the ring array 500 and includes only the base portions 330 of the plurality of split ring electrodes 300 .
  • a second concentric cylinder is formed over the first cylinder.
  • the second cylinder is formed of the stimulating portions 310 of the plurality of split ring electrodes 300 .
  • the first cylinder is formed to have a radius equal to or slightly larger than the diameter of the lead body on which it will be disposed.
  • the insulative coating 410 serves to insulate the base portion 330 of each of the split ring electrodes 300 from the stimulating portions 310 of the adjacent split ring electrodes 300 . Furthermore, as briefly described above, gaps 510 may be formed between the stimulating portions so that they are electrically insulated from one another. If an insulative coating 410 is applied to the transition portions 320 , the stimulating portions 310 may be extended so that they abut one another with the insulative coating 410 providing the desired insulation between the two stimulating portions 310 .
  • the overlap between the base portion 330 of one split ring electrode 300 and a stimulating portion 310 of an adjacent split ring electrode 300 may vary.
  • the base portion of 330 of one split ring electrode 300 and the stimulating portion 310 of an adjacent split ring electrode 300 cover the same radial angle and fully overlap (i.e. the base portion 330 overlaps about 95% of the stimulating portion 310 ).
  • the base portion 330 overlaps up to 99% of the stimulating portion 310 .
  • the base portion 330 overlaps up to 90% of the stimulating portion 310 .
  • the base portion 330 overlaps up to 80% of the stimulating portion 310 .
  • the base portion 330 overlaps up to 75% of the stimulating portion 310 . In other embodiments, the base portion 330 overlaps up to 60% of the stimulating portion 310 . In other embodiments, the base portion 330 overlaps up to 50% of the stimulating portion 310 .
  • FIG. 5 illustrates a ring array 500 having three split ring electrodes 300
  • any number of split ring electrodes 300 may be used to form the ring array 500 .
  • As few as two split ring electrodes 300 may be used to form a ring array 500 .
  • the ring array 500 is formed using two, three, four, five, six, eight, ten, or twelve split ring electrodes 300 .
  • the split ring electrodes 300 of any given ring array 500 may be of the same size and shape or they may have different sizes and/or shapes.
  • the stimulating portions 310 of the split ring electrodes 300 may be of the same length or of different lengths in a ring array 500 .
  • a lead may include any number of ring arrays 500 .
  • Each ring array 500 may be configured the same or differently than one or more of the others.
  • a lead may include a ring array 500 having three split ring electrodes 300 at a first level, a second ring array 500 having three split ring electrodes 300 at a second level and a third ring array 500 having two split ring electrodes 300 at a third level to form a lead having a 3-3-2 configuration as described above.
  • at least one ring array 500 may be formed to have a different configuration than the others as desired.
  • ring electrodes 130 may be disposed between ring arrays 500 in positions where segmented electrodes are not necessary.
  • the stimulating portions 310 of different ring arrays 500 are radially aligned. In at least some embodiments, stimulating portions 310 of different ring arrays 500 are radially offset.
  • the interlocking and mutually supporting configuration of the ring array 500 allows for sturdy electrode construction. This configuration allows each split ring electrode 300 to support and secure the adjacent electrode. By forming leads using ring arrays 500 it may be possible to reduce the possibility of lead failure and breakage. Specifically, leads manufactured using ring arrays 500 are less prone to failure because the stimulating portions 310 are secured by the base portions 330 . Thus, electrodes are less prone to detachment and disconnection from the lead body.
  • FIG. 6 is a schematic perspective view of the plurality of split ring electrodes 300 and a spacer 710 .
  • the split ring electrodes 300 are arranged into two ring arrays 500 as described above.
  • spacers 610 are placed to control the distance between the ring arrays 500 and to electrically insulate one ring array 500 from another.
  • the spacer 610 may be in the form of a short cylinder or ring that separates the two rings arrays 500 as illustrated in FIG. 6 .
  • the spacers 610 may be formed of any suitable non-conductive material capable of electrically insulating the stimulating portions 310 of the split ring electrodes 300 .
  • the same material used to form the spacers 610 may be used to form a longitudinal spacer between the individual split ring electrodes 300 . It will be understood that the size and shape of the spacers may be varied to separate the ring arrays 500 as desired. For example, in some embodiments, the spacers 610 have the same longitudinal width as the ring arrays 500 . Alternatively, the spacers 610 may be wider or narrower in the longitudinal direction than the ring arrays 500 . The spacers 610 may also have the same diameter as the ring arrays 500 in order to produce an isodiametric lead.
  • the spacers 610 and ring arrays 500 may be coupled to a lead body using any suitable method.
  • the plurality of split ring electrodes 300 are coupled to create ring arrays 500 , and the ring arrays 500 are then slid onto a lead body where they will be permanently secured using welding, or a suitable adhesive.
  • the spacers 610 may also be slid onto the lead body between the ring arrays 500 .
  • each of the split ring electrodes 300 may be manufactured separately, in some embodiments it may be useful to have additional methods of aligning them. For example, to form the ring array 500 described above, each of the split ring electrodes 300 must be disposed in the proper position and orientation. Proper alignment of the split ring electrodes 300 may be accomplished using alignment tabs as will be described with reference to FIG. 7 .
  • FIG. 7 is a schematic cross-sectional view of one embodiment of a ring array having alignment tabs 710 .
  • the alignment tabs 710 may be in the form of projecting flaps, extensions, tips, or handles.
  • an alignment tab 710 is coupled to the stimulating portion 310 of each of the split ring electrodes 300 .
  • the alignment tabs 710 may be unitarily formed with the stimulating portion 310 in the form of an outwardly bent top portion.
  • the alignment tabs 710 may also be coupled to or formed of a portion of the transition portion 320 or even the base portion 330 .
  • the location and the form of the alignment tab 710 may be modified so long as the structure is able to orient and manipulate the split ring electrode 300 into a desired position. Using the alignment tabs 710 , it may be possible to maintain the gaps 510 between the split ring electrodes 300 .
  • the base of the alignment tabs 710 may be connected to the stimulating portion 310 , the transition portion 320 or the base portion 330 and form a notched portion 720 .
  • the notched portion 720 may be configured in any suitable manner that forms a scored or weakened joint or seam between the alignment tab 710 and the split ring electrode 300 .
  • the use of a notched portion 720 is useful if it is desirable to remove the alignment tabs 710 after proper alignment. In this manner, the alignment tabs 710 may simply be broken off the split ring electrodes 300 after alignment. Alternatively, the tabs 710 can be ground down or cut.
  • FIG. 8 is a schematic perspective view of the plurality of split ring electrodes having alignment tabs and separated by a spacer.
  • the alignment tabs 710 may be used to position the plurality of split ring electrodes 300 into a ring array 500 having gaps 510 . Additionally, the alignment tabs 710 may also be useful in positioning one ring array 500 with respect to a second ring array 500 .
  • FIG. 8 illustrates two ring arrays 500 that are radially aligned (i.e. the base portions 330 , transition portions 320 , stimulating portions 310 and alignment tabs 710 of each are radially aligned).
  • the ring arrays 500 are radially aligned by observing the positions of the alignment tabs 710 . Additionally, if a staggered orientation is desired, the alignment tabs 710 may be used to rotate one of the ring arrays 500 about the lead body so that the alignment tabs 710 of one ring array 500 are not in line with the alignment tabs 710 of a second ring array 500 .
  • FIG. 9A is a schematic perspective view of one embodiment of a portion of a lead having a plurality of split ring electrodes and alignment tabs. With the alignment tabs 710 radially aligned, a lead similar to that earlier described in FIG. 1A may be formed. However, if a staggered configuration is preferable, the alignment tabs 710 of one ring array 500 may be used to rotate the ring array 500 into the staggered position. It will be understood that rotation of the ring array 500 may also be accomplished without using the alignment tabs 710 .
  • FIG. 9B is a schematic perspective view of one such embodiment of a portion of a lead having a plurality of split ring electrodes and alignment tabs arranged in a staggered orientation.
  • the ring arrays 500 and the spacers 610 may be correctly positioned in the longitudinal direction and properly radially aligned. Furthermore, using a welding technique, or a suitable adhesive, the ring arrays 500 and the spacers 610 may be permanently secured to the lead body 110 .
  • the alignment tabs 710 may then be removed if an isodiametric lead is desired. In some embodiments, the alignment tabs 710 are simply broken off at the notched portion 720 . In at least some other embodiments, the lead having ring arrays 500 and spacers 610 may be ground to the appropriate diameter.
  • FIG. 9C is a schematic perspective view of the portion of a lead of FIG. 9A after grinding or otherwise removing the alignment tabs 710 . In some embodiments, the alignment tabs 710 will be removed by grinding the assembled lead, though it will be understood that any other suitable method may be used to remove the alignment tabs 710 .
  • the stimulating portions 310 may need to be formed of a conductive material, other materials may be used in forming the base portions 330 and the transition portions 320 .
  • the split ring electrodes 300 it may be possible to produce leads having different stimulation and recording advantages. In some embodiments, these methods are used with lead constructions other than deep brain stimulation leads.

Abstract

A device for brain stimulation includes a lead body having a longitudinal surface and a distal end. The device further includes at least one ring array. The at least one ring array includes a plurality of split ring electrodes disposed on the distal end of the lead body. Each of the plurality of split ring electrodes includes a stimulating portion and a base portion coupled to the stimulating portion. The split ring electrodes of the at least one ring array are arranged about the circumference of the lead body. At least a portion of the base portion of at least one of the plurality of split ring electrodes is disposed below, and insulated from, at least a portion of the stimulating portion of another of the plurality of split electrodes.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 12/946,687 filed Nov. 15, 2010 which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/265,243 filed on Nov. 30, 2009, both of which are incorporated herein by reference.
FIELD
The invention is directed to devices and methods for brain stimulation including deep brain stimulation. In addition, the invention is directed to devices and method for brain stimulation using a lead having concentric split ring electrodes.
BACKGROUND
Deep brain stimulation can be useful for treating a variety of conditions including, for example, Parkinson's disease, dystonia, essential tremor, chronic pain, Huntington's Disease, levodopa-induced dyskinesias and rigidity, bradykinesia, epilepsy and seizures, eating disorders, and mood disorders. Typically, a lead with a stimulating electrode at or near a tip of the lead provides the stimulation to target neurons in the brain. Magnetic resonance imaging (MRI) or computerized tomography (CT) scans can provide a starting point for determining where the stimulating electrode should be positioned to provide the desired stimulus to the target neurons.
Upon insertion, current is introduced along the length of the lead to stimulate target neurons in the brain. This stimulation is provided by electrodes, typically in the form of rings, disposed on the lead. The current projects from each electrode similarly and in all directions at any given length along the axis of the lead. Because of the shape of the electrodes, radial selectivity of the current is minimal. This results in the unwanted stimulation of neighboring neural tissue, undesired side effects and an increased duration of time for the proper therapeutic effect to be obtained.
In the field of deep brain stimulation, radially segmented electrode arrays (RSEA) have been developed to provide superior radial selectivity of current. Radially segmented electrode arrays are useful for deep brain stimulation because the target structures in the deep brain are often not symmetric about the axis of the distal electrode array. In some cases, a target may be located on one side of a plane running through the axis of the lead. In other cases, a target may be located at a plane that is offset at some angle from the axis of the lead. Thus, radially segmented electrode arrays may be useful for selectively simulating tissue. These radially segmented arrays may be made using concentric split ring electrodes.
BRIEF SUMMARY
In one embodiment, a device for brain stimulation includes a lead body having a longitudinal surface and a distal end. The device further includes at least one ring array. The at least one ring array includes a plurality of split ring electrodes disposed on the distal end of the lead body. Each of the plurality of split ring electrodes includes a stimulating portion and a base portion coupled to the stimulating portion. The split ring electrodes of the at least one ring array are arranged about the circumference of the lead body. At least a portion of the base portion of at least one of the plurality of split ring electrodes is disposed below, and insulated from, at least a portion of the stimulating portion of another of the plurality of split electrodes.
In another embodiment, a device for brain stimulation includes a lead body having a longitudinal surface and a distal end. The device further includes a plurality of split ring electrodes disposed on the distal end of the lead body. Each of the plurality of split ring electrodes includes a stimulating portion and a base portion coupled to the stimulating portion. The split ring electrodes are arranged such that the base portions are arranged around an inner circle having a first radius and the stimulating portions are arranged around an outer circle having a second radius, wherein the first radius is less than the second radius.
In yet another embodiment, a method of manufacturing a device for brain stimulation includes forming a lead body having a longitudinal surface and a distal end. At least one ring array is formed. The at least one ring array includes a plurality of split ring electrodes at the distal end of the lead body. Each of the plurality of split ring electrodes includes a stimulating portion and a base portion coupled to the stimulating portion. The split ring electrodes of the at least one ring array are arranged about the circumference of the lead body. At least a portion of the base portion of at least one of the plurality of split ring electrodes is disposed below and insulated from, at least a portion of the stimulating portion of another of the plurality of split electrodes.
BRIEF DESCRIPTION OF THE DRAWINGS
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
FIG. 1A is a schematic perspective view of one embodiment of a portion of a lead having a plurality of segmented electrodes and a ring electrode, according to the invention;
FIG. 1B is a schematic perspective view of another embodiment of a lead having a plurality of segmented electrodes arranged in staggered orientation and a ring electrode, according to the invention;
FIG. 2 is a schematic diagram of radial current steering along various electrode levels along the length of a lead, according to the invention;
FIG. 3A is a schematic perspective view of one embodiment of a split ring electrode, according to the invention;
FIG. 3B is a schematic perspective view of another embodiment of a split ring electrode, according to the invention;
FIG. 3C is a schematic cross-sectional view of the split ring electrode of FIG. 3B, according to the invention;
FIG. 4 is a schematic cross-sectional view of one embodiment of a split ring electrode having an insulative coating, according to the invention;
FIG. 5 is a schematic cross-sectional view of a plurality of split ring electrodes arranged in a ring array, according to the invention;
FIG. 6 is a schematic perspective view of a plurality of ring arrays and a spacer, according to the invention;
FIG. 7 is a schematic cross-sectional view of one embodiment of a plurality of split ring electrodes having alignment tabs, according to the invention;
FIG. 8 is a schematic perspective view of a plurality of ring arrays having alignment tabs and separated by a spacer, according to the invention;
FIG. 9A is a schematic perspective view of one embodiment of a portion of a lead having a plurality of split ring electrodes and alignment tabs, according to the invention;
FIG. 9B is a schematic perspective view of another embodiment of a portion of a lead having a plurality of split ring electrodes and alignment tabs arranged in a staggered orientation, according to the invention;
FIG. 9C is a schematic perspective view of the portion of the lead of FIG. 9A after grinding of the alignment tabs, according to the invention;
FIG. 10 is a schematic side view of one embodiment of a device for brain stimulation, according to the invention.
DETAILED DESCRIPTION
The present invention is directed to the area of devices and methods for brain stimulation including deep brain stimulation. In addition, the invention is directed to devices and method for brain stimulation using a lead having a plurality of split ring electrodes arranged in a ring array.
A lead for deep brain stimulation may include stimulation electrodes, recording electrodes, or a combination of both. A practitioner may determine the position of the target neurons using the recording electrode(s) and then position the stimulation electrode(s) accordingly without removal of a recording lead and insertion of a stimulation lead. In some embodiments, the same electrodes can be used for both recording and stimulation. In some embodiments, separate leads can be used; one with recording electrodes which identify target neurons, and a second lead with stimulation electrodes that replaces the first after target neuron identification. A lead may include recording electrodes spaced around the circumference of the lead to more precisely determine the position of the target neurons. In at least some embodiments, the lead is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.
Deep brain stimulation devices and leads are described in the art. See, for instance, U.S. Patent Publication 2006/0149335 A1 (“Devices and Methods For Brain Stimulation”), and co-pending U.S. patent application Ser. No. 12/237,888 (“Leads With Non-Circular-Shaped Distal Ends For Brain Stimulation Systems and Methods of Making and Using”). Each of these references is incorporated herein by reference in its respective entirety.
FIG. 10 illustrates one embodiment of a device for brain stimulation. The device includes a lead 100, segmented electrodes 1020, a connector 1040 for connection of the electrodes to a control unit, and a stylet 1050 for assisting in insertion and positioning of the lead in the patient's brain. The stylet 1050 can be made of a rigid material. Examples of suitable materials include tungsten, stainless steel, or plastic. The stylet 1050 may have a handle 1060 to assist insertion into the lead, as well as rotation of the stylet 1050 and lead 100.
In one example of operation, access to the desired position in the brain can be accomplished by drilling a hole in the patient's skull or cranium with a cranial drill (commonly referred to as a burr), and coagulating and incising the dura mater, or brain covering. The lead 100 can be inserted into the cranium and brain tissue with the assistance of the stylet 1050. The lead can be guided to the target location within the brain using, for example, a stereotactic frame and a microdrive motor system. In some embodiments, the microdrive motor system can be fully or partially automatic. The microdrive motor system may be configured to perform one or more the following actions (alone or in combination): rotate the lead, insert the lead, or retract the lead. In some embodiments, measurement devices coupled to the muscles or other tissues stimulated by the target neurons or a unit responsive to the patient or clinician can be coupled to the control unit or microdrive motor system. The measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrode(s) to further identify the target neurons and facilitate positioning of the stimulation electrode(s). For example, if the target neurons are directed to a muscle experiencing tremors, a measurement device can be used to observe the muscle and indicate changes in tremor frequency or amplitude in response to stimulation of neurons. Alternatively, the patient or clinician may observe the muscle and provide feedback.
The lead 100 for deep brain stimulation can include stimulation electrodes, recording electrodes, or both. In at least some embodiments, the lead is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.
Stimulation electrodes may be disposed on the circumference of the lead to stimulate the target neurons. Stimulation electrodes may be ring-shaped so that current projects from each electrode equally in every direction at any given length along the axis of the lead. To achieve current steering, segmented electrodes can be utilized additionally or alternatively. Though the following description discusses stimulation electrodes, it will be understood that all configurations of the stimulation electrodes discussed may be utilized in arranging recording electrodes as well.
FIG. 1A illustrates one embodiment of a lead 100 for brain stimulation. The device includes a lead body 110, one or more ring electrodes 120, and a plurality of segmented electrodes 130. The lead body 110 can be formed of a biocompatible, non-conducting material such as, for example, a polymeric material. Suitable polymeric materials include, but are not limited to, silicone, polyethylene, polyurethanes, polyureas, or polyurethane-ureas. In at least some instances, the lead may be in contact with body tissue for extended periods of time. In at least some embodiments, the lead has a cross-sectional diameter of no more than 1.5 mm and may be in the range of 0.75 to 1.5 mm. In at least some embodiments, the lead has a length of at least 10 cm and the length of the lead may be in the range of 25 to 70 cm.
Stimulation electrodes may be disposed on the lead body 110. These stimulation electrodes may be made using a metal, alloy, conductive oxide, or any other suitable conductive material. Examples of suitable materials include, but are not limited to, platinum, iridium, platinum iridium alloy, stainless steel, titanium, or tungsten. Preferably, the stimulation electrodes are made of a material that is biocompatible and does not substantially corrode under expected operating conditions in the operating environment for the expected duration of use.
In at least some embodiments, any of the electrodes can be used as an anode or cathode and carry anodic or cathodic current. In some instances, an electrode might be an anode for a period of time and a cathode for a period of time. In other embodiments, the identity of a particular electrode or electrodes as an anode or cathode might be fixed.
The lead contains a plurality of segmented electrodes 130. Any number of segmented electrodes 130 may be disposed on the lead body 110. In some embodiments, the segmented electrodes 130 are grouped in sets of segmented electrodes, each set disposed around the circumference of the lead at or near a particular longitudinal position. The lead may have any number of sets of segmented electrodes. In at least some embodiments, the lead has one, two, three, four, five, six, seven, or eight sets of segmented electrodes. In at least some embodiments, each set of segmented electrodes contains the same number of segmented electrodes 130. In some embodiments, each set of segmented electrodes contains three segmented electrodes 130. In at least some other embodiments, each set of segmented electrodes contains two, four, five, six, seven or eight segmented electrodes. The segmented electrodes 130 may vary in size and shape. For example, in FIG. 1B, the segmented electrodes 130 are shown as portions of a ring or curved rectangular portions. In some other embodiments, the segmented electrodes 130 are curved square portions. The shape of the segmented electrodes 130 may also be substantially triangular, diamond-shaped, oval, circular or spherical. In some embodiments, the segmented electrodes 130 are all of the same size, shape, diameter, width or area or any combination thereof. In some embodiments, the segmented electrodes of each set (or even all segmented electrodes) may be identical in size and shape.
In at least some embodiments, each set of segmented electrodes 130 may be disposed around the circumference of the lead body 110 to form a substantially or approximately cylindrical shape around the lead body 110. The spacing of the segmented electrodes 130 around the circumference of the lead body 110 may vary. In at least some embodiments, equal spaces, gaps or cutouts are disposed between each segmented electrodes 130 around the circumference of the lead body 110. In other embodiments, the spaces, gaps or cutouts between segmented electrodes may differ in size or shape. In other embodiments, the spaces, gaps, or cutouts between segmented electrodes may be uniform for a particular set of segmented electrodes or for all sets of segmented electrodes. The segmented electrodes 130 may be positioned in irregular or regular intervals around the lead body 110.
Stimulation electrodes in the form of ring electrodes 120 may be disposed on any part of the lead body 110, usually near a distal end of the lead. FIG. 1A illustrates a portion of a lead having one ring electrode. Any number of ring electrodes may be disposed along the length of the lead body 110. For example, the lead body may have one ring electrode, two ring electrodes, three ring electrodes or four ring electrodes. In some embodiments, the lead will have five, six, seven or eight ring electrodes. Other embodiments do not include ring electrodes.
In some embodiments, the ring electrodes 120 are substantially cylindrical and wrap around the entire circumference of the lead body 110. In some embodiments, the outer diameter of the ring electrodes 120 is substantially equal to the outer diameter of the lead body 110. Furthermore, the width of ring electrodes 120 may vary according to the desired treatment and the location of the target neurons. In some embodiments the width of the ring electrode 120 is less than or equal to the diameter of the ring electrode 120. In other embodiments, the width of the ring electrode 120 is greater than the diameter of the ring electrode 120.
Conductors (not shown) that attach to or from the ring electrodes 120 and segmented electrodes 130 also pass through the lead body 110. These conductors may pass through the material of the lead or through a lumen defined by the lead. The conductors are presented at a connector for coupling of the electrodes to a control unit (not shown). In one embodiment, the stimulation electrodes correspond to wire conductors that extend out of the lead body 110 and are then trimmed or ground down flush with the lead surface. The conductors may be coupled to a control unit to provide stimulation signals, often in the form of pulses, to the stimulation electrodes.
FIG. 1B is a schematic perspective view of another embodiment of a lead having a plurality of segmented electrodes. As seen in FIG. 1B, the plurality of segmented electrodes 130 may be arranged in different orientations relative to each other. In contrast to FIG. 1A, where the three sets of segmented electrodes are aligned along the length of the lead body 110, FIG. 1B displays another embodiment in which the three sets of segmented electrodes 130 are staggered. In at least some embodiments, the sets of segmented electrodes are staggered such that no segmented electrodes are aligned along the length of the lead body 110. In some embodiments, the segmented electrodes may be staggered so that at least one of the segmented electrodes is aligned with another segmented electrode of a different set, and the other segmented electrodes are not aligned.
Any number of segmented electrodes 130 may be disposed on the lead body 110 in any number of sets. FIGS. 1A and 1B illustrate embodiments including three sets of segmented electrodes. These three sets of segmented electrodes 130 may be disposed in different configurations. For example, three sets of segmented electrodes 130 may be disposed on the distal end of the lead body 110, distal to a ring electrode 120. Alternatively, three sets of segmented electrodes 130 may be disposed proximal to a ring electrode 120. By varying the location of the segmented electrodes 130, different coverage of the target neurons may be selected. For example, a specific configuration may be useful if the physician anticipates that the neural target will be closer to the distal tip of the lead body 110, while another arrangement may be useful if the physician anticipates that the neural target will be closer to the proximal end of the lead body 110. In at least some embodiments, the ring electrodes 120 alternate with sets of segmented electrodes 130.
Any combination of ring electrodes 120 and segmented electrodes 130 may be disposed on the lead. In some embodiments the segmented electrodes are arranged in sets. For example, a lead may include a first ring electrode 120, two sets of segmented electrodes, each set formed of three segmented electrodes 130, and a final ring electrode 120 at the end of the lead. This configuration may simply be referred to as a 1-3-3-1 configuration. It may be useful to refer to the electrodes with this shorthand notation. Other eight electrode configurations include, for example, a 2-2-2-2 configuration, where four sets of segmented electrodes are disposed on the lead, and a 4-4 configuration, where two sets of segmented electrodes, each having four segmented electrodes 130 are disposed on the lead. In some embodiments, the lead will have 16 electrodes. Possible configurations for a 16-electrode lead include, but are not limited to 4-4-4-4, 8-8, 3-3-3-3-3-1 (and all rearrangements of this configuration), and 2-2-2-2-2-2-2-2.
FIG. 2 is a schematic diagram to illustrate radial current steering along various electrode levels along the length of a lead. While conventional lead configurations with ring electrodes are only able to steer current along the length of the lead (the z-axis), the segmented electrode configuration is capable of steering current in the x-axis, y-axis as well as the z-axis. Thus, the centroid of stimulation may be steered in any direction in the three-dimensional space surrounding the lead body 110. In some embodiments, the radial distance, r, and the angle θ around the circumference of the lead body 110 may be dictated by the percentage of anodic current (recognizing that stimulation predominantly occurs near the cathode, although strong anodes may cause stimulation as well) introduced to each electrode as will be described in greater detail below. In at least some embodiments, the configuration of anodes and cathodes along the segmented electrodes 130 allows the centroid of stimulation to be shifted to a variety of different locations along the lead body 110.
As can be appreciated from FIG. 2, the centroid of stimulation can be shifted at each level along the length of the lead. The use of multiple sets of segmented electrodes 130 at different levels along the length of the lead allows for three-dimensional current steering. In some embodiments, the sets of segmented electrodes 130 are shifted collectively (i.e. the centroid of simulation is similar at each level along the length of the lead). In at least some other embodiments, each set of segmented electrodes 130 is controlled independently. Each set of segmented electrodes may contain two, three, four, five, six, seven, eight or more segmented electrodes. It will be understood that different stimulation profiles may be produced by varying the number of segmented electrodes at each level. For example, when each set of segmented electrodes includes only two segmented electrodes, uniformly distributed gaps (inability to stimulate selectively) may be formed in the stimulation profile. In some embodiments, at least three segmented electrodes 130 are utilized to allow for true 360° selectivity.
In addition to 360° selectivity, a lead having segmented electrodes may provide several advantages. First, the lead may provide for more directed stimulation, as well as less “wasted” stimulation (i.e. stimulation of regions other than the target region). By directing stimulation toward the target tissue, side effects may be reduced. Furthermore, because stimulation is directed toward the target site, the battery in an implantable pulse generator may last for a longer period of time between recharging.
As previously indicated, the foregoing configurations may also be used while utilizing recording electrodes. In some embodiments, measurement devices coupled to the muscles or other tissues stimulated by the target neurons or a unit responsive to the patient or clinician can be coupled to the control unit or microdrive motor system. The measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrodes to further identify the target neurons and facilitate positioning of the stimulation electrodes. For example, if the target neurons are directed to a muscle experiencing tremors, a measurement device can be used to observe the muscle and indicate changes in tremor frequency or amplitude in response to stimulation of neurons. Alternatively, the patient or clinician may observe the muscle and provide feedback.
Radially segmented electrode arrays may be manufactured in a variety of ways. In at least some embodiments, a plurality of split ring electrodes are used to form an array of radially segmented electrodes. The plurality of split ring electrodes may be modified to utilize different numbers of electrodes, to adjust the radial spacing between electrodes or to vary the longitudinal position between levels of electrodes.
FIG. 3A is a schematic perspective view of one embodiment of a split ring electrode 300. As will be explained further below, the shape and size of the split ring electrode 300 may be modified. The split ring electrode 300 of FIG. 3A includes a stimulating portion 310, a transition portion 320 and a base portion 330. The split ring electrode 300 may be unitarily formed from a metal, alloy, conductive oxide, or any other suitable conductive material. Alternatively, the split ring electrode 300 may be formed of distinct segmented that are subsequently coupled using welding or other suitable methods.
As seen in FIG. 3A, the stimulating portion 310 of the split ring electrode 300 may be formed in the shape of a portion of a cylinder. The size and shape of the stimulating portion 310 will depend on the number of the split ring electrodes 300 that will be used and the configuration in which they will be used. In some embodiments, the cross-section of the stimulating portion 310 creates a semi-cylindrical portion, though it will be understood that the stimulating portion 310 may encompass any part of a cylinder, such as one-quarter, one-third, or two-thirds of a cylinder. In at least some embodiments, the arc length of the stimulating portion 310 encompasses a portion of a circle that is smaller than the reciprocal of the number of split ring electrodes 300 that will be used at a given level. For example, if three split ring electrodes 300 are disposed at a given longitudinal level, then the arc length of the stimulating portion of each split ring electrode may be less than one-third of a circle (i.e. less than 120 degrees). Thus, the sum of the arc lengths of the stimulating portions 310 will not equal 360 degrees so that gaps are formed between adjacent stimulating portions 310. These gaps will separate the stimulating portions 310 from one another and allow the stimulating electrodes 310 to function independently.
The split ring electrode 300 also includes a base portion 330. The base portion 330 may be formed from the same material as the stimulating portion 310 (e.g. a metal, alloy, conductive oxide, or other conductive material). Alternatively, the base portion 330 may be formed of a non-conductive material that is coupleable to the stimulating portion 310 through the use of a transition portion 320 as will be described below or through any other suitable method. As seen in FIG. 3A, the base portion 330 may be formed in a shape similar to the stimulating portion 310. In some embodiments, the base portion 330 has a cross-section in the shape of a portion of a cylinder. The arc-length of this base portion 330 may be the same, greater than or less than that of the corresponding stimulating portion 310. Furthermore, the radius of curvature of the stimulating portions 310 may be larger than that of the base portions 330. As will be appreciated by one of ordinary skill in the art, the length, width and thickness of the base portion 330 and stimulating portion 310 may also be the same or different as desired. For example, in some embodiments, the base portion 330 is formed thicker than the stimulating portion 310 for overall reinforcement of the structure.
A transition portion 320 may be formed between the stimulating portion 310 and the base portion 330. In at least some embodiments, the transition portion 320 is configured to allow the interlocking of the plurality of split ring electrodes 300 as will be described in greater detail below with reference to FIG. 5. In some embodiments, the transition portion 320 is a slightly curved member that serves to join the stimulating portion 310 and the base portion 330. FIG. 3B is a schematic perspective view of another embodiment of a split ring electrode 300. As can be appreciated from FIG. 3B, the transition portion 320 may instead be formed of a substantially straight member that connects the stimulating portion 310 and the base portion 330. It will be understood that the angle and length of the transition portion 320 may be modified.
FIG. 3C is a schematic cross-sectional view of the split ring electrode of FIG. 3B. The split ring electrode 300 may be configured in a way such that the overall cross-sectional shape of the split ring electrode 300 resembles two portions of a cylinder assembled end-to-end at a transition portion 320. In embodiments where the split ring electrode 300 is formed from one unitary piece, the shape of the split ring electrode 300 may be provided by stamping the piece into the appropriate shape, although alternatively other methods of manufacture may be used. Manufacturing the split ring electrodes 300 from a stamped unitary piece may be useful in reducing both the cost and the possibility of an electrode breakage or failure. In at least some other embodiments, the transition portion 320 serves to couple a conductive stimulating portion 310 with a nonconductive base portion 330.
An insulative coating may be applied to the split ring electrodes 300 to electrically insulate them from one another. FIG. 4 is a schematic perspective view of one embodiment of a split ring electrode 300 having an insulative coating 410. As seen in FIG. 4, in some embodiments, the base portion 330 is coated with an insulative coating 410. The insulative coating 410 may include any suitable insulator such as, for example, silicone, polyurethane, polyetheretherketone, polysulfone, nylon, polytetrafluoroethylene (e.g., Teflon®), or some other implant grade non-conductive material. In the case of silicone and certain other insulators, the insulative coating 410 may be applied using a dip molding process or any other suitable method. As previously indicated, applying an insulative coating 410 to the base portion 330 may be useful in electrically separating one split ring electrode 300 from an adjacent split ring electrode 300.
In some embodiments, the insulative coating 410 covers the entirety or a substantial portion of the base portion 330. Preferably, the insulative coating 410 is applied to cover a portion of the base portion 330 that would otherwise be in contact with a stimulating portion 310 of an adjacent split ring electrode 300. In at least some embodiments, the insulative coating 410 is applied to both the base portion 330 and the transition portion 320. Alternatively, the insulative coating 410 may be applied to only part of the transition portion 320 or to only one side of the transition portion 320. The bottom of the base portion 330, or a part of the base portion 330 might not be insulated.
A conductor (e.g. a wire) 420 may be attached to any portion of the split ring electrode 300. As seen in FIG. 4, a conductor 420 may be attached to the base portion 310 of the split ring electrode 300. Thus, in some embodiments, a piece of the insulative coating 410 may be removed so that that conductor 420 can properly attach to the base portion 310 of the split ring electrode 300. Any method of removing a fragment of the insulative coating 410 may be used. In some embodiments, an ablation process is used to remove a part of the insulative coating 410 so that a conductor 420 may be welded to the base portion 330. Alternatively, the conductor 420 may be coupled to the transition portion 320 or the stimulating portion 330. If the transition portion 320 is coated with an insulative coating 410, portions of the insulative coating 410 may need to be removed as described herein.
FIG. 5 is a schematic cross-sectional view of a plurality of split ring electrodes 300 arranged in a ring array. In this illustrated embodiment, three split ring electrodes 300 are assembled into a ring array 500. As seen in FIG. 5, the split ring electrodes 300 may be positioned such that the base portion 330 of one split ring electrode 300 is disposed underneath or radially inward of the stimulating portion 310 of a split ring electrode 300 that is adjacent to the first in the counter-clockwise direction. It will be appreciated from the cross-section of the ring array 500 that the result of this arrangement define two concentric cylinders. The first cylinder is disposed on the inside of the ring array 500 and includes only the base portions 330 of the plurality of split ring electrodes 300. A second concentric cylinder is formed over the first cylinder. The second cylinder is formed of the stimulating portions 310 of the plurality of split ring electrodes 300. In some embodiments, the first cylinder is formed to have a radius equal to or slightly larger than the diameter of the lead body on which it will be disposed.
In some embodiments, it will be desirable to electrically insulate the plurality of split ring electrodes 300 from each other. As can be appreciated from FIG. 5, the insulative coating 410 serves to insulate the base portion 330 of each of the split ring electrodes 300 from the stimulating portions 310 of the adjacent split ring electrodes 300. Furthermore, as briefly described above, gaps 510 may be formed between the stimulating portions so that they are electrically insulated from one another. If an insulative coating 410 is applied to the transition portions 320, the stimulating portions 310 may be extended so that they abut one another with the insulative coating 410 providing the desired insulation between the two stimulating portions 310. Furthermore, it will be understood that the overlap between the base portion 330 of one split ring electrode 300 and a stimulating portion 310 of an adjacent split ring electrode 300 may vary. For example, in some embodiments, the base portion of 330 of one split ring electrode 300 and the stimulating portion 310 of an adjacent split ring electrode 300 cover the same radial angle and fully overlap (i.e. the base portion 330 overlaps about 95% of the stimulating portion 310). In other embodiments, the base portion 330 overlaps up to 99% of the stimulating portion 310. In other embodiments, the base portion 330 overlaps up to 90% of the stimulating portion 310. In other embodiments, the base portion 330 overlaps up to 80% of the stimulating portion 310. In other embodiments, the base portion 330 overlaps up to 75% of the stimulating portion 310. In other embodiments, the base portion 330 overlaps up to 60% of the stimulating portion 310. In other embodiments, the base portion 330 overlaps up to 50% of the stimulating portion 310.
Though FIG. 5 illustrates a ring array 500 having three split ring electrodes 300, any number of split ring electrodes 300 may be used to form the ring array 500. As few as two split ring electrodes 300 may be used to form a ring array 500. In some embodiments, the ring array 500 is formed using two, three, four, five, six, eight, ten, or twelve split ring electrodes 300. The split ring electrodes 300 of any given ring array 500 may be of the same size and shape or they may have different sizes and/or shapes. For example, the stimulating portions 310 of the split ring electrodes 300 may be of the same length or of different lengths in a ring array 500.
Furthermore, it will be understood that a lead may include any number of ring arrays 500. Each ring array 500 may be configured the same or differently than one or more of the others. For example, a lead may include a ring array 500 having three split ring electrodes 300 at a first level, a second ring array 500 having three split ring electrodes 300 at a second level and a third ring array 500 having two split ring electrodes 300 at a third level to form a lead having a 3-3-2 configuration as described above. Thus, at least one ring array 500 may be formed to have a different configuration than the others as desired. Additionally, ring electrodes 130 may be disposed between ring arrays 500 in positions where segmented electrodes are not necessary. In some embodiments, the stimulating portions 310 of different ring arrays 500 are radially aligned. In at least some embodiments, stimulating portions 310 of different ring arrays 500 are radially offset.
The interlocking and mutually supporting configuration of the ring array 500 allows for sturdy electrode construction. This configuration allows each split ring electrode 300 to support and secure the adjacent electrode. By forming leads using ring arrays 500 it may be possible to reduce the possibility of lead failure and breakage. Specifically, leads manufactured using ring arrays 500 are less prone to failure because the stimulating portions 310 are secured by the base portions 330. Thus, electrodes are less prone to detachment and disconnection from the lead body.
FIG. 6 is a schematic perspective view of the plurality of split ring electrodes 300 and a spacer 710. The split ring electrodes 300 are arranged into two ring arrays 500 as described above. In some embodiments, spacers 610 are placed to control the distance between the ring arrays 500 and to electrically insulate one ring array 500 from another. The spacer 610 may be in the form of a short cylinder or ring that separates the two rings arrays 500 as illustrated in FIG. 6. The spacers 610 may be formed of any suitable non-conductive material capable of electrically insulating the stimulating portions 310 of the split ring electrodes 300. Additionally, in embodiments having gaps 510, the same material used to form the spacers 610 may be used to form a longitudinal spacer between the individual split ring electrodes 300. It will be understood that the size and shape of the spacers may be varied to separate the ring arrays 500 as desired. For example, in some embodiments, the spacers 610 have the same longitudinal width as the ring arrays 500. Alternatively, the spacers 610 may be wider or narrower in the longitudinal direction than the ring arrays 500. The spacers 610 may also have the same diameter as the ring arrays 500 in order to produce an isodiametric lead.
After manufacture of the individual components, the spacers 610 and ring arrays 500 may be coupled to a lead body using any suitable method. In some embodiments, the plurality of split ring electrodes 300 are coupled to create ring arrays 500, and the ring arrays 500 are then slid onto a lead body where they will be permanently secured using welding, or a suitable adhesive. The spacers 610 may also be slid onto the lead body between the ring arrays 500.
Because the split ring electrodes 300 may be manufactured separately, in some embodiments it may be useful to have additional methods of aligning them. For example, to form the ring array 500 described above, each of the split ring electrodes 300 must be disposed in the proper position and orientation. Proper alignment of the split ring electrodes 300 may be accomplished using alignment tabs as will be described with reference to FIG. 7.
FIG. 7 is a schematic cross-sectional view of one embodiment of a ring array having alignment tabs 710. The alignment tabs 710 may be in the form of projecting flaps, extensions, tips, or handles. As seen in FIG. 7, in some embodiments, an alignment tab 710 is coupled to the stimulating portion 310 of each of the split ring electrodes 300. Alternatively, the alignment tabs 710 may be unitarily formed with the stimulating portion 310 in the form of an outwardly bent top portion. The alignment tabs 710 may also be coupled to or formed of a portion of the transition portion 320 or even the base portion 330. It will be understood that the location and the form of the alignment tab 710 may be modified so long as the structure is able to orient and manipulate the split ring electrode 300 into a desired position. Using the alignment tabs 710, it may be possible to maintain the gaps 510 between the split ring electrodes 300.
In some embodiments, the base of the alignment tabs 710 may be connected to the stimulating portion 310, the transition portion 320 or the base portion 330 and form a notched portion 720. The notched portion 720 may be configured in any suitable manner that forms a scored or weakened joint or seam between the alignment tab 710 and the split ring electrode 300. The use of a notched portion 720 is useful if it is desirable to remove the alignment tabs 710 after proper alignment. In this manner, the alignment tabs 710 may simply be broken off the split ring electrodes 300 after alignment. Alternatively, the tabs 710 can be ground down or cut.
FIG. 8 is a schematic perspective view of the plurality of split ring electrodes having alignment tabs and separated by a spacer. As seen in FIG. 8, the alignment tabs 710 may be used to position the plurality of split ring electrodes 300 into a ring array 500 having gaps 510. Additionally, the alignment tabs 710 may also be useful in positioning one ring array 500 with respect to a second ring array 500. For example, FIG. 8 illustrates two ring arrays 500 that are radially aligned (i.e. the base portions 330, transition portions 320, stimulating portions 310 and alignment tabs 710 of each are radially aligned). One of ordinary skill in the art may quickly appreciate that the ring arrays 500 are radially aligned by observing the positions of the alignment tabs 710. Additionally, if a staggered orientation is desired, the alignment tabs 710 may be used to rotate one of the ring arrays 500 about the lead body so that the alignment tabs 710 of one ring array 500 are not in line with the alignment tabs 710 of a second ring array 500.
FIG. 9A is a schematic perspective view of one embodiment of a portion of a lead having a plurality of split ring electrodes and alignment tabs. With the alignment tabs 710 radially aligned, a lead similar to that earlier described in FIG. 1A may be formed. However, if a staggered configuration is preferable, the alignment tabs 710 of one ring array 500 may be used to rotate the ring array 500 into the staggered position. It will be understood that rotation of the ring array 500 may also be accomplished without using the alignment tabs 710. FIG. 9B is a schematic perspective view of one such embodiment of a portion of a lead having a plurality of split ring electrodes and alignment tabs arranged in a staggered orientation.
Thus, the ring arrays 500 and the spacers 610 may be correctly positioned in the longitudinal direction and properly radially aligned. Furthermore, using a welding technique, or a suitable adhesive, the ring arrays 500 and the spacers 610 may be permanently secured to the lead body 110. The alignment tabs 710 may then be removed if an isodiametric lead is desired. In some embodiments, the alignment tabs 710 are simply broken off at the notched portion 720. In at least some other embodiments, the lead having ring arrays 500 and spacers 610 may be ground to the appropriate diameter. FIG. 9C is a schematic perspective view of the portion of a lead of FIG. 9A after grinding or otherwise removing the alignment tabs 710. In some embodiments, the alignment tabs 710 will be removed by grinding the assembled lead, though it will be understood that any other suitable method may be used to remove the alignment tabs 710.
Modifications of these methods are possible. For example, though the stimulating portions 310 may need to be formed of a conductive material, other materials may be used in forming the base portions 330 and the transition portions 320. Furthermore, by varying the size and shape of the split ring electrodes 300, it may be possible to produce leads having different stimulation and recording advantages. In some embodiments, these methods are used with lead constructions other than deep brain stimulation leads.
The above specification, examples and data provide a description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.

Claims (20)

What is claimed as new and desired to be protected by Letters Patent of the United States is:
1. A device for electrical stimulation, comprising:
a lead body having a longitudinal surface, a circumference, and a distal end;
at least one ring array disposed on the distal end of the lead body, each of the at least one ring array comprising at least three split ring electrodes; and
an insulative material disposed between the at least three split ring electrodes;
wherein each of the at least three split ring electrodes comprises a stimulating portion and a base portion coupled to the stimulating portion and having an end spaced-apart from the stimulating portion, the stimulating portion extending around a portion of the circumference of the lead body and the base portion extending uniformly in a circumferential direction, relative to the circumference of the lead body, away from the stimulating portion to the end of the base portion spaced-apart from the stimulating portion, wherein at least a portion of the base portion of each of the at least three split ring electrodes is disposed radially inward, and separated by a layer of the insulative material, from at least a portion of the stimulating portion of an adjacent one of the at least three split electrodes;
wherein the device is configured and arranged for electrical stimulation.
2. The device of claim 1, wherein a portion of the insulative material is disposed directly between the base portion of a one of the split ring electrodes and the stimulating portion of an adjacent one of the split ring electrodes.
3. The device of claim 1, wherein each of the at least one ring array comprises exactly three split ring electrodes.
4. The device of claim 1, wherein each of the at least one ring array comprises at least four split ring electrodes.
5. The device of claim 1, wherein a portion of the insulative material is disposed radially outward from the base portion of a one of the split ring electrodes and radially inward from the stimulating portion of an adjacent one of the split ring electrodes.
6. The device of claim 1, wherein the insulative material comprises an insulative coating directly on a top surface of the base portion of each of the at least three split ring electrodes.
7. The device of claim 1, further comprising at least one ring electrode disposed on the distal end of the lead body.
8. The device of claim 1, wherein the at least three split ring electrodes are disposed on the lead body so that the device is isodiametric.
9. The device of claim 1, further comprising at least one spacer disposed adjacent to one of the at least one ring array.
10. The device of claim 1, further comprising a plurality of conductors coupled to the at least three split ring electrodes.
11. The device of claim 1, wherein the device comprises at least two ring arrays, wherein the stimulating portions of the split ring electrodes of a one of the ring arrays are aligned with the stimulating portions of the split ring electrodes of another of the ring arrays.
12. The device of claim 1, wherein the device comprises at least two ring arrays, wherein the stimulating portions of the split ring electrodes of a one of the ring arrays are offset from the stimulating portions of the split ring electrodes of another of the ring arrays.
13. A device, comprising:
a lead body having a longitudinal surface, a circumference, and a distal end;
at least one ring array disposed on the distal end of the lead body, each of the at least one ring array comprising at least three split ring electrodes; and
an insulative material disposed between the at least three split ring electrodes;
wherein each of the at least three split ring electrodes comprises a stimulating portion and a base portion coupled to the stimulating portion and having an end spaced-apart from the stimulating portion, the stimulating portion extending around a portion of the circumference of the lead body and the base portion extending uniformly in a circumferential direction, relative to the circumference of the lead body, away from the stimulating portion to the end of the base portion spaced-apart from the stimulating portion, wherein at least a portion of the base portion of each of the at least three split ring electrodes is disposed radially inward from at least a portion of the stimulating portion of an adjacent one of the at least three split electrodes;
wherein the device is configured and arranged for electrical stimulation.
14. The device of claim 13, wherein at least one split ring electrode comprises an alignment tab extending radially outward from the stimulation portion.
15. The device of claim 13, wherein each split ring electrode comprises an alignment tab extending radially outward from the stimulation portion.
16. An implantable stimulation device, comprising:
the device of claim 1; and
a control module coupleable to the lead.
17. The implantable stimulation device of claim 16, wherein the implantable stimulation device is a deep brain stimulator.
18. A method of manufacturing a device for brain stimulation, the method comprising:
forming a lead body having a longitudinal surface, a circumference, and a distal end; and
forming at least one ring array comprising at least three split ring electrodes and an insulative material disposed between the at least three split ring electrodes, wherein each of the at least three split ring electrodes comprises a stimulating portion and a base portion coupled to the stimulating portion and having an end spaced-apart from the stimulating portion, the stimulating portion extending around a portion of the circumference of the lead body and the base portion extending uniformly in a circumferential direction, relative to the circumference of the lead body, away from the stimulating portion to the end of the base portion spaced-apart from the stimulating portion, wherein at least a portion of the base portion of each of the at least three split ring electrodes is disposed radially inward, and separated by a layer of the insulative material, from at least a portion of the stimulating portion of an adjacent one of the at least three split electrodes, wherein the device is configured and arranged for electrical stimulation.
19. The method of claim 18, wherein each of the split ring electrodes comprises at least one alignment tab extending radially outward from the stimulation portion of the split ring electrode, the method further comprising aligning the at least one ring array using the alignment tabs.
20. The method of claim 19, further comprising grinding the alignment tabs so that the lead body and the at least three split ring electrodes are isodiametric.
US14/525,023 2009-11-30 2014-10-27 Electrode array having concentric split ring electrodes and methods of making the same Active US9248277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/525,023 US9248277B2 (en) 2009-11-30 2014-10-27 Electrode array having concentric split ring electrodes and methods of making the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26524309P 2009-11-30 2009-11-30
US12/946,687 US8874232B2 (en) 2009-11-30 2010-11-15 Electrode array having concentric split ring electrodes and methods of making the same
US14/525,023 US9248277B2 (en) 2009-11-30 2014-10-27 Electrode array having concentric split ring electrodes and methods of making the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/946,687 Continuation US8874232B2 (en) 2009-11-30 2010-11-15 Electrode array having concentric split ring electrodes and methods of making the same

Publications (2)

Publication Number Publication Date
US20150045866A1 US20150045866A1 (en) 2015-02-12
US9248277B2 true US9248277B2 (en) 2016-02-02

Family

ID=44069446

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/946,687 Active 2030-11-22 US8874232B2 (en) 2009-11-30 2010-11-15 Electrode array having concentric split ring electrodes and methods of making the same
US14/525,023 Active US9248277B2 (en) 2009-11-30 2014-10-27 Electrode array having concentric split ring electrodes and methods of making the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/946,687 Active 2030-11-22 US8874232B2 (en) 2009-11-30 2010-11-15 Electrode array having concentric split ring electrodes and methods of making the same

Country Status (1)

Country Link
US (2) US8874232B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11472049B2 (en) * 2014-07-04 2022-10-18 Koninklijke Philips N.V. Blade set, hair cutting appliance, and related manufacturing method
US11730426B2 (en) 2018-07-31 2023-08-22 Heraeus Medical Components Llc Catheter with segmented electrodes and methods of making same

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7860570B2 (en) 2002-06-20 2010-12-28 Boston Scientific Neuromodulation Corporation Implantable microstimulators and methods for unidirectional propagation of action potentials
US8321025B2 (en) 2006-07-31 2012-11-27 Cranial Medical Systems, Inc. Lead and methods for brain monitoring and modulation
US7583999B2 (en) 2006-07-31 2009-09-01 Cranial Medical Systems, Inc. Multi-channel connector for brain stimulation system
WO2008115383A2 (en) 2007-03-19 2008-09-25 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible lead configurations
ES2462741T3 (en) 2007-03-19 2014-05-26 Boston Scientific Neuromodulation Corporation MRI and RF compatible cables and related cable operation and manufacturing methods
EP3536376A1 (en) 2008-07-30 2019-09-11 Ecole Polytechnique Fédérale de Lausanne Apparatus for optimized stimulation of a neurological target
US8359107B2 (en) 2008-10-09 2013-01-22 Boston Scientific Neuromodulation Corporation Electrode design for leads of implantable electric stimulation systems and methods of making and using
EP2604313B1 (en) 2008-11-12 2014-09-17 Ecole Polytechnique Federale de Lausanne Microfabricated neurostimulation device
EP2419168B1 (en) * 2009-04-16 2019-02-20 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US8875391B2 (en) 2009-07-07 2014-11-04 Boston Scientific Neuromodulation Corporation Methods for making leads with radially-aligned segmented electrodes for electrical stimulation systems
US8887387B2 (en) * 2009-07-07 2014-11-18 Boston Scientific Neuromodulation Corporation Methods of manufacture of leads with a radially segmented electrode array
US8788063B2 (en) 2009-11-30 2014-07-22 Boston Scientific Neuromodulation Corporation Electrode array having a rail system and methods of manufacturing the same
US8391985B2 (en) 2009-11-30 2013-03-05 Boston Scientific Neuromodulation Corporation Electrode array having concentric windowed cylinder electrodes and methods of making the same
US8295944B2 (en) * 2009-11-30 2012-10-23 Boston Scientific Neuromodulation Corporation Electrode array with electrodes having cutout portions and methods of making the same
US8874232B2 (en) 2009-11-30 2014-10-28 Boston Scientific Neuromodulation Corporation Electrode array having concentric split ring electrodes and methods of making the same
CA3026948C (en) 2009-12-01 2022-07-12 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device and methods of making and using the same
US8571665B2 (en) * 2010-03-23 2013-10-29 Boston Scientific Neuromodulation Corporation Helical radial spacing of contacts on a cylindrical lead
AU2011234422B2 (en) 2010-04-01 2015-11-05 Ecole Polytechnique Federale De Lausanne (Epfl) Device for interacting with neurological tissue and methods of making and using the same
JP5793190B2 (en) 2010-06-18 2015-10-14 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Method for manufacturing a brain stimulator
CA2803303A1 (en) 2010-07-16 2012-01-19 Boston Scientific Neuromodulation Corporation Lead with marking stripes or a colored cable for identifying electrode positions
US8583237B2 (en) 2010-09-13 2013-11-12 Cranial Medical Systems, Inc. Devices and methods for tissue modulation and monitoring
JP5808813B2 (en) 2010-09-21 2015-11-10 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Electrical stimulation lead and method for forming a lead for a stimulation device
EP2654876B1 (en) 2010-12-23 2014-12-10 Boston Scientific Neuromodulation Corporation Method and assembly for making a medical lead including removing raised connectors by grinding
US8700179B2 (en) 2011-02-02 2014-04-15 Boston Scientific Neuromodulation Corporation Leads with spiral of helical segmented electrode arrays and methods of making and using the leads
EP2673043B1 (en) 2011-02-08 2015-08-19 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes for electrical stimulation systems
US20120203316A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes for electrical stimulation of planar regions and methods of making and using
EP3498333B1 (en) 2011-02-08 2020-05-13 Boston Scientific Neuromodulation Corporation Leads with spirally arranged segmented electrodes and methods of making and using the leads
US8886335B2 (en) 2011-12-07 2014-11-11 Boston Scientific Neuromodulation Corporation Implantable leads with a low profile distal portion
WO2013112905A1 (en) 2012-01-26 2013-08-01 Boston Scientific Neuromodulation Corporation Systems and methods for identifying the circumferential positioning of electrodes of leads for electrical stimulation systems
WO2013148092A1 (en) 2012-03-30 2013-10-03 Boston Scientific Neuromodulation Corporation Leads with x-ray fluorescent capsules for electrode identification and methods of manufacture and use
US9827413B2 (en) 2012-04-17 2017-11-28 Boston Scientific Neuromodulation Corporation Lead construction for deep brain stimulation
US9878148B2 (en) 2012-04-17 2018-01-30 Boston Scientific Neuromodulation Corporation Lead with contact end conductor guide and methods of making and using
US10549088B2 (en) * 2012-04-27 2020-02-04 Medtronic, Inc. Structures and techniques for medical lead fabrication
AU2013266522B2 (en) 2012-05-25 2016-04-14 Boston Scientific Neuromodulation Corporation Systems and methods for electrically stimulating patient tissue on or around one or more bony structures
EP2854669B1 (en) 2012-05-25 2023-05-10 Boston Scientific Neuromodulation Corporation Percutaneous implantation kit for an electrical stimulation lead for stimulating dorsal root ganglion
US9919148B2 (en) 2012-05-25 2018-03-20 Boston Scientific Neuromodulation Corporation Distally curved electrical stimulation lead and methods of making and using
WO2013177145A1 (en) 2012-05-25 2013-11-28 Boston Scientific Neuromodulation Corporation Methods for stimulating the dorsal root ganglion with a lead having segmented electrodes
US8792993B2 (en) 2012-06-01 2014-07-29 Boston Scientific, Neuromodulation Corporation Leads with tip electrode for electrical stimulation systems and methods of making and using
US8897891B2 (en) 2012-08-03 2014-11-25 Boston Scientific Neuromodulation Corporation Leads with electrode carrier for segmented electrodes and methods of making and using
US9415154B2 (en) 2012-11-26 2016-08-16 Boston Scientific Neuromodulation Corporation Systems and methods for making and using an electrical stimulation system with photonic stimulation capabilities
AU2014233252B2 (en) 2013-03-15 2017-04-06 Boston Scientific Neuromodulation Corporation Systems for delivering subthreshold therapy to a patient
US9044610B2 (en) 2013-03-15 2015-06-02 Pacesetter, Inc. Systems and methods for providing a distributed virtual stimulation cathode for use with an implantable neurostimulation system
JP6258470B2 (en) 2013-05-15 2018-01-10 ボストン サイエンティフィック ニューロモデュレイション コーポレイション System and method for manufacturing and using a tip electrode for a lead of an electrical stimulation system
US9149630B2 (en) 2013-05-31 2015-10-06 Boston Scientific Neuromodulation Corporation Segmented electrode leads formed from pre-electrodes with alignment features and methods of making and using the leads
US9498620B2 (en) 2013-05-31 2016-11-22 Boston Scientific Neuromodulation Corporation Leads containing segmented electrodes with non-perpendicular legs and methods of making and using
JP2016519987A (en) 2013-05-31 2016-07-11 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Method for manufacturing split electrode leads using removable rings and leads formed thereby
JP2016519986A (en) 2013-05-31 2016-07-11 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Lead having segment electrode and lead manufacturing method
EP3003465A1 (en) 2013-05-31 2016-04-13 Boston Scientific Neuromodulation Corporation Segmented electrode leads formed from pre-electrodes with depressions or apertures and methods of making
WO2015006239A1 (en) 2013-07-12 2015-01-15 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes and methods of making and using the leads
US9655528B2 (en) 2013-07-15 2017-05-23 Boston Scientific Neuromodulation Corporation Systems and methods for detecting cerebrospinal-fluid pulsation using an implantable electrical stimulation device
US9566747B2 (en) 2013-07-22 2017-02-14 Boston Scientific Neuromodulation Corporation Method of making an electrical stimulation lead
US9302113B2 (en) 2013-07-29 2016-04-05 Boston Scientific Neuromodulation Corporation Systems and methods for identifying anode placement based on cerebrospinal fluid thickness
WO2015031375A1 (en) 2013-08-30 2015-03-05 Boston Scientific Neuromodulation Corporation Methods of making segmented electrode leads using flanged carrier
EP3077039B1 (en) 2013-12-02 2021-10-13 Boston Scientific Neuromodulation Corporation Methods for manufacture of electrical stimulation leads with helically arranged electrodes
US20150151108A1 (en) * 2013-12-02 2015-06-04 Biotronik Se & Co. Kg Electrode head and electrode line
US10350407B2 (en) 2013-12-02 2019-07-16 Biotronik Se & Co. Kg Electronic head and electrode line
US20150202432A1 (en) * 2014-01-22 2015-07-23 Pacesetter, Inc. Electrode structure for deep brain stimulation
US9440066B2 (en) 2014-01-27 2016-09-13 Boston Scientific Neuromodulation Corporation Systems and methods for making and using connector assemblies for implantable medical device systems
EP3476430B1 (en) 2014-05-16 2020-07-01 Aleva Neurotherapeutics SA Device for interacting with neurological tissue
US11311718B2 (en) 2014-05-16 2022-04-26 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
EP3154625B1 (en) 2014-06-13 2018-09-26 Boston Scientific Neuromodulation Corporation Leads with electrode carriers for segmented electrodes and methods of making and using
US9474894B2 (en) 2014-08-27 2016-10-25 Aleva Neurotherapeutics Deep brain stimulation lead
US9403011B2 (en) 2014-08-27 2016-08-02 Aleva Neurotherapeutics Leadless neurostimulator
US9770598B2 (en) 2014-08-29 2017-09-26 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved connector contacts for electrical stimulation systems
EP3197545B1 (en) 2014-09-22 2019-01-23 Boston Scientific Neuromodulation Corporation Systems for providing therapy using electrical stimulation to disrupt neuronal activity
EP3197546A2 (en) 2014-09-22 2017-08-02 Boston Scientific Neuromodulation Corporation Systems and methods for providing therapy using electrical stimulation to disrupt neuronal activity
US9833622B2 (en) 2014-09-22 2017-12-05 Boston Scientific Neuromodulation Corporation Devices and methods using a pathological frequency in electrical stimulation for pain management
EP3197547A1 (en) 2014-09-22 2017-08-02 Boston Scientific Neuromodulation Corporation Systems and methods for providing therapy to a patient using intermittent electrical stimulation
JP2017528301A (en) 2014-09-22 2017-09-28 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Devices and methods using power spectrum or signal relevance for pain management
US20160121103A1 (en) 2014-11-03 2016-05-05 Boston Scientific Neuromodulation Corporation Electrical stimulation system with anchoring stylet and methods of making and using
US9561362B2 (en) 2014-11-10 2017-02-07 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved contact arrays for electrical stimulation systems
US9604068B2 (en) 2014-11-10 2017-03-28 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved connector contacts for electrical stimulation systems
US10286205B2 (en) 2015-02-06 2019-05-14 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved contact arrays for electrical stimulation systems
US9833611B2 (en) 2015-04-10 2017-12-05 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved contact arrays for electrical stimulation systems
WO2016182997A2 (en) 2015-05-10 2016-11-17 Alpha Omega Neuro Technologies, Ltd. Automatic brain probe guidance system
US11234632B2 (en) 2015-05-10 2022-02-01 Alpha Omega Engineering Ltd. Brain navigation lead
US11051889B2 (en) 2015-05-10 2021-07-06 Alpha Omega Engineering Ltd. Brain navigation methods and device
US9956419B2 (en) 2015-05-26 2018-05-01 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
WO2017003946A1 (en) 2015-06-29 2017-01-05 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters based on stimulation target region, effects, or side effects
WO2017003947A1 (en) 2015-06-29 2017-01-05 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters by targeting and steering
WO2017011477A1 (en) 2015-07-16 2017-01-19 Boston Scientific Neuromodulation Corporation Systems and methods for making and using connector contact arrays for electrical stimulation systems
US10232169B2 (en) 2015-07-23 2019-03-19 Boston Scientific Neuromodulation Corporation Burr hole plugs for electrical stimulation systems and methods of making and using
EP3307382A1 (en) 2015-08-24 2018-04-18 Boston Scientific Neuromodulation Corporation Systems and methods for determining orientation of an electrical stimulation lead
EP3297719B1 (en) 2015-09-01 2022-02-09 Boston Scientific Neuromodulation Corporation Detection of lead orientation
US9956394B2 (en) 2015-09-10 2018-05-01 Boston Scientific Neuromodulation Corporation Connectors for electrical stimulation systems and methods of making and using
US10413737B2 (en) 2015-09-25 2019-09-17 Boston Scientific Neuromodulation Corporation Systems and methods for providing therapy using electrical stimulation to disrupt neuronal activity
WO2017062378A1 (en) 2015-10-09 2017-04-13 Boston Scientific Neuromodulation Corporation System and methods for clinical effects mapping for directional stimulations leads
US20170189674A1 (en) * 2016-01-04 2017-07-06 Medtronic, Inc. Medical electrical lead
US9986989B2 (en) 2016-01-08 2018-06-05 Boston Scientific Neuromodulation Corporation Surgical retractor for implanting leads and methods of making and using
US10342983B2 (en) 2016-01-14 2019-07-09 Boston Scientific Neuromodulation Corporation Systems and methods for making and using connector contact arrays for electrical stimulation systems
WO2017134587A1 (en) 2016-02-02 2017-08-10 Aleva Neurotherapeutics, Sa Treatment of autoimmune diseases with deep brain stimulation
US10335607B2 (en) 2016-02-05 2019-07-02 Boston Scientific Neuromodulation Corporation Implantable optical stimulation lead and methods of making and using
US10814127B2 (en) 2016-02-05 2020-10-27 Boston Scientific Neuromodulation Corporation Slotted sleeve neurostimulation device
WO2017139253A1 (en) * 2016-02-08 2017-08-17 Vomaris Innovations, Inc. Composite bioelectric devices and methods of use
US10485969B2 (en) 2016-02-19 2019-11-26 Boston Scientific Neuromodulation Corporation Electrical stimulation cuff devices and systems
US10071242B2 (en) 2016-02-29 2018-09-11 Boston Scientific Neuromodulation Corporation Lead anchor for an electrical stimulation system
US10124161B2 (en) 2016-03-31 2018-11-13 Boston Scientific Neuromodulation Corporation Neurostimulation lead with conductive elements and methods for making the same
US10716942B2 (en) 2016-04-25 2020-07-21 Boston Scientific Neuromodulation Corporation System and methods for directional steering of electrical stimulation
US10369354B2 (en) 2016-05-17 2019-08-06 Boston Scientific Neuromodulation Corporation Systems and method for anchoring a lead for neurostimulation of a target anatomy
US10493269B2 (en) 2016-06-02 2019-12-03 Boston Scientific Neuromodulation Corporation Leads for electrostimulation of peripheral nerves and other targets
US10201713B2 (en) 2016-06-20 2019-02-12 Boston Scientific Neuromodulation Corporation Threaded connector assembly and methods of making and using the same
JP6905541B2 (en) 2016-06-24 2021-07-21 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Systems and methods for visual analysis of clinical effects
US10307602B2 (en) 2016-07-08 2019-06-04 Boston Scientific Neuromodulation Corporation Threaded connector assembly and methods of making and using the same
WO2018022455A1 (en) 2016-07-29 2018-02-01 Boston Scientific Neuromodulation Corporation Connector assembly with contact rings comprising biased ball-spring contacts
US10709888B2 (en) 2016-07-29 2020-07-14 Boston Scientific Neuromodulation Corporation Systems and methods for making and using an electrical stimulation system for peripheral nerve stimulation
US10780274B2 (en) 2016-08-22 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for delivering spinal cord stimulation therapy
US10350404B2 (en) 2016-09-02 2019-07-16 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and directing stimulation of neural elements
US10780282B2 (en) 2016-09-20 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters
US10543374B2 (en) 2016-09-30 2020-01-28 Boston Scientific Neuromodulation Corporation Connector assemblies with bending limiters for electrical stimulation systems and methods of making and using same
EP3493875B1 (en) 2016-10-14 2020-05-27 Boston Scientific Neuromodulation Corporation Systems and methods for determining orientation of an implanted lead
US10525257B2 (en) 2016-10-14 2020-01-07 Boston Scientific Neuromodulation Corporation Orientation marker for implantable leads and leads, systems, and methods utilizing the orientation marker
AU2017341910B2 (en) 2016-10-14 2020-05-14 Boston Scientific Neuromodulation Corporation Systems and methods for closed-loop determination of stimulation parameter settings for an electrical simulation system
US10625072B2 (en) 2016-10-21 2020-04-21 Boston Scientific Neuromodulation Corporation Electrical stimulation methods with optical observation and devices therefor
US10716935B2 (en) 2016-11-04 2020-07-21 Boston Scientific Neuromodulation Corporation Electrical stimulation leads, systems and methods for stimulation of dorsal root ganglia
US10603485B2 (en) 2016-11-28 2020-03-31 Boston Scientific Neuromodulation Corporation Features in increased surface area on neuromodulation leads
WO2018102773A1 (en) 2016-12-02 2018-06-07 Boston Scientific Neuromodulation Corporation Methods and systems for selecting stimulation parameters for electrical stimulation devices
WO2018128949A1 (en) 2017-01-03 2018-07-12 Boston Scientific Neuromodulation Corporation Systems and methods for selecting mri-compatible stimulation parameters
US10576269B2 (en) 2017-01-03 2020-03-03 Boston Scientific Neuromodulation Corporation Force-decoupled and strain relieving lead and methods of making and using
US20180193653A1 (en) 2017-01-10 2018-07-12 Boston Scientific Neuromodulation Corporation Patterned stimulation for deep brain stimulation
ES2821752T3 (en) 2017-01-10 2021-04-27 Boston Scient Neuromodulation Corp Systems and procedures for creating stimulation programs based on user-defined areas or volumes
US10905871B2 (en) 2017-01-27 2021-02-02 Boston Scientific Neuromodulation Corporation Lead assemblies with arrangements to confirm alignment between terminals and contacts
WO2018160495A1 (en) 2017-02-28 2018-09-07 Boston Scientific Neuromodulation Corporation Toolless connector for latching stimulation leads and methods of making and using
US10709886B2 (en) 2017-02-28 2020-07-14 Boston Scientific Neuromodulation Corporation Electrical stimulation leads and systems with elongate anchoring elements and methods of making and using
US10625082B2 (en) 2017-03-15 2020-04-21 Boston Scientific Neuromodulation Corporation Visualization of deep brain stimulation efficacy
US10835739B2 (en) 2017-03-24 2020-11-17 Boston Scientific Neuromodulation Corporation Electrical stimulation leads and systems with elongate anchoring elements and methods of making and using
US11357986B2 (en) 2017-04-03 2022-06-14 Boston Scientific Neuromodulation Corporation Systems and methods for estimating a volume of activation using a compressed database of threshold values
US10603499B2 (en) 2017-04-07 2020-03-31 Boston Scientific Neuromodulation Corporation Tapered implantable lead and connector interface and methods of making and using
US10631937B2 (en) 2017-04-14 2020-04-28 Boston Scientific Neuromodulation Corporation Systems and methods for determining orientation of an implanted electrical stimulation lead
US10857351B2 (en) 2017-04-28 2020-12-08 Boston Scientific Neuromodulation Corporation Lead anchors for electrical stimulation leads and systems and methods of making and using
WO2018217497A1 (en) 2017-05-22 2018-11-29 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer for an electrical stimulation system
US11147963B2 (en) * 2017-06-09 2021-10-19 Oscor Inc. Implantable medical devices and methods of manufacture
EP3645110B1 (en) 2017-06-26 2022-07-13 Boston Scientific Neuromodulation Corporation Systems for visualizing and controlling optogenetic stimulation using optical stimulation systems
WO2019005684A1 (en) 2017-06-26 2019-01-03 Boston Scientific Neuromodulation Corporation Systems and methods for making and using implantable optical stimulation leads and assemblies
JP6932835B2 (en) 2017-07-14 2021-09-08 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Systems and methods for estimating the clinical effects of electrical stimulation
WO2019014217A1 (en) 2017-07-14 2019-01-17 Boston Scientific Neuromodulation Corporation Systems and methods for planning and programming electrical stimulation
US10918873B2 (en) 2017-07-25 2021-02-16 Boston Scientific Neuromodulation Corporation Systems and methods for making and using an enhanced connector of an electrical stimulation system
US10960214B2 (en) 2017-08-15 2021-03-30 Boston Scientific Neuromodulation Corporation Systems and methods for controlling electrical stimulation using multiple stimulation fields
US11219759B2 (en) 2017-08-29 2022-01-11 Boston Scientific Neuromodulation Corporation Systems and methods for introducing an electrical stimulation lead into a patient
US10953221B2 (en) 2017-08-30 2021-03-23 Medtronic, Inc. Medical lead with segmented electrodes
EP3681587B1 (en) 2017-09-15 2023-08-23 Boston Scientific Neuromodulation Corporation Actuatable lead connector for an operating room cable assembly
EP3681588B1 (en) 2017-09-15 2023-05-10 Boston Scientific Neuromodulation Corporation Biased lead connector for operating room cable assembly
US11139603B2 (en) 2017-10-03 2021-10-05 Boston Scientific Neuromodulation Corporation Connectors with spring contacts for electrical stimulation systems and methods of making and using same
US10939959B2 (en) 2017-10-17 2021-03-09 Medtronic, Inc. Ablation catheter with dual optical-electrical stimulation and sensing
JP7036920B2 (en) 2017-11-06 2022-03-15 ペースセツター、インコーポレイテツド Biostimulator with fixed elements
CN111344042B (en) 2017-11-13 2023-09-26 波士顿科学神经调制公司 Systems and methods for manufacturing and using low profile control modules of an electrical stimulation system
WO2019099887A1 (en) 2017-11-17 2019-05-23 Boston Scientific Neuromodulation Corporation Systems and methods for generating intermittent stimulation using electrical stimulation systems
US10967192B2 (en) 2017-12-29 2021-04-06 Boston Scientific Neuromodulation Corporation Systems and methods for charging a medical device implanted into a patient
EP3737464A1 (en) 2018-01-11 2020-11-18 Boston Scientific Neuromodulation Corporation Methods and systems for stimulation for glial modulation
US11497914B2 (en) 2018-01-16 2022-11-15 Boston Scientific Neuromodulation Corporation Systems and methods for making and using an electrical stimulation system with a case-neutral battery
US11103712B2 (en) 2018-01-16 2021-08-31 Boston Scientific Neuromodulation Corporation Connector assemblies with novel spacers for electrical stimulation systems and methods of making and using same
US11357544B2 (en) 2018-01-25 2022-06-14 Boston Scientific Neuromodulation Corporation Systems and methods for introducing a stimulation lead into a patient
US10702692B2 (en) 2018-03-02 2020-07-07 Aleva Neurotherapeutics Neurostimulation device
WO2019173281A1 (en) 2018-03-09 2019-09-12 Boston Scientific Neuromodulation Corporation Burr hole plugs for electrical stimulation systems
US11013913B2 (en) 2018-03-16 2021-05-25 Boston Scientific Neuromodulation Corporation Kits and methods for securing a burr hole plugs for stimulation systems
WO2019183068A1 (en) 2018-03-23 2019-09-26 Boston Scientific Neuromodulation Corporation An optical stimulation system with on-demand monitoring and methods of making and using
US11565131B2 (en) 2018-03-23 2023-01-31 Boston Scientific Neuromodulation Corporation Optical stimulation systems with calibration and methods of making and using
US20190290924A1 (en) 2018-03-23 2019-09-26 Boston Scientific Neuromodulation Corporation Implantable prostheses for reducing visibility of bulging from implanted medical devices
ES2941945T3 (en) 2018-03-23 2023-05-26 Boston Scient Neuromodulation Corp An optical stimulation system with automated supervision
WO2019183078A1 (en) 2018-03-23 2019-09-26 Boston Scientific Neuromodulation Corporation Optical stimulation systems using therapy cycling and methods of using
EP3784332B1 (en) 2018-04-27 2023-04-26 Boston Scientific Neuromodulation Corporation Systems for visualizing and programming electrical stimulation
EP3784331B1 (en) 2018-04-27 2023-01-18 Boston Scientific Neuromodulation Corporation Multi-mode electrical stimulation systems and methods of making and using
US11172959B2 (en) 2018-05-02 2021-11-16 Boston Scientific Neuromodulation Corporation Long, flexible sheath and lead blank and systems and methods of making and using
US11052259B2 (en) 2018-05-11 2021-07-06 Boston Scientific Neuromodulation Corporation Connector assembly for an electrical stimulation system and methods of making and using
WO2020014083A1 (en) 2018-07-09 2020-01-16 Boston Scientific Neuromodulation Corporation Directional electrical stimulation leads and systems for spinal cord stimulation
US11577086B2 (en) 2018-08-20 2023-02-14 Pacesetter, Inc. Fixation mechanisms for a leadless cardiac biostimulator
US11224743B2 (en) 2018-09-21 2022-01-18 Boston Scientific Neuromodulation Corporation Systems and methods for making and using modular leads for electrical stimulation systems
US11167128B2 (en) 2018-11-16 2021-11-09 Boston Scientific Neuromodulation Corporation Directional electrical stimulation leads, systems and methods for spinal cord stimulation
US11426595B2 (en) 2018-11-16 2022-08-30 Boston Scientific Neuromodulation Corporation Optical stimulation system with on-demand monitoring and methods of making and using
EP3673951B1 (en) * 2018-12-28 2022-05-04 Heraeus Medical Components, LLC Overmolded segmented electrode
WO2020172071A2 (en) 2019-02-19 2020-08-27 Boston Scientific Neuromodulation Corporation Lead introducers and systems and methods including the lead introducers
USD894396S1 (en) 2019-03-08 2020-08-25 Pacesetter, Inc. Leadless biostimulator attachment feature
US11541243B2 (en) 2019-03-15 2023-01-03 Pacesetter, Inc. Biostimulator having coaxial fixation elements
EP3946569B1 (en) 2019-04-01 2023-11-15 Boston Scientific Neuromodulation Corporation Low-profile control module for an electrical stimulation system
US11357992B2 (en) 2019-05-03 2022-06-14 Boston Scientific Neuromodulation Corporation Connector assembly for an electrical stimulation system and methods of making and using
US11504526B2 (en) 2019-05-30 2022-11-22 Boston Scientific Neuromodulation Corporation Methods and systems for discrete measurement of electrical characteristics
EP3986539A1 (en) 2019-06-20 2022-04-27 Boston Scientific Neuromodulation Corporation Methods and systems for interleaving waveforms for electrical stimulation and measurement
CN114025833A (en) 2019-07-26 2022-02-08 波士顿科学神经调制公司 Methods and systems for electrical stimulation modulation based on patient-specific factors
US20220300434A1 (en) 2019-07-26 2022-09-22 Boston Scientific Neuromodulation Corporation Methods and systems for storage, retrieval, and visualization of signals and signal features
US20210252251A1 (en) 2020-02-19 2021-08-19 Boston Scientific Neuromodulation Corporation Methods and systems for treatment of insomnia using deep brain stimulation
CN111729193B (en) * 2020-06-24 2023-05-30 北京品驰医疗设备有限公司 Isolation ring, composite contact, electrode and manufacturing method of electrode
WO2022051295A1 (en) 2020-09-04 2022-03-10 Boston Scientific Neuromodulation Corporation Stimulation systems with a lens arrangement for light coupling and methods of making and using
WO2022098554A1 (en) 2020-11-04 2022-05-12 Boston Scientific Neuromodulation Corporation Methods and systems for managing access to implantable medical devices
WO2022103590A1 (en) 2020-11-11 2022-05-19 Boston Scientific Neuromodulation Corporation Voice command handler for programming stimulation systems and methods of using
EP4240472A1 (en) 2021-01-19 2023-09-13 Boston Scientific Neuromodulation Corporation Electrical stimulation cuff devices and systems with directional electrode configurations
EP4297847A1 (en) 2021-02-25 2024-01-03 Boston Scientific Neuromodulation Corporation Methods and systems for deep brain stimulation of the nucleus basalis of meynert
EP4288145A1 (en) 2021-04-08 2023-12-13 Boston Scientific Neuromodulation Corporation Photobiomodulation system and delivery device
US20220339448A1 (en) 2021-04-27 2022-10-27 Boston Scientific Neuromodulation Corporation Systems and methods for automated programming of electrical stimulation
US11564742B2 (en) 2021-05-07 2023-01-31 Trustees Of Boston University Wireless neuromodulation via microwave split ring resonator
AU2022277556A1 (en) 2021-05-21 2023-11-02 Boston Scientific Neuromodulation Corporation Electrical stimulation cuff devices and systems with helical arrangement of electrodes
US20220387785A1 (en) 2021-06-07 2022-12-08 Boston Scientific Neuromodulation Corporation Stimulation systems with user-specified routines and methods of making and using
WO2022261004A1 (en) 2021-06-07 2022-12-15 Boston Scientific Neuromodulation Corporation Methods and systems for charge balancing of electrical stimulation
EP4313269A1 (en) 2021-06-15 2024-02-07 Boston Scientific Neuromodulation Corporation Methods and systems for estimating neural activation by stimulation using a stimulation system
WO2023107457A2 (en) 2021-12-09 2023-06-15 Boston Scientific Neuromodulation Corparation Methods and systems for monitoring or assessing movement disorders or other physiological parameters using a stimulation system
US20230181090A1 (en) 2021-12-10 2023-06-15 Boston Scientific Neuromodulation Corporation Systems and methods for generating and using response maps for electrical stimulation
US20230181089A1 (en) 2021-12-10 2023-06-15 Boston Scientific Neuromodulation Corporation Methods and systems for determining and using an intensity index for electrical stimulation
WO2023154346A1 (en) 2022-02-10 2023-08-17 Boston Scientific Neuromodulation Corporation Automatic therapy adjustment based on sensors
WO2023163882A1 (en) 2022-02-24 2023-08-31 Boston Scientific Neuromodulation Corporation Systems and methods for using cost parameters for programming electrical stimulation
US20230277854A1 (en) 2022-03-02 2023-09-07 Boston Scientific Neuromodulation Corporation Systems and methods for monitoring stimulation drift in an electrical stimulation system
WO2024044048A1 (en) 2022-08-22 2024-02-29 Boston Scientific Neuromodulation Corporation Photobiomodulation systems including an electrode disposed on or over a light emitter and methods of making and using
US20240058619A1 (en) 2022-08-22 2024-02-22 Boston Scientific Neuromodulation Corporation Implantable photobiomodulation systems employing thermal monitoring or control and methods of making and using
WO2024046624A1 (en) * 2022-09-02 2024-03-07 Biotronik Se & Co. Kg Method for manufacturing an implantable lead and implantable lead
CN116328190B (en) * 2023-03-16 2024-02-06 河南翔宇医疗设备股份有限公司 Short wave treatment head device

Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602624A (en) 1984-10-11 1986-07-29 Case Western Reserve University Implantable cuff, method of manufacture, and method of installation
US4630611A (en) 1981-02-02 1986-12-23 Medtronic, Inc. Orthogonally-sensing lead
US4744370A (en) 1987-04-27 1988-05-17 Cordis Leads, Inc. Lead assembly with selectable electrode connection
US5000194A (en) 1988-08-25 1991-03-19 Cochlear Corporation Array of bipolar electrodes
US5135001A (en) 1990-12-05 1992-08-04 C. R. Bard, Inc. Ultrasound sheath for medical diagnostic instruments
EP0580928A1 (en) 1992-07-31 1994-02-02 ARIES S.r.l. A spinal electrode catheter
US5458629A (en) 1994-02-18 1995-10-17 Medtronic, Inc. Implantable lead ring electrode and method of making
US5522874A (en) 1994-07-28 1996-06-04 Gates; James T. Medical lead having segmented electrode
WO1997032628A1 (en) 1996-03-07 1997-09-12 Axon Engineering, Inc. Polymer-metal foil structure for neural stimulating electrodes
US5711316A (en) 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US5713922A (en) 1996-04-25 1998-02-03 Medtronic, Inc. Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain
EP0650694B1 (en) 1993-11-01 1998-07-29 Polartechnics Ltd Apparatus for diseased tissue type recognition
US5843148A (en) 1996-09-27 1998-12-01 Medtronic, Inc. High resolution brain stimulation lead and method of use
US5938688A (en) 1997-10-22 1999-08-17 Cornell Research Foundation, Inc. Deep brain stimulation method
US6018684A (en) 1998-07-30 2000-01-25 Cardiac Pacemakers, Inc. Slotted pacing/shocking electrode
WO1999055411A3 (en) 1998-04-30 2000-02-17 Medtronic Inc Apparatus and method for expanding a stimulation lead body in situ
WO2000038574A1 (en) 1998-12-23 2000-07-06 Nuvasive, Inc. Nerve surveillance cannulae systems
US6134478A (en) 1998-06-05 2000-10-17 Intermedics Inc. Method for making cardiac leads with zone insulated electrodes
US6167311A (en) 1999-06-14 2000-12-26 Electro Core Techniques, Llc Method of treating psychological disorders by brain stimulation within the thalamus
WO2001058520A1 (en) 2000-02-09 2001-08-16 Transneuronix, Inc. Medical implant device for electrostimulation using discrete micro-electrodes
US20010023368A1 (en) 1999-04-26 2001-09-20 Advanced Neuromodulation Systems, Inc. Implantable lead and method of manufacture
US6322559B1 (en) 1998-07-06 2001-11-27 Vnus Medical Technologies, Inc. Electrode catheter having coil structure
WO2002068042A1 (en) 2001-02-28 2002-09-06 Gill Steven Streatfield Brain electrode
US20020156513A1 (en) 2000-08-17 2002-10-24 Borkan William N. Spinal cord stimulation leads
US20020183817A1 (en) 2000-12-07 2002-12-05 Paul Van Venrooij Directional brain stimulation and recording leads
US6556873B1 (en) 1999-11-29 2003-04-29 Medtronic, Inc. Medical electrical lead having variable bending stiffness
US6564078B1 (en) 1998-12-23 2003-05-13 Nuvasive, Inc. Nerve surveillance cannula systems
US6678564B2 (en) 2001-12-06 2004-01-13 Advanced Cochlear Systems, Inc. Bio-implant and method of making the same
WO2004045707A1 (en) 2002-11-20 2004-06-03 Advanced Neuromodulation Systems, Inc. Apparatus for directionally stimulating nerve tissue
US6757970B1 (en) 2000-11-07 2004-07-06 Advanced Bionics Corporation Method of making multi-contact electrode array
US20050038489A1 (en) 2003-08-14 2005-02-17 Grill Warren M. Electrode array for use in medical stimulation and methods thereof
US20050171587A1 (en) 2003-11-25 2005-08-04 Advanced Neuromodulation Systems, Inc. Directional stimulation lead and orientation system
US20060025841A1 (en) 2004-07-27 2006-02-02 Mcintyre Cameron Thalamic stimulation device
US7027852B2 (en) 2002-05-21 2006-04-11 Pacesetter, Inc. Lead with distal tip surface electrodes connected in parallel
US20060247697A1 (en) 2005-04-28 2006-11-02 Vinod Sharma Rate control during AF using cellular intervention to modulate AV node
US7203548B2 (en) 2002-06-20 2007-04-10 Advanced Bionics Corporation Cavernous nerve stimulation via unidirectional propagation of action potentials
US20070168007A1 (en) 2005-01-11 2007-07-19 Advanced Bionics Corporation Lead Assembly and Method of Making Same
US20070203546A1 (en) 2006-02-24 2007-08-30 Medtronic, Inc. Electrical and activation field models for configuring stimulation therapy
US20070219551A1 (en) 2003-09-22 2007-09-20 Honour Kirk S Medical device with flexible printed circuit
US7292890B2 (en) 2002-06-20 2007-11-06 Advanced Bionics Corporation Vagus nerve stimulation via unidirectional propagation of action potentials
WO2008018067A2 (en) 2006-08-07 2008-02-14 Alpha Omega Engineering Ltd. Cerebral electrodes and methods of operating same
US20080077186A1 (en) * 2006-04-18 2008-03-27 Proteus Biomedical, Inc. High phrenic, low capture threshold pacing devices and methods
US20080103580A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical elongated member with dual purpose conduit
WO2008053789A1 (en) 2006-10-31 2008-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20080114230A1 (en) 2006-11-14 2008-05-15 Bruce Addis Electrode support
WO2008100841A1 (en) 2007-02-14 2008-08-21 Medtronic, Inc. Implantable medical lead including a directional electrode and fixation elements along an interior surface
US20080255647A1 (en) 2004-12-22 2008-10-16 Marc Jensen Implantable Addressable Segmented Electrodes
US7489971B1 (en) 2004-06-05 2009-02-10 Advanced Neuromodulation Systems, Inc. Notched electrode for electrostimulation lead
WO2009025816A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Electrode configurations for directional leads
US20090204193A1 (en) 2008-02-12 2009-08-13 Intelect Medical, Inc. Directional lead assembly
US20090204192A1 (en) 2008-02-11 2009-08-13 Intelect Medical, Inc. Directional electrode devices with locating features
EP2092952A1 (en) 2008-02-19 2009-08-26 Bradley D. Vilims Electrical stimulation device
US20100030298A1 (en) 2006-09-26 2010-02-04 Koninklijke Philips Electronics N.V. Tissue stimulation method and apparatus
US20100036468A1 (en) 2006-12-13 2010-02-11 Koninklijke Philips Electronics N.V. First time right placement of a dbs lead
US7668601B2 (en) 2007-04-26 2010-02-23 Medtronic, Inc. Implantable medical lead with multiple electrode configurations
US20100076535A1 (en) 2008-09-25 2010-03-25 Boston Scientific Neuromodulation Corporation Leads with non-circular-shaped distal ends for brain stimulation systems and methods of making and using
US20100082076A1 (en) 2008-09-29 2010-04-01 Chong Il Lee Method and means for connecting and controlling a large number of contacts for electrical cell stimulation in living organisms
US20100094387A1 (en) 2008-10-09 2010-04-15 Boston Scientific Neuromodulation Corporation Electrode design for leads of implantable electric stimulation systems and methods of making and using
US20100100152A1 (en) * 2007-03-02 2010-04-22 Koninklijke Philips Electronics N.V. Electrode system for deep brain stimulation
US20100125310A1 (en) 2008-11-18 2010-05-20 Willard Wilson Method and Device For the Detection, Identification and Treatment of Sleep Apnea/Hypopnea
US7761985B2 (en) 2005-01-31 2010-07-27 Medtronic, Inc. Method of manufacturing a medical lead
US7809446B2 (en) 2005-01-05 2010-10-05 Boston Scientific Neuromodulation Corporation Devices and methods for brain stimulation
US20100268298A1 (en) 2009-04-16 2010-10-21 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US7822482B2 (en) 2005-07-29 2010-10-26 Medtronic, Inc. Electrical stimulation lead with rounded array of electrodes
US20100269338A1 (en) 2009-04-24 2010-10-28 Advanced Neuromodulation Systems, Inc. Medical leads with segmented electrodes and methods of fabrication thereof
US20100269339A1 (en) 2009-04-24 2010-10-28 Advanced Neuromodulation Systems, Inc. Method of fabricating stimulation lead by fusing connector segment between lead body and electrode portion of the lead
US20100287770A1 (en) 2009-05-14 2010-11-18 Cochlear Limited Manufacturing an electrode carrier for an implantable medical device
US7848802B2 (en) 2006-02-24 2010-12-07 Medtronic, Inc. Programming interface with a concentric axial view of a stimulation lead with complex electrode array geometry
US7856707B2 (en) 2002-04-22 2010-12-28 Medtronic, Inc. Method for performing a coplanar connection between a conductor and a contact on an implantable lead
US7860570B2 (en) 2002-06-20 2010-12-28 Boston Scientific Neuromodulation Corporation Implantable microstimulators and methods for unidirectional propagation of action potentials
US20110005069A1 (en) 2009-07-07 2011-01-13 Boston Scientific Neuromodulation Corporation Systems and leads with a radially segmented electrode array and methods of manufacture
US20110047795A1 (en) 2009-09-01 2011-03-03 Kevin Turner Medical leads with segmented electrodes and methods of fabrication thereof
US20110077699A1 (en) 2009-09-30 2011-03-31 John Swanson Medical leads with segmented electrodes and methods of fabrication thereof
US20110078900A1 (en) 2009-07-07 2011-04-07 Boston Scientific Neuromodulation Corporation Methods for making leads with radially-aligned segmented electrodes for electrical stimulation systems
US20110130818A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having concentric split ring electrodes and methods of making the same
US20110130817A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having a rail system and methods of manufacturing the same
US20110130803A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having concentric windowed cylinder electrodes and methods of making the same
US20110130816A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array with electrodes having cutout portions and methods of making the same
US7974705B2 (en) 2008-11-13 2011-07-05 Proteus Biomedical, Inc. Multiplexed multi-electrode neurostimulation devices
US7979140B2 (en) 2006-12-12 2011-07-12 Alfred E. Mann Foundation For Scientific Research Segmented electrode
US20110238129A1 (en) 2010-03-23 2011-09-29 Boston Scientific Neuromodulation Corporation Helical radial spacing of contacts on a cylindrical lead
US20110245903A1 (en) 2010-04-02 2011-10-06 Boston Scientific Neuromodulation Corporation Directional lead assembly
US20110301665A1 (en) 2008-11-12 2011-12-08 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device
US20110313500A1 (en) 2010-06-18 2011-12-22 Boston Scientific Neuromodulation Corporation Electrode array having embedded electrodes and methods of making the same
US8099177B2 (en) 2006-03-02 2012-01-17 St. Jude Medical Ab Implantable medical lead and method for the manufacture thereof
US20120016378A1 (en) 2010-07-16 2012-01-19 Boston Scientific Neuromodulation Corporation Systems and methods for radial steering of electrode arrays
US20120046710A1 (en) 2010-08-18 2012-02-23 Boston Scientific Neuromodulation Corporation Methods, systems, and devices for deep brain stimulation using helical movement of the centroid of stimulation
US20120071949A1 (en) 2010-09-21 2012-03-22 Boston Scientific Neuromodulation Corporation Systems and methods for making and using radially-aligned segmented electrodes for leads of electrical stimulation systems
US20120165911A1 (en) 2010-12-23 2012-06-28 Boston Scientific Neuromodulation Corporation Methods for making leads with segmented electrodes for electrical stimulation systems
US8225504B2 (en) 2009-04-24 2012-07-24 Advanced Neuromodulation Systems, Inc. Medical leads with segmented electrodes and methods of fabrication thereof
US20120197375A1 (en) 2011-02-02 2012-08-02 Boston Scientific Neuromodulation Corporation Leads with spiral of helical segmented electrode arrays and methods of making and using the leads
US20120203320A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with spirally arranged segmented electrodes and methods of making and using the leads
US20120203316A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes for electrical stimulation of planar regions and methods of making and using
US20120203321A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Methods for making leads with segmented electrodes for electrical stimulation systems
US8321025B2 (en) 2006-07-31 2012-11-27 Cranial Medical Systems, Inc. Lead and methods for brain monitoring and modulation
US20130109254A1 (en) 2011-10-28 2013-05-02 Medtronic, Inc. Lead End Having Inner Support
US20130197602A1 (en) 2012-01-26 2013-08-01 Boston Scientific Neuromodulation Corporation Systems and methods for identifying the circumferential positioning of electrodes of leads for electrical stimulation systems
US20130261684A1 (en) 2012-03-30 2013-10-03 Boston Scientific Neuromodulation Corporation Leads with x-ray fluorescent capsules for electrode identification and methods of manufacture and use
WO2013162775A2 (en) 2012-04-27 2013-10-31 Medtronic, Inc. Structures and techniques for medical lead fabrication
US8583237B2 (en) 2010-09-13 2013-11-12 Cranial Medical Systems, Inc. Devices and methods for tissue modulation and monitoring
US20130317587A1 (en) 2012-05-25 2013-11-28 Boston Scientific Neuromodulation Corporation Methods for stimulating the dorsal root ganglion with a lead having segmented electrodes
US20130325091A1 (en) 2012-06-01 2013-12-05 Boston Scientific Neuromodulation Corporation Leads with tip electrode for electrical stimulation systems and methods of making and using
WO2014018092A1 (en) 2012-07-26 2014-01-30 Medtronic, Inc. Implantable medical leads
US20140039587A1 (en) 2012-08-03 2014-02-06 Boston Scientific Neuromodulation Corporation Leads with electrode carrier for segmented electrodes and methods of making and using

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US702752A (en) * 1901-06-10 1902-06-17 Reinhold H Wappler Electrosurgical instrument.

Patent Citations (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630611A (en) 1981-02-02 1986-12-23 Medtronic, Inc. Orthogonally-sensing lead
US4602624A (en) 1984-10-11 1986-07-29 Case Western Reserve University Implantable cuff, method of manufacture, and method of installation
US4744370A (en) 1987-04-27 1988-05-17 Cordis Leads, Inc. Lead assembly with selectable electrode connection
US5000194A (en) 1988-08-25 1991-03-19 Cochlear Corporation Array of bipolar electrodes
US5135001A (en) 1990-12-05 1992-08-04 C. R. Bard, Inc. Ultrasound sheath for medical diagnostic instruments
EP0580928A1 (en) 1992-07-31 1994-02-02 ARIES S.r.l. A spinal electrode catheter
US5374285A (en) 1992-07-31 1994-12-20 Aries S.R.L. Spinal electrode catheter
EP0650694B1 (en) 1993-11-01 1998-07-29 Polartechnics Ltd Apparatus for diseased tissue type recognition
US5800350A (en) 1993-11-01 1998-09-01 Polartechnics, Limited Apparatus for tissue type recognition
US5458629A (en) 1994-02-18 1995-10-17 Medtronic, Inc. Implantable lead ring electrode and method of making
US5522874A (en) 1994-07-28 1996-06-04 Gates; James T. Medical lead having segmented electrode
US5987361A (en) 1996-03-07 1999-11-16 Axon Engineering, Inc. Polymer-metal foil structure for neural stimulating electrodes
WO1997032628A1 (en) 1996-03-07 1997-09-12 Axon Engineering, Inc. Polymer-metal foil structure for neural stimulating electrodes
US5713922A (en) 1996-04-25 1998-02-03 Medtronic, Inc. Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain
US5711316A (en) 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US5843148A (en) 1996-09-27 1998-12-01 Medtronic, Inc. High resolution brain stimulation lead and method of use
EP0832667B1 (en) 1996-09-27 2004-02-25 Medtronic, Inc. High resolution brain stimulation lead
US5938688A (en) 1997-10-22 1999-08-17 Cornell Research Foundation, Inc. Deep brain stimulation method
WO1999055411A3 (en) 1998-04-30 2000-02-17 Medtronic Inc Apparatus and method for expanding a stimulation lead body in situ
US6161047A (en) 1998-04-30 2000-12-12 Medtronic Inc. Apparatus and method for expanding a stimulation lead body in situ
US6134478A (en) 1998-06-05 2000-10-17 Intermedics Inc. Method for making cardiac leads with zone insulated electrodes
US6322559B1 (en) 1998-07-06 2001-11-27 Vnus Medical Technologies, Inc. Electrode catheter having coil structure
US6018684A (en) 1998-07-30 2000-01-25 Cardiac Pacemakers, Inc. Slotted pacing/shocking electrode
WO2000038574A1 (en) 1998-12-23 2000-07-06 Nuvasive, Inc. Nerve surveillance cannulae systems
US6564078B1 (en) 1998-12-23 2003-05-13 Nuvasive, Inc. Nerve surveillance cannula systems
US20010023368A1 (en) 1999-04-26 2001-09-20 Advanced Neuromodulation Systems, Inc. Implantable lead and method of manufacture
US20100077606A1 (en) 1999-04-26 2010-04-01 Damon Ray Black Method of forming a lead
US6167311A (en) 1999-06-14 2000-12-26 Electro Core Techniques, Llc Method of treating psychological disorders by brain stimulation within the thalamus
US6556873B1 (en) 1999-11-29 2003-04-29 Medtronic, Inc. Medical electrical lead having variable bending stiffness
WO2001058520A1 (en) 2000-02-09 2001-08-16 Transneuronix, Inc. Medical implant device for electrostimulation using discrete micro-electrodes
US6510347B2 (en) 2000-08-17 2003-01-21 William N. Borkan Spinal cord stimulation leads
US20020156513A1 (en) 2000-08-17 2002-10-24 Borkan William N. Spinal cord stimulation leads
EP1181947B1 (en) 2000-08-17 2006-01-11 William N. Borkan Spinal cord stimulation leads
US6757970B1 (en) 2000-11-07 2004-07-06 Advanced Bionics Corporation Method of making multi-contact electrode array
US20020183817A1 (en) 2000-12-07 2002-12-05 Paul Van Venrooij Directional brain stimulation and recording leads
US20050015130A1 (en) 2001-02-28 2005-01-20 Gill Steven Streatfield Brain electrode
WO2002068042A1 (en) 2001-02-28 2002-09-06 Gill Steven Streatfield Brain electrode
US20110131808A1 (en) 2001-02-28 2011-06-09 Medtronic, Inc. Brain electrode
US6678564B2 (en) 2001-12-06 2004-01-13 Advanced Cochlear Systems, Inc. Bio-implant and method of making the same
US7856707B2 (en) 2002-04-22 2010-12-28 Medtronic, Inc. Method for performing a coplanar connection between a conductor and a contact on an implantable lead
US7027852B2 (en) 2002-05-21 2006-04-11 Pacesetter, Inc. Lead with distal tip surface electrodes connected in parallel
US7203548B2 (en) 2002-06-20 2007-04-10 Advanced Bionics Corporation Cavernous nerve stimulation via unidirectional propagation of action potentials
US7292890B2 (en) 2002-06-20 2007-11-06 Advanced Bionics Corporation Vagus nerve stimulation via unidirectional propagation of action potentials
US7860570B2 (en) 2002-06-20 2010-12-28 Boston Scientific Neuromodulation Corporation Implantable microstimulators and methods for unidirectional propagation of action potentials
US7047084B2 (en) 2002-11-20 2006-05-16 Advanced Neuromodulation Systems, Inc. Apparatus for directionally stimulating nerve tissue
WO2004045707A1 (en) 2002-11-20 2004-06-03 Advanced Neuromodulation Systems, Inc. Apparatus for directionally stimulating nerve tissue
US20050038489A1 (en) 2003-08-14 2005-02-17 Grill Warren M. Electrode array for use in medical stimulation and methods thereof
US20070219551A1 (en) 2003-09-22 2007-09-20 Honour Kirk S Medical device with flexible printed circuit
US20050171587A1 (en) 2003-11-25 2005-08-04 Advanced Neuromodulation Systems, Inc. Directional stimulation lead and orientation system
US7489971B1 (en) 2004-06-05 2009-02-10 Advanced Neuromodulation Systems, Inc. Notched electrode for electrostimulation lead
US8036755B2 (en) 2004-06-05 2011-10-11 Advanced Neuromodulation Systems, Inc. Notched electrode for electrostimulation lead
US20060025841A1 (en) 2004-07-27 2006-02-02 Mcintyre Cameron Thalamic stimulation device
US20080255647A1 (en) 2004-12-22 2008-10-16 Marc Jensen Implantable Addressable Segmented Electrodes
US7809446B2 (en) 2005-01-05 2010-10-05 Boston Scientific Neuromodulation Corporation Devices and methods for brain stimulation
US20070168007A1 (en) 2005-01-11 2007-07-19 Advanced Bionics Corporation Lead Assembly and Method of Making Same
US20110056076A1 (en) 2005-01-31 2011-03-10 Medtronic, Inc. Medical lead with segmented electrode
US7761985B2 (en) 2005-01-31 2010-07-27 Medtronic, Inc. Method of manufacturing a medical lead
US8000808B2 (en) 2005-01-31 2011-08-16 Medtronic, Inc. Medical lead with segmented electrode
US20060247697A1 (en) 2005-04-28 2006-11-02 Vinod Sharma Rate control during AF using cellular intervention to modulate AV node
US7822482B2 (en) 2005-07-29 2010-10-26 Medtronic, Inc. Electrical stimulation lead with rounded array of electrodes
US7848802B2 (en) 2006-02-24 2010-12-07 Medtronic, Inc. Programming interface with a concentric axial view of a stimulation lead with complex electrode array geometry
US20070203546A1 (en) 2006-02-24 2007-08-30 Medtronic, Inc. Electrical and activation field models for configuring stimulation therapy
US8099177B2 (en) 2006-03-02 2012-01-17 St. Jude Medical Ab Implantable medical lead and method for the manufacture thereof
US20080077186A1 (en) * 2006-04-18 2008-03-27 Proteus Biomedical, Inc. High phrenic, low capture threshold pacing devices and methods
US20130197424A1 (en) 2006-07-31 2013-08-01 Cranial Medical Systems, Inc. Lead and methods for brain monitoring and modulation
US8321025B2 (en) 2006-07-31 2012-11-27 Cranial Medical Systems, Inc. Lead and methods for brain monitoring and modulation
US20080215125A1 (en) 2006-08-07 2008-09-04 Alpha Omega Engineering Ltd. Directional stimulation of neural tissue
WO2008018067A2 (en) 2006-08-07 2008-02-14 Alpha Omega Engineering Ltd. Cerebral electrodes and methods of operating same
US20100030298A1 (en) 2006-09-26 2010-02-04 Koninklijke Philips Electronics N.V. Tissue stimulation method and apparatus
US8041309B2 (en) 2006-10-31 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2008053789A1 (en) 2006-10-31 2008-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20080103580A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical elongated member with dual purpose conduit
US7840188B2 (en) 2006-10-31 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20080114230A1 (en) 2006-11-14 2008-05-15 Bruce Addis Electrode support
US7979140B2 (en) 2006-12-12 2011-07-12 Alfred E. Mann Foundation For Scientific Research Segmented electrode
US20100036468A1 (en) 2006-12-13 2010-02-11 Koninklijke Philips Electronics N.V. First time right placement of a dbs lead
WO2008100841A1 (en) 2007-02-14 2008-08-21 Medtronic, Inc. Implantable medical lead including a directional electrode and fixation elements along an interior surface
US20100100152A1 (en) * 2007-03-02 2010-04-22 Koninklijke Philips Electronics N.V. Electrode system for deep brain stimulation
US7668601B2 (en) 2007-04-26 2010-02-23 Medtronic, Inc. Implantable medical lead with multiple electrode configurations
WO2009025816A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Electrode configurations for directional leads
US20090204192A1 (en) 2008-02-11 2009-08-13 Intelect Medical, Inc. Directional electrode devices with locating features
US8019440B2 (en) 2008-02-12 2011-09-13 Intelect Medical, Inc. Directional lead assembly
US20090204193A1 (en) 2008-02-12 2009-08-13 Intelect Medical, Inc. Directional lead assembly
WO2009102536A1 (en) 2008-02-12 2009-08-20 Intelect Medical, Inc. Directional lead assembly
EP2092952A1 (en) 2008-02-19 2009-08-26 Bradley D. Vilims Electrical stimulation device
US20100076535A1 (en) 2008-09-25 2010-03-25 Boston Scientific Neuromodulation Corporation Leads with non-circular-shaped distal ends for brain stimulation systems and methods of making and using
US20100082076A1 (en) 2008-09-29 2010-04-01 Chong Il Lee Method and means for connecting and controlling a large number of contacts for electrical cell stimulation in living organisms
US20100094387A1 (en) 2008-10-09 2010-04-15 Boston Scientific Neuromodulation Corporation Electrode design for leads of implantable electric stimulation systems and methods of making and using
US8359107B2 (en) 2008-10-09 2013-01-22 Boston Scientific Neuromodulation Corporation Electrode design for leads of implantable electric stimulation systems and methods of making and using
US20110301665A1 (en) 2008-11-12 2011-12-08 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device
US7974705B2 (en) 2008-11-13 2011-07-05 Proteus Biomedical, Inc. Multiplexed multi-electrode neurostimulation devices
US20100125310A1 (en) 2008-11-18 2010-05-20 Willard Wilson Method and Device For the Detection, Identification and Treatment of Sleep Apnea/Hypopnea
US20140142671A1 (en) 2009-04-16 2014-05-22 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US20100268298A1 (en) 2009-04-16 2010-10-21 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US8225504B2 (en) 2009-04-24 2012-07-24 Advanced Neuromodulation Systems, Inc. Medical leads with segmented electrodes and methods of fabrication thereof
US20100269339A1 (en) 2009-04-24 2010-10-28 Advanced Neuromodulation Systems, Inc. Method of fabricating stimulation lead by fusing connector segment between lead body and electrode portion of the lead
US20100269338A1 (en) 2009-04-24 2010-10-28 Advanced Neuromodulation Systems, Inc. Medical leads with segmented electrodes and methods of fabrication thereof
US20100287770A1 (en) 2009-05-14 2010-11-18 Cochlear Limited Manufacturing an electrode carrier for an implantable medical device
US20110005069A1 (en) 2009-07-07 2011-01-13 Boston Scientific Neuromodulation Corporation Systems and leads with a radially segmented electrode array and methods of manufacture
US20110078900A1 (en) 2009-07-07 2011-04-07 Boston Scientific Neuromodulation Corporation Methods for making leads with radially-aligned segmented electrodes for electrical stimulation systems
US20110047795A1 (en) 2009-09-01 2011-03-03 Kevin Turner Medical leads with segmented electrodes and methods of fabrication thereof
US20110077699A1 (en) 2009-09-30 2011-03-31 John Swanson Medical leads with segmented electrodes and methods of fabrication thereof
US8391985B2 (en) 2009-11-30 2013-03-05 Boston Scientific Neuromodulation Corporation Electrode array having concentric windowed cylinder electrodes and methods of making the same
US20110130818A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having concentric split ring electrodes and methods of making the same
US20110130817A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having a rail system and methods of manufacturing the same
US20110130816A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array with electrodes having cutout portions and methods of making the same
US8295944B2 (en) 2009-11-30 2012-10-23 Boston Scientific Neuromodulation Corporation Electrode array with electrodes having cutout portions and methods of making the same
US20110130803A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having concentric windowed cylinder electrodes and methods of making the same
US20110238129A1 (en) 2010-03-23 2011-09-29 Boston Scientific Neuromodulation Corporation Helical radial spacing of contacts on a cylindrical lead
US20110245903A1 (en) 2010-04-02 2011-10-06 Boston Scientific Neuromodulation Corporation Directional lead assembly
US20110313500A1 (en) 2010-06-18 2011-12-22 Boston Scientific Neuromodulation Corporation Electrode array having embedded electrodes and methods of making the same
US20120016378A1 (en) 2010-07-16 2012-01-19 Boston Scientific Neuromodulation Corporation Systems and methods for radial steering of electrode arrays
US20120046710A1 (en) 2010-08-18 2012-02-23 Boston Scientific Neuromodulation Corporation Methods, systems, and devices for deep brain stimulation using helical movement of the centroid of stimulation
US8583237B2 (en) 2010-09-13 2013-11-12 Cranial Medical Systems, Inc. Devices and methods for tissue modulation and monitoring
US20120071949A1 (en) 2010-09-21 2012-03-22 Boston Scientific Neuromodulation Corporation Systems and methods for making and using radially-aligned segmented electrodes for leads of electrical stimulation systems
US20120165911A1 (en) 2010-12-23 2012-06-28 Boston Scientific Neuromodulation Corporation Methods for making leads with segmented electrodes for electrical stimulation systems
US20140180375A1 (en) 2011-02-02 2014-06-26 Boston Scientific Neruomodulation Corporation Leads with spiral of helical segmented electrode arrays and methods of making and using the leads
US20120197375A1 (en) 2011-02-02 2012-08-02 Boston Scientific Neuromodulation Corporation Leads with spiral of helical segmented electrode arrays and methods of making and using the leads
US20120203320A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with spirally arranged segmented electrodes and methods of making and using the leads
US20140039590A1 (en) 2011-02-08 2014-02-06 Boston Scientific Neuromodulation Corporation Methods for making leads with segmented electrodes for electrical stimulation systems
US20120203321A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Methods for making leads with segmented electrodes for electrical stimulation systems
US20120203316A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes for electrical stimulation of planar regions and methods of making and using
US20130109254A1 (en) 2011-10-28 2013-05-02 Medtronic, Inc. Lead End Having Inner Support
US20130197602A1 (en) 2012-01-26 2013-08-01 Boston Scientific Neuromodulation Corporation Systems and methods for identifying the circumferential positioning of electrodes of leads for electrical stimulation systems
US20130261684A1 (en) 2012-03-30 2013-10-03 Boston Scientific Neuromodulation Corporation Leads with x-ray fluorescent capsules for electrode identification and methods of manufacture and use
WO2013162775A2 (en) 2012-04-27 2013-10-31 Medtronic, Inc. Structures and techniques for medical lead fabrication
US20130317587A1 (en) 2012-05-25 2013-11-28 Boston Scientific Neuromodulation Corporation Methods for stimulating the dorsal root ganglion with a lead having segmented electrodes
US20130325091A1 (en) 2012-06-01 2013-12-05 Boston Scientific Neuromodulation Corporation Leads with tip electrode for electrical stimulation systems and methods of making and using
WO2014018092A1 (en) 2012-07-26 2014-01-30 Medtronic, Inc. Implantable medical leads
US20140039587A1 (en) 2012-08-03 2014-02-06 Boston Scientific Neuromodulation Corporation Leads with electrode carrier for segmented electrodes and methods of making and using

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Official Communication for U.S. Appl. No. 12/946,687 mailed Dec. 5, 2012.
Official Communication for U.S. Appl. No. 12/946,687 mailed Mar. 25, 2014.
Official Communication for U.S. Appl. No. 12/946,687 mailed May 21, 2012.
U.S. Appl. No. 14/286,797, filed May 23, 2014.
U.S. Appl. No. 14/286,829, filed May 23, 2014.
U.S. Appl. No. 14/286,889, filed May 23, 2014.
U.S. Appl. No. 14/286,934, filed May 23, 2014.
U.S. Appl. No. 14/286,940, filed May 23, 2014.
U.S. Appl. No. 14/325,249, filed Jul. 7, 2014.
U.S. Appl. No. 14/332,212, filed Jul. 15, 2014.
U.S. Appl. No. 14/452,461, filed Aug. 5, 2014.
U.S. Appl. No. 14/469,214, filed Aug. 26, 2014.
U.S. Appl. No. 14/557,211, filed Dec. 1, 2014.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11472049B2 (en) * 2014-07-04 2022-10-18 Koninklijke Philips N.V. Blade set, hair cutting appliance, and related manufacturing method
US11730426B2 (en) 2018-07-31 2023-08-22 Heraeus Medical Components Llc Catheter with segmented electrodes and methods of making same

Also Published As

Publication number Publication date
US20150045866A1 (en) 2015-02-12
US8874232B2 (en) 2014-10-28
US20110130818A1 (en) 2011-06-02

Similar Documents

Publication Publication Date Title
US9248277B2 (en) Electrode array having concentric split ring electrodes and methods of making the same
US8560074B2 (en) Electrode array having concentric windowed cylinder electrodes and methods of making the same
US9168369B2 (en) Electrode array having a rail system and methods of manufacturing the same
US8295944B2 (en) Electrode array with electrodes having cutout portions and methods of making the same
US9855417B2 (en) Method of making an electrode array having embedded electrodes
US9427567B2 (en) Leads with electrode carrier for segmented electrodes and methods of making and using
US9289596B2 (en) Leads with segmented electrodes and methods of making and using the leads
US9913974B2 (en) Methods for making leads with radially-aligned segmented electrodes for electrical stimulation systems
US9795779B2 (en) Systems and methods for making and using radially-aligned segmented electrodes for leads of electrical stimulation systems
US9089689B2 (en) Methods of making segmented electrode leads using flanged carrier
US9295830B2 (en) Methods for making leads with segmented electrodes for electrical stimulation systems

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8