US9270913B2 - Photoelectric conversion apparatus and imaging system - Google Patents

Photoelectric conversion apparatus and imaging system Download PDF

Info

Publication number
US9270913B2
US9270913B2 US14/245,313 US201414245313A US9270913B2 US 9270913 B2 US9270913 B2 US 9270913B2 US 201414245313 A US201414245313 A US 201414245313A US 9270913 B2 US9270913 B2 US 9270913B2
Authority
US
United States
Prior art keywords
line
photoelectric conversion
column selecting
output line
conversion apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US14/245,313
Other versions
US20140320717A1 (en
Inventor
Hiroki Hiyama
Yasuji Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Assigned to CANON KABUSHIKI KAISHA reassignment CANON KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIYAMA, HIROKI, IKEDA, YASUJI
Publication of US20140320717A1 publication Critical patent/US20140320717A1/en
Application granted granted Critical
Publication of US9270913B2 publication Critical patent/US9270913B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • H04N5/378
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N5/357

Definitions

  • the present invention relates to a photoelectric conversion apparatus and an imaging system for use in a scanner, a video camera, a digital still camera and the like.
  • Japanese Patent Application Laid-Open No. 2003-259227 discloses a technique of reading signals from a column memory by two horizontal scanning circuits that operate in different phases, multiplexing the outputs from two horizontal output lines, and outputting the multiplexed outputs, in a CMOS image sensor. By doing so, a signal can be output from the CMOS image sensor at a frequency higher than the drive frequency of the horizontal output lines, and a photoelectric conversion apparatus with a high frame rate can be realized.
  • the CMOS image sensor as in Japanese Patent Application Laid-Open No. 2003-259227 has the following problem.
  • the first column selecting line that provides electrical continuity between the column memory and the first horizontal output line in one phase, and the second column selecting line that sequentially provides electrical continuity between the column memory and the second horizontal output line in the other phase are included.
  • the first column selecting line capacitively couples with the second horizontal output line, or the second column selecting line capacitively couples with the first horizontal output line resulting in a superimpose of noise in the signal reading time period.
  • a photoelectric conversion apparatus comprises: a plurality of pixels arranged in rows and columns, and each configured to generate a signal by photoelectric conversion; a plurality of holding capacitors each arranged correspondingly to one of the columns of the plurality of pixels, and configured to hold a signal based on the signal generated by the pixel; a first output line; a second output line; a first switch arranged between the holding capacitor and the first output line; a second switch arranged between the holding capacitor and the second output line; and a column selecting line configured to control the second switch, wherein a wiring structure of a portion at which the column selecting line intersects with the first output line is different from a wiring structure of a portion at which the column selecting line intersects with the second output line.
  • FIG. 1 is a diagram illustrating a photoelectric conversion apparatus of a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a pixel of the first embodiment of the present invention.
  • FIG. 3 is a circuit diagram of an amplifier circuit of the first embodiment of the present invention.
  • FIG. 4 is a diagram of timing of driving the first embodiment of the present invention.
  • FIG. 5 is a plan view of a part of the first embodiment of the present invention.
  • FIG. 6 is a sectional view of a part of the first embodiment of the present invention.
  • FIG. 7 is a sectional view of a part of the first embodiment of the present invention.
  • FIG. 8 is a sectional view of a part of the first embodiment of the present invention.
  • FIG. 9 is a plan view of a part of a second embodiment of the present invention.
  • FIG. 10 is a sectional view of a part of the second embodiment of the present invention.
  • FIG. 11 is a sectional view of a part of the second embodiment of the present invention.
  • FIG. 12 is a sectional view of a part of the second embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a configuration example of an imaging system.
  • FIG. 1 is a diagram illustrating a configuration example of a photoelectric conversion apparatus according to a first embodiment of the present invention.
  • the photoelectric conversion apparatus is a CMOS image sensor, for example, and photoelectrically converts incident light of an object image, amplifies an electric signal obtained by photoelectric conversion and outputs the electric signal to an outside.
  • the photoelectric conversion apparatus has a pixel array 110 .
  • the pixel array 110 has a plurality of pixels 111 that are arranged in two dimensional rows and columns.
  • FIG. 1 illustrates eight of the pixels 111 for simplification, but the number of pixels 111 is not limited to eight, and a larger number of pixels 111 may be included.
  • the respective pixels 111 generate signals by photoelectric conversion.
  • FIG. 2 is a circuit diagram illustrating a configuration example of the pixel 111 .
  • a pixel control signal line 112 has a row selecting pulse line PSEL, a pixel transfer pulse line PTX and a pixel reset pulse line PRES.
  • a photoelectric conversion section 114 is a photodiode, for example, and converts light into electric charges to accumulate the electric charges.
  • a pixel transfer switch 115 transfers the electric charges that are accumulated in the photoelectric conversion section 114 to a floating diffusion FD in response to a voltage of the pixel transfer pulse line PTX.
  • the floating diffusion FD accumulates electric charges, and converts the electric charges into voltage.
  • a pixel reset switch 116 resets the voltage of the floating diffusion FD and/or the photoelectric conversion section 114 to power supply voltage VDD in response to voltage of the pixel reset pulse line PRES.
  • a pixel amplifier transistor 117 amplifies the voltage of the floating diffusion FD.
  • a row selecting switch 118 outputs the voltage that is amplified by the pixel amplifier transistor 117 to a column signal line 113 in response to voltage of the row selecting pulse line PSEL.
  • the column signal line 113 is provided for each of columns of the pixels 111 arranged in rows and columns. The pixels 111 in each of the columns are connected to each of the column signal lines 113 .
  • the photoelectric conversion apparatus of FIG. 1 further has a vertical scanning circuit 140 .
  • the vertical scanning circuit 140 is connected to the respective rows of the pixels 111 via the pixel control signal lines 112 .
  • the pixels 111 in each of the rows are connected to the same pixel control signal line 112 .
  • the pixel 111 outputs voltage to the column signal line 113 as described above.
  • the amplifier circuit 120 amplifies the voltage of the column signal line 113 .
  • FIG. 3 is a circuit diagram illustrating a configuration example of the amplifier circuit 120 .
  • the amplifier circuit 120 has an operational amplifier 121 , a reset switch 122 , an input capacitor C 0 and a feedback capacitor CF, and invertingly amplifies the voltage of the column signal line 113 .
  • the reset switch 122 When the reset switch 122 is turned on, the amplifier circuit 120 is reset, whereas when the reset switch 122 is turned off, the reset of the amplifier circuit 120 is cancelled.
  • holding capacitors 131 s - 1 and 131 n - 1 in odd-numbered columns, and holding capacitors 131 s - 2 and 131 n - 2 in even-numbered columns are provided in the respective columns of the plurality of pixels 111 , and hold signals based on the pixels 111 .
  • the amplifier circuits 120 When the pixels 111 and the amplifier circuits 120 are reset, the amplifier circuits 120 output noise signals, and transfer switches 130 n are turned on by a control signal PTN.
  • the noise signals are held in the holding capacitors 131 n - 1 and 131 n - 2 via the transfer switches 130 n .
  • the first holding capacitors 131 n - 1 and 131 n - 2 hold the signals of a reset state of the pixels 111 .
  • the photoelectric conversion section 114 starts photoelectric conversion and accumulation of electric charges.
  • the pixel transfer switch 115 is turned on, the pixel 111 outputs a pixel signal in which a signal corresponding to the electric charge generated by photoelectric conversion is superimposed on the noise signal to the column signal line 113 by the row selecting switch 118 being turned on.
  • the amplifier circuit 120 amplifies the pixel signal of the column signal line 113 to output the pixel signal.
  • transfer switches 130 s are turned on by a control signal PTS, the pixel signals are held in the holding capacitors 131 s - 1 and 131 s - 2 via the transfer switches 130 s .
  • the second holding capacitors 131 s - 1 and 131 s - 2 hold the signals in a non-reset state of the pixels 111 .
  • a first column selecting switch 132 n - 1 is arranged between the holding capacitor 131 n - 1 and a first horizontal output line 134 n - 1 .
  • a first column selecting switch 132 s - 1 is arranged between the holding capacitor 131 s - 1 and a first horizontal output line 134 s - 1 .
  • a second column selecting switch 132 n - 2 is arranged between the holding capacitor 131 n - 2 and a second horizontal output line 134 n - 2 .
  • a second column selecting switch 132 s - 2 is arranged between the holding capacitor 131 s - 2 and a second horizontal output line 134 s - 2 .
  • the first column selecting switch 132 n - 1 When the first column selecting switch 132 n - 1 is turned on, the voltage that is held by the holding capacitor 131 n - 1 is read to the horizontal output line 134 n - 1 . Further, when the first column selecting switch 132 s - 1 is turned on, the voltage that is held by the holding capacitor 131 s - 1 is read to the horizontal output line 134 s - 1 . Further, when the second column selecting switch 132 n - 2 is turned on, the voltage that is held by the holding capacitor 131 n - 2 is read to the horizontal output line 134 n - 2 .
  • the second column selecting switch 132 s - 2 when the second column selecting switch 132 s - 2 is turned on, the voltage that is held by the holding capacitor 131 s - 2 is read to the horizontal output line 134 s - 2 .
  • Electric charges are distributed according to capacitance ratios of capacitance values of the holding capacitors 131 n - 1 , 131 s - 1 , 131 n - 2 and 131 s - 2 , and capacitance including wiring capacitance values of the horizontal output lines 134 n - 1 , 134 s - 1 , 134 n - 2 and 134 s - 2 , and junction capacitance of switches that are connected to wiring.
  • the above described reading is based on the reading method by distribution of the electric charges described above. That is, the horizontal output lines 134 n - 1 , 134 s - 1 , 134 n - 2 and 134 s - 2 during the reading time period are in a high
  • Pixel signals of the horizontal output lines 134 s - 1 and 134 s - 2 are subjected to impedance conversion by a buffer 153 , and are output to an output terminal 138 s via a multiplexer 137 .
  • Noise signals of the horizontal output lines 134 n - 1 and 134 n - 2 are subjected to impedance conversion by the buffer 153 , and are output to an output terminal 138 n via the multiplexer 137 .
  • the horizontal output lines 134 n - 1 , 134 s - 1 , 134 n - 2 and 134 s - 2 hold signals for a predetermined time period, and thereafter are reset to voltage VCHR by switches 154 .
  • a horizontal scanning circuit (controlling unit) 135 - 1 is synchronized with a clock signal CLK 1 of a first phase, and controls the column selecting switches 132 n - 1 and 132 s - 1 .
  • a horizontal scanning circuit (controlling unit) 135 - 2 is synchronized with a clock signal CLK 2 of a second phase that is different from the first phase, and controls the column selecting switches 132 n - 2 and 132 s - 2 .
  • a multiplexer 137 multiplexes the signals of different phases that are input from the first horizontal output lines 134 n - 1 and 134 s - 1 and the second horizontal output lines 134 n - 2 and 134 s - 2 according to a control signal MUX, and outputs the multiplexed signals to the output terminals 138 n and 138 s .
  • a differential processing circuit 160 performs differential processing of the pixel signal of the output terminal 138 s and the noise signal of the output terminal 138 n , and outputs a pixel signal from which noise is removed.
  • FIG. 4 is a timing chart illustrating a drive method of the photoelectric conversion apparatus of the present embodiment.
  • PRES represents voltage of the pixel reset pulse line.
  • PSEL represents voltage of the row selecting pulse line.
  • PTX represents voltage of the pixel transfer pulse line.
  • PC 0 R represents a reset signal that controls the reset switch 122 in the amplifier circuit 120 .
  • PTN represents a sample hold signal that controls the transfer switch 130 n .
  • PTS represents a sample hold signal that controls the transfer switch 130 s .
  • CLMSEL 1 and CLMSEL 3 represent column selecting pulses that control the column selecting switches 132 s - 1 and 132 n - 1 , and are respectively supplied to column selecting lines 133 - 1 and 133 - 3 .
  • CLMSEL 2 and CLMSEL 4 are column selecting pulses that control the column selecting switches 132 s - 2 and 132 n - 2 , and are respectively supplied to column selecting lines 133 - 2 and 133 - 4 .
  • a first column selecting line 133 - 1 is the line for controlling the column selecting switches 132 s - 1 and 132 n - 1 in a first column.
  • a second column selecting line 133 - 2 is a line for controlling the column selecting switches 132 s - 2 and 132 n - 2 in a second column.
  • a third column selecting line 133 - 3 is a line for controlling the column selecting switches 132 s - 1 and 132 n - 1 in a third column.
  • a fourth column selecting line 133 - 4 is a line for controlling the column selecting switches 132 s - 2 and 132 n - 2 in a fourth column.
  • the pixel reset pulse line PRES rise to a high level, the pixel reset switch 116 is turned on, and the floating diffusion FD is reset to the power supply voltage VDD.
  • the pixel reset pulse line PRES changes to a low level, and the pixel reset switch 116 is turned off. Further, at and after a time t 2 , the row selecting pulse line PSEL rises to a high level, and the row selecting switch 118 is turned on, whereby the signals of the pixels 111 in a predetermined row can be read.
  • the reset signal PC 0 R changes to a high level, the reset switch 122 is turned on, and the amplifier circuit 120 is reset.
  • the reset signal PC 0 R changes to a low level, the reset switch 122 is turned off, and the reset of the amplifier circuit 120 is cancelled.
  • the pixel 111 outputs a noise signal to the column signal line 113 by reset of the floating diffusion FD.
  • the amplifier circuit 120 amplifies a noise signal and outputs the noise signal. From a time t 5 to a time t 6 , the sample hold signal PTN rises to a high level, and the sample hold switch 130 n is turned on. The noise signals that are output by the respective amplifier circuits 120 are held in the holding capacitors 131 n - 1 and 131 n - 2 in the respective columns via the sample hold switches 130 n.
  • the pixel transfer pulse line PTX rises to a high level, and the pixel transfer switch 115 is turned on. Thereupon, the electric charges that are photoelectrically converted by the photoelectric conversion section 114 in the pixel 111 are transferred to the floating diffusion FD via the pixel transfer switch 115 .
  • the pixel 111 outputs the pixel signal in which the signal photoelectrically converted is superimposed on the noise signal described above to the column signal line 113 .
  • the amplifier circuit 120 amplifies the pixel signal of the column signal line 113 and outputs the pixel signal.
  • the sample hold signal PTS rises to a high level, and the sample hold switch 130 s is turned on.
  • the pixel signals that are output by the respective amplifier circuits 120 are held in the holding capacitors 131 s - 1 and 131 s - 2 in the respective columns via the sample hold switches 130 s.
  • the pixel reset pulse line PRES rises to a high level, the pixel reset switch 116 is turned on, and the floating diffusion FD is reset to the power supply voltage VDD.
  • the clock signal CLK 1 of the first phase and the clock signal CLK 2 of the second phase are respectively supplied to the horizontal scanning circuits 135 - 1 and 135 - 2 .
  • the horizontal scanning circuit 135 - 1 generates column selecting pulses CLMSEL 1 and CLMSEL 3 based on the clock signal CLK 1 of the first phase.
  • the column selecting pulse CLMSEL 1 rises to a high level synchronously with the clock signal CLK 1 of the first phase, the column selecting switches 132 s - 1 and 132 n - 1 are turned on.
  • the pixel signal and the noise signal that are held in the holding capacitors 131 s - 1 and 131 n - 1 are read to the first horizontal output lines 134 s - 1 and 134 n - 1 .
  • the column selecting pulse CLMSEL 3 rises to a high level synchronously with the clock signal CLK 1 of the first phase, and the pixel signal and the noise signal of the third column are read in the same manner as described above.
  • the horizontal scanning circuit 135 - 2 generates column selecting pulses CLMSEL 2 and CLMSEL 4 based on the clock signal CLK 2 of the second phase.
  • the column selecting pulse CLMSEL 2 rises to a high level synchronously with the clock signal CLK 2 of the second phase
  • the column selecting switches 132 s - 2 and 132 n - 2 are turned on.
  • the pixel signal and the noise signal that are held in the holding capacitors 131 s - 2 and 131 n - 2 are read to the second horizontal output lines 134 s - 2 and 134 n - 2 .
  • the column selecting pulse CLMSEL 4 rises to a high level synchronously with the clock signal CLK 2 of the second phase, and the pixel signal and the noise signal of the fourth column are read in the same manner as described above.
  • any one of the outputs of the first horizontal output lines 134 s - 1 and 134 n - 1 , and the outputs of the second horizontal output lines 134 s - 2 and 134 n - 2 are selected, and are respectively read to the output terminals 138 s and 138 n.
  • the arrows in FIG. 4 indicate rising and falling of the signal CLMSEL 2 .
  • noise is laid on the signals that are being read to the horizontal output lines 134 s - 1 and 134 n - 1 from the holding capacitors 131 s - 1 and 131 n - 2 in the first column by the signal CLMSEL 1 .
  • noise is laid on the signals that are being read to the horizontal output lines 134 s - 1 and 134 n - 1 from the holding capacitors 131 s - 1 and 131 n - 2 in the third column by the signal CLMSEL 3 .
  • the noise countermeasures will be described later with reference to FIGS. 5 to 8 .
  • FIG. 5 is a plan view of an intersection portion of the column selecting line 133 - 2 and the horizontal output lines 134 s - 1 , 134 n - 1 , 134 s - 2 and 134 n - 2 in the photoelectric conversion apparatus of FIG. 1 .
  • FIG. 6 is a sectional view taken along the line 6 - 6 in FIG. 5 .
  • FIG. 7 is a sectional view taken along the line 7 - 7 in FIG. 5 .
  • FIG. 8 is a sectional view taken along the line 8 - 8 in FIG. 5 .
  • a polysilicon layer, a first aluminum layer and a second aluminum layer are stacked on a silicon substrate 150 and an element isolation oxide film 151 , and the polysilicon layer and the first aluminum layer are connected by a contact hole.
  • the column selecting line 133 - 2 is formed of the first aluminum layer directly below, and forms wiring with low resistance, in a region B.
  • the column selecting line 133 - 2 is capacitively coupled with the horizontal output lines 134 s - 2 and 134 n - 2 to a certain degree, the potentials of the horizontal output lines 134 s - 2 and 134 n - 2 change synchronously with the potential change of the column selecting line 133 - 2 , but an influence on the sampling time period is small.
  • the column selecting line 133 - 2 is formed of the polysilicon layer to avoid capacitive coupling with the horizontal output lines 134 s - 1 and 134 n - 1 that are driven in a different phase.
  • the column selecting line 133 - 2 is formed of the first aluminum layer in the region B, is formed of the polysilicon layer in the region A, and is formed in different wiring layers in the region A and the region B.
  • a shield 152 is arranged between the column selecting line 133 - 2 and the horizontal output lines 134 s - 1 and 134 n - 1 . This is because the potential change of the column selecting line 133 - 2 coincides with a latter half of a time period in which the horizontal output lines 134 s - 1 and 134 n - 1 output signals, and is close to a time when an external circuit performs sampling.
  • the shield 152 is arranged between the column selecting line 133 - 2 and the horizontal output lines 134 s - 1 and 134 n - 1 , whereas in the region B, the shield 152 is not arranged between the column selecting line 133 - 2 and the horizontal output lines 134 s - 2 and 134 n - 2 .
  • the column selecting line 133 - 2 is reduced in wiring resistance by using aluminum wiring with low resistance in the region B, and thereby, even if the column selecting line 133 - 2 is capacitively coupled to the horizontal output lines 134 s - 2 and 134 n - 2 that are driven in the same phase, an influence thereon can be decreased.
  • wirings 136 s - 2 and 136 n - 2 that are led from the holding capacitors 131 s - 2 and 131 n - 2 to the horizontal output lines 134 s - 2 and 134 n - 2 are formed of the same layer as the column selecting line 133 - 2 .
  • a capacitive coupling amount between the column selecting line 133 - 2 and the wiring 136 s - 2 and a capacitive coupling amount between the column selecting line 133 - 2 and the wiring 136 n - 2 can be made unaffected by an alignment error between different wiring layers, and can be uniformized with high precision. Consequently, an offset error caused by an imbalance of the capacitive coupling of the column selecting line 133 - 2 to the wirings 136 s - 2 and 136 n - 2 can be reduced.
  • the photoelectric conversion apparatus that operates with the clock signals CLK 1 and CLK 2 of the two kinds of phases is described as an example, but the present invention can also be applied to the case of the photoelectric conversion apparatus that is driven by clock signals of three or more kinds of phases.
  • the present embodiment can also be applied to a photoelectric conversion apparatus that has a line memory configured by a plurality of memory sections that hold signals.
  • a first switch is connected to each of the memory sections of the line memory.
  • a first common signal line is configured to have a predetermined number of the first switches connected thereto.
  • a second switch is a switch for connecting the first common signal line to a second common signal line.
  • a signal read section selectively reads the signals that are held by the respective memory sections of the line memory to the second common signal line via the first switch, the first common signal line and the second switch.
  • the present embodiment can also be applied to the photoelectric conversion apparatus like this by causing the signals to be output synchronously with a plurality of clock signals having different phases.
  • FIG. 9 is a plan view of a photoelectric conversion apparatus according to a second embodiment of the present invention.
  • FIG. 10 is a sectional view taken along the line 10 - 10 of FIG. 9 .
  • FIG. 11 is a sectional view taken along the line 11 - 11 of FIG. 9 .
  • FIG. 12 is a sectional view taken along the line 12 - 12 of FIG. 9 .
  • the present embodiment differs from the first embodiment in a structure of intersection portions of the column selecting line 133 - 2 and the like and the horizontal output lines 134 s - 1 and 134 n - 1 .
  • the point in which the present embodiment differs from the first embodiment will be described.
  • the horizontal output lines 134 s - 1 and 134 n - 1 are reduced in capacitive coupling components by having widths thinned in portions which intersect the column selecting line 133 - 2 .
  • the horizontal output lines 134 s - 1 and 134 n - 1 are thinned, but a width of the column selecting line 133 - 2 may be thinned in the intersecting portion described above.
  • both the region A and the region B are formed by using an aluminum wiring with low resistance for the column selecting line 133 - 2 , and therefore, the entire resistance of the column selecting line 133 - 2 can be reduced.
  • the region A of the portion at which the column selecting line 133 - 2 intersects the first output lines 134 s - 1 and 134 n - 1 , and the region B of the portion at which the column selecting line 133 - 2 intersects the second output lines 134 s - 2 and 134 n - 2 have different wiring structure from each other.
  • the column selecting line 133 - 2 is described as an example, but the same applies to the other column selecting lines 133 - 1 , 133 - 3 and 133 - 4 .
  • the voltages of the second output lines 134 s - and 134 n - 2 are only slightly influenced by the noise accompanying the potential change of the column selecting line 133 - 2 .
  • the column selecting line 133 - 2 changes in potential synchronously with the clock signal CLK 2 of the second phase
  • the first output lines 134 s - 1 and 134 n - 1 change in potential synchronously with the clock signal CLK 1 of the first phase. Therefore, the voltages of the first output lines 134 s - 1 and 134 n - 1 are significantly influenced by the noise accompanying the potential change of the column selecting line 133 - 2 .
  • the wiring structure is made to differ from the wiring structure of the region B of the portion at which the column selecting line 133 - 2 intersects the second output lines 134 s - 2 and 134 n - 2 so that the capacitive coupling is reduced.
  • the noise of the first output lines 134 s - 1 and 134 n - 1 can be reduced.
  • FIG. 13 is a diagram illustrating a configuration example of an imaging system according to a third embodiment of the present invention.
  • An imaging system 800 has, for example, an optical unit 810 , a photoelectric conversion apparatus 100 , a video signal processing circuit unit 830 , a recording & communicating unit 840 , a timing control circuit unit 850 , a system control circuit unit 860 , and a play & display unit 870 .
  • the photoelectric conversion apparatus 100 corresponds to the photoelectric conversion apparatuses of the first and second embodiments.
  • the optical unit 810 that is an optical system such as a lens causes light from an object to form an image on a pixel section 101 of the photoelectric conversion apparatus 100 , in which a plurality of pixels are arranged in a two-dimensional shape, and forms an image of the object.
  • the photoelectric conversion apparatus 100 outputs a signal corresponding to the light caused to form an image on the pixel section 101 at timing based on a signal from the timing control circuit unit 850 .
  • the signal that is output from the photoelectric conversion apparatus 100 is input into the video signal processing circuit unit 830 that is a video signal processing unit, and the video signal processing circuit unit 830 performs signal processing according to a method set by a program.
  • the signal that is obtained by processing in the video signal processing circuit unit 830 is sent to the recording & communicating unit 840 as an image data.
  • the recording & communicating unit 840 sends the signal for forming an image to the play & display unit 870 , and causes the play & display unit 870 to play & display a moving image and a still image.
  • the recording & communicating unit 840 receives the signal from the video signal processing circuit unit 830 , and not only performs communication with the system control circuit unit 860 but also performs an operation of recording the signal for forming an image in a recording medium not illustrated.
  • the system control circuit unit 860 integrally controls an operation of the imaging system, and controls drive of the optical unit 810 , the timing control circuit unit 850 , the recording & communicating unit 840 and the play & display unit 870 . Further, the system control circuit unit 860 includes a storage apparatus not illustrated that is a recording medium, for example, and a program that is necessary to control the operation of the imaging system is recorded therein. Further, the system control circuit unit 860 supplies a signal for switching the drive mode according to the operation of a user, for example, into the imaging system. Specific examples include change of the row to be read and the row to be reset, change of the angle of view accompanying electronic zoom, and shift of the angle of view accompanying electronic vibration isolation. The timing control circuit unit 850 controls drive timing of the photoelectric conversion apparatus 100 and the video signal processing circuit unit 830 based on control by the system control circuit unit 860 .

Abstract

The present disclosure relate to photoelectric conversion apparatus and imaging system. The photoelectric conversion apparatus has a plurality of pixels arranged in rows and columns, and each configured to generate a signal by photoelectric conversion, a plurality of holding capacitors arranged correspondingly to the respective columns of the plurality of pixels, and configured to hold signals based on the pixels, a first output line, a second output line, a first switch arranged between the holding capacitor and the first output line, a second switch arranged between the holding capacitor and the second output line, and a column selecting line configured to control the second switch, wherein a wiring structure of a portion at which the column selecting line intersects the first output line is different from a wiring structure of a portion at which the column selecting line intersects the second output line.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a photoelectric conversion apparatus and an imaging system for use in a scanner, a video camera, a digital still camera and the like.
2. Description of the Related Art
Japanese Patent Application Laid-Open No. 2003-259227 discloses a technique of reading signals from a column memory by two horizontal scanning circuits that operate in different phases, multiplexing the outputs from two horizontal output lines, and outputting the multiplexed outputs, in a CMOS image sensor. By doing so, a signal can be output from the CMOS image sensor at a frequency higher than the drive frequency of the horizontal output lines, and a photoelectric conversion apparatus with a high frame rate can be realized.
However, the CMOS image sensor as in Japanese Patent Application Laid-Open No. 2003-259227 has the following problem. In order to read a signal to the two horizontal output lines from the column memory in different phases as described above, the first column selecting line that provides electrical continuity between the column memory and the first horizontal output line in one phase, and the second column selecting line that sequentially provides electrical continuity between the column memory and the second horizontal output line in the other phase are included. There arises a problem that the first column selecting line capacitively couples with the second horizontal output line, or the second column selecting line capacitively couples with the first horizontal output line resulting in a superimpose of noise in the signal reading time period.
SUMMARY OF THE INVENTION
According to an aspect of the present invention, a photoelectric conversion apparatus comprises: a plurality of pixels arranged in rows and columns, and each configured to generate a signal by photoelectric conversion; a plurality of holding capacitors each arranged correspondingly to one of the columns of the plurality of pixels, and configured to hold a signal based on the signal generated by the pixel; a first output line; a second output line; a first switch arranged between the holding capacitor and the first output line; a second switch arranged between the holding capacitor and the second output line; and a column selecting line configured to control the second switch, wherein a wiring structure of a portion at which the column selecting line intersects with the first output line is different from a wiring structure of a portion at which the column selecting line intersects with the second output line.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating a photoelectric conversion apparatus of a first embodiment of the present invention.
FIG. 2 is a circuit diagram of a pixel of the first embodiment of the present invention.
FIG. 3 is a circuit diagram of an amplifier circuit of the first embodiment of the present invention.
FIG. 4 is a diagram of timing of driving the first embodiment of the present invention.
FIG. 5 is a plan view of a part of the first embodiment of the present invention.
FIG. 6 is a sectional view of a part of the first embodiment of the present invention.
FIG. 7 is a sectional view of a part of the first embodiment of the present invention.
FIG. 8 is a sectional view of a part of the first embodiment of the present invention.
FIG. 9 is a plan view of a part of a second embodiment of the present invention.
FIG. 10 is a sectional view of a part of the second embodiment of the present invention.
FIG. 11 is a sectional view of a part of the second embodiment of the present invention.
FIG. 12 is a sectional view of a part of the second embodiment of the present invention.
FIG. 13 is a diagram illustrating a configuration example of an imaging system.
DESCRIPTION OF THE EMBODIMENTS
Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
First Embodiment
FIG. 1 is a diagram illustrating a configuration example of a photoelectric conversion apparatus according to a first embodiment of the present invention. The photoelectric conversion apparatus is a CMOS image sensor, for example, and photoelectrically converts incident light of an object image, amplifies an electric signal obtained by photoelectric conversion and outputs the electric signal to an outside. The photoelectric conversion apparatus has a pixel array 110. The pixel array 110 has a plurality of pixels 111 that are arranged in two dimensional rows and columns. FIG. 1 illustrates eight of the pixels 111 for simplification, but the number of pixels 111 is not limited to eight, and a larger number of pixels 111 may be included. The respective pixels 111 generate signals by photoelectric conversion.
FIG. 2 is a circuit diagram illustrating a configuration example of the pixel 111. A pixel control signal line 112 has a row selecting pulse line PSEL, a pixel transfer pulse line PTX and a pixel reset pulse line PRES. A photoelectric conversion section 114 is a photodiode, for example, and converts light into electric charges to accumulate the electric charges. A pixel transfer switch 115 transfers the electric charges that are accumulated in the photoelectric conversion section 114 to a floating diffusion FD in response to a voltage of the pixel transfer pulse line PTX. The floating diffusion FD accumulates electric charges, and converts the electric charges into voltage. A pixel reset switch 116 resets the voltage of the floating diffusion FD and/or the photoelectric conversion section 114 to power supply voltage VDD in response to voltage of the pixel reset pulse line PRES. A pixel amplifier transistor 117 amplifies the voltage of the floating diffusion FD. A row selecting switch 118 outputs the voltage that is amplified by the pixel amplifier transistor 117 to a column signal line 113 in response to voltage of the row selecting pulse line PSEL. The column signal line 113 is provided for each of columns of the pixels 111 arranged in rows and columns. The pixels 111 in each of the columns are connected to each of the column signal lines 113.
The photoelectric conversion apparatus of FIG. 1 further has a vertical scanning circuit 140. The vertical scanning circuit 140 is connected to the respective rows of the pixels 111 via the pixel control signal lines 112. The pixels 111 in each of the rows are connected to the same pixel control signal line 112. The pixel 111 outputs voltage to the column signal line 113 as described above. The amplifier circuit 120 amplifies the voltage of the column signal line 113.
FIG. 3 is a circuit diagram illustrating a configuration example of the amplifier circuit 120. The amplifier circuit 120 has an operational amplifier 121, a reset switch 122, an input capacitor C0 and a feedback capacitor CF, and invertingly amplifies the voltage of the column signal line 113. When the reset switch 122 is turned on, the amplifier circuit 120 is reset, whereas when the reset switch 122 is turned off, the reset of the amplifier circuit 120 is cancelled.
In FIG. 1, holding capacitors 131 s-1 and 131 n-1 in odd-numbered columns, and holding capacitors 131 s-2 and 131 n-2 in even-numbered columns are provided in the respective columns of the plurality of pixels 111, and hold signals based on the pixels 111.
When the pixels 111 and the amplifier circuits 120 are reset, the amplifier circuits 120 output noise signals, and transfer switches 130 n are turned on by a control signal PTN. The noise signals are held in the holding capacitors 131 n-1 and 131 n-2 via the transfer switches 130 n. The first holding capacitors 131 n-1 and 131 n-2 hold the signals of a reset state of the pixels 111.
When reset of the pixels 111 is cancelled, the photoelectric conversion section 114 starts photoelectric conversion and accumulation of electric charges. When reset of the amplifier circuit 120 is cancelled, and the pixel transfer switch 115 is turned on, the pixel 111 outputs a pixel signal in which a signal corresponding to the electric charge generated by photoelectric conversion is superimposed on the noise signal to the column signal line 113 by the row selecting switch 118 being turned on. The amplifier circuit 120 amplifies the pixel signal of the column signal line 113 to output the pixel signal. When transfer switches 130 s are turned on by a control signal PTS, the pixel signals are held in the holding capacitors 131 s-1 and 131 s-2 via the transfer switches 130 s. The second holding capacitors 131 s-1 and 131 s-2 hold the signals in a non-reset state of the pixels 111.
A first column selecting switch 132 n-1 is arranged between the holding capacitor 131 n-1 and a first horizontal output line 134 n-1. A first column selecting switch 132 s-1 is arranged between the holding capacitor 131 s-1 and a first horizontal output line 134 s-1. A second column selecting switch 132 n-2 is arranged between the holding capacitor 131 n-2 and a second horizontal output line 134 n-2. A second column selecting switch 132 s-2 is arranged between the holding capacitor 131 s-2 and a second horizontal output line 134 s-2.
When the first column selecting switch 132 n-1 is turned on, the voltage that is held by the holding capacitor 131 n-1 is read to the horizontal output line 134 n-1. Further, when the first column selecting switch 132 s-1 is turned on, the voltage that is held by the holding capacitor 131 s-1 is read to the horizontal output line 134 s-1. Further, when the second column selecting switch 132 n-2 is turned on, the voltage that is held by the holding capacitor 131 n-2 is read to the horizontal output line 134 n-2. Further, when the second column selecting switch 132 s-2 is turned on, the voltage that is held by the holding capacitor 131 s-2 is read to the horizontal output line 134 s-2. Electric charges are distributed according to capacitance ratios of capacitance values of the holding capacitors 131 n-1, 131 s-1, 131 n-2 and 131 s-2, and capacitance including wiring capacitance values of the horizontal output lines 134 n-1, 134 s-1, 134 n-2 and 134 s-2, and junction capacitance of switches that are connected to wiring. The above described reading is based on the reading method by distribution of the electric charges described above. That is, the horizontal output lines 134 n-1, 134 s-1, 134 n-2 and 134 s-2 during the reading time period are in a high-impedance state.
Pixel signals of the horizontal output lines 134 s-1 and 134 s-2 are subjected to impedance conversion by a buffer 153, and are output to an output terminal 138 s via a multiplexer 137. Noise signals of the horizontal output lines 134 n-1 and 134 n-2 are subjected to impedance conversion by the buffer 153, and are output to an output terminal 138 n via the multiplexer 137.
The horizontal output lines 134 n-1, 134 s-1, 134 n-2 and 134 s-2 hold signals for a predetermined time period, and thereafter are reset to voltage VCHR by switches 154. A horizontal scanning circuit (controlling unit) 135-1 is synchronized with a clock signal CLK1 of a first phase, and controls the column selecting switches 132 n-1 and 132 s-1. A horizontal scanning circuit (controlling unit) 135-2 is synchronized with a clock signal CLK2 of a second phase that is different from the first phase, and controls the column selecting switches 132 n-2 and 132 s-2. A multiplexer 137 multiplexes the signals of different phases that are input from the first horizontal output lines 134 n-1 and 134 s-1 and the second horizontal output lines 134 n-2 and 134 s-2 according to a control signal MUX, and outputs the multiplexed signals to the output terminals 138 n and 138 s. A differential processing circuit 160 performs differential processing of the pixel signal of the output terminal 138 s and the noise signal of the output terminal 138 n, and outputs a pixel signal from which noise is removed.
FIG. 4 is a timing chart illustrating a drive method of the photoelectric conversion apparatus of the present embodiment. PRES represents voltage of the pixel reset pulse line. PSEL represents voltage of the row selecting pulse line. PTX represents voltage of the pixel transfer pulse line. Further, PC0R represents a reset signal that controls the reset switch 122 in the amplifier circuit 120. Further, PTN represents a sample hold signal that controls the transfer switch 130 n. PTS represents a sample hold signal that controls the transfer switch 130 s. Further, CLMSEL1 and CLMSEL3 represent column selecting pulses that control the column selecting switches 132 s-1 and 132 n-1, and are respectively supplied to column selecting lines 133-1 and 133-3. CLMSEL2 and CLMSEL4 are column selecting pulses that control the column selecting switches 132 s-2 and 132 n-2, and are respectively supplied to column selecting lines 133-2 and 133-4. A first column selecting line 133-1 is the line for controlling the column selecting switches 132 s-1 and 132 n-1 in a first column. A second column selecting line 133-2 is a line for controlling the column selecting switches 132 s-2 and 132 n-2 in a second column. A third column selecting line 133-3 is a line for controlling the column selecting switches 132 s-1 and 132 n-1 in a third column. A fourth column selecting line 133-4 is a line for controlling the column selecting switches 132 s-2 and 132 n-2 in a fourth column.
Before a time t1, the pixel reset pulse line PRES rise to a high level, the pixel reset switch 116 is turned on, and the floating diffusion FD is reset to the power supply voltage VDD.
From the time t1 to a time t11, the pixel reset pulse line PRES changes to a low level, and the pixel reset switch 116 is turned off. Further, at and after a time t2, the row selecting pulse line PSEL rises to a high level, and the row selecting switch 118 is turned on, whereby the signals of the pixels 111 in a predetermined row can be read. At a time t3, the reset signal PC0R changes to a high level, the reset switch 122 is turned on, and the amplifier circuit 120 is reset. At a time t4, the reset signal PC0R changes to a low level, the reset switch 122 is turned off, and the reset of the amplifier circuit 120 is cancelled. The pixel 111 outputs a noise signal to the column signal line 113 by reset of the floating diffusion FD. The amplifier circuit 120 amplifies a noise signal and outputs the noise signal. From a time t5 to a time t6, the sample hold signal PTN rises to a high level, and the sample hold switch 130 n is turned on. The noise signals that are output by the respective amplifier circuits 120 are held in the holding capacitors 131 n-1 and 131 n-2 in the respective columns via the sample hold switches 130 n.
From a time t7 to a time t8, the pixel transfer pulse line PTX rises to a high level, and the pixel transfer switch 115 is turned on. Thereupon, the electric charges that are photoelectrically converted by the photoelectric conversion section 114 in the pixel 111 are transferred to the floating diffusion FD via the pixel transfer switch 115. The pixel 111 outputs the pixel signal in which the signal photoelectrically converted is superimposed on the noise signal described above to the column signal line 113. The amplifier circuit 120 amplifies the pixel signal of the column signal line 113 and outputs the pixel signal.
From a time t9 to a time t10, the sample hold signal PTS rises to a high level, and the sample hold switch 130 s is turned on. The pixel signals that are output by the respective amplifier circuits 120 are held in the holding capacitors 131 s-1 and 131 s-2 in the respective columns via the sample hold switches 130 s.
At and after a time t11, the pixel reset pulse line PRES rises to a high level, the pixel reset switch 116 is turned on, and the floating diffusion FD is reset to the power supply voltage VDD.
At and after a time t12, the clock signal CLK1 of the first phase and the clock signal CLK2 of the second phase are respectively supplied to the horizontal scanning circuits 135-1 and 135-2. The horizontal scanning circuit 135-1 generates column selecting pulses CLMSEL1 and CLMSEL3 based on the clock signal CLK1 of the first phase. First, when the column selecting pulse CLMSEL1 rises to a high level synchronously with the clock signal CLK1 of the first phase, the column selecting switches 132 s-1 and 132 n-1 are turned on. Thereby, the pixel signal and the noise signal that are held in the holding capacitors 131 s-1 and 131 n-1 are read to the first horizontal output lines 134 s-1 and 134 n-1. Next, the column selecting pulse CLMSEL3 rises to a high level synchronously with the clock signal CLK1 of the first phase, and the pixel signal and the noise signal of the third column are read in the same manner as described above.
Likewise, the horizontal scanning circuit 135-2 generates column selecting pulses CLMSEL2 and CLMSEL4 based on the clock signal CLK2 of the second phase. First, when the column selecting pulse CLMSEL2 rises to a high level synchronously with the clock signal CLK2 of the second phase, the column selecting switches 132 s-2 and 132 n-2 are turned on. Thereby, the pixel signal and the noise signal that are held in the holding capacitors 131 s-2 and 131 n-2 are read to the second horizontal output lines 134 s-2 and 134 n-2. Next, the column selecting pulse CLMSEL4 rises to a high level synchronously with the clock signal CLK2 of the second phase, and the pixel signal and the noise signal of the fourth column are read in the same manner as described above.
Based on the multiplex signal MUX, in the multiplexers 137, any one of the outputs of the first horizontal output lines 134 s-1 and 134 n-1, and the outputs of the second horizontal output lines 134 s-2 and 134 n-2 are selected, and are respectively read to the output terminals 138 s and 138 n.
When a signal PCHR1 rises to a high level, the switch 154 is turned on, and the horizontal output lines 134 s-1 and 134 n-1 are reset to the voltage VCHR. Further, when a signal PCHR2 rises to a high level, the switch 154 is turned on, and the horizontal output lines 134 s-2 and 134 n-2 are reset to the voltage VCHR.
The arrows in FIG. 4 indicate rising and falling of the signal CLMSEL2. By a potential change of the column selecting line 133-2 at a rising time of the signal CLMSEL2, noise is laid on the signals that are being read to the horizontal output lines 134 s-1 and 134 n-1 from the holding capacitors 131 s-1 and 131 n-2 in the first column by the signal CLMSEL1. Further, by a potential change of the column selecting line 133-2 at a falling time of the signal CLMSEL2, noise is laid on the signals that are being read to the horizontal output lines 134 s-1 and 134 n-1 from the holding capacitors 131 s-1 and 131 n-2 in the third column by the signal CLMSEL3. The noise countermeasures will be described later with reference to FIGS. 5 to 8.
FIG. 5 is a plan view of an intersection portion of the column selecting line 133-2 and the horizontal output lines 134 s-1, 134 n-1, 134 s-2 and 134 n-2 in the photoelectric conversion apparatus of FIG. 1. FIG. 6 is a sectional view taken along the line 6-6 in FIG. 5. FIG. 7 is a sectional view taken along the line 7-7 in FIG. 5. FIG. 8 is a sectional view taken along the line 8-8 in FIG. 5.
A polysilicon layer, a first aluminum layer and a second aluminum layer are stacked on a silicon substrate 150 and an element isolation oxide film 151, and the polysilicon layer and the first aluminum layer are connected by a contact hole. With respect to the horizontal output lines 134 s-2 and 134 n-2 that are formed of the second aluminum layer, the column selecting line 133-2 is formed of the first aluminum layer directly below, and forms wiring with low resistance, in a region B. Attention is paid to the fact that even if the column selecting line 133-2 is capacitively coupled with the horizontal output lines 134 s-2 and 134 n-2 to a certain degree, the potentials of the horizontal output lines 134 s-2 and 134 n-2 change synchronously with the potential change of the column selecting line 133-2, but an influence on the sampling time period is small. In a region A, the column selecting line 133-2 is formed of the polysilicon layer to avoid capacitive coupling with the horizontal output lines 134 s-1 and 134 n-1 that are driven in a different phase. The column selecting line 133-2 is formed of the first aluminum layer in the region B, is formed of the polysilicon layer in the region A, and is formed in different wiring layers in the region A and the region B.
Further, in order to reduce capacitive coupling of the column selecting line 133-2 and the horizontal output lines 134 s-1 and 134 n-1, a shield 152 is arranged between the column selecting line 133-2 and the horizontal output lines 134 s-1 and 134 n-1. This is because the potential change of the column selecting line 133-2 coincides with a latter half of a time period in which the horizontal output lines 134 s-1 and 134 n-1 output signals, and is close to a time when an external circuit performs sampling. In the region A, the shield 152 is arranged between the column selecting line 133-2 and the horizontal output lines 134 s-1 and 134 n-1, whereas in the region B, the shield 152 is not arranged between the column selecting line 133-2 and the horizontal output lines 134 s-2 and 134 n-2.
By making the structure of the column selecting line 133-2 different in the region A and the region B as above, noise is difficult to superimpose on the horizontal output lines 134 s-1 and 134 n-1 that are driven in a different phase. Further, in the present embodiment, the column selecting line 133-2 is reduced in wiring resistance by using aluminum wiring with low resistance in the region B, and thereby, even if the column selecting line 133-2 is capacitively coupled to the horizontal output lines 134 s-2 and 134 n-2 that are driven in the same phase, an influence thereon can be decreased.
Further, as shown in FIG. 8, wirings 136 s-2 and 136 n-2 that are led from the holding capacitors 131 s-2 and 131 n-2 to the horizontal output lines 134 s-2 and 134 n-2 are formed of the same layer as the column selecting line 133-2. Thereby, a capacitive coupling amount between the column selecting line 133-2 and the wiring 136 s-2, and a capacitive coupling amount between the column selecting line 133-2 and the wiring 136 n-2 can be made unaffected by an alignment error between different wiring layers, and can be uniformized with high precision. Consequently, an offset error caused by an imbalance of the capacitive coupling of the column selecting line 133-2 to the wirings 136 s-2 and 136 n-2 can be reduced.
In the above, explanation is made with attention paid to the circuit in the second column from the left in FIG. 1. In contrast with this, in the first column from the left, the positions of the aforementioned region A and region B become inverted. More specifically, a region where the column selecting line 133-1 intersects the horizontal output lines 134 s-1 and 134 n-1 has the same structure as that of the region B illustrated in FIGS. 5 to 8, and a region where the column selecting line 133-1 intersects the horizontal output lines 134 s-2 and 134 n-2 has the same structure as that of the region A. In the third column from the left and the following columns, the wiring patterns of the first column and the second column are repeated.
In the present embodiment, the photoelectric conversion apparatus that operates with the clock signals CLK1 and CLK2 of the two kinds of phases is described as an example, but the present invention can also be applied to the case of the photoelectric conversion apparatus that is driven by clock signals of three or more kinds of phases.
Further, the present embodiment can also be applied to a photoelectric conversion apparatus that has a line memory configured by a plurality of memory sections that hold signals. A first switch is connected to each of the memory sections of the line memory. A first common signal line is configured to have a predetermined number of the first switches connected thereto. A second switch is a switch for connecting the first common signal line to a second common signal line. A signal read section selectively reads the signals that are held by the respective memory sections of the line memory to the second common signal line via the first switch, the first common signal line and the second switch. The present embodiment can also be applied to the photoelectric conversion apparatus like this by causing the signals to be output synchronously with a plurality of clock signals having different phases.
Second Embodiment
FIG. 9 is a plan view of a photoelectric conversion apparatus according to a second embodiment of the present invention. FIG. 10 is a sectional view taken along the line 10-10 of FIG. 9. FIG. 11 is a sectional view taken along the line 11-11 of FIG. 9. FIG. 12 is a sectional view taken along the line 12-12 of FIG. 9. The present embodiment differs from the first embodiment in a structure of intersection portions of the column selecting line 133-2 and the like and the horizontal output lines 134 s-1 and 134 n-1. Hereinafter, the point in which the present embodiment differs from the first embodiment will be described.
In the present embodiment, the horizontal output lines 134 s-1 and 134 n-1 are reduced in capacitive coupling components by having widths thinned in portions which intersect the column selecting line 133-2. Note that in FIG. 9, the horizontal output lines 134 s-1 and 134 n-1 are thinned, but a width of the column selecting line 133-2 may be thinned in the intersecting portion described above. By adopting a structure in which the widths of the lines differ in the region A and the region B, noise is difficult to superimpose on the horizontal output lines 134 s-1 and 134 n-1 that are driven in a different phase.
Further, in the present embodiment, both the region A and the region B are formed by using an aluminum wiring with low resistance for the column selecting line 133-2, and therefore, the entire resistance of the column selecting line 133-2 can be reduced.
As above, in the first and the second embodiments, the region A of the portion at which the column selecting line 133-2 intersects the first output lines 134 s-1 and 134 n-1, and the region B of the portion at which the column selecting line 133-2 intersects the second output lines 134 s-2 and 134 n-2 have different wiring structure from each other. Note that the column selecting line 133-2 is described as an example, but the same applies to the other column selecting lines 133-1, 133-3 and 133-4.
Since the column selecting line 133-2 and the second output lines 134 s-2 and 134 n-2 both change in potential synchronously with the clock signal CLK2 of the second phase, the voltages of the second output lines 134 s- and 134 n-2 are only slightly influenced by the noise accompanying the potential change of the column selecting line 133-2. In contrast with this, the column selecting line 133-2 changes in potential synchronously with the clock signal CLK2 of the second phase, and the first output lines 134 s-1 and 134 n-1 change in potential synchronously with the clock signal CLK1 of the first phase. Therefore, the voltages of the first output lines 134 s-1 and 134 n-1 are significantly influenced by the noise accompanying the potential change of the column selecting line 133-2.
Therefore, in the region A of the portion at which the column selecting line 133-2 intersects the first output lines 134 s-1 and 134 n-1, the wiring structure is made to differ from the wiring structure of the region B of the portion at which the column selecting line 133-2 intersects the second output lines 134 s-2 and 134 n-2 so that the capacitive coupling is reduced. Thereby, the noise of the first output lines 134 s-1 and 134 n-1 can be reduced.
Third Embodiment
FIG. 13 is a diagram illustrating a configuration example of an imaging system according to a third embodiment of the present invention. An imaging system 800 has, for example, an optical unit 810, a photoelectric conversion apparatus 100, a video signal processing circuit unit 830, a recording & communicating unit 840, a timing control circuit unit 850, a system control circuit unit 860, and a play & display unit 870. The photoelectric conversion apparatus 100 corresponds to the photoelectric conversion apparatuses of the first and second embodiments.
The optical unit 810 that is an optical system such as a lens causes light from an object to form an image on a pixel section 101 of the photoelectric conversion apparatus 100, in which a plurality of pixels are arranged in a two-dimensional shape, and forms an image of the object. The photoelectric conversion apparatus 100 outputs a signal corresponding to the light caused to form an image on the pixel section 101 at timing based on a signal from the timing control circuit unit 850. The signal that is output from the photoelectric conversion apparatus 100 is input into the video signal processing circuit unit 830 that is a video signal processing unit, and the video signal processing circuit unit 830 performs signal processing according to a method set by a program. The signal that is obtained by processing in the video signal processing circuit unit 830 is sent to the recording & communicating unit 840 as an image data. The recording & communicating unit 840 sends the signal for forming an image to the play & display unit 870, and causes the play & display unit 870 to play & display a moving image and a still image. The recording & communicating unit 840 receives the signal from the video signal processing circuit unit 830, and not only performs communication with the system control circuit unit 860 but also performs an operation of recording the signal for forming an image in a recording medium not illustrated.
The system control circuit unit 860 integrally controls an operation of the imaging system, and controls drive of the optical unit 810, the timing control circuit unit 850, the recording & communicating unit 840 and the play & display unit 870. Further, the system control circuit unit 860 includes a storage apparatus not illustrated that is a recording medium, for example, and a program that is necessary to control the operation of the imaging system is recorded therein. Further, the system control circuit unit 860 supplies a signal for switching the drive mode according to the operation of a user, for example, into the imaging system. Specific examples include change of the row to be read and the row to be reset, change of the angle of view accompanying electronic zoom, and shift of the angle of view accompanying electronic vibration isolation. The timing control circuit unit 850 controls drive timing of the photoelectric conversion apparatus 100 and the video signal processing circuit unit 830 based on control by the system control circuit unit 860.
Note that each of the above described exemplary embodiments only illustrates an example of embodiment in carrying out the present invention, and the technical scope of the present invention is not interpreted limitatively by the exemplary embodiments. That is, the present invention can be carried out in various forms without departing from the technical concept of the present invention or the main feature of the present invention.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2013-092459, filed Apr. 25, 2013, which is hereby incorporated by reference herein in its entirety.

Claims (15)

What is claimed is:
1. A photoelectric conversion apparatus comprising:
a plurality of pixels arranged in rows and columns, and each configured to generate a signal by photoelectric conversion;
a plurality of holding capacitors each arranged correspondingly to one of the columns of the plurality of pixels, and configured to hold a signal based on the signal generated by the pixel;
a first output line corresponding to the plurality of pixels arranged in a first column;
a second output line corresponding to the plurality of pixels arranged in a second column which is adjacent the first column;
a first switch arranged between the holding capacitor and the first output line;
a second switch arranged between the holding capacitor and the second output line; and
a column selecting line configured to control the second switch, wherein
a wiring structure of a portion at which the column selecting line intersects with the first output line is different from a wiring structure of a portion at which the column selecting line intersects with the second output line.
2. The photoelectric conversion apparatus according to claim 1, wherein the portion at which the column selecting line intersects the first output line, and the portion at which the column selecting line intersects the second output line are formed in mutually different wiring layers.
3. The photoelectric conversion apparatus according to claim 2, wherein a shielding is arranged between the column selecting line and the first output line at the portion at which the column selecting line intersects the first output line, and
no shielding is arranged between the column selecting line and the second output line at the portion at which the column selecting line intersects the second output line.
4. The photoelectric conversion apparatus according to claim 2, wherein the portion at which the column selecting line intersects the first output line has a wiring width different from a wiring width of the portion at which the column selecting line intersects the second output line.
5. The photoelectric conversion apparatus according to claim 2, wherein the plurality of holding capacitors include a first holding capacitor configured to hold a signal of a reset state of the pixel, and a second holding capacitor configured to hold a signal of a non-reset state of the pixel.
6. The photoelectric conversion apparatus according to claim 5, further comprising a differential processing circuit configured to perform a differential processing between the signal outputted from first holding capacitor to the first or second output line and the signal outputted from second holding capacitor to the first or second output line.
7. The photoelectric conversion apparatus according to claim 2, further comprising a controlling unit configured to control the first and second switches, respectively synchronously with signals of mutually different phases.
8. An imaging system comprising:
the photoelectric conversion apparatus according to claim 2; and
a processing unit configured to process a signal outputted from the photoelectric conversion apparatus.
9. The photoelectric conversion apparatus according to claim 1, wherein a shielding is arranged between the column selecting line and the first output line at the portion at which the column selecting line intersects the first output line, and
no shielding is arranged between the column selecting line and the second output line at the portion at which the column selecting line intersects the second output line.
10. The photoelectric conversion apparatus according to claim 1, wherein the portion at which the column selecting line intersects the first output line has a wiring width different from a wiring width of the portion at which the column selecting line intersects the second output line.
11. The photoelectric conversion apparatus according to claim 1, wherein the plurality of holding capacitors include a first holding capacitor configured to hold a signal of a reset state of the pixel, and a second holding capacitor configured to hold a signal of a non-reset state of the pixel.
12. The photoelectric conversion apparatus according to claim 11, further comprising a differential processing circuit configured to perform a differential processing between the signal outputted from first holding capacitor to the first or second output line and the signal outputted from second holding capacitor to the first or second output line.
13. The photoelectric conversion apparatus according to claim 1, further comprising a controlling unit configured to control the first and second switches, respectively synchronously with signals of mutually different phases.
14. The photoelectric conversion apparatus according to claim 1, wherein the wiring structure of the portion at which the column selecting line intersects with the first output line is formed poly-silicon, and the wiring structure of the portion at which the column selecting line intersects with the second output line is formed from aluminum.
15. An imaging system comprising:
the photoelectric conversion apparatus according to claim 1; and
a processing unit configured to process a signal outputted from the photoelectric conversion apparatus.
US14/245,313 2013-04-25 2014-04-04 Photoelectric conversion apparatus and imaging system Expired - Fee Related US9270913B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013092459A JP6100074B2 (en) 2013-04-25 2013-04-25 Photoelectric conversion device and imaging system
JP2013-092459 2013-04-25

Publications (2)

Publication Number Publication Date
US20140320717A1 US20140320717A1 (en) 2014-10-30
US9270913B2 true US9270913B2 (en) 2016-02-23

Family

ID=51770668

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/245,313 Expired - Fee Related US9270913B2 (en) 2013-04-25 2014-04-04 Photoelectric conversion apparatus and imaging system

Country Status (3)

Country Link
US (1) US9270913B2 (en)
JP (1) JP6100074B2 (en)
CN (1) CN104125417B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277839B2 (en) 2016-02-16 2019-04-30 Canon Kabushiki Kaisha Imaging device, drive method of imaging device, and imaging system
US10971539B2 (en) 2018-03-30 2021-04-06 Canon Kabushiki Kaisha Solid-state imaging device, method of driving solid-state imaging device, imaging system, and movable object

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319946B2 (en) 2013-04-18 2018-05-09 キヤノン株式会社 Solid-state imaging device and imaging system
JP6274788B2 (en) 2013-08-28 2018-02-07 キヤノン株式会社 Imaging apparatus, imaging system, and driving method of imaging apparatus
JP5886806B2 (en) 2013-09-17 2016-03-16 キヤノン株式会社 Solid-state imaging device
JP6239975B2 (en) 2013-12-27 2017-11-29 キヤノン株式会社 Solid-state imaging device and imaging system using the same
JP6412328B2 (en) * 2014-04-01 2018-10-24 キヤノン株式会社 Solid-state imaging device and camera
US9979916B2 (en) 2014-11-21 2018-05-22 Canon Kabushiki Kaisha Imaging apparatus and imaging system
US9787928B2 (en) * 2015-01-06 2017-10-10 Forza Silicon Corporation Layout and timing schemes for ping-pong readout architecture
CN111480323B (en) * 2018-01-11 2023-09-01 索尼半导体解决方案公司 Communication System and Communication Device

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108230A (en) * 1998-05-30 2000-08-22 Hyundai Electronics Industries Co., Ltd. Semiconductor device with data line arrangement for preventing noise interference
US6188094B1 (en) 1998-03-19 2001-02-13 Canon Kabushiki Kaisha Solid-state image pickup device
US20010040274A1 (en) * 1999-03-15 2001-11-15 Itsuo Hidaka Semiconductor device
JP2003259227A (en) 2002-03-01 2003-09-12 Canon Inc Image pickup device
US6670990B1 (en) 1997-09-29 2003-12-30 Canon Kabushiki Kaisha Image sensing device using MOS-type image sensing element whose threshold voltage of charge transfer switch and reset switch is different from that of signal output transistor
US6960751B2 (en) 2002-02-27 2005-11-01 Canon Kabushiki Kaisha Photoelectric conversion device
US7110030B1 (en) 1998-03-12 2006-09-19 Canon Kabushiki Kaisha Solid state image pickup apparatus
US7187052B2 (en) 2003-11-10 2007-03-06 Canon Kabushiki Kaisha Photoelectric conversion apparatus and image pick-up system using the photoelectric conversion apparatus
US7283305B2 (en) 2003-12-03 2007-10-16 Canon Kabushiki Kaisha Solid state image pickup device, method for producing the same, and image pickup system comprising the solid state image pickup device
US20080151653A1 (en) * 2006-12-21 2008-06-26 Satoshi Ishikura Semiconductor memory device
US7429764B2 (en) 2002-02-27 2008-09-30 Canon Kabushiki Kaisha Signal processing device and image pickup apparatus using the same
US7538804B2 (en) 2004-02-02 2009-05-26 Canon Kabushiki Kaisha Solid state image pick-up device and image pick-up system
US7557847B2 (en) 2004-02-13 2009-07-07 Canon Kabushiki Kaisha Image pickup apparatus and system with low parasitic capacitance between floating diffusion area of a pixel and output line of an adjacent pixel
US7638826B2 (en) 2004-09-01 2009-12-29 Canon Kabushiki Kaisha Imaging device and imaging system
US7755688B2 (en) 2006-08-31 2010-07-13 Canon Kabushiki Kaisha Photoelectric conversion device and image sensing system
US7812876B2 (en) 2006-07-26 2010-10-12 Canon Kabushiki Kaisha Photoelectric conversion device and image capturing device with variable amplifier for amplifying signal by a selected gain
US7812873B2 (en) 2004-09-01 2010-10-12 Canon Kabushiki Kaisha Image pickup device and image pickup system
US8045034B2 (en) 2008-06-06 2011-10-25 Canon Kabushiki Kaisha Solid-state imaging apparatus
US8106955B2 (en) 2007-05-02 2012-01-31 Canon Kabushiki Kaisha Solid-state image sensing device and image sensing system
US8120686B2 (en) 2008-03-19 2012-02-21 Canon Kabushiki Kaisha Solid-state image pickup apparatus
US8208055B2 (en) 2008-03-27 2012-06-26 Canon Kabushiki Kaisha Solid-state imaging apparatus and imaging system
US8218050B2 (en) 2008-02-28 2012-07-10 Canon Kabushiki Kaisha Solid-state imaging apparatus, method of driving solid-state imaging apparatus, and imaging system
US8325260B2 (en) 2008-12-17 2012-12-04 Canon Kabushiki Kaisha Solid-state imaging apparatus including pixel matrix with selectable blocks of output lines and imaging system using the solid-state imaging apparatus
US20130026343A1 (en) 2011-07-28 2013-01-31 Canon Kabushiki Kaisha Solid-state imaging apparatus
US20130057742A1 (en) 2011-09-05 2013-03-07 Canon Kabushiki Kaisha Solid-state imaging apparatus and method of driving the same
US20130062503A1 (en) 2011-09-08 2013-03-14 Canon Kabushiki Kaisha Solid-state imaging apparatus and method for driving solid-state imaging apparatus
US20130068930A1 (en) 2011-09-15 2013-03-21 Canon Kabushiki Kaisha A/d converter and solid-state imaging apparatus
US20130088625A1 (en) 2011-10-07 2013-04-11 Canon Kabushiki Kaisha Solid-state imaging apparatus and method of driving the same
US8451360B2 (en) 2009-05-19 2013-05-28 Canon Kabushiki Kaisha Solid-state imaging apparatus for selectively outputting signals from pixels therein
US8493487B2 (en) 2008-09-10 2013-07-23 Canon Kabushiki Kaisha Photoelectric conversion apparatus and imaging system using floating light shielding portions
US20130206961A1 (en) 2012-02-09 2013-08-15 Canon Kabushiki Kaisha Solid-state image sensing device
US8598901B2 (en) 2011-10-07 2013-12-03 Canon Kabushiki Kaisha Photoelectric conversion system
US20140009651A1 (en) * 2012-07-03 2014-01-09 Canon Kabushiki Kaisha Solid-state image sensor and camera
US8643765B2 (en) 2004-02-06 2014-02-04 Canon Kabushiki Kaisha Image pick-up apparatus and image pick-up system with overlapping exposure areas
US8711259B2 (en) 2011-10-07 2014-04-29 Canon Kabushiki Kaisha Solid-state imaging apparatus
US8785832B2 (en) 2011-04-07 2014-07-22 Canon Kabushiki Kaisha Solid-state imaging apparatus having a comparator comparing a generated reference signal with an analog signal from a pixel and its driving method
US20140312207A1 (en) 2013-04-18 2014-10-23 Canon Kabushiki Kaisha Solid-state imaging apparatus and imaging system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645578A (en) * 1992-07-27 1994-02-18 Nec Corp Thin film image sensor
JP4323772B2 (en) * 2002-10-31 2009-09-02 キヤノン株式会社 Solid-state imaging device, camera, and camera control system
JP4290066B2 (en) * 2004-05-20 2009-07-01 キヤノン株式会社 Solid-state imaging device and imaging system
JP5280671B2 (en) * 2006-12-20 2013-09-04 富士フイルム株式会社 Image detector and radiation detection system
JP5300292B2 (en) * 2008-03-18 2013-09-25 キヤノン株式会社 Driving method of photoelectric conversion device
JP2012004689A (en) * 2010-06-14 2012-01-05 Canon Inc Photoelectric conversion device and imaging system
US8384041B2 (en) * 2010-07-21 2013-02-26 Carestream Health, Inc. Digital radiographic imaging arrays with reduced noise

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670990B1 (en) 1997-09-29 2003-12-30 Canon Kabushiki Kaisha Image sensing device using MOS-type image sensing element whose threshold voltage of charge transfer switch and reset switch is different from that of signal output transistor
US7110030B1 (en) 1998-03-12 2006-09-19 Canon Kabushiki Kaisha Solid state image pickup apparatus
US6188094B1 (en) 1998-03-19 2001-02-13 Canon Kabushiki Kaisha Solid-state image pickup device
US6108230A (en) * 1998-05-30 2000-08-22 Hyundai Electronics Industries Co., Ltd. Semiconductor device with data line arrangement for preventing noise interference
US20010040274A1 (en) * 1999-03-15 2001-11-15 Itsuo Hidaka Semiconductor device
US6960751B2 (en) 2002-02-27 2005-11-01 Canon Kabushiki Kaisha Photoelectric conversion device
US7429764B2 (en) 2002-02-27 2008-09-30 Canon Kabushiki Kaisha Signal processing device and image pickup apparatus using the same
JP2003259227A (en) 2002-03-01 2003-09-12 Canon Inc Image pickup device
US7148927B2 (en) 2002-03-01 2006-12-12 Canon Kabushiki Kaisha Signal readout structure for an image sensing apparatus
US7187052B2 (en) 2003-11-10 2007-03-06 Canon Kabushiki Kaisha Photoelectric conversion apparatus and image pick-up system using the photoelectric conversion apparatus
US7283305B2 (en) 2003-12-03 2007-10-16 Canon Kabushiki Kaisha Solid state image pickup device, method for producing the same, and image pickup system comprising the solid state image pickup device
US7538804B2 (en) 2004-02-02 2009-05-26 Canon Kabushiki Kaisha Solid state image pick-up device and image pick-up system
US8643765B2 (en) 2004-02-06 2014-02-04 Canon Kabushiki Kaisha Image pick-up apparatus and image pick-up system with overlapping exposure areas
US7557847B2 (en) 2004-02-13 2009-07-07 Canon Kabushiki Kaisha Image pickup apparatus and system with low parasitic capacitance between floating diffusion area of a pixel and output line of an adjacent pixel
US7812873B2 (en) 2004-09-01 2010-10-12 Canon Kabushiki Kaisha Image pickup device and image pickup system
US7638826B2 (en) 2004-09-01 2009-12-29 Canon Kabushiki Kaisha Imaging device and imaging system
US7812876B2 (en) 2006-07-26 2010-10-12 Canon Kabushiki Kaisha Photoelectric conversion device and image capturing device with variable amplifier for amplifying signal by a selected gain
US7755688B2 (en) 2006-08-31 2010-07-13 Canon Kabushiki Kaisha Photoelectric conversion device and image sensing system
US20080151653A1 (en) * 2006-12-21 2008-06-26 Satoshi Ishikura Semiconductor memory device
US8106955B2 (en) 2007-05-02 2012-01-31 Canon Kabushiki Kaisha Solid-state image sensing device and image sensing system
US8218050B2 (en) 2008-02-28 2012-07-10 Canon Kabushiki Kaisha Solid-state imaging apparatus, method of driving solid-state imaging apparatus, and imaging system
US8120686B2 (en) 2008-03-19 2012-02-21 Canon Kabushiki Kaisha Solid-state image pickup apparatus
US8208055B2 (en) 2008-03-27 2012-06-26 Canon Kabushiki Kaisha Solid-state imaging apparatus and imaging system
US8045034B2 (en) 2008-06-06 2011-10-25 Canon Kabushiki Kaisha Solid-state imaging apparatus
US8493487B2 (en) 2008-09-10 2013-07-23 Canon Kabushiki Kaisha Photoelectric conversion apparatus and imaging system using floating light shielding portions
US8325260B2 (en) 2008-12-17 2012-12-04 Canon Kabushiki Kaisha Solid-state imaging apparatus including pixel matrix with selectable blocks of output lines and imaging system using the solid-state imaging apparatus
US8451360B2 (en) 2009-05-19 2013-05-28 Canon Kabushiki Kaisha Solid-state imaging apparatus for selectively outputting signals from pixels therein
US8785832B2 (en) 2011-04-07 2014-07-22 Canon Kabushiki Kaisha Solid-state imaging apparatus having a comparator comparing a generated reference signal with an analog signal from a pixel and its driving method
US20130026343A1 (en) 2011-07-28 2013-01-31 Canon Kabushiki Kaisha Solid-state imaging apparatus
US20130057742A1 (en) 2011-09-05 2013-03-07 Canon Kabushiki Kaisha Solid-state imaging apparatus and method of driving the same
US20130062503A1 (en) 2011-09-08 2013-03-14 Canon Kabushiki Kaisha Solid-state imaging apparatus and method for driving solid-state imaging apparatus
US20130068930A1 (en) 2011-09-15 2013-03-21 Canon Kabushiki Kaisha A/d converter and solid-state imaging apparatus
US8598901B2 (en) 2011-10-07 2013-12-03 Canon Kabushiki Kaisha Photoelectric conversion system
US8711259B2 (en) 2011-10-07 2014-04-29 Canon Kabushiki Kaisha Solid-state imaging apparatus
US20130088625A1 (en) 2011-10-07 2013-04-11 Canon Kabushiki Kaisha Solid-state imaging apparatus and method of driving the same
US20130206961A1 (en) 2012-02-09 2013-08-15 Canon Kabushiki Kaisha Solid-state image sensing device
US20140009651A1 (en) * 2012-07-03 2014-01-09 Canon Kabushiki Kaisha Solid-state image sensor and camera
US20140312207A1 (en) 2013-04-18 2014-10-23 Canon Kabushiki Kaisha Solid-state imaging apparatus and imaging system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277839B2 (en) 2016-02-16 2019-04-30 Canon Kabushiki Kaisha Imaging device, drive method of imaging device, and imaging system
US10750103B2 (en) 2016-02-16 2020-08-18 Canon Kabushiki Kaisha Imaging device, drive method of imaging device, and imaging system
US10971539B2 (en) 2018-03-30 2021-04-06 Canon Kabushiki Kaisha Solid-state imaging device, method of driving solid-state imaging device, imaging system, and movable object

Also Published As

Publication number Publication date
JP2014216833A (en) 2014-11-17
CN104125417B (en) 2017-09-15
JP6100074B2 (en) 2017-03-22
US20140320717A1 (en) 2014-10-30
CN104125417A (en) 2014-10-29

Similar Documents

Publication Publication Date Title
US9270913B2 (en) Photoelectric conversion apparatus and imaging system
CN110771155B (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US8159573B2 (en) Photoelectric conversion device and imaging system
JP6570384B2 (en) Imaging apparatus and imaging system
KR102013001B1 (en) Solid-state image sensor, driving method therefor, and electronic device
JP5552858B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP5664175B2 (en) Solid-state imaging device, driving method thereof, and electronic apparatus
US9036068B2 (en) CMOS image sensor with fast read out
US9456161B2 (en) Photoelectric conversion apparatus, image pickup system, and driving method of the photoelectric conversion apparatus
CN104010144B (en) Solid-state imaging device and electronic apparatus
US10187601B2 (en) Solid-state imaging device and imaging system
US8896736B2 (en) Solid-state imaging device, imaging apparatus and signal reading method having photoelectric conversion elements that are targets from which signals are read in the same group
KR20160137953A (en) Solid-state imaging element and imaging device
WO2016052219A1 (en) Solid-state image capturing device, signal processing method, and electronic apparatus
US9325924B2 (en) Solid-state image-capturing device having lines that connect input units and electronic camera using the same
JP2006109117A (en) Method and device for transmitting reference signal for ad conversion, method and device of ad conversion, and method and device for acquiring physical information
JP4720275B2 (en) Imaging device
JP5177198B2 (en) Physical information acquisition method and physical information acquisition device
JP5700247B2 (en) Image processing apparatus and method
US8804018B2 (en) Solid-state image pickup apparatus for receiving signals from odd-numbered and even-number columns
US8310579B2 (en) Solid-state imaging apparatus with plural reset units each resetting a corresponding one of plural block wirings
JP2015139054A (en) Solid state imaging apparatus, imaging system and copy machine
US9549137B2 (en) Driving method for imaging apparatus, imaging apparatus, and imaging system
JP6904119B2 (en) Solid-state image sensor and image sensor
WO2017085848A1 (en) Solid-state image pickup device and image pickup device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CANON KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIYAMA, HIROKI;IKEDA, YASUJI;REEL/FRAME:033397/0846

Effective date: 20140327

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362