Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS9270859 B2
Type de publicationOctroi
Numéro de demandeUS 14/271,382
Date de publication23 févr. 2016
Date de dépôt6 mai 2014
Date de priorité24 mars 1999
Autre référence de publicationUS7664264, US8160249, US8526611, US8781121, US20070064940, US20100153734, US20120207303, US20130188823, US20140369500, US20160142207
Numéro de publication14271382, 271382, US 9270859 B2, US 9270859B2, US-B2-9270859, US9270859 B2, US9270859B2
InventeursScott A. Moskowitz, Mike W. Berry
Cessionnaire d'origineWistaria Trading Ltd
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Utilizing data reduction in steganographic and cryptographic systems
US 9270859 B2
Résumé
The present invention relates to methods for protecting a data signal using the following techniques: applying a data reduction technique to reduce the data signal into a reduced data signal; subtracting the reduced data signal from the data signal to produce a remainder signal; embedding a first watermark into the reduced data signal to produce a watermarked, reduced data signal; and adding the watermarked, reduced data signal to the remainder signal to produce an output signal. A second watermark may be embedded into the remainder signal before the final addition step. Further, cryptographic techniques may be used to encrypt the reduced data signals and to encrypt the remainder signals before the final addition step.
Images(6)
Previous page
Next page
Revendications(15)
What is claimed is:
1. A method of digital watermarking, encrypting, or both, of an input signal containing information, comprising:
generating, using a processor, a first data reduced signal from said input signal by data reducing said input signal;
subtracting, using a processor, said first data reduced signal from said original data signal resulting in a first remainder signal;
generating, using a processor, a second data reduced signal from said first data reduced signal by data reducing said first data reduced signal;
digitally watermarking or encrypting, using a processor, said first data reduced signal or said second data reduced signal to create a third signal; and
generating an output signal using said third signal.
2. The method of claim 1 wherein said input signal is at least one of: instructional text; executable binary computer code; images; audio; video;
multimedia; and virtual reality imaging.
3. The method of claim 1 wherein said digitally watermarking or encrypting, further comprising using a watermarking algorithm to digitally watermark said first data reduced signal.
4. The method of claim 1 wherein said digitally watermarking or encrypting, further comprising using an encryption algorithm to encrypt said first data reduced signal.
5. The method of claim 1 further comprising splitting said input signal into two physically distinct input signals, and wherein said first data reduced signal is generated from a first one of said two physically distinct input signals.
6. The method of claim 1 wherein said digitally watermarking or encrypting comprises a processor using at least one key.
7. The method of claim 1, wherein said generating an output signal comprises adding said third signal to that one of said first data reduced signal and said second data reduced signal from which the third signal was not generated.
8. The method of claim 1 further comprising a computer system receiving the output signal in said computer system, further comprising said computer system executing programming designed to detect watermarks embedded in the output signal.
9. A system for digital watermarking, encrypting, or both, of an input signal containing information, comprising:
a computer system comprising at least one processor and memory;
said computer system configured to use at least one of said at least one processor for generating a first data reduced signal from said input signal by data reducing said input signal;
said computer system configured to use at least one of said at least one processor for subtracting said first data reduced signal from said original data signal resulting in a first remainder signal;
said computer system configured to use at least one of said at least one processor for generating a second data reduced signal from said first data reduced signal by data reducing said first data reduced signal;
said computer system configured to use at least one of said at least one processor for digitally watermarking or encrypting said first data reduced signal or said second data reduced signal to create a third signal; and
generating an output signal using said third signal.
10. The system of claim 9 wherein said input signal is at least one of: instructional text; executable binary computer code; images; audio; video;
multimedia; and virtual reality imaging.
11. The system of claim 9 wherein said digitally watermarking or encrypting, further comprising using a watermarking algorithm to digitally watermark said first data reduced signal.
12. The system of claim 9 wherein said digitally watermarking or encrypting, further comprising using an encryption algorithm to encrypt said first data reduced signal.
13. The system of claim 9 further comprising splitting said input signal into two physically distinct input signals, and wherein said first data reduced signal is generated from a first one of said two physically distinct input signals.
14. The system of claim 9, wherein said computer system is configured to add said third signal to that one of said first data reduced signal and said second data reduced signal from which the third signal was not generated.
15. The system of claim 9, further comprising a receiving computer system;
wherein said receiving computer system is configured to execute programming designed to detect watermarks embedded in the output signal.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/802,471, filed Mar. 13, 2013, issued Jul. 15, 2014 as U.S. Pat. No. 8,781,121, which is a continuation of U.S. patent application Ser. No. 13/423,650, filed Mar. 19, 2012, issued Sep. 3, 2013 as U.S. Pat. No. 8,526,611, which is a continuation of U.S. patent application Ser. No. 12/655,036, filed Dec. 22, 2009, issued Apr. 17, 2012 as U.S. Pat. No. 8,160,249, which is a continuation of U.S. patent application Ser. No. 11/519,467, filed Sep. 12, 2006, issued Feb. 16, 2010 as U.S. Pat. No. 7,664,264, which is a divisional of U.S. patent application Ser. No. 09/594,719, filed Jun. 16, 2000, issued Oct. 17, 2006 as U.S. Pat. No. 7,123,718, which is a continuation-in-part of International Application No. PCT/US00/06522, filed Mar. 14, 2000, and International Application No. PCT/US00/06522 claims priority to U.S. Provisional Application No. 60/125,990, filed Mar. 24, 1999, entitled “UTILIZING DATA REDUCTION IN STEGANOGRAPHIC AND CRYPTOGRAPHIC SYSTEMS”. The previously identified patents and/or patent applications are hereby incorporated by reference, in their entireties. This application also is related to the following applications: U.S. patent application Ser. No. 09/046,627, issued as U.S. Pat. No. 6,598,162, filed Mar. 24, 1998, entitled “Method for Combining Transfer Function with Predetermined Key Creation”; U.S. patent application Ser. No. 09/053,628, issued as U.S. Pat. No. 6,205,249, filed Apr. 2, 1998, entitled “Multiple Transform Utilization and Application for Secure Digital Watermarking”; U.S. Provisional Patent Application No. 60/169,274, which corresponds to U.S. patent application Ser. No. 09/731,040 which issued as U.S. Pat. No. 7,159,116, filed Dec. 7, 1999, entitled “Systems, Methods and Devices for Trusted Transactions”; and U.S. Patent Application No. 60/147,134, which corresponds to U.S. patent application Ser. No. 10/049,101 which issued as U.S. Pat. No. 7,475,246, filed Aug. 4, 1999, entitled, “A Secure Personal Content Server.” All of the patent applications previously identified in this paragraph are hereby incorporated by reference, in their entireties.

FIELD OF THE INVENTION

This invention relates to digital signal processing, and more particularly to a method and a system for encoding at least one digital watermark into a signal as a means of conveying information relating to the signal and also protecting against unauthorized manipulation or use of the signal.

BACKGROUND OF THE INVENTION

Many methods and protocols are known for transmitting data in digital form for multimedia applications (including computer applications delivered over public networks such as the interne or World Wide Web (“WWW”). These methods may include protocols for compression of data, such that it may more readily and quickly be delivered over limited bandwidth data lines. Among standard protocols for data compression of digital files may be mentioned the MPEG compression standards for audio and video digital compression, promulgated by the Moving Picture Experts Group. Numerous standard reference works and patents discuss such compression and transmission standards for digitized information.

Digital watermarks help to authenticate the content of digitized multimedia information, and can also discourage piracy. Because piracy is clearly a disincentive to the digital distribution of copyrighted content, establishment of responsibility for copies and derivative copies of such works is invaluable. In considering the various forms of multimedia content, whether “master,” stereo, NTSC video, audio tape or compact disc, tolerance of quality will vary with individuals and affect the underlying commercial and aesthetic value of the content. It is desirable to tie copyrights, ownership rights, purchaser information or some combination of these and related data into the content in such a manner that the content must undergo damage, and therefore reduction of its value, with subsequent, unauthorized distribution, commercial or otherwise. Digital watermarks address many of these concerns. A general discussion of digital watermarking as it has been applied in the art may be found in U.S. Pat. No. 5,687,236 (whose specification is incorporated in whole herein by reference).

Such prior art applications have been drawn to providing basic digital watermarking functionality. For instance, it has been known to provide an apparatus or method for encoding or decoding independent information, including a digital watermark, represented as a series of data bits into or out of a series of digitized samples, wherein the apparatus contained:

a) a sample buffer for holding, accessing, and transforming digitized samples;

b) a digital signal processor for performing sample modifications and spectral transformations;

c) a memory for storing information representing:

    • 1) a mask set, including one or more masks,
    • 2) a start of message delimiter (wherein at least one of the masks in question, or the start of message delimiter, are random or pseudo-random),
    • 3) a mask calculation buffer,
    • 4) a first buffer holding the independent information,
    • 5) an information bit index,
    • 6) a message size, representing an amount of information,
    • 7) one index into each of said one or more masks,
    • 8) a state of a decoding process,
    • 9) a table representing a map function,
    • 10) a flag indicating whether a complete message has been decoded or encoded,
    • 11) a number of samples for reading into said sample buffer, and
    • 12) a flag indicating a size of a message that has been decoded;

d) a first input for acquiring a plurality of digital samples;

e) a first output for outputting a plurality of modified digital samples;

f) a second input for inputting a plurality of values to the one or more masks, the start of message delimiter, the mask calculation buffer, the first buffer, the table and the number of samples;

g) a third output for outputting the independent information stored in the first buffer as a result of the decoding process and a value of the state of the decoding process to an attached digital circuit;

h) one or more data buses for transferring information from:

    • 1) the first input to the sample buffer,
    • 2) the sample buffer to the digital signal processor,
    • 3) the digital signal processor to the sample buffer,
    • 4) the sample buffer to the first output,
    • 5) the second input to the memory, and
    • 6) the memory to the third output; and

i) a clock for generating a clock signal for driving the digital signal processor and the data bus(es), and for controlling the operation of the apparatus.

Further applications of basic digital watermarking functionality have also been developed. Examples of such applications are shown in U.S. Pat. No. 5,889,868 (whose specification is incorporated in whole herein by reference). Such applications have been drawn, for instance, to implementations of digital watermarks that were deemed most suited to particular transmissions, or particular distribution and storage mediums, given the nature of digitally sampled audio, video, and other multimedia works. There have also been developed techniques for adapting watermark application parameters to the individual characteristics of a given digital sample stream. and for implementation of digital watermarks that are feature-based—i.e., a system in which watermark information is not carried in individual samples, but is carried in the relationships between multiple samples, such as in a waveform shape. For instance, natural extensions may be added to digital watermarks that may also separate frequencies (color or audio), channels in 3D while utilizing discreteness in feature-based encoding only known to those with pseudorandom keys (i.e., cryptographic keys) or possibly tools to access such information, which may one day exist on a quantum level.

A matter of general weakness in digital watermark technology relates directly to the manner of implementation of the watermark. Many approaches to digital watermarking leave detection and decode control with the implementing party of the digital watermark, not the creator of the work to be protected. This weakness removes proper economic incentives for improvement of the technology. One specific form of exploitation mostly regards efforts to obscure subsequent watermark detection. Others regard successful over encoding using the same watermarking process at a subsequent time. Yet another way to perform secure digital watermark implementation is through “key-based” approaches.

This paper draws a distinction between a “forensic watermark,” based on provably-secure methods, and a “copy control” or “universal” watermark which is intended to be low cost and easily implemented into any general computing or consumer electronic device. A watermark can be forensic if it can identify the source of the data from which a copy was made. For example, assume that digital data are stored on a disk and provided to “Company A” (the “A disk”). Company A makes an unauthorized copy and delivers the copy to “Company B” (the “B disk”). A forensic watermark, if present in the digital data stored on the “A disk,” would identify the “B disk” as having been copied from the “A disk.”

On the other hand, a copy control or universal watermark is an embedded signal which is governed by a “key” which may be changed (a “session key”) to increase security, or one that is easily accessible to devices that may offer less than strict cryptographic security. The “universal” nature of the watermark is the computationally inexpensive means for accessing or other associating the watermark with operations that can include playback, recording or manipulations of the media in which it is embedded.

A fundamental difference is that the universality of a copy control mechanism, which must be redundant enough to survive many signal manipulations to eliminate most casual piracy, is at odds with the far greater problem of establishing responsibility for a given instance of a suspected copying of a copyrighted media work. The more dedicated pirates must be dealt with by encouraging third party authentication with “forensic watermarks” or those that constitute “transactional watermarks” (which are encoded in a given copy of said content to be watermarked as per the given transaction).

The goal of a digital watermark system is to insert a given information signal or signals in such a manner as to leave little or no evidence of the presence of the information signal in the underlying content signal. A separate but equal goal is maximizing the digital watermark's encoding level and “location sensitivity” in the underlying content signal such that the watermark cannot be removed without damage to the content signal.

One means of implementing a digital watermark is to use key-based security. A predetermined or random key can be generated as a map to access the hidden information signal. A key pair may also be used. With a typical key pair, a party possesses a public and a private key. The private key is maintained in confidence by the owner of the key, while the owner's public key is disseminated to those persons in the public with whom the owner would regularly communicate. Messages being communicated, for example by the owner to another, are encrypted with the private key and can only be read by another person who possesses the corresponding public key. Similarly, a message encrypted with the person's public key can only be decrypted with the corresponding private key. Of course, the keys or key pairs may be processed in separate software or hardware devices handling the watermarked data.

Two conventional techniques for providing key-based confidentiality and/or authentication currently in use involve reciprocal and non-reciprocal encrypting. Both systems use non-secret algorithms to provide encryption and decryption, and keys that are used by the algorithm.

In reciprocal algorithm systems, such as DES, the same key and algorithm is used both to encrypt and decrypt a message. To assure confidentiality and authenticity, the key should be known only to the sending and receiving computers, and were traditionally provided to the systems by “secure” communication, such as courier.

In the prior art there have been developed systems wherein a common key may be developed by the sender and receiver using non-secure communications. In such systems, as described in U.S. Pat. Nos. 4,200,770, 5,375,169 and 5,583,939, each party to a communication generates a numerical sequence, operates on the sequence and transfers the result to the other party. By further operation using the transferred result and the locally generated sequence, each party can develop the identical encyphering key, which cannot be obtained from the transferred results alone.

As implemented for use over the interne, the most common prior art encryption systems are those denoted by the Secure Socket Layer (SSL) and IPSEC protocols.

In non-reciprocal systems, such as described in U.S. Pat. No. 4,218,582, a first party to a communication generates a numerical sequence and uses that sequence to generate non-reciprocal and different encrypting and decrypting keys. The encrypting key is then transferred to a second party in a non-secure communication. The second party uses the encrypting key (called a public key because it is no longer secure) to encrypt a message that can only be de-crypted by the decrypting key retained by the first party. The key generation algorithm is arranged such that the decrypting key cannot be derived from the public encrypting key. Similar methods are known for using non-reciprocal keys for authentication of a transmission. In this application, the non-secure “public” key is used to a message that has been encrypted using a secure “private” key known only to the originating party. In this method the receiving party has assurance that the origination of the message is the party who has supplied the “public” decrypting key. Prior art systems for key generation have often relied upon supposedly-random or quasi-random numbers generated by a fixed mathematical algorithm.

Adaptations of key systems specifically used in conjunction with digital watermarking have been developed, as disclosed in, for example, U.S. Pat. No. 5,822,432 (which is incorporated in whole herein by reference). Such adaptations have included, for instance, providing methods for the human-assisted generation and application of pseudorandom keys for the purpose of encoding and decoding digital watermarks to and from a digitized data stream. In such methods, a pseudorandom key and key application “envelope” may be generated and stored using guideline parameters input by a human engineer interacting with a graphical representation of the digitized data stream. Key “envelope” information is permanently associated with the pseudo-random binary string comprising the key. Key and “envelope” information may then be applied in a digital watermark system to the encoding and decoding of digital watermarks. Such a method can improve encoding and decoding with digital watermarks by providing: separation of the encoder from the decoder; increased information capacity (relative to spread spectrum methods); destruction or degradation of content when attempts to erase watermarks take place; detection of presence of watermarks without ability to access watermark information; multi-channel watermark capability; use of various classes of keys for watermark access control; support for alternative encoding, decoding, or other component algorithms; and/or use of a digital notary to authenticate and time stamp watermark certificates.

While, as described above, various prior art approaches do exist for implementation of digital watermarking (though not necessarily for forensic or copy control use), there are additional desirable features for digital watermarking systems that are not currently believed to be available. For instance, it would be desirable to be able to secure a data signal by using data reduction techniques to reduce the data signal into a reduced data signal; in conjunction with cryptographic techniques, so that an output signal can reliably and efficiently be securely delivered.

It would further be advantageous to user remainder signals (produced by data reduction techniques) as a vehicle for performing encryption upon and using in conjunction with encrypting/decrypting of a data signal to be secured.

It would likewise be desirable to combine data reduction techniques to reduce a data signal into a reduced data signal; produce a remainder signal from the data signal; and then embed complementary watermarks in reduced data signal and the remainder signal, for effective and secure delivery of an output signal.

It would still further be desirable to combine scrambling techniques in conjunction with data reduction techniques such that data signals can be reduced and transmitted on a secured basis.

It would likewise be desirable to provide cost-efficient and universal systems for digital watermarking, and to provide systems adaptable both to copy protection and forensic tracing of “pirated” data signals to detect and deter unauthorized copyists thereof.

It would also be desirable to provide a system of digital watermarking that is highly compatible with known and future methods for compression of data used in conjunction with electronic transmission thereof. It would further be desirable to provide digital watermarking techniques in conjunction with known and effective “key” systems for cryptography and data signal protection.

The prior art does not meet these needs.

SUMMARY OF THE INVENTION

The present invention provides a method of securing a data signal which comprises the steps of: applying a data reduction technique to reduce the data signal into a reduced data signal; embedding a first watermark into said reduced data signal to produce a watermarked, reduced data signal; and adding said watermarked, reduced data signal to said remainder signal to produce an output signal.

The present invention also provides a method of securing a data signal which comprises the steps of: applying a data reduction technique to reduce the data signal into a reduced data signal; subtracting said reduced data signal from the data signal to produce a remainder signal; embedding a first watermark into said reduced data signal to produce a watermarked, reduced data signal; embedding a second watermark into said remainder signal; to produce a watermarked remainder signal; and adding said watermarked, reduced data signal to said watermarked remainder signal to produce an output signal.

The present invention also provides a method of securing a data signal which comprises the steps of: applying a data reduction technique to reduce the data signal into a reduced data signal; subtracting said reduced data signal from the data signal to produce a remainder signal; using a first scrambling technique to scramble said reduced data signal to produce a scrambled, reduced data signal; using a second scrambling technique to scramble said remainder signal to produce a scrambled remainder signal; and adding said scrambled, reduced data signal to said scrambled remainder signal to produce an output signal.

The present invention also provides a method of securing a data signal which comprises the steps of: applying a data reduction technique to reduce the data signal into a reduced data signal; subtracting said reduced data signal from the data signal to produce a remainder signal; using a first cryptographic technique to encrypt the reduced data signal to produce an encrypted, reduced data signal; using a second cryptographic technique to encrypt the remainder signal to produce an encrypted remainder signal; and adding said encrypted, reduced data signal to said encrypted remainder signal to produce an output signal.

The present invention also supplies a system for securing a data signal which comprises: means to apply a data reduction technique to reduce the data signal into a reduced data signal; means to subtract said reduced data signal from the data signal to produce a remainder signal; means to apply a first cryptographic technique to encrypt the reduced data signal to produce an encrypted, reduced data signal; means to apply a second cryptographic technique to encrypt the remainder signal to produce an encrypted remainder signal; and means to add said encrypted, reduced data signal to said encrypted remainder signal to produce an output signal.

The present invention also supplies a system for securing a data signal which comprises: (a) a computer processor; (b) at least one computer memory; (c) a data reduction algorithm; and (d) at least one digital watermarking algorithm, wherein said computer processor is supplied with programming in conjunction with said computer memory: (I) to apply said data reduction algorithm to the data signal to yield a reduced data signal; and to subtract said reduced data signal from the data signal to produce a remainder signal; (II) to embed a first watermark into said reduced data signal by application of said at least one digital watermarking algorithm to produce a watermarked remainder signal; and (IV) to add said watermarked, reduced data signal to said watermarked remainder signal to produce an output signal.

The present invention also provides a method of securing a data signal which comprises the steps of: evaluating the data signal to determine its characteristics and reducibility; selecting at least one appropriate data reduction technique for the data signal based on the data signal's characteristics; applying said at least one appropriate data reduction technique to the data signal to produce a reduced data signal; embedding at least one digital watermark in the reduced data signal; and supplying an output signal corresponding to the data signal, said output signal comprising said watermark and said reduced data signal.

The present invention also supplies a method for the protection of a data signal, comprising the steps of: (a) defining and analyzing a plurality of data substreams within the data signal; (b) associating at least one key or key pair with data reduction digital watermarking for at least one of said data substreams; (c) employing said at least one key or key pairs for at least one step selected from the group of: (i) identifying at least one associated watermark; (ii) encoding at least one associated watermark; (iii) detecting at least one associated watermark; or (iv) decoding at least one associated watermark.

A method for protected distribution of a data file is also provided, which method comprises: (a) embedding one or more digital watermarks in the data file using data reduction techniques in creating said digital watermark; (b) and distributing the digitally watermarked file to an end user.

Also provided is a method for analyzing a data signal that has been embedded with at least one digital watermark using a data reduction technique, said method comprising: receiving the data signal; processing the data signal to detect information relative to the digital watermark; analyzing the detected information to determine if the output of the data signal is authorized; and outputting said data signal if the detected information establishes that output is authorized.

Also provided is a device for analyzing a data signal that has been embedded with at least one digital watermark using a data reduction technique, said device comprising: an interface for receiving the data signal; a detector for processing the data signal to detect information relative to the at least one digital watermark; an analyzer to analyze the detected information to determine if output of the data signal is authorized or unauthorized; and an signal generator to output data if the detected information establishes that output is authorized.

There are two design goals in an overall digital watermarking system's low cost, and universality. Ideally, a method for encoding and decoding digital watermarks in digitized media for copy control purposes should be inexpensive and universal. This is essential in preventing casual piracy. On the other hand, a more secure form of protection, such as a “forensic watermarks,” can afford to be computationally intensive to decode, but must be unaffected by repeated re-encoding of a copy control watermark. An ideal method for achieving these results would separate the signal into different areas, each of which can be accessed independently. The embedded signal or may simply be “watermark bits” or “executable binary code,” depending on the application and type of security sought. Improvements to separation have been made possible by enhancing more of the underlying design to meet a number of clearly problematic issues.

The present invention interprets the signal as a stream which may be split into separate streams of digitized samples or may undergo data reduction (including both lossy and lossless compression, such as MPEG lossy compression and Meridian's lossless compression, down sampling, common to many studio operations, or any related data reduction process). The stream of data can be digital in nature, or may also be an analog waveform (such as an image, audio, video, or multimedia content). One example of digital data is executable binary code. When applied to computer code, the present invention allows for more efficient, secure, copyright protection when handling functionality and associations with predetermined keys and key pairs in software applications or the machine readable versions of such code in microchips and hardware devices. Text may also be a candidate for authentication or higher levels of security when coupled with secure key exchange or asymmetric key generation between parties. The subsets of the data stream combine meaningful and meaningless bits of data which may be mapped or transferred depending on the application intended by the implementing party. The present invention utilizes data reduction to allow better performance in watermarking as well as cryptographic methods concerning binary executable code, its machine readable form, text and other functionality-based or communication-related applications. Some differences may simply be in the structure of the key itself, a pseudo random or random number string or one which also includes additional security with special one way functions or signatures saved to the key. The key may also be made into key pairs, as is discussed in other disclosures and patents referenced herein. The present invention contemplates watermarks as a plurality of digitized sample streams, even if the digitized streams originate from the analog waveform itself. The present invention also contemplates that the methods disclosed herein can be applied to non-digitized content. Universally, data reduction adheres to some means of “understanding” the reduction. This disclosure contemplates data reduction which may include down sampling, lossy compression, summarization or any means of data reduction as a novel means to speed up watermarking encode and decode operations. Many forms of data reduction rely upon sampling of a data signal, for instance frequency or time sampling of a digital audio or video signal. For example, a signal may be sampled on a regular basis every x fractions of a second, where x is arbitrarily chosen, such that representative data slices of the signal are obtained. Other data reduction techniques include bit depth reduction. Bit depth reduction relies on the fact that when measuring items, scales of different degrees of precision can be used. For example, one can measure things on a scale with three division marks (zero to two), or on a scale of the same magnitude with ten division marks (zero to nine). Scales with more divisions are of higher precision than scales with fewer divisions. On a computer, because of processing and storage limitations, numerical values (e.g., numerical values relating to a digitized signal) are also represented with varying degrees of precision. For example, one can use two bits (a scale of zero to three) to represent a numerical value or use five bits (a scale of zero to thirty-one) to represent the same numerical value. The number of bits used to represent a numerical value is generally referred to as the “bit depth.” Numerical data may be reduced for storage or transmission by reduction of the bit depth scale.

While any of a number of different data reduction techniques can be used in conjunction with the present invention, essentially a lossy method for data reduction yields the best results for encode and decode operations. Data reduction methods should be appropriately chosen with an eye toward the particular type of data signal being reduced. Some data signals may more readily be reduced than others. For instance, when the data reduction technique chosen is a compression technique, it will be realized that not all data signals or files are equally compressible. For example, there are limits to the degree to which aesthetic information (such as music or video signals) may be compressed without losing their aesthetic or informational value. Thus, in practicing the present invention, techniques can be applied for intelligent selection of data reduction, and differential data reduction techniques can be selected for differential substreams of an aggregate data stream. For example, a computer processor implementing the present invention for protection of a data signal stream comprising, say, both video and text portions, can be programmed to “split” the aggregate data stream into video and text signal substreams, and to apply a first data reduction algorithm most suitable for video data to the first substream, while applying a second data reduction algorithm most suitable for text data to the second substream.

It is desirable to have both copy control and forensic watermarks in the same signal to address the needs of the hardware, computer, and software industries while also providing for appropriate security to the owners of the copyrights. This will become clearer with further explanation of the sample embodiments discussed herein.

The present invention also contemplates the use of data reduction for purposes of speedier and more tiered forms of security, including combinations of these methods with transfer function functions. In many applications, transfer functions (e.g., scrambling), rather than mapping functions (e.g., watermarking), are preferable or can be used in conjunction with mapping. With “scrambling,” predetermined keys are associated with transfer functions instead of mapping functions, although those skilled in the art may recognize that a transfer function is simply a subset of mask sets encompassing mapping functions. It is possible that tiered scrambling with data reduction or combinations of tiered data reduction with watermarking and scrambling may indeed increase overall security to many applications.

The use of data reduction can improve the security of both scrambling and watermarking applications. All data reduction methods include coefficients which affect the reduction process. For example, when a digital signal with a time or space component is down sampled, the coefficient would be the ratio of the new sample rate to the original sample rate. Any coefficients that are used in the data reduction can be randomized using the key, or key pair, making the system more resistant to analysis. Association to a predetermined key or key pair and additional measure of security may include biometric devices, tamper proofing of any device utilizing the invention, or other security measures.

Tests have shown that the use of data reduction in connection with digital watermarking schemes significantly reduces the time required to decode the watermarks, permitting increases in operational efficiency.

Particular implementations of the present invention, which have yielded extremely fast and inexpensive digital watermarking systems, will now be described. These systems may be easily adapted to consumer electronic devices, general purpose computers, software and hardware. The exchange of predetermined keys or key pairs may facilitate a given level of security. Additionally, the complementary increase in security for those implementations where transfer functions are used to “scramble” data, is also disclosed.

BRIEF DESCRIPTION OF THE FIGURES

For a more complete understanding of the invention and some advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:

FIG. 1 is a functional block diagram that shows a signal processing system that generates “n” remainder signals and “n” data reduced signals.

FIG. 2 is a functional block diagram for an embodiment of the present invention which illustrates the generation of an output signal comprised of a data-reduced, watermarked signal and a first remainder signal.

FIG. 3 is a functional block diagram for an embodiment of the present invention which illustrates the generation of an output signal comprised of a data-reduced, watermarked signal and a watermarked, first remainder signal.

FIG. 4 is a functional block diagram for decoding the output signal generated by the system illustrated in FIG. 2.

FIG. 5 is a functional block diagram for decoding the output signal generated by the system illustrated in FIG. 3.

FIG. 6 is a functional block diagram for an embodiment of the present invention which illustrates the generation of an output signal comprised of a data-reduced, scrambled signal and a first remainder signal.

FIG. 7 is a functional block diagram for an embodiment of the present invention which illustrates the generation of an output signal comprised of a data-reduced, scrambled signal and a scrambled, first remainder signal.

FIG. 8 is a functional block diagram for decoding the output signal generated by the system illustrated in FIG. 6.

FIG. 9 is a functional block diagram for decoding the output signal generated by the system illustrated in FIG. 7.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The embodiments of the present invention and its advantages are best understood by referring to the drawings, like numerals being used for like and corresponding parts of the various drawings.

An Overview

A system for achieving multiple levels of data reduction is illustrated in FIG. 1. An input signal 10 (for example, instructional text, executable binary computer code, images, audio, video, multimedia or even virtual reality imaging) is subjected to a first data reduction technique 100 to generate a first data reduced signal 20. First data reduced signal 20 is then subtracted from input signal 10 to generate a first remainder signal 30.

First data reduced signal 20 is subjected to a second data reduction technique 101 to generate a second data reduced signal 21. Second data reduced signal 21 is then subtracted from first data reduced signal 20 to generate a second remainder signal 31.

Each of the successive data reduced signals is, in turn, interactively subjected to data reduction techniques to generate a further data reduced signal, which, in turn, is subtracted from its respective parent signal to generate another remainder signal. This process is generically described as follows. An (n−1) data reduced signal 28 (i.e, a signal that has been data reduced n−1 times) is subjected to an nth data reduction technique 109 to generate an nth data reduced signal 29. The nth data reduced signal 29 is then subtracted from the (n−1) data reduced signal 28 to produce an nth remainder signal 39.

An output signal can be generated from the system illustrated in FIG. 1 in numerous ways. For example, each of the n remainder signals (which, through represented by reference numerals 30-39, are not intended to be limited to 10 signals though n must obviously be a finite number, and as a practical matter will usually be comparatively small) and the nth data signal may optionally subjected to a watermarking technique, or even optionally subjected to a encryption technique, and each of the (n+1) signals (whether watermarked or encrypted, or otherwise untouched) may then be added together to form an output signal. By way of more particular examples, each of the (n+1) signals (i.e., the n remainder signals and the nth data reduced signal) can be added together without any encryption or watermarking to form an output signal; or one or more of the (n+1) signals may be watermarked and then all (n+1) signals may be added together; or one or more of the (n+1) signals may be encrypted and then all (n+1) signals may be added together. It is anticipated that between these three extremes lie numerous hybrid combinations involving one or more encryptions and one or more watermarkings.

Each level may be used to represent a particular data density. E.g., if the reduction method is down-sampling, for a DVD audio signal the first row would represent data sampled at 96 kHz, the second at 44.1 kHz., the third at 6 kHz., etc. There is only an issue of deciding what performance or security needs are contemplated when undertaking the data reduction process and choice of which types of keys or key pairs should be associated with the signal or data to be reduced. Further security can be increased by including block ciphers, special one way functions, one time stamps or even biometric devices in the software or hardware devices that can be embodied. Passwords or biometric data are able to assist in the determination of the identity of the user or owner of the data, or some relevant identifying information.

A variety of keys may advantageously be chosen. Additionally, any key or keys employed need not remain static over time but may be changed from time to time. For instance, the key may be changed in real time, or upon detection of a “marker” signal within the data signal stream. The key can also be a ciphered key. As is known in the art, the key or keys may be generated by any of a variety of effective methods, including steganographic cipher, symmetric cryptographic cipher, and asymmetric cryptographic cipher. Keys may be derived (in whole or in part) from the signal stream itself or may be derived from sources completely external to the signal stream.

Additionally, and given that information signals may comprise a variety of forms of information (e.g., audio, still image, video, computer code, or text), it is appreciated that a single multimedia information signal stream may be divided into multiple substreams based on the various constituent information forms in the multimedia information stream. It could be advantageous, in such a substreamed context, to associate predetermined discrete, and particular, forms or instances of key or key pair to particular information substreams—for instance, a predetermined first key or key pair could be assigned for association and use with a video substream whereas a predetermined second key or key pair could be assigned for association and use with a text substream. Thus, complex watermarking of a multi-substream data signal may be flexibly accomplished. Such complexity may contribute, inter alia, to more effective watermarking and security as multiple watermarks would have to be compromised in order to compromise the entire aggregate information stream or set of substreams. Keys and key pairs are understood to be multifunctional, insofar as they are useful for both the encoding and decoding of watermarks.

An example of a real world application is helpful here. Given the predominant concern, at present, of MPEG 1 Layer 3, or MP3, a perceptual lossy compression audio data format, which has contributed to a dramatic re-evaluation of the distribution of music, a digital watermark system must be able to handle casual and more dedicated piracy in a consistent manner. The present invention contemplates compatibility with MP3, as well as any perceptual coding technique that is technically similar. One issue, is to enable a universal copy control “key” detect a watermark as quickly as possible from a huge range of perceptual quality measures. For instance, DVD 24 bit 96 kHz, encoded watermarks, should be detected in at least “real time,” even after the signal has been down sampled, to say 12 kHz of the 96 kHz originally referenced. By delineating and starting with less data, since the data-reduced signal is obviously smaller though still related perceptually to the original DVD signal, dramatic increases in the speed and survival of the universal copy control bits can be achieved. The present invention also permits the ability to separate any other bits which may be associated with other more secure predetermined keys or key pairs.

Where the data stream is executable computer code, the present invention contemplates breaking the code into objects or similar units of functionality and allowing for determination of what is functionally important. This may be more apparent to the developer or users of the software or related hardware device. Data reduction through the use of a subset of the functional objects related to the overall functionality of the software or executable code in hardware or microchips, increase the copyright protection or security sought, based on reducing the overall data to be associated with predetermined keys or key pairs. Similarly, instead of mapping functions, transfer functions, so-called “scrambling,” appear better candidates for this type of security although both mapping and transferring may be used in the same system. By layering the security, the associated keys and key pairs can be used to substantially improve the security and to offer easier methods for changing which functional “pieces” of executable computer code are associated with which predetermined keys. These keys may take the form of time-sensitive session keys, as with transactions or identification cards, or more sophisticated asymmetric public key pairs which may be changed periodically to ensure the security of the parties' private keys. These keys may also be associated with passwords or biometric applications to further increase the overall security of any potential implementation.

An example for text message exchange is less sophisticated but, if it is a time sensitive event, e.g., a secure communication between two persons, benefits may also be encountered here. Security may also be sought in military communications. The ability to associate the securely exchanged keys or key pairs while performing data reduction to enhance the detection or decoding performance, while not compromising the level of security, is important. Though a steganographic approach to security, the present invention more particularly addresses the ability to have data reduction to increase speed, security, and performance of a given steganographic system. Additionally, data reduction affords a more layered approach when associating individual keys or key pairs with individual watermark bits, or digital signature bits, which may not be possible without reduction because of considerations of time or the payload of what can be carried by the overall data “covertext” being transmitted.

Layering through data reduction offers many advantages to those who seek privacy and copyright protection. Serialization of the detection chips or software would allow for more secure and less “universal” keys, but the interests of the copyright owners are not always aligned with those of hardware or software providers. Similarly, privacy concerns limit the amount of watermarking that can be achieved for any given application. The addition of a pre-determined and cryptographic key-based “forensic” watermark, in software or hardware, allows for 3rd party authentication and provides protection against more sophisticated attacks on the copy control bits. Creating a “key pair” from the “predetermined” key is also possible.

Separation of the watermarks also relates to separate design goals. A copy control mechanism should ideally be inexpensive and easily implemented, for example, a form of “streamed watermark detection.” Separating the watermark also may assist more consistent application in broadcast monitoring efforts which are time-sensitive and ideally optimized for quick detection of watermarks. In some methods, the structure of the key itself, in addition to the design of the “copy control” watermark, will allow for few false positive results when seeking to monitor radio, television, or other streamed broadcasts (including, for example, Internet) of copyrighted material. As well, inadvertent tampering with the embedded signal proposed by others in the field can be avoided more satisfactorily. Simply, a universal copy control watermark may be universal in consumer electronic and general computing software and hardware implementations, but less universal when the key structure is changed to assist in being able to log streaming, performance, or downloads, of copyrighted content. The embedded bits may actually be paired with keys in a decode device to assure accurate broadcast monitoring and tamper proofing, while not requiring a watermark to exceed the payload available in an inaudible embedding process. E.g., A full identification of the song, versus time-based digital signature bits, embedded into a broadcast signal, may not be recovered or may be easily over encoded without the use of block ciphers, special one way functions or one time pads, during the encoding process, prior to broadcast. Data reduction as herein disclosed makes this operation more efficient at higher speeds.

A forensic watermark is not time sensitive, is file-based, and does not require the same speed demands as a streamed or broadcast-based detection mechanism for copy control use. Indeed, a forensic watermark detection process may require additional tools to aid in ensuring that the signal to be analyzed is in appropriate scale or size, ensuring signal characteristics and heuristic methods help in appropriate recovery of the digital watermark. Simply, all aspects of the underlying content signal should be considered in the embedding process because the watermarking process must take into account all such aspects, including for example, any dimensional or size of the underlying content signal. The dimensions of the content signal may be saved with the key or key pair, without enabling reproduction of the unwatermarked signal. Heuristic methods may be used to ensure the signal is in proper dimensions for a thorough and accurate detection authentication and retrieval of the embedded watermark bits. Data reduction can assist in increasing operations of this nature as well, since the data reduction process may include information about the original signal, for example, signal characteristics, signal abstracts, differences between samples, signal patterns, and related work in restoring any given analog waveform.

The present invention provides benefits, not only because of the key-based approach to the watermarking, but the vast increase in performance and security afforded the implementations of the present invention over the performance of other systems.

The architecture of key and key-pair based watermarking is superior to statistical approaches for watermark detection because the first method meets an evidentiary level of quality and are mathematically provable. By incorporating a level of data reduction, key and key paired based watermarking is further improved. Such levels of security are plainly necessary if digital watermarks are expected to establish responsibility for copies of copyrighted works in evidentiary proceedings. More sophisticated measures of trust are necessary for use in areas which exceed the scope of copyright but are more factually based in legal proceedings. These areas may include text authentication or software protection (extending into the realm of securing microchip designs and compiled hardware as well) in the examples provided above and are not contemplated by any disclosure or work in the art.

The present invention may be implemented with a variety of cryptographic protocols to increase both confidence and security in the underlying system. A predetermined key is described as a set of masks: a plurality of mask sets. These masks may include primary, convolution and message delimiters but may extend into additional domains. In previous disclosures, the functionality of these masks is defined solely for mapping. Public and private keys may be used as key pairs to further increase the unlikeliness that a key may be compromised. Examples of public key cryptosystems may be found in the following U.S. Pat. Nos. 4,200,770; 4,218,582; 4,405,829; and 4,424,414, which examples are incorporated herein by reference. Prior to encoding, the masks described above are generated by a cryptographically secure random generation process. Mask sets may be limited only by the number of dimensions and amount of error correction or concealment sought, as has been previously disclosed.

A block cipher, such as DES, in combination with a sufficiently random seed value emulates a cryptographically secure random bit generator. These keys, or key pairs, will be saved along with information matching them to the sample stream in question in a database for use in subsequent detection or decode operation. These same cryptographic protocols may be combined with the embodiments of the present invention in administering streamed content that requires authorized keys to correctly display or play said streamed content in an unscrambled manner. As with digital watermarking, symmetric or asymmetric public key pairs may be used in a variety of implementations. Additionally, the need for certification authorities to maintain authentic key-pairs becomes a consideration for greater security beyond symmetric key implementations, where transmission security is a concern.

Signal Processing in a Multi-Watermark System (a Plurality of Streams May be Watermarked)

FIG. 2 illustrates a system and method of implementing a multiple-watermark system. An input signal 11 (e.g., binary executable code, instruction text. or other data), is first processed by a lossy data-reduction scheme 200 (e.g., down-sampling, bit-rate reduction, or compression method) to produced a data-reduced signal 40. Data-reduced signal 40 is then embedded with a watermark (process step 300) to generate a watermarked, data-reduced signal 50, while a copy of the unmarked, data-reduced signal 40 is saved.

Watermarking process step 300 may be chosen from among various watermarking processes known in the art. As an example, a digital audio data signal may be represented, for purpose of watermarking, by a series of samples in 1 dimension. {S1, S2, S3 . . . Sn}. This series is also referred to as a sample stream. The sample stream approximates an analog waveform of sound amplitude over time. Each sample represents an estimate of the wave amplitude at the instant of time the sample is recorded. For monaural audio, there is one such sample stream. Stereo audio is comprised of two sample streams, one representing the right channel, and the other representing the left. Each stream is used to drive a corresponding speaker to reproduce the stereo sound. What is referred to as CD quality audio is characterized by 16 bit (2 byte) stereo samples, recorded at 44.1 Khz, or 44,100 samples per second in each channel. The dynamic range of sound reproduction is directly proportional to the number of bits per sample. Some lower quality recordings are done at 8 bits. A CD audio recording can be stored using any scheme for containing the 2 sample streams in their entirety. When these streams are played back at the same frequency they were recorded at, the sound recorded is reproduced to a high degree of accuracy. The sample stream is processed in order from first sample to last. For the purpose of the invention disclosed, the stream is separated into sample windows, each of which has a fixed number of consecutive samples from the stream, and where windows do not overlap in the sample stream. Windows may be contiguous in the sample stream. For illustration, assume each window contains 128 samples, and that windows are contiguous. Thus, the windows within the stream look like

{>S1, S2, S3 . . . S128 !, >S129, S130, S131 . . . S256! . . . >Sn-128 . . . Sn!}

wherein the bracketed set > . . . ! denotes each window and any odd samples at the end of the stream which do not completely fill a window can be ignored, and simply passed through the system unmodified.

These windows will be used as input for the discrete Fast Fourier Transform (and its inverse) operation. Briefly, Fourier Transform methods are based on the principle that a complex waveform, expressed as amplitude over time and represented by a sample stream, is really the sum of a number of simple waveforms, each of which oscillates at different frequencies. By complex, it is meant that the value of the next sample is not easily predicted from the values of the last N samples or the time of the sample. By simple it is meant that the value of the sample is easily predictable from the values of the last N samples and/or the time of the sample.

The sum of multiple simple waves is equivalent to the complex wave. The discrete FFT and its inverse simply translate a limited amount of data from one side of this equivalence to the other, between the complex waveform and the sum of simple waves. The discrete FFT can be used to translate a series of samples representing amplitude over time (the complex wave, representing a digital audio recording) into the same number of samples representing total spectral energy in a given range of frequencies (the simple wave components) at a particular instant of time. This instant is the time in the middle of the original amplitude/time samples. The inverse discrete FFT translates the data in the other direction, producing the complex waveform, from its simpler parts.

Each 128 sample window will be used as an input to the discrete FFT, resulting in 128 bins representing each of 128 frequency bands, ranging from 0 Hz to 22 Khz (the Nyquist frequency, or ½ the sampling rate).

Information can be encoded into the audio signal in the frequency domain or in the time domain. In the latter case, no FFT or inverse FFT is necessary. However, encoding in the frequency domain is recommended, since its effects are scattered over the resultant time domain samples, and not easily predicted. In addition, frequency domain encoding makes it more likely that randomization will result in noticeable artifacts in the resultant signal, and therefore makes the stega-cipher more defensible against such attacks. It is in the frequency domain that additional information will be encoded into the audio signal for the purpose of this discussion. Each frequency band in a given time slice can potentially be used to store a small portion of some additional information to be added to the signal. Since these are discrete estimates, there is some room for error which will not significantly effect the perceived quality of the signal, reproduced after modification, by the inverse FFT operation. In effect, intentional changes, which cannot be distinguished from random variations, are introduced in the frequency domain, for the purpose of storing additional information in the sample stream. These changes are minimized so as not to adversely affect the perceived quality of the reproduced audio signal, after it has been encoded with additional information in the manner described below. In addition, the location of each of these changes is made virtually impossible to predict, an innovation which distinguishes this scheme from simple steganographic techniques.

The saved, unwatermarked data-reduced signal (signal 40) is subtracted from the original input signal 11, yielding a remainder signal 60 composed only of the data that was lost during the data-reduction. A second watermark is then applied using a desired watermarking protocol (process step 301) to remainder signal 60 to generate a watermarked remainder signal 70. Finally, the watermarked remainder 70 and the watermarked, data-reduced signal 50 are added to form an output signal 80, which is the final, full-bandwidth, output signal.

The two watermarking techniques (process steps 300 and 301) may be identical (i.e., be functionally the same), or they may be different.

To decode the signal, a specific watermark is targeted. Duplicating the data-reduction processes that created the watermark in some cases can be used to recover the signal that was watermarked. Depending upon the data-reduction method, it may or may not be necessary to duplicate the data-reduction process in order to read a watermark embedded in a remainder signal. Because of the data-reduction, the decoding search can occur much faster than it would in a full-bandwidth signal. Detection speed of the remainder watermark remains the same as if there were no other watermark present.

FIG. 4 illustrates a functional block diagram for one means of decoding the output signal generated by the system illustrated in FIG. 2. A signal to be analyzed 80 (e.g., the same output from FIG. 2) is processed by a data-reduction scheme 200. Data reduced signal 41 can then be decoded to remove the message that was watermarked in the original data reduced signal. Further, data reduced signal 41 can be subtracted from signal to be analyzed 80 to form a differential signal 61 which can then be decoded to remove the message that was watermarked in the original remainder signal. A decoder may only be able to perform one of the two decodings. Differential access and/or different keys may be necessary for each decoding.

Additionally, the watermarking described in connection with this embodiment above may be done with a plurality of predetermined keys or key pairs associated with a single watermark “message bit,” code object, or text. Keys or key pairs may also be stored or archived in a central certification authority, such that there will be a verified and official version of a particular key or key pair whenever access to such key or key pair, or verification or identification of the legitimacy and authorization of the use of a particular data signal or file associated with that key, is required. The central certification authority could be, for instance, a secure computer server archive maintained by a copyright holder to store keys relating to copyrighted files watermarked using such keys.

Signal Processing in a Single Watermark System

FIG. 3 illustrates a system and method of implementing a single watermark system. The process and system contemplated here is identical to process described in connection to FIG. 2, above, except that no watermark is embedded in the remainder signal. Hence, the watermarked, data-reduced signal 50 is added directly to the remainder signal 60 to generate an output signal 90.

Additionally, the watermarking described in connection with this embodiment above may be done with a plurality of predetermined keys or key pairs associated with a single watermark “message bit,” code object, or text.

In either process, an external key can be used to control the insertion location of either watermark. In a copy-control system, a key is not generally used, whereas in a forensic system, a key must be used. The key can also control the parameters of the data-reduction scheme. The dual scheme can allow a combination of copy-control and forensic watermarks in the same signal. A significant feature is that the copy-control watermark can be read and rewritten without affecting the forensic mark or compromising its security.

FIG. 5 illustrates a functional block diagram for one means of decoding the output signal generated by the system illustrated in FIG. 3. A signal to be analyzed 90 (e.g., the same output from FIG. 3) is processed by a data-reduction scheme 200. Data reduced signal 41 can then be decoded to remove the message that was watermarked in the original data reduced signal.

Signal Processing in a Multi-Scrambler System (a Plurality of Streams May be Scrambled)

FIG. 6 illustrates a system and method of implementing a multi-scrambler system. An input signal 12 (e.g., binary executable code, instruction text. or other data), is first processed by a lossy data-reduction scheme 400 (e.g., down-sampling, bit-rate reduction, or compression method) to produced a data-reduced signal 45. Data-reduced signal 45 is then scrambled using a first scrambling technique (process step 500) to generate a scrambled, data-reduced signal 55, while a copy of the unscrambled, data-reduced signal 45 is saved.

The saved, unscrambled data-reduced signal (signal 45) is subtracted from the original input signal 12, yielding a remainder signal 65 composed only of the data that was lost during the data-reduction. A second scrambling technique is then applied (process step 501) to remainder signal 65 to generate a scrambled remainder signal 75. Finally, the scrambled remainder signal 75 and the scrambled data-reduced signal 55 are added to form an output signal 85, which is the final, full-bandwidth, output signal.

The two scrambling techniques (process steps 500 and 501) may be identical (i.e., be functionally the same), or they may be different.

Additionally the scrambling described in connection with this embodiment may be done with a plurality of predetermined keys or key pairs associated with a single scrambling operation containing only a “message bit,” code object, or text.

To decode the signal, unscrambling follows the exact pattern of the scrambling process except that the inverse of the scrambling transfer function is applied to each portion of the data, thus returning it to its pre-scrambled state.

FIG. 8 illustrates a functional block diagram for one means of decoding the output signal generated by the system illustrated in FIG. 6. A signal to be analyzed 85 (e.g., the same output from FIG. 6) is processed by a data-reduction scheme 200. Data reduced signal 46 can be subtracted from signal to be analyzed 85 to form a differential signal 66, which signal can then be descrambled in process 551 using the inverse transfer function of the process that scrambled the original remainder signal (e.g., the inverse of scrambling process 501). Descrambling process 551 generates an descrambled signal 76. Data reduced signal 46 may further be descrambled in process 550 using the inverse transfer function of the process that scrambled the original data reduced signal (e.g., the inverse of scrambling process 500). Descrambling process 550 generates an descrambled signal 56, which may then be added to descrambled signal 76 to form an output signal 98.

Signal Processing in a Single Scrambling Operation

FIG. 7 illustrates a system and method of implementing a single scrambling system. The process and system contemplated here is identical to process described in connection to FIG. 6, above, except that no scrambling is applied to the remainder signal. Hence, the scrambled data-reduced signal 55 is added directly to the remainder signal 65 to generate an output signal 95.

Additionally the scrambling described in connection with this embodiment may be done with a plurality of predetermined keys or key pairs associated with a single scrambling operation containing only a “message bit,” code object, or text.

FIG. 9 illustrates a functional block diagram for one means of decoding the output signal generated by the system illustrated in FIG. 7. A signal to be analyzed 95 (e.g., the same output from FIG. 7) is processed by a data-reduction scheme 200. Data reduced signal 46 can be subtracted from signal to be analyzed 95 to form a differential signal 66. Data reduced signal 46 may further be descrambled in process 550 using the inverse transfer function of the process that scrambled the original data reduced signal (e.g., the inverse of scrambling process 500). Descrambling process 550 generates an descrambled signal 56, which may then be added to differential signal 66 to form an output signal 99.

Sample Embodiment Combinations

Another embodiment may combine both watermarking and scrambling with data reduction. Speed, performance and computing power may influence the selection of which techniques are to be used. Decisions between data reduction schemes ultimately must be measured against the types of keys or key pairs to use, the way any pseudo random or random number generation is done (chaotic, quantum or other means), and the amount of scrambling or watermarking that is necessary given the needs of the system. It is quite possible that some derived systems would yield a fairly large decision tree, but the present invention offers many benefits to applications in security that are not disclosed in the art.

As a further illustrative example of an advantageous embodiment, the following briefly describes an implementation of the present invention using sample rate reduction as the chosen data reduction method for watermarking in connection with an audio data signal.

I. Encoding:

    • Audio data is downsampled from the original sample rate to 10 kHz.
    • The 10 kHz signal is upsampled to the original sample rate, yielding the 10 kHz upsample.
    • The 10 kHz upsample is subtracted from the original, yielding the 10 kHz upsample difference.
    • The 10 kHz signal is downsampled to 5 kHz.
    • The 5 kHz signal is upsampled to the 10 kHz, yielding the 5 kHz upsample.
    • The 5 kHz upsample is subtracted from the 10 kHz signal, yielding the 5 kHz upsample difference.
    • The 5 kHz signal is marked with an open watermark (universal key for universal access), yielding the 5 kHz watermark.
    • The 5 kHz upsample difference is marked with a secure watermark (one key per encode), yielding the 10 kHz watermark.
    • The 5 kHz watermark is upsampled to 10 kHz, yielding the 5 kHz upsampled watermark.
    • The 5 kHz upsampled watermark is summed with the 10 kHz watermark, to yield the 10 kHz watermark sum.
    • The 10 kHz watermark sum is upsampled to the original sample rate, yielding the 10 kHz upsampled watermark.
    • The 10 kHz upsampled watermark is summed with the 10 kHz upsample difference to produce the output signal.

II(A). Decoding Both Watermarks, or Just the Secure Watermark:

    • Audio data is downsampled from the original sample rate to 10 kHz.
    • The 10 kHz signal is downsampled to 5 kHz.
    • The 5 kHz signal is upsampled to the 10 kHz, yielding the 5 kHz upsample.
    • The 5 kHz upsample is subtracted from the 10 kHz signal, yielding the 5 kHz upsample difference.
    • The open watermark is decoded from the 5 kHz.
    • The secure watermark is decoded from the 5 kHz upsample.

IIB. Decoding Just the Open Watermark:

    • Audio data is downsampled from the original sample rate to 5 kHz.
    • The open watermark is decoded from the 5 kHz.

In connection with the above-described embodiment, alternative step IIB is illustrated because decoding the open watermark may have to occur on consumer electronic devices, and therefore, generally, fewer processing steps may be desirable in consumer electronic devices. The secure watermark is not as time-critical during the decode process, and can therefore be afforded more processing time. Note further that the original sample rate during the encode does not have to be the same as the original sample rate for decode. Any intervening sample rate conversion will be ignored, as long as it never drops below the same rate of the signal to which the watermark is applied (for example, 10 kHz for the secured watermark of the prior example, or 5 kHz for the open watermark of the prior example).

The embodiments described herein may advantageously be implemented in connection with a data signal recipient's personal computer system or workstation (comprising a computer processor such as an Intel Pentium processor, spreadsheet software such as Microsoft Excel, and implementing a communications module such as a common web browser such as Internet Explorer or Netscape), linked by a World Wide Web connection to a data signal or file provider utilizing similar standard computer hardware and software, but may also be implemented in connection with any output device having appropriate electronic memory and/or processing capacity to implement the techniques set forth herein (which could include, for instance, consumer electronics output devices other than microcomputers). Because the digital watermarking techniques and systems disclosed herein are substantially universal, however, they may be applied across a variety of computer hardware and software configurations, for use with a variety of transmitted data signals or files, over a variety of public or private networks (although the utility of the present invention for digital watermarking of audio or video files transmitted over public networks such as the interne is obvious). The network communication link between the data signal/file recipient and the signal/file provider may further be provided with some network-default level of encryption (perhaps a relatively weak level such as 56 bit encryption). Similarly, known computer programming techniques and languages (for instance, Visual Basic, JAVA, C++) may be adapted in a variety of fashions for use in either the data reduction steps discussed herein, the cryptographic/scrambling processes disclosed, the specific watermarking techniques applied, or any combination of the above, for customized data reduction and digital watermarking, and output of an output signal, in the fashion most amenable to a particular user's needs. The ability to adapt a wide range of data processing algorithms (including but not limited to algorithms for data reduction, encryption/decryption, and compression) to yield various desired data signal outputs, to apply customizable digital watermarking procedures, and to allow customizable and maximally-efficient forensic or copy control watermarks to popular and useful data transmission protocols, all across a broad range of computer system platforms (i.e., various hardware, software, computer language, and operating system combinations) provides the present invention with considerable versatility.

The present invention as implemented with such computer systems permits secured delivery of valuable data streams over a variety of networks. Specifically, the present invention provides great utility for the delivery (commercial or otherwise) of video, audio, or other such files on media or over a public network such as the internet in a fashion that impedes theft or unauthorized use or resale of such files. For instance, the methods of the present invention could be applied to all the digitized commercial music files of a music vendor (to impose, for instance, a copy control watermark thereupon). Subsequently, those watermarked music files may be delivered to end users. End user attempts to make unauthorized copies can thus be controlled. Alternatively, output devices may be programmed to detect watermarks embedded in files by use of the present invention, such that if the file does not contain an appropriate watermark, the output device will not execute or “play” the file.

It is important to note that the watermarks embedded using the present invention may be embedded at a wide variety of points along the distribution chain for the data signals. For instance, in an embodiment in which the present invention is used to watermark commercial music or video files downloaded by an individual end user from a central server over an internet connection through an internet service provider, the present invention could be used to impose a forensic watermark (uniquely identifying the customer and download transaction) at the central server (or at the server of the internet service provider). When a suspected unauthorized copy of the file in question was detected, the watermark therein could be sensed/decoded in order to identify the source of the unauthorized copy. As has been emphasized, the techniques of the present invention may be applied to a wide variety of data signals, whether stored multimedia or computer code files, streamed files transmitted in real time, or other files or data signals, and may be applied in context-sensitive fashion to maximize protection (and effective signal transmission and output) for a particular data stream. It is also an aspect of this invention that the novel techniques for watermarking using data reduction herein can be exploited at the end user point of the distribution chain for data signals; that is, using the unique watermark/key information associated with a file watermarked using the techniques described hereinabove, a file may be analyzed (whether by representatives of a file copyright owner, for instance, or by hardware, software, or other appropriate analyzer, such as an embedded firmware chip, etc. contained in or supplied to an end user output device). Once the data signal is analyzed at the end user point, information relative to the any watermark or key actually contained on the file at that point may be derived and analyzed to determine if the file has been properly distributed to the end user. If it has not, the output device may be programmed to deny output or to manipulate the data signal in a destructive way (or to take other appropriate legal or copyright control action as may be desired by the file owner). The present invention includes such uses of (and devices for) data reduction-derived watermark detection and output control.

Those of ordinary skill in the art will appreciate that the foregoing discussion of certain preferred embodiments is illustrative only, and does not limit the spirit and scope of the present invention, which are limited only by the claims set forth below.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US39478257 mai 197530 mars 1976International Business Machines CorporationAbstracting system for index search machine
US398462425 juil. 19745 oct. 1976Weston Instruments, Inc.Video system for conveying digital and analog information
US398662416 nov. 197319 oct. 1976International Incinerators, Inc.Disposal feeding system including selective container control
US40385962 juil. 197526 juil. 1977E M I LimitedMethod and apparatus for authenticating a record medium consisting of applying two different strength magnetizing fields and monitoring the remanent fields
US42007706 sept. 197729 avr. 1980Stanford UniversityCryptographic apparatus and method
US42185826 oct. 197719 août 1980The Board Of Trustees Of The Leland Stanford Junior UniversityPublic key cryptographic apparatus and method
US43391345 juil. 197713 juil. 1982Rockwell International CorporationElectronic card game
US439089823 mars 198128 juin 1983Northern Telecom LimitedScrambling and unscrambling video signals in a pay TV system
US440582914 déc. 197720 sept. 1983Massachusetts Institute Of TechnologyCryptographic communications system and method
US44244141 mai 19783 janv. 1984Board Of Trustees Of The Leland Stanford Junior UniversityExponentiation cryptographic apparatus and method
US452858825 sept. 19819 juil. 1985Loefberg BoMethod and apparatus for marking the information content of an information carrying signal
US463346218 juil. 198330 déc. 1986The Board Of Trustees Of The University Of IllinoisMultiple access communication on a CATV reverse channel
US467260520 mars 19849 juin 1987Applied Spectrum Technologies, Inc.Data and voice communications system
US47486689 juil. 198631 mai 1988Yeda Research And Development Company LimitedMethod, apparatus and article for identification and signature
US478992830 janv. 19876 déc. 1988Flex Japan Inc.Auction information transmission processing
US482750814 oct. 19862 mai 1989Personal Library Software, Inc.Database usage metering and protection system and method
US48766175 mai 198724 oct. 1989Thorn Emi PlcSignal identification
US489627510 juil. 198723 janv. 1990Bull Hn Information Systems Inc.Full page graphics image display data reduction
US490887313 mai 198313 mars 1990Philibert Alex CDocument reproduction security system
US493951530 sept. 19883 juil. 1990General Electric CompanyDigital signal encoding and decoding apparatus
US496920429 nov. 19896 nov. 1990Eastman Kodak CompanyHybrid residual-based hierarchical storage and display method for high resolution digital images in a multiuse environment
US497247115 mai 198920 nov. 1990Gary GrossEncoding system
US497759416 févr. 198911 déc. 1990Electronic Publishing Resources, Inc.Database usage metering and protection system and method
US49792108 juil. 198818 déc. 1990Matsushita Electric Industrial Co., Ltd.Method and apparatus for protection of signal copy
US49807823 juin 198525 déc. 1990Peter GinkelSoftware protection and identification system
US50502136 août 199017 sept. 1991Electronic Publishing Resources, Inc.Database usage metering and protection system and method
US507392513 juin 199017 déc. 1991Matsushita Electric Industrial Co., Ltd.Method and apparatus for the protection of signal copy
US507766525 mai 198931 déc. 1991Reuters LimitedDistributed matching system
US510346119 déc. 19907 avr. 1992Symbol Technologies, Inc.Signal quality measure in packet data communication
US511153030 oct. 19895 mai 1992Sony CorporationDigital audio signal generating apparatus
US511343725 oct. 198912 mai 1992Thorn Emi PlcSignal identification system
US51230457 févr. 199016 juin 1992Massachusetts Institute Of TechnologyComprehensive software protection system
US51365812 juil. 19904 août 1992At&T Bell LaboratoriesArrangement for reserving and allocating a plurality of competing demands for an ordered bus communication network
US51366468 mars 19914 août 1992Bell Communications Research, Inc.Digital document time-stamping with catenate certificate
US51366472 août 19904 août 1992Bell Communications Research, Inc.Method for secure time-stamping of digital documents
US51425766 mai 199125 août 1992Market Data CorporationSystem for securely providing restricted video information
US51612108 nov. 19893 nov. 1992U.S. Philips CorporationCoder for incorporating an auxiliary information signal in a digital audio signal, decoder for recovering such signals from the combined signal, and record carrier having such combined signal recorded thereon
US518941110 oct. 199023 févr. 1993Seiko Corp.Radio signal data transmission synchronization
US52108202 mai 199011 mai 1993Broadcast Data Systems Limited PartnershipSignal recognition system and method
US524342320 déc. 19917 sept. 1993A. C. Nielsen CompanySpread spectrum digital data transmission over TV video
US524351530 oct. 19907 sept. 1993Lee Wayne MSecure teleprocessing bidding system
US528740723 mai 199115 févr. 1994International Business Machines CorporationComputer software protection
US529363317 mai 19918 mars 1994General Instrument CorporationApparatus and method for providing digital audio in the cable television band
US52970321 févr. 199122 mars 1994Merrill Lynch, Pierce, Fenner & Smith IncorporatedSecurities trading workstation
US531973517 déc. 19917 juin 1994Bolt Beranek And Newman Inc.Embedded signalling
US53275204 juin 19925 juil. 1994At&T Bell LaboratoriesMethod of use of voice message coder/decoder
US53414294 déc. 199223 août 1994Testdrive CorporationTransformation of ephemeral material
US53414776 août 199323 août 1994Digital Equipment CorporationBroker for computer network server selection
US536344830 juin 19938 nov. 1994United Technologies Automotive, Inc.Pseudorandom number generation and cryptographic authentication
US53655869 avr. 199315 nov. 1994Washington UniversityMethod and apparatus for fingerprinting magnetic media
US536970727 janv. 199329 nov. 1994Tecsec IncorporatedSecure network method and apparatus
US53750553 févr. 199220 déc. 1994Foreign Exchange Transaction Services, Inc.Credit management for electronic brokerage system
US537934529 janv. 19933 janv. 1995Radio Audit Systems, Inc.Method and apparatus for the processing of encoded data in conjunction with an audio broadcast
US53943248 déc. 199328 févr. 1995Xerox CorporationAuction-based control system for energy resource management in a building
US539828530 déc. 199314 mars 1995Motorola, Inc.Method for generating a password using public key cryptography
US540662728 déc. 199211 avr. 1995Nec Home Electronics, Ltd.Digital data cryptographic system
US540850529 oct. 199318 avr. 1995Washington UniversityMethod and apparatus for process control, tension control, and testing of magnetic media
US541059827 sept. 199425 avr. 1995Electronic Publishing Resources, Inc.Database usage metering and protection system and method
US541271813 sept. 19932 mai 1995Institute Of Systems ScienceMethod for utilizing medium nonuniformities to minimize unauthorized duplication of digital information
US54187135 août 199323 mai 1995Allen; RichardApparatus and method for an on demand data delivery system for the preview, selection, retrieval and reproduction at a remote location of previously recorded or programmed materials
US542860630 juin 199327 juin 1995Moskowitz; Scott A.Digital information commodities exchange
US54370509 nov. 199225 juil. 1995Lamb; Robert G.Method and apparatus for recognizing broadcast information using multi-frequency magnitude detection
US545049031 mars 199412 sept. 1995The Arbitron CompanyApparatus and methods for including codes in audio signals and decoding
US546953621 mai 199321 nov. 1995Imageware Software, Inc.Image editing system including masking capability
US547153320 mai 199428 nov. 1995Symbol Technologies, Inc.Record with encoded data
US547899014 oct. 199326 déc. 1995Coleman Environmental Systems, Inc.Method for tracking the production history of food products
US54792107 juin 199426 déc. 1995Quantel, Ltd.Video image processing system having variable data compression
US548716820 déc. 199423 janv. 1996International Business Machines CorporationMethod and system for global optimization of device allocation
US54936778 juin 199420 févr. 1996Systems Research & Applications CorporationGeneration, archiving, and retrieval of digital images with evoked suggestion-set captions and natural language interface
US549741919 avr. 19945 mars 1996Prima Facie, Inc.Method and apparatus for recording sensor data
US550679518 févr. 19939 avr. 1996Yamakawa; TakeshiApparatus and method for generating chaotic signals and chaos device
US55131264 oct. 199330 avr. 1996Xerox CorporationNetwork having selectively accessible recipient prioritized communication channel profiles
US551326129 déc. 199330 avr. 1996At&T Corp.Key management scheme for use with electronic cards
US553073918 mars 199225 juin 1996Fujitsu LimitedMail center management system
US553075130 juin 199425 juin 1996Hewlett-Packard CompanyEmbedded hidden identification codes in digital objects
US55307591 févr. 199525 juin 1996International Business Machines CorporationColor correct digital watermarking of images
US553973528 déc. 199423 juil. 1996Moskowitz; Scott A.Digital information commodities exchange
US554857921 juin 199520 août 1996International Business Machines CorporationSystem for effective allocation of network-wide bandwidth
US556857030 sept. 199422 oct. 1996Eastman Kodak CompanyMethod and apparatus for reducing quantization artifacts in a hierarchical image storage and retrieval system
US557912428 févr. 199526 nov. 1996The Arbitron CompanyMethod and apparatus for encoding/decoding broadcast or recorded segments and monitoring audience exposure thereto
US558170329 juin 19933 déc. 1996International Business Machines CorporationMethod and apparatus for reserving system resources to assure quality of service
US558348828 avr. 199510 déc. 1996Sala; Nicola R.Proximity alarm system
US559847025 avr. 199428 janv. 1997International Business Machines CorporationMethod and apparatus for enabling trial period use of software products: Method and apparatus for utilizing a decryption block
US560660919 sept. 199425 févr. 1997Scientific-AtlantaElectronic document verification system and method
US56130047 juin 199518 mars 1997The Dice CompanySteganographic method and device
US56171197 juin 19951 avr. 1997Systems Research & Applications CorporationProtection of an electronically stored image in a first color space by the alteration of a digital component in a second color space
US561750629 juin 19941 avr. 1997The 3Do CompanyMethod for communicating a value over a transmission medium and for decoding same
US562569015 nov. 199329 avr. 1997Lucent Technologies Inc.Software pay per use system
US562998023 nov. 199413 mai 1997Xerox CorporationSystem for controlling the distribution and use of digital works
US563393219 déc. 199527 mai 1997Intel CorporationApparatus and method for preventing disclosure through user-authentication at a printing node
US563404018 déc. 199527 mai 1997Samsung Electronics Co., Ltd.Data communication apparatus and method having concurrent image overlay function
US563627618 avr. 19953 juin 1997Brugger; RolfDevice for the distribution of music information in digital form
US56362928 mai 19953 juin 1997Digimarc CorporationSteganography methods employing embedded calibration data
US564056928 avr. 199517 juin 1997Sun Microsystems, Inc.Diverse goods arbitration system and method for allocating resources in a distributed computer system
US56447276 déc. 19941 juil. 1997Proprietary Financial Products, Inc.System for the operation and management of one or more financial accounts through the use of a digital communication and computation system for exchange, investment and borrowing
US564699714 déc. 19948 juil. 1997Barton; James M.Method and apparatus for embedding authentication information within digital data
US564928413 déc. 199415 juil. 1997Sony CorporationMultiplex broadcasting system
US56574614 oct. 199312 août 1997Xerox CorporationUser interface for defining and automatically transmitting data according to preferred communication channels
US565972623 févr. 199519 août 1997Sandford, Ii; Maxwell T.Data embedding
US566401812 mars 19962 sept. 1997Leighton; Frank ThomsonWatermarking process resilient to collusion attacks
US567331629 mars 199630 sept. 1997International Business Machines CorporationCreation and distribution of cryptographic envelope
US56756536 nov. 19957 oct. 1997Nelson, Jr.; Douglas ValmoreMethod and apparatus for digital encryption
US56779526 déc. 199414 oct. 1997International Business Machines CorporationMethod to protect information on a computer storage device
US56804627 août 199521 oct. 1997Sandia CorporationInformation encoder/decoder using chaotic systems
US568723631 déc. 199611 nov. 1997The Dice CompanySteganographic method and device
US56895879 févr. 199618 nov. 1997Massachusetts Institute Of TechnologyMethod and apparatus for data hiding in images
US569682822 sept. 19959 déc. 1997United Technologies Automotive, Inc.Random number generating system and process based on chaos
US571993712 sept. 199617 févr. 1998Solana Technology Develpment CorporationMulti-media copy management system
US572178113 sept. 199524 févr. 1998Microsoft CorporationAuthentication system and method for smart card transactions
US572178831 juil. 199224 févr. 1998Corbis CorporationMethod and system for digital image signatures
US573475224 sept. 199631 mars 1998Xerox CorporationDigital watermarking using stochastic screen patterns
US57374162 août 19967 avr. 1998International Business Machines CorporationMethod and apparatus for enabling trial period use of software products: method and apparatus for utilizing a decryption stub
US573773326 sept. 19967 avr. 1998Microsoft CorporationMethod and system for searching compressed data
US57402447 mai 199614 avr. 1998Washington UniversityMethod and apparatus for improved fingerprinting and authenticating various magnetic media
US574556917 janv. 199628 avr. 1998The Dice CompanyMethod for stega-cipher protection of computer code
US57487838 mai 19955 mai 1998Digimarc CorporationMethod and apparatus for robust information coding
US575181126 nov. 199612 mai 1998Magnotti; Joseph C.32N +D bit key encryption-decryption system using chaos
US575469715 mai 199519 mai 1998Fu; Chi-YungSelective document image data compression technique
US575493831 oct. 199519 mai 1998Herz; Frederick S. M.Pseudonymous server for system for customized electronic identification of desirable objects
US575792319 avr. 199626 mai 1998Ut Automotive Dearborn, Inc.Method of generating secret identification numbers
US576515213 oct. 19959 juin 1998Trustees Of Dartmouth CollegeSystem and method for managing copyrighted electronic media
US576839624 juin 199616 juin 1998Yamaha CorporationOnline karaoke system with flying start performance
US577445214 mars 199530 juin 1998Aris Technologies, Inc.Apparatus and method for encoding and decoding information in audio signals
US578118423 sept. 199414 juil. 1998Wasserman; Steve C.Real time decompression and post-decompress manipulation of compressed full motion video
US579067729 juin 19954 août 1998Microsoft CorporationSystem and method for secure electronic commerce transactions
US579908326 août 199625 août 1998Brothers; Harlan JayEvent verification system
US580913913 sept. 199615 sept. 1998Vivo Software, Inc.Watermarking method and apparatus for compressed digital video
US580916012 nov. 199715 sept. 1998Digimarc CorporationMethod for encoding auxiliary data within a source signal
US58188188 juil. 19966 oct. 1998Fujitsu LimitedCommunication service quality control system
US582243217 janv. 199613 oct. 1998The Dice CompanyMethod for human-assisted random key generation and application for digital watermark system
US582243625 avr. 199613 oct. 1998Digimarc CorporationPhotographic products and methods employing embedded information
US58283253 avr. 199627 oct. 1998Aris Technologies, Inc.Apparatus and method for encoding and decoding information in analog signals
US583211925 sept. 19953 nov. 1998Digimarc CorporationMethods for controlling systems using control signals embedded in empirical data
US583910022 avr. 199617 nov. 1998Wegener; Albert WilliamLossless and loss-limited compression of sampled data signals
US584221328 janv. 199724 nov. 1998Odom; Paul S.Method for modeling, storing, and transferring data in neutral form
US584526612 déc. 19951 déc. 1998Optimark Technologies, Inc.Crossing network utilizing satisfaction density profile with price discovery features
US58481554 sept. 19968 déc. 1998Nec Research Institute, Inc.Spread spectrum watermark for embedded signalling
US58504818 mai 199515 déc. 1998Digimarc CorporationSteganographic system
US585992030 nov. 199512 janv. 1999Eastman Kodak CompanyMethod for embedding digital information in an image
US586009912 mai 199312 janv. 1999Usar Systems, Inc.Stored program system with protected memory and secure signature extraction
US586226016 mai 199619 janv. 1999Digimarc CorporationMethods for surveying dissemination of proprietary empirical data
US586482727 juin 199726 janv. 1999Belzberg Financial Markets & News International Inc.System and method for providing an information gateway
US587047429 déc. 19959 févr. 1999Scientific-Atlanta, Inc.Method and apparatus for providing conditional access in connection-oriented, interactive networks with a multiplicity of service providers
US587543715 avr. 199723 févr. 1999Proprietary Financial Products, Inc.System for the operation and management of one or more financial accounts through the use of a digital communication and computation system for exchange, investment and borrowing
US588403315 mai 199616 mars 1999Spyglass, Inc.Internet filtering system for filtering data transferred over the internet utilizing immediate and deferred filtering actions
US58898682 juil. 199630 mars 1999The Dice CompanyOptimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US589290030 août 19966 avr. 1999Intertrust Technologies Corp.Systems and methods for secure transaction management and electronic rights protection
US589306731 mai 19966 avr. 1999Massachusetts Institute Of TechnologyMethod and apparatus for echo data hiding in audio signals
US589452115 août 199713 avr. 1999Direct Business Technologies, Inc.System and method for encrypting sensitive information
US590117818 août 19974 mai 1999Solana Technology Development CorporationPost-compression hidden data transport for video
US590372113 mars 199711 mai 1999cha|Technologies Services, Inc.Method and system for secure online transaction processing
US590580025 mars 199818 mai 1999The Dice CompanyMethod and system for digital watermarking
US59059752 janv. 199718 mai 1999Ausubel; Lawrence M.Computer implemented methods and apparatus for auctions
US591297226 mars 199715 juin 1999Sony CorporationMethod and apparatus for embedding authentication information within digital data
US59150275 nov. 199622 juin 1999Nec Research InstituteDigital watermarking
US591791520 juin 199529 juin 1999Sony CorporationScramble/descramble method and apparatus for data broadcasting
US591822321 juil. 199729 juin 1999Muscle FishMethod and article of manufacture for content-based analysis, storage, retrieval, and segmentation of audio information
US592090030 déc. 19966 juil. 1999Cabletron Systems, Inc.Hash-based translation method and apparatus with multiple level collision resolution
US592376321 mars 199613 juil. 1999Walker Asset Management Limited PartnershipMethod and apparatus for secure document timestamping
US593036910 sept. 199727 juil. 1999Nec Research Institute, Inc.Secure spread spectrum watermarking for multimedia data
US59303777 mai 199827 juil. 1999Digimarc CorporationMethod for image encoding
US59401349 déc. 199617 août 1999U.S. Philips CorporationMarking a video and/or audio signal
US594342212 août 199624 août 1999Intertrust Technologies Corp.Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels
US594905523 oct. 19977 sept. 1999Xerox CorporationAutomatic geometric image transformations using embedded signals
US594997325 juil. 19977 sept. 1999Memco Software, Ltd.Method of relocating the stack in a computer system for preventing overrate by an exploit program
US596390925 nov. 19975 oct. 1999Solana Technology Development CorporationMulti-media copy management system
US597373130 mai 199526 oct. 1999Schwab; Barry H.Secure identification system
US597414118 oct. 199626 oct. 1999Mitsubishi CorporationData management system
US599142618 déc. 199823 nov. 1999Signafy, Inc.Field-based watermark insertion and detection
US599921711 mars 19977 déc. 1999Berners-Lee; Charles PeterApparatus and method for encoding data
US600917613 févr. 199728 déc. 1999International Business Machines CorporationHow to sign digital streams
US601872219 juin 199725 janv. 2000Aexpert Advisory, Inc.S.E.C. registered individual account investment advisor expert system
US602912630 juin 199822 févr. 2000Microsoft CorporationScalable audio coder and decoder
US602914621 août 199622 févr. 2000Crossmar, Inc.Method and apparatus for trading securities electronically
US60291955 déc. 199722 févr. 2000Herz; Frederick S. M.System for customized electronic identification of desirable objects
US603295723 oct. 19987 mars 2000Cashflow Technologies IncorporatedBoard game for teaching fundamental aspects of personal finance, investing and accounting
US603539814 nov. 19977 mars 2000Digitalpersona, Inc.Cryptographic key generation using biometric data
US604131625 juil. 199421 mars 2000Lucent Technologies Inc.Method and system for ensuring royalty payments for data delivered over a network
US60444714 juin 199828 mars 2000Z4 Technologies, Inc.Method and apparatus for securing software to reduce unauthorized use
US60498381 juil. 199611 avr. 2000Sun Microsystems, Inc.Persistent distributed capabilities
US605102931 oct. 199718 avr. 2000Entelos, Inc.Method of generating a display for a dynamic simulation model utilizing node and link representations
US606179327 août 19979 mai 2000Regents Of The University Of MinnesotaMethod and apparatus for embedding data, including watermarks, in human perceptible sounds
US60676222 janv. 199623 mai 2000Moore; Steven JeromeSoftware security system using remove function to restrict unauthorized duplicating and installation of an application program
US606991419 sept. 199630 mai 2000Nec Research Institute, Inc.Watermarking of image data using MPEG/JPEG coefficients
US607866420 déc. 199620 juin 2000Moskowitz; Scott A.Z-transform implementation of digital watermarks
US60812519 mai 199527 juin 2000Sony CorporationApparatus and method for managing picture data
US60815876 nov. 199827 juin 2000Zoom Telephonics, Inc.Modem with ring detection/modem processing capability
US608159719 août 199727 juin 2000Ntru Cryptosystems, Inc.Public key cryptosystem method and apparatus
US60884557 janv. 199711 juil. 2000Logan; James D.Methods and apparatus for selectively reproducing segments of broadcast programming
US610872213 sept. 199622 août 2000Silicon Grpahics, Inc.Direct memory access apparatus for transferring a block of data having discontinous addresses using an address calculating circuit
US61311624 juin 199810 oct. 2000Hitachi Ltd.Digital data authentication method
US61345353 mars 199517 oct. 2000Belzberg Financial Markets & News International Inc.Computerized stock exchange trading system automatically formatting orders from a spreadsheet to an order entry system
US613823913 nov. 199824 oct. 2000N★Able Technologies, Inc.Method and system for authenticating and utilizing secure resources in a computer system
US614175310 févr. 199831 oct. 2000Fraunhofer GesellschaftSecure distribution of digital representations
US614175428 nov. 199731 oct. 2000International Business Machines CorporationIntegrated method and system for controlling information access and distribution
US614833313 mai 199814 nov. 2000Mgi Software CorporationMethod and system for server access control and tracking
US615457117 juil. 199828 nov. 2000Nec Research Institute, Inc.Robust digital watermarking
US61733225 juin 19979 janv. 2001Silicon Graphics, Inc.Network request distribution based on static rules and dynamic performance data
US617840518 nov. 199623 janv. 2001Innomedia Pte Ltd.Concatenation compression method
US618568328 déc. 19986 févr. 2001Intertrust Technologies Corp.Trusted and secure techniques, systems and methods for item delivery and execution
US61921387 mai 199820 févr. 2001Kabushiki Kaisha ToshibaApparatus and method for embedding/unembedding supplemental information
US619905817 mai 19996 mars 2001Oracle CorporationReport server caching
US62052492 avr. 199820 mars 2001Scott A. MoskowitzMultiple transform utilization and applications for secure digital watermarking
US620874530 déc. 199727 mars 2001Sarnoff CorporationMethod and apparatus for imbedding a watermark into a bitstream representation of a digital image sequence
US622661813 août 19981 mai 2001International Business Machines CorporationElectronic content delivery system
US623026831 juil. 19988 mai 2001International Business Machines CorporationData control system
US62333477 déc. 199815 mai 2001Massachusetts Institute Of TechnologySystem method, and product for information embedding using an ensemble of non-intersecting embedding generators
US623356618 mars 199915 mai 2001Ultraprise CorporationSystem, method and computer program product for online financial products trading
US623368410 oct. 199715 mai 2001Contenaguard Holdings, Inc.System for controlling the distribution and use of rendered digital works through watermaking
US62401219 juil. 199829 mai 2001Matsushita Electric Industrial Co., Ltd.Apparatus and method for watermark data insertion and apparatus and method for watermark data detection
US62531939 déc. 199826 juin 2001Intertrust Technologies CorporationSystems and methods for the secure transaction management and electronic rights protection
US626331330 nov. 199817 juil. 2001International Business Machines CorporationMethod and apparatus to create encoded digital content
US62724748 févr. 19997 août 2001Crisostomo B. GarciaMethod for monitoring and trading stocks via the internet displaying bid/ask trade bars
US627253530 janv. 19977 août 2001Canon Kabushiki KaishaSystem for enabling access to a body of information based on a credit value, and system for allocating fees
US627263427 août 19977 août 2001Regents Of The University Of MinnesotaDigital watermarking to resolve multiple claims of ownership
US627598826 juin 199614 août 2001Canon Kabushiki KaishaImage transmission apparatus, image transmission system, and communication apparatus
US627878029 oct. 199821 août 2001Nec CorporationMethod of and an apparatus for generating internal crypto-keys
US62787917 mai 199821 août 2001Eastman Kodak CompanyLossless recovery of an original image containing embedded data
US628230021 janv. 200028 août 2001Signafy, Inc.Rotation, scale, and translation resilient public watermarking for images using a log-polar fourier transform
US628265025 janv. 199928 août 2001Intel CorporationSecure public digital watermark
US62857751 oct. 19984 sept. 2001The Trustees Of The University Of PrincetonWatermarking scheme for image authentication
US630166319 nov. 19989 oct. 2001Kabushiki Kaisha ToshibaCopy protection apparatus and information recording medium used in this copy protection apparatus
US631096219 août 199830 oct. 2001Samsung Electronics Co., Ltd.MPEG2 moving picture encoding/decoding system
US631772813 oct. 199813 nov. 2001Richard L. KaneSecurities and commodities trading system
US63246492 mars 199827 nov. 2001Compaq Computer CorporationModified license key entry for pre-installation of software
US633033513 janv. 200011 déc. 2001Digimarc CorporationAudio steganography
US633067230 juin 199811 déc. 2001At&T Corp.Method and apparatus for watermarking digital bitstreams
US634510014 oct. 19985 févr. 2002Liquid Audio, Inc.Robust watermark method and apparatus for digital signals
US63517659 mars 199826 févr. 2002Media 100, Inc.Nonlinear video editing system
US63634833 nov. 199426 mars 2002Lucent Technologies Inc.Methods and systems for performing article authentication
US63634887 juin 199926 mars 2002Intertrust Technologies Corp.Systems and methods for secure transaction management and electronic rights protection
US637389213 nov. 199516 avr. 2002Sega Enterprises, Ltd.Method for compressing and decompressing moving picture information and video signal processing system
US63739606 janv. 199816 avr. 2002Pixel Tools CorporationEmbedding watermarks into compressed video data
US63740361 oct. 199816 avr. 2002Macrovsion CorporationMethod and apparatus for copy-once watermark for video recording
US63776256 déc. 199923 avr. 2002Soft4D Co., Ltd.Method and apparatus for generating steroscopic image using MPEG data
US638161817 juin 199930 avr. 2002International Business Machines CorporationMethod and apparatus for autosynchronizing distributed versions of documents
US638174731 mars 199730 avr. 2002Macrovision Corp.Method for controlling copy protection in digital video networks
US638532417 mars 19987 mai 2002Sorus Audio AgBroadband loudspeaker
US638532919 juil. 20007 mai 2002Digimarc CorporationWavelet domain watermarks
US63855966 févr. 19987 mai 2002Liquid Audio, Inc.Secure online music distribution system
US63894029 juin 199914 mai 2002Intertrust Technologies Corp.Systems and methods for secure transaction management and electronic rights protection
US638953822 oct. 199814 mai 2002International Business Machines CorporationSystem for tracking end-user electronic content usage
US63982451 déc. 19984 juin 2002International Business Machines CorporationKey management system for digital content player
US640520321 avr. 199911 juin 2002Research Investment Network, Inc.Method and program product for preventing unauthorized users from using the content of an electronic storage medium
US641504127 mai 19992 juil. 2002Nec CorporationDigital watermark insertion system and digital watermark characteristic table creating device
US641842110 déc. 19989 juil. 2002International Business Machines CorporationMultimedia player for an electronic content delivery system
US642508114 août 199823 juil. 2002Canon Kabushiki KaishaElectronic watermark system electronic information distribution system and image filing apparatus
US64271403 sept. 199930 juil. 2002Intertrust Technologies Corp.Systems and methods for secure transaction management and electronic rights protection
US643030130 août 20006 août 2002Verance CorporationFormation and analysis of signals with common and transaction watermarks
US643030210 janv. 20016 août 2002Digimarc CorporationSteganographically encoding a first image in accordance with a second image
US644228311 janv. 199927 août 2002Digimarc CorporationMultimedia data embedding
US644621110 nov. 20003 sept. 2002Z4 Technologies, Inc.Method and apparatus for monitoring software using encryption
US645325215 mai 200017 sept. 2002Creative Technology Ltd.Process for identifying audio content
US645705812 juil. 200124 sept. 2002Cisco Technology, Inc.Network switch with hash table look up
US64634681 juin 19998 oct. 2002Netzero, Inc.Targeted network video download interface
US648093725 févr. 199912 nov. 2002Pact Informationstechnologie GmbhMethod for hierarchical caching of configuration data having dataflow processors and modules having two-or multidimensional programmable cell structure (FPGAs, DPGAs, etc.)--
US64809634 janv. 199912 nov. 2002Fujitsu LimitedNetwork system for transporting security-protected data
US64841534 sept. 199719 nov. 2002Priceline.Com IncorporatedSystem and method for managing third-party input to a conditional purchase offer (CPO)
US648426418 mai 200019 nov. 2002Z4 Technologies, Inc.Method for providing repeated contact with software end-user using authorized administrator
US649345716 nov. 199810 déc. 2002At&T Corp.Electronic watermarking in the compressed domain utilizing perceptual coding
US650219518 mai 200031 déc. 2002Z4 Technologies, Inc.Computer readable storage medium for providing repeated contact with software end-user
US651051313 janv. 199921 janv. 2003Microsoft CorporationSecurity services and policy enforcement for electronic data
US652276730 mars 199918 févr. 2003Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US652276918 mai 200018 févr. 2003Digimarc CorporationReconfiguring a watermark detector
US65231139 nov. 199818 févr. 2003Apple Computer, Inc.Method and apparatus for copy protection
US65300212 juin 19994 mars 2003Koninklijke Philips Electronics N.V.Method and system for preventing unauthorized playback of broadcasted digital data streams
US653228427 févr. 200111 mars 2003Morgan Guaranty Trust CompanyMethod and system for optimizing bandwidth cost via caching and other network transmission delaying techniques
US6539475 *18 déc. 199825 mars 2003Nec CorporationMethod and system for protecting digital data from unauthorized copying
US655697610 nov. 199929 avr. 2003Gershman, Brickner And Bratton, Inc.Method and system for e-commerce and related data management, analysis and reporting
US655710311 févr. 199929 avr. 2003The United States Of America As Represented By The Secretary Of The ArmySpread spectrum image steganography
US657460811 juin 19993 juin 2003Iwant.Com, Inc.Web-based system for connecting buyers and sellers
US658412522 déc. 199824 juin 2003Nec CorporationCoding/decoding apparatus, coding/decoding system and multiplexed bit stream
US65878371 déc. 19981 juil. 2003International Business Machines CorporationMethod for delivering electronic content from an online store
US659099619 avr. 20008 juil. 2003Digimarc CorporationColor adaptive watermarking
US659464330 nov. 199915 juil. 2003Charles C. Freeny, Jr.Automatic stock trading system
US659816224 mars 199822 juil. 2003Scott A. MoskowitzMethod for combining transfer functions with predetermined key creation
US660104424 août 199829 juil. 2003Foliofn, Inc.Method and apparatus for enabling individual or smaller investors or others to create and manage a portfolio of securities or other assets or liabilities on a cost effective basis
US66063932 déc. 199912 août 2003Verizon Laboratories Inc.Message authentication code using image histograms
US661159929 sept. 199726 août 2003Hewlett-Packard Development Company, L.P.Watermarking of digital object
US661518814 oct. 19992 sept. 2003Freedom Investments, Inc.Online trade aggregating system
US661818815 mars 20029 sept. 2003Minolta Co., Ltd.Rewritable display sheet, image forming apparatus for displaying image on rewritable display sheet, and image displaying method
US664742419 mai 199911 nov. 2003Nortel Networks LimitedMethod and apparatus for discarding data packets
US665801024 juil. 19972 déc. 2003Hybrid Networks, Inc.High-speed internet access system
US666548921 avr. 199916 déc. 2003Research Investment Network, Inc.System, method and article of manufacturing for authorizing the use of electronic content utilizing a laser-centric medium and a network server
US666824624 mars 199923 déc. 2003Intel CorporationMultimedia data delivery and playback system with multi-level content and privacy protection
US66683259 juin 199823 déc. 2003Intertrust TechnologiesObfuscation techniques for enhancing software security
US667485810 déc. 19986 janv. 2004Hitachi, Ltd.Receiving device, recording and reproducing device and receiving/recording-reproducing system for digital broadcast signal
US66876838 oct. 19993 févr. 2004Matsushita Electric Industrial Co., Ltd.Production protection system dealing with contents that are digital production
US67253722 déc. 199920 avr. 2004Verizon Laboratories Inc.Digital watermarking
US675482230 avr. 199822 juin 2004Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forshung E.V.Active watermarks and watermark agents
US677577212 oct. 199910 août 2004International Business Machines CorporationPiggy-backed key exchange protocol for providing secure low-overhead browser connections from a client to a server using a trusted third party
US677896817 mars 199917 août 2004Vialogy Corp.Method and system for facilitating opportunistic transactions using auto-probes
US678435413 mars 200331 août 2004Microsoft CorporationGenerating a music snippet
US67858157 juin 200031 août 2004Intertrust Technologies Corp.Methods and systems for encoding and protecting data using digital signature and watermarking techniques
US678582531 mai 200231 août 2004Z4 Technologies, Inc.Method for securing software to decrease software piracy
US67925485 nov. 200114 sept. 2004Z4 Technologies, Inc.Method for providing repeated contact with software end-user using authorized administrator
US67925495 nov. 200114 sept. 2004Z4 Technologies, Inc.Method and apparatus for repeated contact of software end-user
US67959255 nov. 200121 sept. 2004Z4 Technologies, Inc.Computer readable storage medium for providing repeated contact with software end-user
US679927727 mars 200128 sept. 2004Z4 Technologies, Inc.System and method for monitoring software
US680445315 mai 200012 oct. 2004Hitachi, Ltd.Digital signal recording/reproducing apparatus
US681371713 mai 20022 nov. 2004Z4 Technologies, Inc.Method for securing software to reduce unauthorized use
US681371826 juin 20022 nov. 2004Z4 Technologies, Inc.Computer readable storage medium for securing software to reduce unauthorized use
US68234558 avr. 199923 nov. 2004Intel CorporationMethod for robust watermarking of content
US683430817 févr. 200021 déc. 2004Audible Magic CorporationMethod and apparatus for identifying media content presented on a media playing device
US683968629 mars 19994 janv. 2005Dlj Long Term Investment CorporationMethod and system for providing financial information and evaluating securities of a financial debt instrument
US684286210 janv. 200311 janv. 2005Cloakware CorporationTamper resistant software encoding
US68537268 déc. 19998 févr. 2005Wistaria Trading, Inc.Z-transform implementation of digital watermarks
US685696721 oct. 199915 févr. 2005Mercexchange, LlcGenerating and navigating streaming dynamic pricing information
US685707830 mai 200215 févr. 2005Z4 Technologies, Inc.Method for securing software to increase license compliance
US686574731 mars 20008 mars 2005Digital Video Express, L.P.High definition media storage structure and playback mechanism
US687698218 févr. 19975 avr. 2005Lancaster Australia Pty LimitedUniversal contract exchange
US693153419 nov. 199916 août 2005Telefonaktiebolaget Lm Erricsson (Publ)Method and a device for encryption of images
US695094130 avr. 199927 sept. 2005Samsung Electronics Co., Ltd.Copy protection system for portable storage media
US69573301 mars 199918 oct. 2005Storage Technology CorporationMethod and system for secure information handling
US69660029 juin 199915 nov. 2005Trymedia Systems, Inc.Methods and apparatus for secure distribution of software
US69683379 juil. 200222 nov. 2005Audible Magic CorporationMethod and apparatus for identifying an unknown work
US697789419 mai 199920 déc. 2005Nortel Networks LimitedMethod and apparatus for discarding data packets through the use of descriptors
US697837023 mars 199920 déc. 2005Cryptography Research, Inc.Method and system for copy-prevention of digital copyright works
US69830588 sept. 19993 janv. 2006Kowa Co., Ltd.Method of embedding digital watermark, storage medium in which the method is stored, method of identifying embedded digital watermark, and apparatus for embedding digital watermark
US69860634 févr. 200310 janv. 2006Z4 Technologies, Inc.Method for monitoring software using encryption including digital signatures/certificates
US699045320 avr. 200124 janv. 2006Landmark Digital Services LlcSystem and methods for recognizing sound and music signals in high noise and distortion
US700348027 févr. 199821 févr. 2006Microsoft CorporationGUMP: grand unified meta-protocol for simple standards-based electronic commerce transactions
US70071667 avr. 200028 févr. 2006Wistaria Trading, Inc.Method and system for digital watermarking
US702028512 juil. 200028 mars 2006Microsoft CorporationStealthy audio watermarking
US703504912 août 200425 avr. 2006Hitachi Global Storage Technologies Japan, Ltd.Glass substrate for a magnetic disk, a magnetic disk which can be formed with a stable texture and a magnetic disk device
US703540923 août 200025 avr. 2006Moskowitz Scott AMultiple transform utilization and applications for secure digital watermarking
US70430502 mai 20019 mai 2006Microsoft CorporationSoftware anti-piracy systems and methods utilizing certificates with digital content
US704680824 mars 200016 mai 2006Verance CorporationMethod and apparatus for detecting processing stages applied to a signal
US705039630 nov. 200023 mai 2006Cisco Technology, Inc.Method and apparatus for automatically establishing bi-directional differentiated services treatment of flows in a network
US705120821 oct. 200423 mai 2006Microsoft CorporationTechnique for producing through watermarking highly tamper-resistant executable code and resulting “watermarked” code so formed
US705857010 févr. 20006 juin 2006Matsushita Electric Industrial Co., Ltd.Computer-implemented method and apparatus for audio data hiding
US709329515 oct. 199915 août 2006Makoto SaitoMethod and device for protecting digital data by double re-encryption
US70957152 juil. 200122 août 20063Com CorporationSystem and method for processing network packet flows
US709587418 févr. 200322 août 2006Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US71031849 mai 20025 sept. 2006Intel CorporationSystem and method for sign mask encryption and decryption
US710745122 févr. 200112 sept. 2006Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US712371816 juin 200017 oct. 2006Blue Spike, Inc.Utilizing data reduction in stegnographic and cryptographic systems
US712761520 sept. 200124 oct. 2006Blue Spike, Inc.Security based on subliminal and supraliminal channels for data objects
US715000325 nov. 200212 déc. 2006Matsushita Electric Industrial Co., Ltd.Class coalescence for obfuscation of object-oriented software
US715216230 déc. 200419 déc. 2006Wistaria Trading, Inc.Z-transform implementation of digital watermarks
US71591167 déc. 20002 janv. 2007Blue Spike, Inc.Systems, methods and devices for trusted transactions
US7162642 *15 juin 20019 janv. 2007Digital Video Express, L.P.Digital content distribution system and method
US71774297 déc. 200013 févr. 2007Blue Spike, Inc.System and methods for permitting open access to data objects and for securing data within the data objects
US717743031 oct. 200113 févr. 2007Portalplayer, Inc.Digital entroping for digital audio reproductions
US720664921 oct. 200417 avr. 2007Microsoft CorporationAudio watermarking with dual watermarks
US723152416 févr. 200612 juin 2007Microsoft CorporationMethod for watermarking computer programs
US723366913 déc. 200219 juin 2007Sony CorporationSelective encryption to enable multiple decryption keys
US72402104 nov. 20043 juil. 2007Microsoft CorporationHash value computer of content of digital signals
US72666973 mai 20044 sept. 2007Microsoft CorporationStealthy audio watermarking
US728645123 juin 200323 oct. 2007Koninklijke Philips Electronics N.V.Copy control using digital speed bumps
US728727517 avr. 200323 oct. 2007Moskowitz Scott AMethods, systems and devices for packet watermarking and efficient provisioning of bandwidth
US728964319 déc. 200130 oct. 2007Digimarc CorporationMethod, apparatus and programs for generating and utilizing content signatures
US731081529 oct. 200318 déc. 2007Sonicwall, Inc.Method and apparatus for datastream analysis and blocking
US73434925 oct. 200511 mars 2008Wistaria Trading, Inc.Method and system for digital watermarking
US73464727 sept. 200018 mars 2008Blue Spike, Inc.Method and device for monitoring and analyzing signals
US73627752 juil. 199622 avr. 2008Wistaria Trading, Inc.Exchange mechanisms for digital information packages with bandwidth securitization, multichannel digital watermarks, and key management
US73632783 avr. 200222 avr. 2008Audible Magic CorporationCopyright detection and protection system and method
US74090737 juil. 20065 août 2008Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US744450615 juin 200628 oct. 2008Ragula SystemsSelective encryption with parallel networks
US74579622 août 200625 nov. 2008Wistaria Trading, IncOptimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US746099420 juin 20022 déc. 2008M2Any GmbhMethod and apparatus for producing a fingerprint, and method and apparatus for identifying an audio signal
US74752464 août 20006 janv. 2009Blue Spike, Inc.Secure personal content server
US753010210 sept. 20075 mai 2009Moskowitz Scott AMethods, systems and devices for packet watermarking and efficient provisioning of bandwidth
US753272529 déc. 200612 mai 2009Blue Spike, Inc.Systems and methods for permitting open access to data objects and for securing data within the data objects
US756810023 juil. 199728 juil. 2009Wistaria Trading, Inc.Steganographic method and device
US76303795 janv. 20078 déc. 2009Wedge Networks Inc.Systems and methods for improved network based content inspection
US764750215 nov. 200612 janv. 2010Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US76475037 sept. 200712 janv. 2010Wistaria Trading, Inc.Optimization methods for the insertion, projection, and detection of digital watermarks in digital data
US766426325 juin 200316 févr. 2010Moskowitz Scott AMethod for combining transfer functions with predetermined key creation
US771996613 avr. 200518 mai 2010Zeugma Systems Inc.Network element architecture for deep packet inspection
US774300121 juin 200522 juin 2010Amazon Technologies, Inc.Method and system for dynamic pricing of web services utilization
US77617127 févr. 200520 juil. 2010Wistaria Trading, Inc.Steganographic method and device
US77792613 janv. 200717 août 2010Wistaria Trading, Inc.Method and system for digital watermarking
US809594925 juin 199910 janv. 2012Adrea, LLCElectronic book with restricted access features
US812134310 oct. 201021 févr. 2012Wistaria Trading, IncOptimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US816128621 juin 201017 avr. 2012Wistaria Trading, Inc.Method and system for digital watermarking
US81798468 sept. 200815 mai 2012Alcatel LucentDPI-driven bearer termination for short-lived applications
US821417526 févr. 20113 juil. 2012Blue Spike, Inc.Method and device for monitoring and analyzing signals
US826527821 sept. 201011 sept. 2012Blue Spike, Inc.System and methods for permitting open access to data objects and for securing data within the data objects
US830721321 juin 20106 nov. 2012Wistaria Trading, Inc.Method and system for digital watermarking
US840056617 août 200919 mars 2013Dolby Laboratories Licensing CorporationFeature optimization and reliability for audio and video signature generation and detection
US2001001007824 janv. 200126 juil. 2001Moskowitz Scott A.Multiple transform utilization and applications for secure digital watermarking
US2001002958022 févr. 200111 oct. 2001Moskowitz Scott A.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US2001004359422 mai 199722 nov. 2001Hiroaki OgawaInformation processing apparatus, information processing method and identification code
US2002000920817 avr. 200124 janv. 2002Adnan AlattarAuthentication of physical and electronic media objects using digital watermarks
US200200106847 déc. 200024 janv. 2002Moskowitz Scott A.Systems, methods and devices for trusted transactions
US200200263439 août 200128 févr. 2002Dennis DuenkeMaterial and labor cost estimatting method and system
US2002005604120 sept. 20019 mai 2002Moskowitz Scott A.Security based on subliminal and supraliminal channels for data objects
US200200576516 déc. 200116 mai 2002Roberts Lawrence G.Micro-flow management
US2002006917427 févr. 19986 juin 2002Microsoft CorporationGump: grand unified meta-protocol for simple standards-based electronic commerce transactions
US200200715567 déc. 200013 juin 2002Moskowitz Scott A.System and methods for permitting open access to data objects and for securing data within the data objects
US200200730436 déc. 200113 juin 2002Gary HermanSmart electronic receipt system
US2002009787329 juin 199825 juil. 2002Rade PetrovicApparatus and method for embedding and extracting information in analog signals using replica modulation
US2002010388319 juin 19981 août 2002Paul HaverstockWeb server with unique identification of linked objects
US2002015217925 oct. 200117 oct. 2002Achiezer RacovRemote payment method and system
US200201617411 mars 200231 oct. 2002Shazam Entertainment Ltd.Method and apparatus for automatically creating database for use in automated media recognition system
US2002018857024 mars 199912 déc. 2002Donna ConingsbyPartial protection of content
US2003000286229 juin 20012 janv. 2003Rodriguez Arturo A.Bandwidth allocation and pricing system for downloadable media content
US200300057805 juil. 20019 janv. 2003Birger PahlTorque measuring apparatus and method employing a crystal oscillator
US200300238529 juil. 200230 janv. 2003Wold Erling H.Method and apparatus for identifying an unkown work
US2003002754930 juil. 20016 févr. 2003Msafe Inc.Prepaid communication system and method
US2003003332123 oct. 200113 févr. 2003Audible Magic, Inc.Method and apparatus for identifying new media content
US2003012644520 déc. 20023 juil. 2003Apple Computer, Inc.Method and apparatus for copy protection
US2003013370221 avr. 199917 juil. 2003Todd R. CollartSystem, method and article of manufacturing for authorizing the use of electronic content utilizing a laser-centric medium and a network server
US2003020043917 avr. 200323 oct. 2003Moskowitz Scott A.Methods, systems and devices for packet watermarking and efficient provisioning of bandwidth
US2003021914318 févr. 200327 nov. 2003Moskowitz Scott A.Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US2004002822227 juil. 200112 févr. 2004Sewell Roger FaneStegotext encoder and decoder
US2004003744925 août 200326 févr. 2004Davis Bruce L.Integrating digital watermarks in multimedia content
US2004004969524 déc. 200211 mars 2004Choi Yang SeoSystem for providing a real-time attacking connection traceback using a packet watermark insertion technique and method therefor
US2004005991815 déc. 200025 mars 2004Changsheng XuMethod and system of digital watermarking for compressed audio
US2004008336925 juil. 200329 avr. 2004Ulfar ErlingssonSystems and methods for transparent configuration authentication of networked devices
US2004008611925 juin 20036 mai 2004Moskowitz Scott A.Method for combining transfer functions with predetermined key creation
US2004009352111 juil. 200313 mai 2004Ihab HamadehReal-time packet traceback and associated packet marking strategies
US200401176285 sept. 200317 juin 2004Z4 Technologies, Inc.Computer readable storage medium for enhancing license compliance of software/digital content including self-activating/self-authenticating software/digital content
US200401176645 sept. 200317 juin 2004Z4 Technologies, Inc.Apparatus for establishing a connectivity platform for digital rights management
US200401259833 juil. 20031 juil. 2004Reed Alastair M.Color adaptive watermarking
US200401285148 sept. 20031 juil. 2004Rhoads Geoffrey B.Method for increasing the functionality of a media player/recorder device or an application program
US200402258945 sept. 200311 nov. 2004Z4 Technologies, Inc.Hardware based method for digital rights management including self activating/self authentication software
US2004024354022 mars 20042 déc. 2004Moskowitz Scott A.Method and device for monitoring and analyzing signals
US2005013561530 déc. 200423 juin 2005Moskowitz Scott A.Z-transform implementation of digital watermarks
US2005016027114 oct. 200321 juil. 2005Brundage Trent J.Identification document and related methods
US200501777277 févr. 200511 août 2005Moskowitz Scott A.Steganographic method and device
US2005024655430 avr. 20043 nov. 2005Apple Computer, Inc.System and method for creating tamper-resistant code
US200600050291 juil. 20055 janv. 2006Verance CorporationPre-processed information embedding system
US2006001339526 mai 200519 janv. 2006Brundage Trent JDigital watermark key generation
US200600134517 oct. 200319 janv. 2006Koninklijke Philips Electronics, N.V.Audio data fingerprint searching
US2006004175311 août 200323 févr. 2006Koninklijke Philips Electronics N.V.Fingerprint extraction
US200601012695 oct. 200511 mai 2006Wistaria Trading, Inc.Method and system for digital watermarking
US2006014040321 févr. 200629 juin 2006Moskowitz Scott AMultiple transform utilization and application for secure digital watermarking
US2006025129119 juil. 20069 nov. 2006Rhoads Geoffrey BMethods for inserting and detecting watermarks in digital data
US200602857227 juil. 200621 déc. 2006Moskowitz Scott AOptimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US200700114582 août 200611 janv. 2007Scott A. MoskowitzOptimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US2007002811329 août 20061 févr. 2007Moskowitz Scott ASystems, methods and devices for trusted transactions
US2007006494012 sept. 200622 mars 2007Blue Spike, Inc.Utilizing data reduction in steganographic and cryptographic systems
US200700791312 nov. 20065 avr. 2007Wistaria Trading, Inc.Linear predictive coding implementation of digital watermarks
US2007008346710 oct. 200512 avr. 2007Apple Computer, Inc.Partial encryption techniques for media data
US2007011024029 déc. 200617 mai 2007Blue Spike, Inc.System and methods for permitting open access to data objects and for securing data within the data objects
US200701130943 janv. 200717 mai 2007Wistaria Trading, Inc.Method and system for digital watermarking
US200701277176 nov. 20067 juin 2007Juergen HerreDevice and Method for Analyzing an Information Signal
US2007022650615 nov. 200627 sept. 2007Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US200702535942 mars 20071 nov. 2007Vobile, Inc.Method and system for fingerprinting digital video object based on multiresolution, multirate spatial and temporal signatures
US2007029453621 août 200720 déc. 2007Wistaria Trading, Inc.Steganographic method and device
US2007030007231 août 200727 déc. 2007Wistaria Trading, Inc.Optimization methods for the insertion, protection and detection of digital watermarks in digital data
US200703000737 sept. 200727 déc. 2007Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US2008000557110 sept. 20073 janv. 2008Moskowitz Scott AMethods, systems and devices for packet watermarking and efficient provisioning of bandwidth
US2008000557210 sept. 20073 janv. 2008Moskowitz Scott AMethods, systems and devices for packet watermarking and efficient provisioning of bandwidth
US2008001636524 août 200717 janv. 2008Moskowitz Scott AData protection method and device
US2008002211331 août 200724 janv. 2008Wistaria Trading, Inc.Optimization methods for the insertion, protection and detection of digital of digital watermarks in digital data
US200800221147 sept. 200724 janv. 2008Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US2008002822211 sept. 200631 janv. 2008Blue Spike, Inc.Security based on subliminal and supraliminal channels for data objects
US2008004674215 nov. 200621 févr. 2008Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US2008007527721 août 200727 mars 2008Wistaria Trading, Inc.Steganographic method and device
US2008010941726 déc. 20078 mai 2008Blue Spike, Inc.Method and device for monitoring and analyzing signals
US2008013392726 déc. 20075 juin 2008Wistaria Trading Inc.Method and system for digital watermarking
US2008015193423 janv. 200826 juin 2008Wistaria Trading, Inc.Exchange mechanisms for digital information packages with bandwidth securitization, multichannel digital watermarks, and key management
US200900377409 juil. 20085 févr. 2009Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US200900894279 oct. 20082 avr. 2009Blue Spike, Inc.Secure personal content server
US2009019075430 mars 200930 juil. 2009Blue Spike, Inc.System and methods for permitting open access to data objects and for securing data within the data objects
US2009021071123 mars 200920 août 2009Moskowitz Scott AMethods, systems and devices for packet watermarking and efficient provisioning of bandwidth
US2009022007430 mars 20093 sept. 2009Wistaria Trading Inc.Steganographic method and device
US2010000290430 juin 20087 janv. 2010Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US2010000530810 août 20097 janv. 2010Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US2010006414012 nov. 200911 mars 2010Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US2010007721910 nov. 200925 mars 2010Wistaria Trading, Inc.Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US2010007722023 nov. 200925 mars 2010Moskowitz Scott AOptimization methods for the insertion, protection, and detection of digital watermarks in digital data
US2010009825122 déc. 200922 avr. 2010Moskowitz Scott AMethod for combining transfer functions and predetermined key creation
US2010010673622 déc. 200929 avr. 2010Blue Spike, Inc.Method and device for monitoring and analyzing signals
US2010015373422 déc. 200917 juin 2010Blue Spike, Inc.Utilizing data reduction in steganographic and cryptographic system
US2010018257028 juin 200722 juil. 2010Chota MatsumotoOphthalmic examination system
US2010020260714 avr. 201012 août 2010Wistaria Trading, Inc.Linear predictive coding implementation of digital watermarks
US201002208614 mai 20102 sept. 2010Moskowitz Scott AMultiple transform utilization and application for secure digital watermarking
US201003130338 juin 20109 déc. 2010Wistaria Trading IncSteganographic method and device
US2011001969128 sept. 201027 janv. 2011Scott MoskowitzExchange mechanisms for digital information packages with bandwidth securitization, multichannel digital watermarks, and key management
US2011006986427 oct. 201024 mars 2011Scott MoskowitzSteganographic method and device
US2011012844530 nov. 20092 juin 2011Miranda Technologies Inc.Method and apparatus for providing signatures of audio/video signals and for making use thereof
US201200570122 août 20118 mars 2012Sitrick David HElectronic music stand performer subsystems and music communication methodologies
US2013014505821 janv. 20136 juin 2013Miranda Technologies Inc.Method of operating a router
EP0372601B18 nov. 198922 févr. 1995Philips Electronics N.V.Coder for incorporating extra information in a digital audio signal having a predetermined format, decoder for extracting such extra information from a digital signal, device for recording a digital signal on a record carrier, comprising such a coder, and record carrier obtained by means of such a device
EP0565947B131 mars 199328 mai 1997NOKIA TECHNOLOGY GmbHProcedure for including digital information in an audio signal prior to channel coding
EP0581317A230 juil. 19932 févr. 1994Corbis CorporationMethod and system for digital image signatures
EP0649261B117 oct. 199423 janv. 2002Canon Kabushiki KaishaImage data processing and encrypting apparatus
EP0651554A125 oct. 19943 mai 1995Eastman Kodak CompanyMethod and apparatus for the addition and removal of digital watermarks in a hierarchical image storage and retrieval system
EP0872073B17 juin 199628 nov. 2007Wistaria Trading, Inc.Steganographic method and device
EP1354276B126 oct. 200112 déc. 2007Audible Magic CorporationMethod and apparatus for creating a unique audio signature
EP1547337B125 juil. 200322 mars 2006Green Border TechnologiesWatermarking at the packet level
NL1005523C2 Titre non disponible
WO1995014289A216 nov. 199426 mai 1995Pinecone Imaging CorporationIdentification/authentication coding method and apparatus
WO1996029795A121 mars 199626 sept. 1996Silvio MicaliSimultaneous electronic transactions
WO1996042151A37 juin 199613 févr. 1997Dice CompanySteganographic method and device
WO1997001892A126 juin 199516 janv. 1997The Dice CompanyDigital information commodities exchange with virtual menuing
WO1997024833A23 janv. 199710 juil. 1997Silvio MicaliIdeal electronic negotiations
WO1997026732A116 janv. 199724 juil. 1997The Dice CompanyMethod for stega-cipher protection of computer code
WO1997026733A117 janv. 199724 juil. 1997The Dice CompanyMethod for an encrypted digital watermark
WO1997044736A115 mai 199727 nov. 1997Apple Computer, Inc.Method and apparatus for two-level copy protection
WO1998002864A12 juil. 199722 janv. 1998The Dice CompanyOptimization methods for the insertion, protection and detection of digital watermarks in digitized data
WO1998037513A120 févr. 199827 août 1998Telstra R & D Management Pty. Ltd.Invisible digital watermarks
WO1999052271A12 avr. 199914 oct. 1999Moskowitz Scott AMultiple transform utilization and applications for secure digital watermarking
WO1999062044A130 avr. 19992 déc. 1999The Regents Of The University Of CaliforniaReference palette embedding
WO1999063443A11 juin 19989 déc. 1999Datamark Technologies Pte Ltd.Methods for embedding image, audio and video watermarks in digital data
WO2000057643A114 mars 200028 sept. 2000Blue Spike, Inc.Utilizing data reduction in steganographic and cryptographic systems
WO2001018628A34 août 200022 nov. 2001Blue Spike IncA secure personal content server
WO2001043026A17 déc. 200014 juin 2001Blue Spike, Inc.Systems, methods and devices for trusted transactions
WO2002003385A15 juil. 200010 janv. 2002Moskowitz Scott ACopy protection of digital data combining steganographic and cryptographic techniques
Citations hors brevets
Référence
1"Techniques for Data Hiding in Audio Files," by Morimoto, 1995.
2"YouTube Copyright Policy: Video Identification tool-YouTube Help", accessed Jun. 4, 2009, http://www.google.com/support/youtube/bin/answer.py?h1=en&answer=83766, 3 pp.
3Aerosmith ("Just Push Play"), Pre-Release CD image, 2001, 1 page.
4Afanasyev, et. al., Communications of the ACM: Privacy Preserving Network Forensics 2011.
5Audible Magic Corporation's Second Amended Answer to Blue Spike LLC's Original Complaint for patent infringement and counterclaims against Blue Spike LLC, Blue Spike, Inc and Scott Moskowitz. Blue Spike LLC v. Texas Instruments, Audible Magic Corporation (E.D.T.X Dist Ct.) Case No. 6:12-CV-499-MHS, Apr. 4, 2014.
6Bender, et al., "Techniques for Data Hiding", IBM Systems Journal, (1996) vol. 35, Nos. 3 & 4,1996, pp. 313-336.
7Bender, Walter R. et al., Techniques for Data Hiding, SPIE Int. Soc. Opt. Eng., vol. 2420, pp. 164-173, 1995.
8Blue Spike, LLC. v. Texas Instruments, Inc et. al, (No: 6:12-CV-499-MHS), Audible Magic Corporations's amended Answer ( E.D. TX filed Jul. 15, 2013) (Document 885 page ID 9581), (PACER).
9Boney, et al., Digital Watermarks for Audio Signals, EVSIPCO, 96, pp. 473-480 (Mar. 14, 1997).
10Boney, et al., Digital Watermarks for Audio Signals, Proceedings of the International Conf. on Multimedia Computing and Systems, Jun. 17-23, 1996 Hiroshima, Japan, 0-8186-7436-9196, pp. 473-480.
11Brealy, et al., Principles of Corporate Finance, "Appendix A-Using Option Valuation Models", 1984, pp. 448-449.
12Caronni, Germano, "Assuring Ownership Rights for Digital Images", published proceeds of reliable IT systems, v15 '95, H.H. Bruggemann and W. Gerhardt-Hackel (Ed) Viewing Publishing Company Germany 1995.
13Cayre, et al., "Kerckhoff s-Based Embedding Security Classes for WOA Data Hiding", IEEE Transactions on Information Forensics and Security, vol. 3 No. 1, Mar. 2008, 15 pages.
14Copeland, et al., Real Options: A Practitioner's Guide, 2001 pp. 106-107, 201-202, 204-208.
15Cox, et al., Secure Spread Spectrum Watermarking for Multimedia, NEC Research Institude, Techinal Report 95-10, pp. 33, 1997.
16Cox, I. J., et al. "Secure Spread Spectrum Watermarking for Multimedia," IEEE Transactions on Image Processing, vol. 6 No. 12, Dec. 1, 1997, pp. 1673-1686.
17Craver, et al., "Can Invisible Watermarks Resolve Rightful Ownerships?", IBM Research Report, RC 20509 (Jul. 25, 1996) 21 pp.
18Crawford, D.W. "Pricing Network Usage: A Market for Bandwidth of Market Communication?" presented MIT Workshop on Internet Economics, Mar. 1995 http://www.press.vmich.edu/iep/works/CrawMarket.html on March.
19CSG, Computer Support Group and CSGNetwork.com 1973 http://www.csgnetwork.com/glossarys.html.
20Deep Content Inspection-Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Deep-content-inspection (last visited Apr. 4, 2013).
21Delaigle, J.-F., et al. "Digital Watermarking," Proceedings of the SPIE, vol. 2659, Feb 1, 1996, pp. 99-110.
22Dept. of Electrical Engineering, Del Ft University of Technology, Del ft The Netherlands, Cr.C. Langelaar et al.,"Copy Protection for Multimedia Data based on Labeling Techniques", Jul. 1996 9 pp.
23Dexter, et al., "Multi-view Synchronization Of Image Sequences", 2009.
24Dexter, et. al, "Multi-view Synchronization of Human Actions and Dynamic Scenes" pp. 1-11, 2009.
25Digital Persona White Paper pp. 8-9 published Apr. 15, 1998.
26Digital Persona, Inc., "Digital Persona Releases U. are. U Pro Fingerprint Security Systems for Windows NT, 2000, '98, '95", (Feb. 2000)
27Digital Persona, Inc., U. are U. Fingerprint Recognition System: User Guide (Version 1.0, 1998).
28EPO Application No. 96919405.9, entitled "Steganographic Method and Device"; published as EP0872073 (A2), Oct. 21, 1998.
29EPO Divisional Patent Application No. 07112420.0, entitled "Steganographic Method and Device" corresponding to PCT Application No. PCT/US96/10257, published as WO/1996/042151, Dec. 27, 1996.
30European Search Report & European Search Opinion in EP07112420.
31F. Hartung, et al., "Digital Watermarking of Raw and Compressed Video", SPIE vol. 2952, pp. 205-213, 1996.
32Fabien A.P. Petitcolas, Ross J. Anderson and Markkus G. Kuhn, "Attacks on Copyright Marking Systems," LNCS, vol. 1525, Apr. 14-17, 1998, pp. 218-238 ISBN: 3-540-65386-4.
33Farkex, Inc 2010 "Steganography definition of steganography in the Free Online Encyclopedia" http://enclyclopedia2.Thefreedictionary.com/steganography.
34George, Mercy; Chouinard, Jean-Yves; Georgana, Nicolas. Digital Watermarking of Images and video using Direct Sequence Spread Spectrum Techniques. 1999 IEEE Canadian Conference on Electrical and Computer Engineering vol. 1. Pub. Date: 1999 Relevant pp. 116-121. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=807181.
35Gerzon, Michael et al., A High Rate Buried Data Channel for Audio CD, presentation notes, Audio Engineering Soc. 94th Convention (1993).
36Graham, Robert Aug. 21, 2000 "Hacking Lexicon" http://robertgraham.com/pubs/hacking-dict.html.
37Gruhl, Daniel et al., Echo Hiding. In Proceeding of the Workshop on Information Hiding. No. 1174 in Lecture Notes in Computer Science, Cambridge, England (May/Jun. 1996).
38Hartung, et al. "Multimedia Watermarking Techniques", Proceedings of the IEEE, Special Issue, Identification & Protection of Multimedia Information, pp. 1079-1107 Jul. 1999 vol. 87 No. 7 IEEE.
39Horowitz, et al., The Art of Eletronics. 2th Ed., 1989, pp. 7.
40Howe, Dennis Jul. 13, 1998 http://foldoc..org//steganography.
41Jap. App. No. 2000-542907, entitled "Multiple Transform Utilization and Application for Secure Digital Watermarking"; which is a JP national stage of PCT/US1999/007262, published as WO/1999/052271, Oct. 14, 1999.
42Jayant, N.S. et al., Digital Coding of Waveforms, Prentice Hall Inc., Englewood Cliffs, NJ, pp. 486-509 (1984).
43Jimmy eat world ("futures"), Interscope Records, Pre-Release CD image, 2004, 1 page.
44Johnson, et al., "Transform Permuted Watermarking for Copyright Protection of Digital Video", IEEE Globecom 1998, Nov. 8-12, 1998, New York New York vol. 2 1998 pp. 684-689 (ISBN 0-7803-4985-7).
45Joseph J.K. O'Ruanaidh and Thierry Pun, "Rotation, Scale and Translation Invariant Digital Image Watermarking", pre-publication, Summer 1997 4 pages.
46Joseph J.K. O'Ruanaidh and Thierry Pun, "Rotation, Scale and Translation Invariant Digital Image Watermarking", Submitted to Signal Processing Aug. 21, 1997, 19 pages.
47Junego, et. al., "View-Independent Action Recognition from Temporal Self-Similarities", 2011.
48Kahn, D., "The Code Breakers", The MacMillan Company, 1969, pp. xIII, 81-83, 513, 515, 522-526, 863.
49Kini, et al., "Trust in Electronic Commerce: Definition and Theoretical Considerations", Proceedings of the 31st Hawaii Int'l Conf on System Sciences (Cat. No. 98TB100216). Jan. 6-9, 1998. pp. 51-61. Los.
50Koch, E., et al., "Towards Robust and Hidden Image Copyright Labeling", 1995 IEEE Workshop on Nonlinear Signal and Image Processing, Jun. 1995 Neos Marmaras pp. 4.
51Kocher, et al., "Self Protecting Digital Content", Technical Report from the CRI Content Security Research Initiative, Cryptography Research, Inc. 2002-2003 14 pages.
52Konrad, K. et al., "Trust and Electronic Commerce-more than a technical problem," Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems Oct. 19-22, 1999, pp. 360-365 Lausanne.
53Kudrle, et al., "Fingerprinting for Solving A/V Synchronization Issues within Broadcast Environments", 2011.
54Kutter, Martin et al., "Digital Signature of Color Images Using Amplitude Modulation", SPIE-E197, vol. 3022, pp. 518-527, 1997.
55Lemma, et al. "Secure Watermark Embedding through Partial Encryption", International Workshop on Digital Watermarking ("IWDW" 2006). Springer Lecture Notes in Computer Science 2006 (to appear) 13.
56Low, S.H., "Equilibrium Allocation and Pricing of Variable Resources Among User-Suppliers", 1988. http://www.citesear.nj.nec.com/366503.html.
57Menezes, Alfred J., Handbook of Applied Cryptography, CRC Press, p. 175, 1997.
58Menezes, Alfred J., Handbook of Applied Cryptography, CRC Press, p. 46, 1997.
59Merriam-Webster's Collegiate Dictionary, 10th Ed., Merriam Webster, Inc., p. 207, 1993.
60Moskowitz, "Bandwith as Currency", IEEE Multimedia, Jan.-Mar. 2003, pp. 14-21.
61Moskowitz, "Introduction-Digital Rights Management," Multimedia Security Technologies for Digital Rights Management (2006), Elsevier.
62Moskowitz, "What is Acceptable Quality in the Application of Digital Watermarking: Trade-offs of Security; Robustness and Quality", IEEE Computer Society Proceedings of ITCC 2002 Apr. 10, 2002 pp. 80-84.
63Moskowitz, Multimedia Security Technologies for Digital Rights Management, 2006, Academic Press, "Introduction-Digital Rights Management" pp. 3-22.
64Namgoong, H., "An Integrated Approach to Legacy Data for Multimedia Applications", Proceedings of the 23rd EUROMICRO Conference, vol., Issue 1-4, Sep. 1997, pp. 387-391.
65OASIS (Dig Out Your Soul), Big Brother Recordings Ltd, Promotional CD image, 2008, 1 page.
66Oomen, A.W.J. et al., A Variable Bit Rate Buried Data Channel for Compact Disc, J.AudioEng. Sc., vol. 43, No. 1/2, pp. 23-28 (1995).
67O'Ruanaidh, et al. "Watermarking Digital Images for Copyright Protection", IEEE Proceedings, vol. 143, No. 4, Aug. 1996, pp. 250-256.
68PCT Application No. PCT/US00/06522, filed Mar. 14, 2000, entitled, "Utilizing Data Reduction in Steganographic and Cryptographic Systems", published as WO/2000/057643; Publication Date: Sep. 28, 2000.
69PCT Application No. PCT/US00/18411, filed Jul. 5, 2000, entitled, "Copy Protection of Digital Data Combining Steganographic and Cryptographic Techniques".
70PCT Application No. PCT/US00/21189, filed Aug. 4, 2000, entitled, "A Secure Personal Content Server", Pub. No. WO/2001/018628 ; Publication Date: Mar. 15, 2001, cited herein as F21.
71PCT Application No. PCT/US00/33126, filed Dec. 7, 2000, entitled "Systems, Methods and Devices for Trusted Transactions", published as WO/2001/043026; Publication Date: Jun. 14, 2001.
72PCT Application No. PCT/US95/08159, filed Jun. 26, 1995, entitled, "Digital Information Commodities Exchange with Virtual Menuing", published as WO/1997/001892; Publication Date: Jan. 16, 1997.
73PCT Application No. PCT/US96/10257, filed Jun. 7, 1996, entitled "Steganographic Method and Device"-corresponding to-EPO Application No. 96919405.9, entitled "Steganographic Method and Device", published as WO/1996/042151; Publication Date: Dec. 27, 1996.
74PCT Application No. PCT/US97/00651, filed Jan. 16, 1997, entitled, "Method for Stega-Cipher Protection of Computer Code", published as WO/1997/026732; Publication Date: Jul. 24, 1997.
75PCT Application No. PCT/US97/00652, filed Jan. 17, 1997, entitled, "Method for an Encrypted Digital Watermark", published as WO/1997/026733; Publication Date: Jul. 24, 1997.
76PCT Application No. PCT/US97/11455, filed Jul. 2, 1997, entitled, "Optimization Methods for the Insertion, Protection and Detection of Digital Watermarks in Digitized Data", published as WO/1998/002864; Publication Date: Jan. 22, 1998.
77PCT Application No. PCT/US99/07262, filed Apr. 2, 1999, entitled, "Multiple Transform Utilization and Applications for Secure Digital Watermarking", published as WO/1999/052271; Publication Date: Oct. 14, 1999.
78PCT International Search Report in PCT/US00/06522.
79PCT International Search Report in PCT/US00/18411.
80PCT International Search Report in PCT/US00/21189.
81PCT International Search Report in PCT/US00/33126.
82PCT International Search Report in PCT/US95/08159.
83PCT International Search Report in PCT/US96/10257.
84PCT International Search Report in PCT/US97/00651.
85PCT International Search Report in PCT/US97/00652.
86PCT International Search Report in PCT/US97/11455.
87PCT International Search Report in PCT/US99/07262.
88Phil Collins(Testify) Atlantic, Pre-Release CD image, 2002, 1 page.
89Pohlmann, Ken C., "Principles of Digital Audio", 2nd Ed., 1991, pp. 1-9, 19-25, 30-33, 41-48, 54-57, 86-107, 375-387.
90Pohlmann, Ken C., "Principles of Digital Audio", 3rd Ed., 1995, pp. 32-37, 40-48:138, 147-149, 332, 333, 364, 499-501, 508-509, 564-571.
91PortalPlayer, PP5002 digital media management system-on-chip, May 1, 2003, 4 pp.
92Press, et al., "Numerical Recipes in C", Cambridge Univ. Press, 1988, pp. 398-417.
93Puate, Joan et al., "Using Fractal Compression Scheme to Embed a Digital Signature into an Image", SPIE-96 proceedings, vol. 2915, Mar. 1997, pp. 108-118.
94QuinStreet Inc. 2010 What is steganography?-A word definition from the Webopedia Computer Dictionary http://www.webopedia.com/terms/steganography.html.
95Radiohead ("Hail To The Thief"), EMI Music Group-Capitol, Pre-Release CD image, 2003, 1 page.
96Rick Merritt, PARC hosts summit on content-centric nets, EETimes, Aug. 12, 2011, http://www.eetimes.com/electronics-news/4218741/PARC-hosts-summit-on-content-centric-nets.
97Rivest, et al., "Pay Word and Micromint: Two Simple Micropayment Schemes," MIT Laboratory for Computer Science, Cambridge, MA, May 7, 1996 pp. 1-18.
98Rivest, et al., "PayWord and Micromint: Two Simple Micropayment Schemes," MIT Laboratory for Computer Science, Cambridge, MA, Apr. 27, 2001, pp. 1-18.
99Rivest, R. "Chaffing and Winnowing: Confidentiality without Encryption", MIT Lab for Computer Science, http://people.csail.mit.edu/rivest/Chaffing.txt Apr. 24, 1998, 9 pages.
100Ross Anderson, "Stretching the Limits of Steganography," LNCS, vol. 1174, May/Jun. 1996, 10 pages, ISBN: 3-540-61996-8.
101Sarkar, M. "An Assessment of Pricing Mechanisms for the Internet-A Regulatory Imperative", presented MIT Workshop on Internet Economics, Mar. 1995 http://www.press.vmich.edu/iep/works/SarkAsses.html on.
102Schneider, M., et al. "A Robust Content Based Digital Signature for Image Authentication," Proceedings of the International Conference on Image Processing (IC. Lausanne) Sep. 16-19, 1996, pp. 227-230, IEEE ISBN.
103Schneier, Bruce, Applied Cryptography, 1st Ed., pp. 67-68, 1994.
104Schneier, Bruce, Applied Cryptography, 2nd Ed., John Wiley & Sons, pp. 9-10, 1996.
105Schneier, Bruce, Applied Cryptography, John Wiley & Sons, Inc., New York, 1994, pp. 68, 69, 387-392, 1-57, 273-275, 321-324.
106Schunter, M. et al., "A Status Report on the SEMPER framework for Secure Electronic Commerce", Computer Networks and ISDN Systems, Sep. 30, 1998, pp. 1501-1510 vol. 30 No. 16-18 NL North Holland.
107Shazam Entertainment Limited's Amended Answer to Blue Spike, LLC's complaint and counterclaims against Blue Spike LLC, Blue Spike, Inc and Scott A. Moskowitz , Shazam Entertainment Ltd v. Blue Spike, LLC, Blue Spike, Inc, and Scott Moskowitz (E.D.T.X Dist Ct.) Case No. 6:12-CV-00499-MHS, Apr. 4, 2014.
108Sirbu, M. et al., "Net Bill: An Internet Commerce System Optimized for Network Delivered Services", Digest of Papers of the Computer Society Computer Conference (Spring) Mar. 5, 1995 pp. 20-25 vol. CONF40.
109Sklar, Bernard, Digital Communications, pp. 601-603 (1988).
110Smith, et al. "Modulation and Information Hiding in Images", Springer Verlag, 1st Int'l Workshop, Cambridge, UK, May 30-Jun. 1, 1996, pp. 207-227.
111SonicWall, Inc. 2011 "The Network Security SonicOS Platform-Deep Packet Inspection" http://www.sonicwall.com/us/en/products/Deep-Packet-Inspection.html.
112SonicWall, Inc., 2008 "The Advantages of a Multi-core Architecture In Network Security Appliances" http://www.sonicwall.com/downloads/WP-ENG-010-Multicore . . . .
113STAIND (The Singles 1996-2006), Warner Music-Atlantic, Pre-Release CD image, 2006, 1 page.
114Steinauer D. D., et al., "Trust and Traceability in Electronic Commerce", Standard View, Sep. 1997, pp. 118-124, vol. 5 No. 3, ACM, USA.
115Supplementary European Search Report in EP 96919405.
116Supplementary European Search Report in EP00919398.
117Swanson, Mitchell D., et al. "Robust Data Hiding for Images", 7th IEEE Digital Signal Processing Workshop, Leon, Norway. Sep. 1-4, 1996, pp. 37-40.
118Swanson, Mitchell D.,et al., "Transparent Robust Image Watermarking", Proc. of the 1996 IEEE Int'l Conf. on Image Processing, vol. 111, 1996 , pp. 211-214.
119Ten Kate, W. et al., "Digital Audio Carrying Extra Information", IEEE, CH 2847-2/90/0000-1097, (1990).
120Ten Kate, W. et al., A New Surround-Stereo-Surround Coding Techniques, J. Audio Eng.Soc., vol. 40,No. 5,pp. 376-383 (1992).
121Tirkel, A.Z., "A Two-Dimensional Digital Watermark", Scientific Technology, 686, 14, date unknown.
122Tirkel,A.Z., "A Two-Dimensional Digital Watermark", DICTA '95, Univ. of Queensland, Brisbane, Dec. 5-8, 1995, pp. 7.
123Tirkel,A.Z., "Image Watermarking-A Spread Spectrum Application", ISSSTA '96, Sep. 1996, Mainz, German, pp. 6.
124Tomsich, et al., "Towards a secure and de-centralized digital watermarking infrastructure for the protection of Intellectual Property", in Electronic Commerce and Web Technologies, Proceedings (ECWEB)(2000).
125U. are U. Reviewer's Guide (U are U Software, 1998).
126U. are U. wins top honors!-Marketing Flyer (U. are U. Software, 1998).
127U.S. Appl. No. 08/674,726, filed Jul. 2, 1996, entitled "Exchange Mechanisms for Digital Information Packages with Bandwidth Securitization, Multichannel Digital Watermarks, and Key Management", published as 7362775 Apr. 22, 2008.
128U.S. Appl. No. 08/999,766, filed Jul. 23, 1997, entitled "Steganographic Method and Device", published as 7568100 Jul. 28, 2009.
129U.S. Appl. No. 09/046,627, filed Mar. 24, 1998, entitled "Method for Combining Transfer Function with Predetermined Key Creation", published as 6,598,162 Jul. 22, 2003.
130U.S. Appl. No. 09/053,628, filed Apr. 2, 1998, entitled "Multiple Transform Utilization and Application for Secure Digital Watermarking", 6,205,249 Mar. 20, 2001.
131U.S. Appl. No. 09/545,589, filed Apr. 7, 2000, entitled "Method and System for Digital Watermarking", published as 7007166 Feb. 28, 2006.
132U.S. Appl. No. 09/594,719, filed Jun. 16, 2000, entitled "Utilizing Data Reduction in Steganographic and Cryptographic Systems", published as 7,123,718 Oct. 17, 2006.
133U.S. Appl. No. 09/644,098, filed Aug. 23, 2000, entitled "Multiple Transform Utilization and Application for Secure Digital Watermarking", published as 7,035,409 Apr. 25, 2006.
134U.S. Appl. No. 09/657,181, filed Sep. 7, 2000, entitled "Method and Device for Monitoring and Analyzing Signals", published as 7,346,472 Mar. 18, 2008, cited herein as U271.
135U.S. Appl. No. 09/671,739, filed Sep. 29, 2000, entitled "Method and Device for Monitoring and Analyzing Signals".
136U.S. Appl. No. 09/731,039, filed Dec. 7, 2000, entitled "System and Methods for Permitting Open Access to Data Objects and for Securing Data within the Data Objects", published as 2002-0071556 A1 Jun. 13, 2002, cited herein as P06.
137U.S. Appl. No. 09/731,040, filed Dec. 7, 2000, entitled "Systems, Methods and Devices for Trusted Transactions", 2002-0010684 A1 Jan. 24, 2002.
138U.S. Appl. No. 09/767,733, filed Jan. 24, 2001 entitled "Multiple Transform Utilization and Application for Secure Digital Watermarking", published as 2001-0010078 A1 Jul. 26, 2001.
139U.S. Appl. No. 09/789,711, filed Feb. 22, 2001, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data", published as 2001-0029580 A1 Oct. 11, 2001.
140U.S. Appl. No. 09/956,262, filed Sep. 20, 2001, entitled "Improved Security Based on Subliminal and Supraliminal Channels for Data Objects", published as 2002-0056041 A1 May 9, 2002, cited herein as P05.
141U.S. Appl. No. 10/049,101, filed Feb. 8, 2002, entitled "A Secure Personal Content Server", published as 7,475,246 Jan. 6, 2009.
142U.S. Appl. No. 10/369,344, filed Feb. 18, 2003, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data", published as 2003-0219143 A1 Nov. 27, 2003.
143U.S. Appl. No. 10/417,231, filed Apr. 17, 2003, entitled "Methods, Systems and Devices for Packet Watermarking and Efficient Provisioning of Bandwidth", published as 2003-0200439 A1 Oct. 23, 2003.
144U.S. Appl. No. 10/602,777, filed Jun. 25, 2003, entitled "Method for Combining Transfer Function with Predetermined Key Creation", published as 2004-0086119 A1 May 6, 2004.
145U.S. Appl. No. 10/805,484, filed Mar. 22, 2004, entitled "Method and Device for Monitoring and Analyzing Signals", published as 2004-0243540 A1 Dec. 2, 2004, cited herein as P27.
146U.S. Appl. No. 11/026,234, filed Dec. 30, 2004, entitled "Z-Transform Implementation of Digital Watermarks" , published as 2005-0135615 A1 Jun. 23, 2005, cited herein as P28.
147U.S. Appl. No. 11/050,779, filed Feb. 7, 2005, entitled "Steganographic Method and Device", published as 20050177727 A1 Aug. 11, 2005.
148U.S. Appl. No. 11/244,213, filed Oct. 5, 2005, entitled "Method and System for Digital Watermarking", published as 2006-0101269 A1 May 11, 2006.
149U.S. Appl. No. 11/358,874, filed Feb. 21, 2006, entitled "Multiple Transform Utilization and Application for Secure Digital Watermarking", published as 2006-0140403 A1 Jun. 29, 2006.
150U.S. Appl. No. 11/458,639, filed Jul. 19, 2006 entitled "Methods and Systems for Inserting Watermarks in Digital Signals", published as 20060251291 A1 Nov. 9, 2006, p. 82.
151U.S. Appl. No. 11/482,654, filed Jul. 7, 2006, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data", published as 2006-0285722 A1 Dec. 21, 2006.
152U.S. Appl. No. 11/497,822, filed Aug. 2, 2006, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data", published as 2007-0011458 A1 Jan. 11, 2007.
153U.S. Appl. No. 11/512,701, filed Aug. 29, 2006, entitled "Systems, Methods and Devices for Trusted Transactions", published as 2007-0028113 A1 Feb. 1, 2007.
154U.S. Appl. No. 11/518,806, filed Sep. 11, 2006, entitled "Improved Security Based on Subliminal and Supraliminal Channels For Data Objects", 2008-0028222 A1 Jan. 31, 2008, cited herein as P57.
155U.S. Appl. No. 11/519,467, filed Sep. 12, 2006, entitled "Utilizing Data Reduction in Steganographic and Cryptographic Systems", published as 2007-0064940 A1 Mar. 22, 2007.
156U.S. Appl. No. 11/592,079, filed Nov. 2, 2006, entitled "Linear Predictive Coding Implementation of Digital Watermarks", published as 2007-0079131 A1 Apr. 5, 2007, cited herein as P42.
157U.S. Appl. No. 11/599,838, filed Nov. 15, 2006, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data", published as 2007-0226506 A1 Sep. 27, 2007.
158U.S. Appl. No. 11/599,964, filed Nov. 15, 2006, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data", published as 2008-0046742 A1 Feb. 21, 2008.
159U.S. Appl. No. 11/647,861, filed Dec. 29, 2006, entitled "System and Methods for Permitting Open Access to Data Objects and for Securing Data within the Data Objects", published as 2007-0110240 A1 May 17, 2007.
160U.S. Appl. No. 11/649,026, filed Jan. 3, 2007, entitled "Method and System for Digital Watermarking", published as 2007-0113094 A1 May 17, 2007.
161U.S. Appl. No. 12/590,553, filed Nov. 10, 2009, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data", published as 20100077219 A1 Mar. 25, 2010.
162U.S. Appl. No. 12/590,681, filed Nov. 12, 2009, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data", published as 20100064140 A1 Mar. 11, 2010.
163U.S. Appl. No. 12/592,331, filed Nov. 23, 2009, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data", published as 20100077220 A1 Mar. 25, 2010.
164U.S. Appl. No. 12/655,036, filed Dec. 22, 2009, entitled "Utilizing Data Reduction in Steganographic and Cryptographic Systems", published as 20100153734 A1 Jun. 17, 2010.
165U.S. Appl. No. 12/655,357, filed Dec. 22, 2009, entitled "Method and Device for Monitoring and Analyzing Signals", published as 20100106736 A1 Apr. 29, 2010.
166U.S. Appl. No. 12/665,002, filed Dec. 22, 2009, entitled "Method for Combining Transfer Function with Predetermined Key Creation", published as 20100182570 A1 Jul. 22, 2010.
167U.S. Appl. No. 60/169,274, filed Dec. 7, 1999, entitled "Systems, Methods and Devices for Trusted Transactions".
168U.S. Appl. No. 60/222,023, filed Jul. 31, 2007 entitled "Method and apparatus for recognizing sound and signals in high noise and distortion".
169U.S. Appl. No. 60/234,199, filed Sep. 20, 2000, "Improved Security Based on Subliminal and Supraliminal Channels For Data Objects".
170Van Schyandel, et al., "Towards a Robust Digital Watermark", Second Asain Image Processing Conference, Dec. 6-8, 1995, Singapore, vol. 2, pp. 504-508.
171Van Schyndel, et al., "A digital Watermark," IEEE Int'l Computer Processing Conference, Austin,TX, Nov. 13-16, 1994, pp. 86-90.
172VeriDisc, "The Search for a Rational Solution to Digital Rights Management (DRM)", http://64.244.235.240/news/whitepaper,/docs/veridisc.sub.--white.sub.--paper.pdf, 2001, 15 pp.
173Voip-Pal.Com Inc's Lawful Intercept Patent Application Receives the Allowance for Issuance as a Patent, http://finance.yahoo.com/news/voip-pal-com-inc-lawful-133000133.html.
174Wayback Machine, dated Aug. 26, 2007, http://web.archive,org/web/20070826151732/http://www.screenplaysmag.com/t-abid/96/articleType/ArticleView/articleId/495/Defaultaspx/.
175Wayback Machine, dated Jan. 17, 1999, http://web.archive.org/web/19990117020420/http://www.netzero.com/, accessed on Feb. 19, 2008.
176Wong, Ping Wah. "A Public Key Watermark for Image Verification and Authentication," IEEE International Conference on Image Processing, vol. 1 Oct. 4-7, 1998, pp. 455-459.
177Zhao, Jian et al., "Embedding Robust Labels into Images for Copyright Protection", Proceeding of the Know Right '95 Conference, pp. 242-251.
178Zhao, Jian et al., Embedding Robust Labels into Images for Copyright Protection, (xp 000571976), pp. 242-251, 1995.
179Zhao, Jian. "A WWW Service to Embed and Prove Digital Copyright Watermarks", Proc. of the European conf. on Multimedia Applications, Services & Techniques Louvain-La-Nevve Belgium May 1996.
Classifications
Classification internationaleH04N1/32, G06F21/10, G06F21/16, G06T1/00, H04K1/00
Classification coopérativeH04N1/32144, H04L9/16, H04L2209/608, H04L2209/046, G06T1/0021, G06F21/10, G06F2221/0737, H04N1/32272, G06F21/16
Événements juridiques
DateCodeÉvénementDescription
17 oct. 2014ASAssignment
Owner name: BLUE SPIKE, INC., FLORIDA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOSKOWITZ, SCOTT A;BERRY, MIKE W;SIGNING DATES FROM 20130416 TO 20130418;REEL/FRAME:033973/0593
18 août 2015ASAssignment
Owner name: WISTARIA TRADING LTD, BERMUDA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLUE SPIKE, INC.;REEL/FRAME:036388/0248
Effective date: 20150814