US9271026B2 - Dynamically configurable frequency band selection device between CATV distribution system and CATV user - Google Patents

Dynamically configurable frequency band selection device between CATV distribution system and CATV user Download PDF

Info

Publication number
US9271026B2
US9271026B2 US14/337,424 US201414337424A US9271026B2 US 9271026 B2 US9271026 B2 US 9271026B2 US 201414337424 A US201414337424 A US 201414337424A US 9271026 B2 US9271026 B2 US 9271026B2
Authority
US
United States
Prior art keywords
frequency band
signal path
premise
band splitting
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/337,424
Other versions
US20140331270A1 (en
Inventor
Thomas A. Olson
David Kelma
Joseph Lai
Steven K. Shafer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPC Broadband Inc
Original Assignee
PPC Broadband Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPC Broadband Inc filed Critical PPC Broadband Inc
Priority to US14/337,424 priority Critical patent/US9271026B2/en
Publication of US20140331270A1 publication Critical patent/US20140331270A1/en
Assigned to JOHN MEZZALINGUA ASSOCIATES, INC. reassignment JOHN MEZZALINGUA ASSOCIATES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OLSON, THOMAS A., KELMA, DAVID, LAI, JOSEPH, SHAFER, STEVEN K.
Assigned to MR ADVISERS LIMITED reassignment MR ADVISERS LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: JOHN MEZZALINGUA ASSOCIATES, INC.
Assigned to PPC BROADBAND, INC. reassignment PPC BROADBAND, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MR ADVISERS LIMITED
Priority to US15/049,661 priority patent/US10264325B2/en
Application granted granted Critical
Publication of US9271026B2 publication Critical patent/US9271026B2/en
Priority to US16/280,277 priority patent/US10924811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4112Peripherals receiving signals from specially adapted client devices having fewer capabilities than the client, e.g. thin client having less processing power or no tuning capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6156Network physical structure; Signal processing specially adapted to the upstream path of the transmission network
    • H04N21/6168Network physical structure; Signal processing specially adapted to the upstream path of the transmission network involving cable transmission, e.g. using a cable modem
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/643Communication protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • H04N7/102Circuits therefor, e.g. noise reducers, equalisers, amplifiers

Definitions

  • a downstream bandwidth i.e., radio frequency (“RF”) signals, digital signals, optical signals, etc.
  • RF radio frequency
  • the downstream bandwidth is passed, for example, within relatively higher frequencies from within a total bandwidth of the CATV system while the upstream bandwidth is passed within relatively lower frequencies.
  • the size of the downstream bandwidth far exceeds the size of the upstream bandwidth due to nature of the services provided.
  • the downstream bandwidth must accommodate all of the television and radio programming along with internet and VOIP downloading
  • the upstream bandwidth is only required to accommodate internet, system control signals, and VOIP uploading. Problems are arising, however, due to an increase in upstream bandwidth usage caused by an increasing demand for higher speed internet uploads and the increasing demand for the VOIP telephone services.
  • VOIP telephone services places significant demands on the upstream bandwidth.
  • the image file will be parsed into a number of data packets that can be intermixed with other data packets being passed through a particular portion of the upstream bandwidth by other users located on a particular signal transmission line within the CATV system.
  • the data packets may be significantly delayed and/or reorganized without any knowledge of or inconvenience to the user.
  • their voice is converted into data packets that are similar in form to the data packets used to upload the image file.
  • any person with whom the user is talking will quickly notice significant delays in the delivery of the data packets and/or reorganization of the data packets that results in audio distortion of the user's voice. Any such reorganization and/or delay in the uploading of data packets carrying VOIP telephone services are measured in terms of jitter, and are closely monitored because of the significant service quality characteristics it represents.
  • Jitter experienced between the user and their caller is a direct result of network congestion within the upstream bandwidth. Because the upstream bandwidth is shared by all users on the particular signal transmission line, each user is competing with the other users for packet data space within the upstream bandwidth. Even further, each of the users can unknowingly inject interference signals, such as noise, spurious signals, and other undesirable signals, into the upstream bandwidth through the use of common household items and poor quality wiring in the user's premise, the interference signals causing errors that force a slow down and an additional amount of jitter in the upstream flow of packets.
  • interference signals such as noise, spurious signals, and other undesirable signals
  • the upstream bandwidth remains susceptible to reliability/congestion issues since it is based on an inherent, system wide flaw that leaves the upstream bandwidth open and easily impacted by any single user.
  • the downstream bandwidth is constantly monitored and serviced by skilled network engineers
  • the upstream bandwidth is created and passed using an infrastructure within a user's premise that is maintained by the user without the skill or knowledge required to reduce the creation and passage of interference signals into the upstream bandwidth. This issue is further compounded by the fact that over 500 premises can be connected together such that interference signals generated by one of the 500 premises can easily impact all of the remaining premises.
  • the signal strength (i.e., level) of the downstream bandwidth must be maintained to closer tolerances than can typically be provided by the typical low-tech drop amplifier. Accordingly, as a result of increasing the size of the upstream bandwidth, the quality of the content moved to the higher frequencies within the downstream bandwidth may be significantly lessened causing a decrease in customer satisfaction and an increase in costly service calls.
  • increasing the size of the upstream bandwidth may require a significant amount of capital expenditure in terms new filter devices and the manpower to install the devices; (ii) may not result in the expected large increases in upstream data throughput because of the interference signals injected from within each user's premise; (iii) may result in lower quality downstream content, and (iv) may inject additional interference signals that now fall within the additional upstream bandwidth, which would have otherwise been filtered out.
  • the present invention helps to reduce the complexity and cost involved with changing the size of an upstream bandwidth. Specifically, the present invention allows a CATV supplier to implement such a change in the size at a common, specific time to all users of the CATV services.
  • the present invention can be added to a variety of other devices that require a defined separation between the upstream bandwidth and the downstream bandwidth.
  • the incorporation of the present invention allows such other devices to remain relevant after a change in the size of the upstream bandwidth.
  • a frequency band selection device that can be inserted into a signal transmission line of a CATV system on the premise of a user.
  • the device includes at least two signal path sets between a tap side and a premise side.
  • Each signal path set includes two discrete signal paths, a high frequency signal path allowing a downstream bandwidth to pass from the tap side to the premise side and a low frequency signal path allowing an upstream bandwidth to pass from the premise side to the tap side.
  • the high frequency signal path and the low frequency signal path are separated by a cut-off transition frequency that is different for each signal path set.
  • the device further includes a switch controller having at least two discrete switch positions. The switch controller chooses one of the switch positions as a result of an information signal. Each of the switch positions corresponds to a respective one of the signal path sets.
  • a dynamically configurable CATV system includes a plurality of frequency band selection devices, each of the devices being located on a premise of a user.
  • Each device includes at least two signal path sets between a tap side and a premise side.
  • Each signal path set includes two discrete signal paths, a high frequency signal path allowing a downstream bandwidth to pass from the tap side to the premise side and a low frequency signal path allowing an upstream bandwidth to pass from the premise side to the tap side.
  • the high frequency signal path and the low frequency signal path are separated by a cut-off transition frequency that is different for each signal path set.
  • Each device further includes a switch controller having at least two discrete switch positions.
  • the switch controller chooses one of the switch positions as a result of an information signal.
  • Each of the switch positions corresponds to a respective one of the signal path sets.
  • the system further includes a head end transmitter being connected to each of the plurality of devices via a main distribution line, the head end transmitter providing the information signal to the switch controller in each of the devices.
  • a method for varying CATV frequency bands on a premise of a user of CATV services.
  • the method includes providing a frequency band selection device on the premise.
  • the device includes at least two signal path sets between a tap side and a premise side.
  • Each signal path set includes two discrete signal paths, a high frequency signal path allowing a downstream bandwidth to pass from the tap side to the premise side and a low frequency signal path allowing an upstream bandwidth to pass from the premise side to the tap side.
  • the high frequency signal path and the low frequency signal path are separated by a cut-off transition frequency that is different for each signal path set.
  • the device further includes a switch controller having at least two discrete switch positions. The switch controller chooses one of the switch positions as a result of an information signal. Each of the switch positions corresponds to a respective one of the signal path sets.
  • the method further includes actuating the switch controller as a result of the information signal.
  • the device further includes a tap side filter set including at least two frequency band splitting devices selectable by a tap side switch set, and a premise side filter set including at least two frequency band splitting devices selectable by a premise side switch set.
  • the tap side switch set and the premise side switch set are actuated by the switch controller.
  • the tap side switch set includes a tap side downstream switch and a tap side upstream switch
  • the premise side switch set includes a premise side downstream switch and a premise side upstream switch
  • the information signal is a continuous tone.
  • the information signal contains a coded operational signal.
  • one of the frequency band splitting devices in each of the tap side filter set and the premise side filter set is configured to separate the upstream bandwidth from the downstream bandwidth according to DOCSIS-1 and DOCSIS-2 standards.
  • one of the frequency band splitting devices in each of the tap side filter set and the premise side filter set is configured to separate the upstream bandwidth from the downstream bandwidth according to a DOCSIS-3 standard.
  • the device includes three or more signal path sets and three or more discrete switch positions.
  • FIG. 1 is a graphical representation of a CATV system arranged in accordance with an embodiment of the present invention
  • FIG. 2 is a graphical representation of a user's premise arranged in accordance with an embodiment of the present invention
  • FIG. 3 is a partial circuit diagram of a premise device made in accordance with an embodiment of the present invention.
  • FIG. 4 is a partial circuit diagram of the premise device represented in FIG. 3 ;
  • FIG. 5 is a circuit diagram representing a premise device including a configurable frequency band selection device made in accordance with another embodiment of the present invention.
  • FIG. 6 a is a circuit diagram representing a premise device including an upstream bandwidth conditioning device made in accordance with another embodiment of the present invention.
  • FIG. 6 b is a circuit diagram representing a premise device including an upstream bandwidth conditioning device made in accordance with another embodiment of the present invention.
  • FIG. 7 is a flow chart representing an signal level adjustment setting routine performed by the circuit of FIGS. 6 a and 6 b;
  • FIG. 8 is a circuit diagram representing a premise device including an automatic downstream bandwidth output level and/or output level tilt compensation device made in accordance with another embodiment of the present invention. (NOTE: manually inserted compensation devices have been common for years)
  • FIG. 9 is a graphical representation of an interpolated gain curve determined in accordance with the device represented in FIG. 8 .
  • FIG. 10 is a graphical representation of a gain curve determined in accordance with the device represented in FIG. 8 ;
  • FIG. 11 is a graphical representation of a gain curve determined in accordance with the device represented in FIG. 8 ;
  • FIG. 12 is a graphical representation of a gain curve determined in accordance with the device represented in FIG. 8 .
  • a cable television (“CATV”) system typically includes a supplier 20 that transmits downstream signals, such as radio frequency (“RF”) signals, digital signals, optical signals, etc., to a user through a main signal distribution system 30 and receives upstream signals from a user through the same main signal distribution system 30 .
  • a tap 90 is located at the main signal distribution system 30 to allow for the passage of the downstream ⁇ upstream signals from ⁇ to the main signal distribution system 30 .
  • a drop transmission line 120 is then used to connect the tap 90 to a house 10 , 60 , an apartment building 50 , 70 , a coffee shop 80 , and so on.
  • a premise device 100 of the present invention is connected in series or in parallel between the drop transmission line 120 and a user's premise distribution system 130 .
  • the premise device 100 can be placed at any location between the tap 90 and the user's premise distribution system 130 . This location can be conveniently located within the building 10 , or exterior to the building 60 . Similarly, the premise device 100 can be located within individual apartments of the apartment building 70 or exterior to the apartment building 50 . It should be understood that the premise device 100 can be placed at any location, such as the coffee shop 80 or other business, where CATV services, including internet, VOIP, or other unidirectional ⁇ bidirectional services are being used.
  • the user's premise distribution system 130 can then be split using a splitter 190 so that upstream/downstream signals can pass to a television 150 and a modem 140 in accordance with practices well known in the art.
  • the modem 140 can include voice over internet protocol (“VOIP”) capabilities affording telephone 170 services and can include a router affording internet services to a desktop computer 160 and a laptop computer 180 , for example.
  • VOIP voice over internet protocol
  • STB set-top box
  • STU set-top unit
  • the premise device 100 includes a main circuit 200 that is positioned along with a tuner circuit 600 and a microprocessor circuit 800 .
  • the combination of circuits 200 , 600 , 800 forms a configurable frequency band selection device 1 (represented separately in FIG. 5 ), an upstream bandwidth conditioning device 2 (represented separately in FIGS. 6 a and 6 b ) and a downstream output level and/or output level tilt compensation device 3 (represented separately in FIG. 8 ), each of which will be discussed separately in greater detail below.
  • circuits 200 , 600 , 800 of the premise device 100 can be configured to form any combination of the devices such that the premise device 100 may include any one of the devices, any two the devices, or all three of the devices.
  • each of the circuits are positioned within a single enclosure, but it should be understood that circuits 200 , 600 , 800 could be arranged within multiple enclosures to account for space, cost, better resultant performance, or other environmental considerations.
  • a circuit 205 of the main circuit 200 is represented in FIG. 4 with inputs and outputs between itself and the remaining positions of the circuit 200 in FIG. 3 labeled similarly.
  • FIGS. 5 , 6 a , 6 b and 8 alternate embodiments of the premise device 100 are represented in FIGS. 5 , 6 a , 6 b and 8 .
  • FIG. 5 represents an embodiment of the premise device 100 including only the configurable frequency band selection device 1 .
  • FIGS. 6 a and 6 b represent an embodiment of the premise device 100 including only the upstream bandwidth conditioning device 2 .
  • FIG. 8 represents an embodiment of the premise device 100 including only the downstream output level and/or output level tilt compensation device 3 . It should be understood that the embodiments shown in FIGS. 5 , 6 a , 6 b and 8 are presented to help clarify the components specific to the particular device, and that other embodiments including combinations of these are envisioned.
  • FIGS. 3 , 4 , 5 , 6 a , 6 b , and 8 Individual components that are similar between the embodiments represented in FIGS. 3 , 4 , 5 , 6 a , 6 b , and 8 are identified using the similar reference numbers.
  • the microprocessor represented in each of the embodiments is referenced using the number 810 .
  • the microprocessor could be the same or different across the embodiments depending on the requirements placed thereon.
  • the main circuit 200 of the premise device 100 includes a supplier side 210 and a premise side 220 .
  • the supplier side 210 is positioned to receive the downstream bandwidth from the supplier 20 ( FIG. 1 ) and to send the upstream bandwidth to the supplier 20 .
  • the premise side 220 is positioned to send the downstream bandwidth to the user and to receive the upstream bandwidth from the user.
  • Each of the supplier side 210 and the premise side 220 can include a traditional threaded 75 ohm connector so that the premise device 100 can be easily placed in series with the drop transmission line 120 and the premise distribution system 130 .
  • each of the supplier side 210 and the premise side 220 may include a proprietary connecter to hinder attempts at tampering with or theft of the premise device 100 .
  • Other connectors may also be used depending on the type and/or size of the drop transmission line 120 , the premise distribution system 130 , or a system impedance other than 75 ohms.
  • the premise device 100 preferably includes a lightening protection device 230 positioned near the supplier side 210 and a lightening protection device 240 positioned near the premise side 220 . Having two lightening protection devices 230 , 240 attempts to protect the premise device 100 from energy passing from the drop transmission line 120 from a lighting strike and from energy passing from the premise distribution system 130 from a lighting strike. It should be understood that the lightening protection devices may not be necessary if/when the premise device 100 is configured to be placed in a CATV system that utilizes non-conductive signal transmission lines. Any of the high quality, commercially available lightning protection devices will function well within the specified locations within the premise device 100 .
  • the premise device 100 preferably includes two power bypass failure switches 250 , 260 that route all of the upstream ⁇ downstream signals through a bypass signal path 270 (e.g. a coaxial cable, an optical cable, a microstrip, a stripline, etc.) in the event of a power outage.
  • the bypass failure switches 250 , 260 are preferably located near the supplier end 210 and premise end 220 , respectively. In an effort to protect the bypass failure switches 250 , 260 from damage due to lightening energy, they are preferably placed between the lightening protection devices 230 , 240 and the supplier end 210 and premise end 220 .
  • Each of the bypass failure switches 250 , 260 includes a default position bypassing the upstream/downstream signals through the bypass signal path 270 at any time power is removed from the premise device 100 .
  • each of the bypass failure switches 250 , 260 actuate to a second position that disconnects the bypass signal path 270 and passes all of the upstream ⁇ downstream signal transmissions along another path through the circuit 205 ( FIG. 4 ) within the main circuit 200 .
  • the switches may also be controlled such that when there is a fault detected in the premise device 100 that could abnormally hinder the flow of the upstream ⁇ downstream bandwidths through the circuit 205 ( FIG.
  • the bypass signal path 270 can be any suitable coaxial cable or optical cable depending on the CATV system configuration.
  • the premise device 100 preferably includes circuit components creating the frequency band selection device 1 ( FIG. 5 and represented but not referenced in FIGS. 3 and 4 ).
  • the frequency band selection device 1 is configured to automatically switch between a configuration corresponding to earlier Data Over Cable Service Interface Specification (“DOCSIS”) specifications and a configuration corresponding to a later generation specification, such as DOCSIS 3.0. While this feature may be advantageous by itself in the premise device 100 , this feature allows for other devices, such as the upstream bandwidth conditioning device 2 and the downstream bandwidth output level and/or output level tilt compensation device 3 , to remain relevant after a change between specifications. In particular, because each of these devices requires an accurate separation of signals between the upstream bandwidth and the downstream bandwidth, any necessary change in the upstream/downstream bandwidths would render these specific devices inoperable. It should be understood that even though the DOCSIS specifications are referenced above and below, the upstream/downstream bandwidth configurations may be maintained and changed according to any specifications.
  • DOCSIS Data Over Cable Service Interface Specification
  • the selection device 1 includes a plurality of switches 280 , 290 , 300 , 310 , 320 , 330 that define a first signal path set 910 and second signal path set 920 .
  • Each signal path set includes two discrete signal paths, a high frequency signal path 930 and a low frequency signal path 940 .
  • the first signal path set 910 is formed using a pair of first frequency band splitting devices 340 , 345
  • the second signal path set 920 is formed using a pair of second frequency band splitting device 350 , 355 .
  • a cutoff frequency set by the first pair of frequency band splitting devices 340 , 345 corresponds to DOCSIS specifications having a narrower upstream bandwidth
  • a cutoff frequency set by the second set pair of frequency band splitting devices 350 , 355 corresponds to the later DOCSIS specifications, which include a broader upstream bandwidth than the earlier DOCSIS standards. It should be understood that the cutoff frequencies can be changed to accommodate even newer DOCSIS standards or other standards by the mere replacement of the first pair of frequency band splitting devices 340 , 345 and/or the second pair of frequency band splitting devices 350 , 355 . Any of the high quality, commercially available switches and frequency band splitting devices will function well within the specified locations within the premise device 100 .
  • Each of the switches 280 , 290 , 300 , 310 , 320 , 330 is controlled either directly or indirectly by a microprocessor 810 ( FIG. 3 ).
  • the microprocessor 810 determines whether to actuate the switches 280 , 290 , 300 , 310 , 320 , 330 to the first signal path set 910 or to the second signal path set 920 based on an information transmission signal preferably sent by the supplier 20 .
  • a signal coupler 360 allows for a receiver to 820 to receive the information transmission signal, such as a tone, a coded operational signal, or other well known information transmission, that can be understood by the microprocessor 810 to indicate the switch position.
  • the presence of an information signal can be used to indicate that the microprocessor 810 should select the second signal path set 920 , whereas no information signal could indicate that microprocessor 810 should select the first signal path set 910 .
  • the presence of a continuous tone at 900 MHz can be identified by passing a signal carrying such a tone through a band pass filter 830 to eliminate unnecessary signals and a comparator 840 , which only provides a tone to the microprocessor when/if the tone is stronger than a predetermined threshold determined by a voltage source 850 and a resistive voltage divider 860 .
  • the frequency can be selected by the microprocessor 810 and can be tuned by a phase-locked loop control system 880 and an amplifier 870 in a manner well known in the art. Any of the high quality, commercially available microprocessors, signal couplers and receivers will function well within the specified locations with the premise device 100 .
  • the premise device 100 preferably further includes circuit components creating the upstream bandwidth conditioning device 2 , which automatically increases the signal to noise ratio of the upstream bandwidth created on the user's premise and passed into the upstream bandwidths on the main signal distribution system 30 .
  • the upstream bandwidth conditioning device 2 automatically increases the signal to noise ratio of the upstream bandwidth created on the user's premise and passed into the upstream bandwidths on the main signal distribution system 30 .
  • the upstream bandwidth conditioning device 2 of one embodiment of the premise device 100 includes a variable attenuator 400 and an amplifier 410 .
  • the amount of signal level adjustment used to condition the upstream bandwidth is determined by the microprocessor 810 based on inputs from a signal level detector 390 .
  • the signal level detector 390 measures and maintains a contemporary peak signal strength of the upstream bandwidth via a tap 370 and a filter 380 .
  • the microprocessor 810 includes a counting circuit, a threshold comparison circuit and a level comparison circuit. It should be understood that even though a microprocessor 810 is used in the present embodiment, it is envisioned to control the variable attenuator 400 in the manner described using a traditional logic circuit.
  • another embodiment of the upstream bandwidth conditioning device 2 includes a variable amplifier 415 , which is connected and controlled by the 810 .
  • an attenuator 405 is present and is not controlled by the microprocessor.
  • Other embodiments are envisioned that include both a variable amplifier 415 and a variable attenuator 405 .
  • the variable signal level adjustment device could also be an automatic gain control circuit (“AGC”) and function well in the current device.
  • AGC automatic gain control circuit
  • variable signal level adjustment device used herein should be understood to include not only a variable attenuation device, but also circuits containing a variable amplifier, AGC circuits, other variable amplifier/attenuation circuits, and related optical circuits that can be used to reduce the signal strength on the upstream bandwidth.
  • contemporary signal strength is intended to describe a current or present signal strength as opposed to a signal strength measured at a time in the past (i.e., a previous signal strength) such as prior to an application of signal level adjustment or an application of an additional amount of signal level adjustment. The reason for this point should be clear based on the following.
  • the microprocessor 810 within the upstream bandwidth conditioning device 2 performs a signal level setting routine 1000 ( FIG. 7 ) to determine an appropriate amount of signal level adjustment to apply to the upstream bandwidth via the variable attenuator 400 , the variable amplifier 415 or other suitable variable signal level adjustment device.
  • the signal level setting routine can be run continuously, at predetermined intervals, and/or on command as a result of an information signal transmitted by the supplier 20 .
  • the microprocessor 810 or logic circuit performs the signal level setting routine in accordance with the flow chart shown in FIG. 7 .
  • the counting circuit in the microprocessor 810 is reset to zero (0), for example, in step 1020 .
  • the microprocessor 810 iteratively performs steps 1030 , 1040 , 1050 , 1060 , 1070 , 1080 and 1090 until the counter reaches a predetermined number (e.g. 25) or the answer to step 1080 is negative.
  • step 1030 the microprocessor 810 reads a contemporary signal strength from the signal level detector 390 , and the counter is incremented by a predetermined increment, such as one (1) in step 1040 .
  • the microprocessor 810 looks to see if the counter is greater than the predetermined number (i.e., 25). If so, the microprocessor 810 ends the routine, but if not, the microprocessor 810 proceeds to step 1060 .
  • the microprocessor 810 compares the contemporary signal strength to a predetermined threshold. If the contemporary signal strength is greater than the predetermined threshold, the microprocessor 810 instructs the variable attenuator 400 to add an amount of additional signal level adjustment (e.g. 1 dB), but if the contemporary signal strength is lower than the predetermined threshold, the microprocessor 810 returns to step 1030 .
  • a predetermined increment such as one (1) in step 1040 .
  • the microprocessor 810 looks to see if the counter is greater than the predetermined number (i.e., 25). If
  • the microprocessor 810 After adding the amount of additional signal level adjustment, the microprocessor 810 reads a new contemporary signal strength in step 1080 while saving the previously read contemporary signal strength (i.e., from step 1030 ) as a previous signal strength in preparation for step 1090 .
  • the microprocessor 810 compares the contemporary signal strength measured in step 1080 and the previous signal strength measured in step 1030 to one another. If the contemporary signal strength is equal to the previous signal strength then the microprocessor 810 returns to step 1030 , but if the contemporary signal strength is less than the previous signal strength the microprocessor 810 proceeds to step 1100 where it instructs the variable attenuator 400 to reduce the amount of signal level adjustment by a predetermined amount (e.g.
  • step 1070 the amount of additional signal level adjustment added in step 1070 or an amount greater than the additional signal level adjustment added in step 1070 ).
  • the microprocessor 810 saves the total amount of signal level adjustment in step 1110 and stops the routine at step 1120 .
  • the amount of additional signal level adjustment may be added/removed by the variable amplifier 415 , or by the AGC discussed above.
  • a traditional cable modem 140 used in CATV systems can adjust its output level based on information signals received from the suppler in the downstream bandwidth.
  • the supplier 20 instructs the modem 140 to increase its transmission signal level.
  • the modem 140 will continually increase signal level as a result of increased amounts of upstream bandwidth signal level adjustment until the modem 140 can no longer increase its transmission signal strength.
  • the contemporary signal strength measured in step 1080 after the addition of additional signal level adjustment in step 1070 should be equal to the previous signal strength if the modem 140 is able to compensate for the additional signal level adjustment.
  • the modem 140 is already producing its maximum signal strength, the contemporary signal strength will be less than the previous signal strength when an additional amount of upstream bandwidth signal level adjustment is applied.
  • the amount of signal level adjustment may be reduced by a sufficient amount in step 1100 to ensure quality of the output signal generated by the modem 140 and the durability of the modem 140 once the maximum output strength of the modem 140 is identified.
  • the premise device 100 may identify the maximum output strength of one device and not the other. In other words, the premise device 100 may identify the first device achieving its maximum output strength without proceeding to identify the maximum output strength of any other devices. If the premise device 100 fails to identify the first observed maximum output strength, that device may continue to operate at its maximum output strength until another determination cycle is initiated.
  • the predetermined number compared in 1050 can be related directly to the amount of signal level adjustment.
  • the variable signal level adjustment device is a step attenuator including 25 steps of 1 dB attenuation, as is the case in the embodiment represented in FIG. 6 a
  • the predetermined number can be set to 25 to allow for the finest resolution (i.e., 1 dB) and the broadest use of the particular step attenuator's range (i.e., 25 dB). It should be understood that the number of steps could be reduced and the resolution could be decreased (i.e., 5 steps of 5 dB) if faster overall operation is desired.
  • the predetermined number could be increased if a variable signal level adjustment device having a finer resolution (i.e., less than 1 dB) or a broader range (i.e., greater than 25 dB) is utilized.
  • the incremented amount discussed here relating the counter and the predetermined number is one (1) such that there are 25 iterations (i.e., 25 steps) when the predetermined number is 25.
  • the increment could easily be any number (i.e., 1, 5, 10, ⁇ 1, ⁇ 10, etc.) depending on the predetermined number and the total number of steps desired, which, as discussed above, is based on the desired resolution and the desired range of signal level adjustment.
  • the amount of additional attenuation added in step 1070 , and the predetermined amount of attenuation reduced in step 1100 are all variables that are currently based, at least partially, on hardware design limitations and can, depending on the hardware, be adjusted by one skilled in the art based on the conditions experienced in a particular CATV system and with particular CATV equipment.
  • the variable signal level adjustment device in one embodiment of the present invention is a step attenuator having a resolution of 1 dB and a range of 25 dB. Accordingly, the amount of additional attenuation added in step 1070 using the present hardware could be 1 dB or multiples of 1 dB.
  • the predetermined amount of attenuation reduced in step 1100 can be 1 dB or multiples of 1 dB. It should be understood that if the amount of additional attenuation added in step 1070 is a multiple of 1 dB, such as 5 dB, the amount of attenuation reduced in step 1100 can be a lesser amount, such as 2 dB or 4 dB. The amount of attenuation reduced in step 1100 can also be greater than the amount of additional attenuation added in step 1070 for the reasons stated above relating to maintaining the quality of the output from the modem 140 and the and durability of the modem 140 .
  • the predetermined threshold compared in step 1060 is a signal level sufficient to distinguish the presence of upstream data packets in the upstream bandwidth from interference signals. This value will vary depending on the output power of any cable modem 140 , STB, STU, etc. in the system and the average observed level of interference signals. A goal is, for example, to determine if a device is present that sends upstream data packets via the upstream bandwidth. If the predetermined threshold is set too low, the interference signals may appear to be upstream data packets, but if the predetermined threshold is set too high, the upstream data packets may appear as interference signals.
  • any of the high quality, commercially available signal couplers, signal level detectors, variable attenuation devices, filters, amplifiers, and microprocessors will function well within the specified locations within the premise device 100 .
  • the premise device 100 preferably includes circuit components creating the downstream bandwidth output level and/or output level tilt compensation device 3 , which helps to maintain a desired signal quality in transmitted signals using relatively high frequencies within the downstream bandwidth, which are much more susceptible to traditional parasitic losses.
  • the microprocessor 810 observes channel data obtained from the tuner circuit 600 , compares the observed channel data to a known parasitic loss curve, and then adjusts a pair of variable output level compensation devices 440 , 450 and a variable slope adjusting circuit 460 located in the circuit 200 to create an output having a desired gain curve (i.e., a curve representative of transmitted signal strengths) across the downstream bandwidth.
  • a desired gain curve i.e., a curve representative of transmitted signal strengths
  • variable output level compensation devices 440 , 450 are depicted in FIGS. 4 and 8 as a variable attenuator, it should be understood that the term “variable output level compensation device” used herein should be understood to include not only a variable attenuation device, but also circuits containing a variable amplifier, AGC circuits, other variable amplifier/attenuation circuits, and related optical circuits that can be used to alter the signal strength of signals in the downstream bandwidth. Each of these steps will be discussed in further detail below.
  • the tuner circuit 600 obtains the downstream bandwidth from a coupler 420 drawing the downstream bandwidth off of the high frequency signal path 930 ( FIG. 5 ). Please note that these signals will be referred to herein as the coupled downstream bandwidth.
  • the coupled downstream bandwidth is passed through a resistor 430 prior to being passed into a tuner 610 .
  • the tuner 610 scans the coupled downstream bandwidth in an effort to locate and identify a channel having a low frequency, referred to herein as a low band signal channel 1250 ( FIG. 9 ), and a channel having a high frequency, referred to herein as a high band signal channel 1260 ( FIG. 9 ).
  • the microprocessor 810 instructs the tuner 610 to begin at the lowest frequency in the downstream bandwidth and scan toward higher frequencies until the low band signal channel 1250 is found.
  • the microprocessor 810 instructs the tuner 610 to begin at the highest frequency in the coupled downstream bandwidth and scan toward lower frequencies until the high band signal channel 1260 is found.
  • the low band signal channel 1250 is a channel located near the lowest frequency within the coupled downstream bandwidth while the high band channel 1260 is a channel located near the highest frequency within the coupled downstream bandwidth.
  • a channel is typically a range of frequencies.
  • the low band signal channel 1250 and the high band signal channel 1260 do not need to be the lowest or highest frequency channels, respectively. It is beneficial, however that the two channels be spaced as far apart from one another as practical to better estimate the amount of parasitic loss experiences across the entire downstream bandwidth.
  • the tuner circuit 600 provides the microprocessor 810 with three types of information. First, a signal indicating that a channel has been identified is provided to the microprocessor 810 through input line 640 . Second, a signal indicating signal strength of the identified channel is provided to the microprocessor 810 through input line 630 . Third, a signal indicating the format of the identified channel is provided to the microprocessor 810 through input line 620 .
  • the signal indicating that a channel has been identified is created by passing the coupled downstream bandwidth though a band pass filter 650 to remove extraneous noise, a signal level detector 660 to convert signal into a voltage, and another signal level detector 670 .
  • the signal leaving the signal level detector 670 is compared to a predetermined threshold voltage using comparator 680 .
  • the predetermined threshold voltage is created using a voltage source 690 and an resistive divider 700 , and is set such that if the voltage associated with the coupled downstream bandwidth at the tuner frequency is greater than the threshold voltage, it is likely a channel in use by the supplier 20 , whereas if the voltage associated with the coupled downstream bandwidth at the tuner frequency is less than the threshold voltage, it is likely interference signals.
  • the signal indicating signal strength is created similarly to the signal indicating that a channel has been identified.
  • the signal indicating signal strength passes through comparator 720 when it is greater than a threshold voltage created by a voltage source 730 and a resistive divider 740 .
  • the signal indicating that a channel has been identified may not have any direct relation to the actual signal strength, whereas the signal indicating signal strength is directly proportional to the actual signal strength of the identified channel.
  • the signal indicating the format of the identified channel is created when the coupled downstream bandwidth passes through a channel analyzer, which includes the band pass filter 650 , the signal level detector 660 , a synch detector 750 , a low pass filter 760 , and a signal level detector 770 .
  • the resulting signal identifies whether the identified channel is an analog format channel or another type of signal format.
  • digital format channels have a signal strength that is typically 6 dB less than a corresponding analog channel. Accordingly, the microprocessor 810 must include a level offset calculation that can account for this 6 dB difference when comparing the relative signal strengths of the low and high band signal channels 1250 , 1260 . If this inherent difference is not accounted for, any resulting comparisons of the two channels 1250 , 1260 for the purpose of determining relative signal strengths would necessarily be flawed. For example, if the high band channel 1260 is digital while the low band channel 1250 is analog, the additional, inherent 6 dB difference would incorrectly indicate that there is more parasitic losses than there actually is.
  • any resulting comparison would incorrectly indicate that there is less parasitic loss that there actually is. Therefore, it should be understood that it does not matter whether the 6 dB offset is added to the signal strength of a digital format channel or the 6 dB offset is subtracted from the signal strength of an analog format channel. Further, it should be understood that the 6 dB offset can be added to the signal strength of both the low and high band channels 1250 , 1260 if they are both digital or the 6 dB offset can be subtracted from the signal strength of both the low and high band channels 1250 , 1260 if they are both analog. Even further, it should be understood that the offset value is dictated by the standards observed by a particular supplier and can be, therefore, a value other than 6 dB.
  • the microprocessor 810 After completing the scanning process and the process of adding/removing any offsets, the microprocessor 810 now has a low band signal strength (including any offset), a low band channel frequency, a high band signal strength (including any offset), and a high band channel frequency.
  • the known information (i.e., the strength and frequency) of the low and high band channels 1250 , 1260 are now compared, by the microprocessor 810 , to a predetermined signal strength loss curve (i.e., a gain loss curve), which corresponds to the known parasitic losses associated with the type of coaxial/optical cables used, as shown in FIG. 9 .
  • This step beneficially allows the known information to be interpolated across the entire downstream bandwidth.
  • the microprocessor 810 determines how much signal level adjustment to apply and in what manner to apply the level adjustment across the entire downstream bandwidth such that the a resulting gain curve across the entire bandwidth is nearly linear and preferably with a slight increase in gain toward the higher frequencies in anticipation of parasitic losses that will occur downstream from the premise device 100 .
  • the amount of level is determined by the high band signal strength (i.e., high band gain) including any interpolation to the highest frequency
  • the amount of level reduction is determined by the low band signal strength (i.e., low band level) including any interpolation to the lowest frequency.
  • a gain curve 1210 can be plotted across the entire downstream bandwidth, which is shown, for example, as being from 50 MHz to 1000 MHz.
  • the microprocessor 810 determines a total amount of level adjustment to be added by the amplifier 490 and/or the amplifier 500 that will at least replace the loss at the highest frequency. In the present example, the amount of level adjustment would be at least +38 dB, resulting in a gain curve 1220 that is shown in FIG. 10 . Based on the interpolated gain curve shown in FIG.
  • the microprocessor 810 instructs the variable slope circuit 460 to apply a similar, but inversely curved amount of correction to result in a relatively flat gain curve 1230 shown in FIG. 10 . It may be desirable to increase the amount of level adjustment applied and increase the curvature of the slope adjustment to result in a gain curve 1240 , as shown in FIG. 8 , which has an increasing slope toward the higher frequencies.
  • the downstream bandwidth output level and/or output level tilt compensation device 3 can be activated automatically upon initialization of the premise device 100 , a set intervals, upon the occurrence of a particular event, and/or upon receipt of an information signal (e.g. a tone, a coded operating signal, etc.) from the supplier 20 .
  • an information signal e.g. a tone, a coded operating signal, etc.

Abstract

A frequency band selection device that can be inserted into a signal transmission line of a CATV system on the premise of a user includes at least two signal path sets between a tap side and a premise side. Each signal path set includes two discrete signal paths, a high frequency signal path for a downstream bandwidth and a low frequency signal path for an upstream bandwidth. The high frequency signal path and the low frequency signal path are separated by a cut-off transition frequency that is different for each signal path set. The device further includes a switch controller having at least two discrete switch positions. The switch controller chooses one of the switch positions as a result of an information signal. Each of the switch positions corresponds to a respective one of the signal path sets.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation of, and claims the benefit and priority of, U.S. patent application Ser. No. 12/252,907, filed on Oct. 16, 2008. The entire contents of which are hereby incorporated by reference.
BACKGROUND OF THE INVENTION
The use of a cable television (“CATV”) system to provide internet, voice over internet protocol (“VOIP”) telephone, television, and radio services is well known in the art. In providing these services, a downstream bandwidth (i.e., radio frequency (“RF”) signals, digital signals, optical signals, etc.) is passed from a supplier of the services to a user and an upstream bandwidth is passed from the user to the supplier. The downstream bandwidth is passed, for example, within relatively higher frequencies from within a total bandwidth of the CATV system while the upstream bandwidth is passed within relatively lower frequencies.
Traditionally, the size of the downstream bandwidth far exceeds the size of the upstream bandwidth due to nature of the services provided. For example, while the downstream bandwidth must accommodate all of the television and radio programming along with internet and VOIP downloading, the upstream bandwidth is only required to accommodate internet, system control signals, and VOIP uploading. Problems are arising, however, due to an increase in upstream bandwidth usage caused by an increasing demand for higher speed internet uploads and the increasing demand for the VOIP telephone services.
VOIP telephone services places significant demands on the upstream bandwidth. When a user uploads a large image file to a photo sharing website, the image file will be parsed into a number of data packets that can be intermixed with other data packets being passed through a particular portion of the upstream bandwidth by other users located on a particular signal transmission line within the CATV system. To optimize a total data throughput on the particular signal transmission line, the data packets may be significantly delayed and/or reorganized without any knowledge of or inconvenience to the user. When a user uses VOIP telephone services, their voice is converted into data packets that are similar in form to the data packets used to upload the image file. Because a typical conversation is carried out in real time, meaning that a contiguous and unbroken flow of data packets is required, any person with whom the user is talking will quickly notice significant delays in the delivery of the data packets and/or reorganization of the data packets that results in audio distortion of the user's voice. Any such reorganization and/or delay in the uploading of data packets carrying VOIP telephone services are measured in terms of jitter, and are closely monitored because of the significant service quality characteristics it represents.
Jitter experienced between the user and their caller is a direct result of network congestion within the upstream bandwidth. Because the upstream bandwidth is shared by all users on the particular signal transmission line, each user is competing with the other users for packet data space within the upstream bandwidth. Even further, each of the users can unknowingly inject interference signals, such as noise, spurious signals, and other undesirable signals, into the upstream bandwidth through the use of common household items and poor quality wiring in the user's premise, the interference signals causing errors that force a slow down and an additional amount of jitter in the upstream flow of packets.
In an effort to increase the upstream flow of packets, several suppliers have a plan to increase the size of the upstream bandwidth from 5-42 Mhz to 5-85 Mhz to allow a greater flow of the upstream content. Along with such an increase, the downstream bandwidth must be correspondingly decreased in size because the total bandwidth is relatively fixed. Such a change is, however, very difficult to implement.
Traditional practices would require that every drop amplifier and two way (diplex) filter in network amplifiers and nodes of the CATV system to be changed as part of the increasing the size of the upstream bandwidth. Compounding the difficulty of implementing such a change, all of the changes must be implemented at various locations throughout the CATV system at a single, particular time. Accordingly, such an implementation is time consuming, costly, and difficult to coordinate.
Further, while increasing the size of the upstream bandwidth may incrementally increase the flow of upstream data packets, the upstream bandwidth remains susceptible to reliability/congestion issues since it is based on an inherent, system wide flaw that leaves the upstream bandwidth open and easily impacted by any single user. For example, while the downstream bandwidth is constantly monitored and serviced by skilled network engineers, the upstream bandwidth is created and passed using an infrastructure within a user's premise that is maintained by the user without the skill or knowledge required to reduce the creation and passage of interference signals into the upstream bandwidth. This issue is further compounded by the fact that over 500 premises can be connected together such that interference signals generated by one of the 500 premises can easily impact all of the remaining premises. It is common in the art for the supplier to add physical filters between the user's premise and a tap from of the main signal distribution system near the users premise to reduce the impact of the interference signals generated on the user's premise, but such a physical filter must be installed manually and does not account for significant, transient interference sources such as garbage disposals, vacuum cleaners, welders, powered hand tools, etc.
Even further, increasing the size of the upstream bandwidth forces suppliers to push their downstream content into increasingly higher frequency portions of the downstream bandwidth. Unfortunately, these higher frequencies are much more susceptible to parasitic losses in signal strength caused by the signal transmission lines, connectors on the user's premise, devices connected to the signal transmission lines on the user's premise, etc. In the past many users have added relatively low-tech drop amplifiers on their premise to account for such losses. Because of the changes to increase the size of the upstream bandwidth, all of these drop amplifiers must be removed and or replaced. Additionally, because of the increased demands placed on the downstream content (e.g., high definition television, increased compression, etc.) the signal strength (i.e., level) of the downstream bandwidth must be maintained to closer tolerances than can typically be provided by the typical low-tech drop amplifier. Accordingly, as a result of increasing the size of the upstream bandwidth, the quality of the content moved to the higher frequencies within the downstream bandwidth may be significantly lessened causing a decrease in customer satisfaction and an increase in costly service calls.
In light of the forgoing, increasing the size of the upstream bandwidth: (i) may require a significant amount of capital expenditure in terms new filter devices and the manpower to install the devices; (ii) may not result in the expected large increases in upstream data throughput because of the interference signals injected from within each user's premise; (iii) may result in lower quality downstream content, and (iv) may inject additional interference signals that now fall within the additional upstream bandwidth, which would have otherwise been filtered out.
Therefore, there is a need to overcome, or otherwise lessen the effects of, the disadvantages and shortcomings described above.
SUMMARY OF THE INVENTION
The present invention helps to reduce the complexity and cost involved with changing the size of an upstream bandwidth. Specifically, the present invention allows a CATV supplier to implement such a change in the size at a common, specific time to all users of the CATV services.
Further, the present invention can be added to a variety of other devices that require a defined separation between the upstream bandwidth and the downstream bandwidth. The incorporation of the present invention allows such other devices to remain relevant after a change in the size of the upstream bandwidth.
In accordance with one embodiment of the present invention, a frequency band selection device is provided that can be inserted into a signal transmission line of a CATV system on the premise of a user. The device includes at least two signal path sets between a tap side and a premise side. Each signal path set includes two discrete signal paths, a high frequency signal path allowing a downstream bandwidth to pass from the tap side to the premise side and a low frequency signal path allowing an upstream bandwidth to pass from the premise side to the tap side. The high frequency signal path and the low frequency signal path are separated by a cut-off transition frequency that is different for each signal path set. The device further includes a switch controller having at least two discrete switch positions. The switch controller chooses one of the switch positions as a result of an information signal. Each of the switch positions corresponds to a respective one of the signal path sets.
In accordance with one embodiment of the present invention, a dynamically configurable CATV system is provided. The system includes a plurality of frequency band selection devices, each of the devices being located on a premise of a user. Each device includes at least two signal path sets between a tap side and a premise side. Each signal path set includes two discrete signal paths, a high frequency signal path allowing a downstream bandwidth to pass from the tap side to the premise side and a low frequency signal path allowing an upstream bandwidth to pass from the premise side to the tap side. The high frequency signal path and the low frequency signal path are separated by a cut-off transition frequency that is different for each signal path set. Each device further includes a switch controller having at least two discrete switch positions. The switch controller chooses one of the switch positions as a result of an information signal. Each of the switch positions corresponds to a respective one of the signal path sets. The system further includes a head end transmitter being connected to each of the plurality of devices via a main distribution line, the head end transmitter providing the information signal to the switch controller in each of the devices.
In accordance with one embodiment of the present invention, a method is provided for varying CATV frequency bands on a premise of a user of CATV services. The method includes providing a frequency band selection device on the premise. The device includes at least two signal path sets between a tap side and a premise side. Each signal path set includes two discrete signal paths, a high frequency signal path allowing a downstream bandwidth to pass from the tap side to the premise side and a low frequency signal path allowing an upstream bandwidth to pass from the premise side to the tap side. The high frequency signal path and the low frequency signal path are separated by a cut-off transition frequency that is different for each signal path set. The device further includes a switch controller having at least two discrete switch positions. The switch controller chooses one of the switch positions as a result of an information signal. Each of the switch positions corresponds to a respective one of the signal path sets. The method further includes actuating the switch controller as a result of the information signal.
In accordance with one embodiment of the present invention, the device further includes a tap side filter set including at least two frequency band splitting devices selectable by a tap side switch set, and a premise side filter set including at least two frequency band splitting devices selectable by a premise side switch set. Preferably, the tap side switch set and the premise side switch set are actuated by the switch controller.
In accordance with one embodiment of the present invention, the tap side switch set includes a tap side downstream switch and a tap side upstream switch, and the premise side switch set includes a premise side downstream switch and a premise side upstream switch.
In accordance with one embodiment of the present invention, the information signal is a continuous tone.
In accordance with one embodiment of the present invention, the information signal contains a coded operational signal.
In accordance with one embodiment of the present invention, one of the frequency band splitting devices in each of the tap side filter set and the premise side filter set is configured to separate the upstream bandwidth from the downstream bandwidth according to DOCSIS-1 and DOCSIS-2 standards.
In accordance with one embodiment of the present invention, one of the frequency band splitting devices in each of the tap side filter set and the premise side filter set is configured to separate the upstream bandwidth from the downstream bandwidth according to a DOCSIS-3 standard.
In accordance with one embodiment of the present invention, the device includes three or more signal path sets and three or more discrete switch positions.
BRIEF DESCRIPTION OF THE DRAWINGS
For a further understanding of the nature and objects of the invention, references should be made to the following detailed description of a preferred mode of practicing the invention, read in connection with the accompanying drawings in which:
FIG. 1 is a graphical representation of a CATV system arranged in accordance with an embodiment of the present invention;
FIG. 2 is a graphical representation of a user's premise arranged in accordance with an embodiment of the present invention;
FIG. 3 is a partial circuit diagram of a premise device made in accordance with an embodiment of the present invention;
FIG. 4 is a partial circuit diagram of the premise device represented in FIG. 3;
FIG. 5 is a circuit diagram representing a premise device including a configurable frequency band selection device made in accordance with another embodiment of the present invention;
FIG. 6 a is a circuit diagram representing a premise device including an upstream bandwidth conditioning device made in accordance with another embodiment of the present invention;
FIG. 6 b is a circuit diagram representing a premise device including an upstream bandwidth conditioning device made in accordance with another embodiment of the present invention;
FIG. 7 is a flow chart representing an signal level adjustment setting routine performed by the circuit of FIGS. 6 a and 6 b;
FIG. 8 is a circuit diagram representing a premise device including an automatic downstream bandwidth output level and/or output level tilt compensation device made in accordance with another embodiment of the present invention; (NOTE: manually inserted compensation devices have been common for years)
FIG. 9 is a graphical representation of an interpolated gain curve determined in accordance with the device represented in FIG. 8.
FIG. 10 is a graphical representation of a gain curve determined in accordance with the device represented in FIG. 8;
FIG. 11 is a graphical representation of a gain curve determined in accordance with the device represented in FIG. 8;
FIG. 12 is a graphical representation of a gain curve determined in accordance with the device represented in FIG. 8.
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, a cable television (“CATV”) system typically includes a supplier 20 that transmits downstream signals, such as radio frequency (“RF”) signals, digital signals, optical signals, etc., to a user through a main signal distribution system 30 and receives upstream signals from a user through the same main signal distribution system 30. A tap 90 is located at the main signal distribution system 30 to allow for the passage of the downstream\upstream signals from\to the main signal distribution system 30. A drop transmission line 120 is then used to connect the tap 90 to a house 10, 60, an apartment building 50, 70, a coffee shop 80, and so on. A premise device 100 of the present invention is connected in series or in parallel between the drop transmission line 120 and a user's premise distribution system 130.
Referring still to FIG. 1, is should be understood that the premise device 100 can be placed at any location between the tap 90 and the user's premise distribution system 130. This location can be conveniently located within the building 10, or exterior to the building 60. Similarly, the premise device 100 can be located within individual apartments of the apartment building 70 or exterior to the apartment building 50. It should be understood that the premise device 100 can be placed at any location, such as the coffee shop 80 or other business, where CATV services, including internet, VOIP, or other unidirectional\bidirectional services are being used.
As shown in FIG. 2, the user's premise distribution system 130 can then be split using a splitter 190 so that upstream/downstream signals can pass to a television 150 and a modem 140 in accordance with practices well known in the art. The modem 140 can include voice over internet protocol (“VOIP”) capabilities affording telephone 170 services and can include a router affording internet services to a desktop computer 160 and a laptop computer 180, for example.
Additionally, it is common practice to provide a “set-top box” (“STB”) or “set-top unit” (“STU”) for use directly with the television 150. For the sake of clarity, however, there is no representation of an STB or STU included in FIG. 2. The STB and STU are mentioned here in light of the fact that many models utilize the upstream bandwidth to transmit information relating to “pay-per-view” purchases, billing, etc. Accordingly, it should be understood that even though FIG. 2 explicitly shows that there is only one premise device 100 used for each device generating upstream data packets, each premises device 100 can be used with two or more devices (e.g. a modem, a STB, a STU, a dedicated VOIP server, etc.) that transmit upstream data packets via the upstream bandwidth.
Referring to FIG. 3, the premise device 100 includes a main circuit 200 that is positioned along with a tuner circuit 600 and a microprocessor circuit 800. Preferably, the combination of circuits 200, 600, 800 forms a configurable frequency band selection device 1 (represented separately in FIG. 5), an upstream bandwidth conditioning device 2 (represented separately in FIGS. 6 a and 6 b) and a downstream output level and/or output level tilt compensation device 3 (represented separately in FIG. 8), each of which will be discussed separately in greater detail below. It should be understood, however, that circuits 200, 600, 800 of the premise device 100 can be configured to form any combination of the devices such that the premise device 100 may include any one of the devices, any two the devices, or all three of the devices. Preferably, each of the circuits are positioned within a single enclosure, but it should be understood that circuits 200, 600, 800 could be arranged within multiple enclosures to account for space, cost, better resultant performance, or other environmental considerations.
Because a diagram of a premise device 100 including all three devices is too complex to be clearly represented in one figure, a circuit 205 of the main circuit 200, as it is represented in FIG. 3, is represented in FIG. 4 with inputs and outputs between itself and the remaining positions of the circuit 200 in FIG. 3 labeled similarly.
Along these lines, alternate embodiments of the premise device 100 are represented in FIGS. 5, 6 a, 6 b and 8. FIG. 5 represents an embodiment of the premise device 100 including only the configurable frequency band selection device 1. FIGS. 6 a and 6 b represent an embodiment of the premise device 100 including only the upstream bandwidth conditioning device 2. FIG. 8 represents an embodiment of the premise device 100 including only the downstream output level and/or output level tilt compensation device 3. It should be understood that the embodiments shown in FIGS. 5, 6 a, 6 b and 8 are presented to help clarify the components specific to the particular device, and that other embodiments including combinations of these are envisioned.
Individual components that are similar between the embodiments represented in FIGS. 3, 4, 5, 6 a, 6 b, and 8 are identified using the similar reference numbers. For example, the microprocessor represented in each of the embodiments is referenced using the number 810. One skilled in the art should know that the microprocessor could be the same or different across the embodiments depending on the requirements placed thereon.
As shown in FIG. 3, the main circuit 200 of the premise device 100 includes a supplier side 210 and a premise side 220. The supplier side 210 is positioned to receive the downstream bandwidth from the supplier 20 (FIG. 1) and to send the upstream bandwidth to the supplier 20. The premise side 220 is positioned to send the downstream bandwidth to the user and to receive the upstream bandwidth from the user. Each of the supplier side 210 and the premise side 220 can include a traditional threaded 75 ohm connector so that the premise device 100 can be easily placed in series with the drop transmission line 120 and the premise distribution system 130. Alternatively, each of the supplier side 210 and the premise side 220 may include a proprietary connecter to hinder attempts at tampering with or theft of the premise device 100. Other connectors may also be used depending on the type and/or size of the drop transmission line 120, the premise distribution system 130, or a system impedance other than 75 ohms.
The premise device 100 preferably includes a lightening protection device 230 positioned near the supplier side 210 and a lightening protection device 240 positioned near the premise side 220. Having two lightening protection devices 230, 240 attempts to protect the premise device 100 from energy passing from the drop transmission line 120 from a lighting strike and from energy passing from the premise distribution system 130 from a lighting strike. It should be understood that the lightening protection devices may not be necessary if/when the premise device 100 is configured to be placed in a CATV system that utilizes non-conductive signal transmission lines. Any of the high quality, commercially available lightning protection devices will function well within the specified locations within the premise device 100.
The premise device 100 preferably includes two power bypass failure switches 250, 260 that route all of the upstream\downstream signals through a bypass signal path 270 (e.g. a coaxial cable, an optical cable, a microstrip, a stripline, etc.) in the event of a power outage. The bypass failure switches 250, 260 are preferably located near the supplier end 210 and premise end 220, respectively. In an effort to protect the bypass failure switches 250, 260 from damage due to lightening energy, they are preferably placed between the lightening protection devices 230, 240 and the supplier end 210 and premise end 220.
Each of the bypass failure switches 250, 260 includes a default position bypassing the upstream/downstream signals through the bypass signal path 270 at any time power is removed from the premise device 100. When power is applied, each of the bypass failure switches 250, 260 actuate to a second position that disconnects the bypass signal path 270 and passes all of the upstream\downstream signal transmissions along another path through the circuit 205 (FIG. 4) within the main circuit 200. The switches may also be controlled such that when there is a fault detected in the premise device 100 that could abnormally hinder the flow of the upstream\downstream bandwidths through the circuit 205 (FIG. 4), the switches 250, 260 are moved to their default position sending the upstream/downstream signal transmissions through the bypass signal path 270. Any of the high quality, commercially available signal transmission switches will function well within the specified locations within the premise device 100. The bypass signal path 270 can be any suitable coaxial cable or optical cable depending on the CATV system configuration.
The premise device 100 preferably includes circuit components creating the frequency band selection device 1 (FIG. 5 and represented but not referenced in FIGS. 3 and 4). The frequency band selection device 1 is configured to automatically switch between a configuration corresponding to earlier Data Over Cable Service Interface Specification (“DOCSIS”) specifications and a configuration corresponding to a later generation specification, such as DOCSIS 3.0. While this feature may be advantageous by itself in the premise device 100, this feature allows for other devices, such as the upstream bandwidth conditioning device 2 and the downstream bandwidth output level and/or output level tilt compensation device 3, to remain relevant after a change between specifications. In particular, because each of these devices requires an accurate separation of signals between the upstream bandwidth and the downstream bandwidth, any necessary change in the upstream/downstream bandwidths would render these specific devices inoperable. It should be understood that even though the DOCSIS specifications are referenced above and below, the upstream/downstream bandwidth configurations may be maintained and changed according to any specifications.
A simplified version of the of the frequency band selection device 1 is shown in FIG. 5 while all of the components are also present in the embodiment of FIGS. 3 and 4. The selection device 1 includes a plurality of switches 280, 290, 300, 310, 320, 330 that define a first signal path set 910 and second signal path set 920. Each signal path set includes two discrete signal paths, a high frequency signal path 930 and a low frequency signal path 940. The first signal path set 910 is formed using a pair of first frequency band splitting devices 340, 345, and the second signal path set 920 is formed using a pair of second frequency band splitting device 350, 355. A cutoff frequency set by the first pair of frequency band splitting devices 340, 345 corresponds to DOCSIS specifications having a narrower upstream bandwidth, and a cutoff frequency set by the second set pair of frequency band splitting devices 350, 355 corresponds to the later DOCSIS specifications, which include a broader upstream bandwidth than the earlier DOCSIS standards. It should be understood that the cutoff frequencies can be changed to accommodate even newer DOCSIS standards or other standards by the mere replacement of the first pair of frequency band splitting devices 340, 345 and/or the second pair of frequency band splitting devices 350, 355. Any of the high quality, commercially available switches and frequency band splitting devices will function well within the specified locations within the premise device 100.
Each of the switches 280, 290, 300, 310, 320, 330 is controlled either directly or indirectly by a microprocessor 810 (FIG. 3). The microprocessor 810 determines whether to actuate the switches 280, 290, 300, 310, 320, 330 to the first signal path set 910 or to the second signal path set 920 based on an information transmission signal preferably sent by the supplier 20. A signal coupler 360 allows for a receiver to 820 to receive the information transmission signal, such as a tone, a coded operational signal, or other well known information transmission, that can be understood by the microprocessor 810 to indicate the switch position. For example, the presence of an information signal can be used to indicate that the microprocessor 810 should select the second signal path set 920, whereas no information signal could indicate that microprocessor 810 should select the first signal path set 910. For example, the presence of a continuous tone at 900 MHz can be identified by passing a signal carrying such a tone through a band pass filter 830 to eliminate unnecessary signals and a comparator 840, which only provides a tone to the microprocessor when/if the tone is stronger than a predetermined threshold determined by a voltage source 850 and a resistive voltage divider 860. The frequency can be selected by the microprocessor 810 and can be tuned by a phase-locked loop control system 880 and an amplifier 870 in a manner well known in the art. Any of the high quality, commercially available microprocessors, signal couplers and receivers will function well within the specified locations with the premise device 100.
The premise device 100 preferably further includes circuit components creating the upstream bandwidth conditioning device 2, which automatically increases the signal to noise ratio of the upstream bandwidth created on the user's premise and passed into the upstream bandwidths on the main signal distribution system 30. It should be understood that with VOIP telephone service, the consistent flow of upstream data packets that lasts as long as the telephone call can appear to be noise (i.e., interference signals). Before VOIP, such continuous upstream flow data of data packets was not likely. Accordingly, the present device purposefully includes logic and structure that will halt the addition of attenuation once the maximum output of the cable modem is sensed even if the upstream data flow is consistent enough to be interpreted as noise.
As shown in FIGS. 3, 4, and 6 a, the upstream bandwidth conditioning device 2 of one embodiment of the premise device 100 includes a variable attenuator 400 and an amplifier 410. The amount of signal level adjustment used to condition the upstream bandwidth is determined by the microprocessor 810 based on inputs from a signal level detector 390. The signal level detector 390 measures and maintains a contemporary peak signal strength of the upstream bandwidth via a tap 370 and a filter 380. The microprocessor 810 includes a counting circuit, a threshold comparison circuit and a level comparison circuit. It should be understood that even though a microprocessor 810 is used in the present embodiment, it is envisioned to control the variable attenuator 400 in the manner described using a traditional logic circuit.
As shown in FIG. 6 b, another embodiment of the upstream bandwidth conditioning device 2 includes a variable amplifier 415, which is connected and controlled by the 810. According to this embodiment, an attenuator 405 is present and is not controlled by the microprocessor. Other embodiments are envisioned that include both a variable amplifier 415 and a variable attenuator 405. Further, the variable signal level adjustment device could also be an automatic gain control circuit (“AGC”) and function well in the current device. In other words, it should also be understood that the amount of signal level adjustment and any incremental amount of additional signal level adjustment can be accomplished through any of a wide variety of amplification and/or attenuation devices.
In light of the forgoing, the term “variable signal level adjustment device” used herein should be understood to include not only a variable attenuation device, but also circuits containing a variable amplifier, AGC circuits, other variable amplifier/attenuation circuits, and related optical circuits that can be used to reduce the signal strength on the upstream bandwidth.
It should be noted that the term contemporary signal strength is intended to describe a current or present signal strength as opposed to a signal strength measured at a time in the past (i.e., a previous signal strength) such as prior to an application of signal level adjustment or an application of an additional amount of signal level adjustment. The reason for this point should be clear based on the following.
In operation, the microprocessor 810 within the upstream bandwidth conditioning device 2 performs a signal level setting routine 1000 (FIG. 7) to determine an appropriate amount of signal level adjustment to apply to the upstream bandwidth via the variable attenuator 400, the variable amplifier 415 or other suitable variable signal level adjustment device. The signal level setting routine can be run continuously, at predetermined intervals, and/or on command as a result of an information signal transmitted by the supplier 20. Once initiated, the microprocessor 810 or logic circuit performs the signal level setting routine in accordance with the flow chart shown in FIG. 7.
Referring now to FIG. 7, upon initialization 1010 of the signal level setting routine 1000, the counting circuit in the microprocessor 810 is reset to zero (0), for example, in step 1020. Next, the microprocessor 810 iteratively performs steps 1030, 1040, 1050, 1060, 1070, 1080 and 1090 until the counter reaches a predetermined number (e.g. 25) or the answer to step 1080 is negative.
Specifically, in step 1030 the microprocessor 810 reads a contemporary signal strength from the signal level detector 390, and the counter is incremented by a predetermined increment, such as one (1) in step 1040. The microprocessor 810 then looks to see if the counter is greater than the predetermined number (i.e., 25). If so, the microprocessor 810 ends the routine, but if not, the microprocessor 810 proceeds to step 1060. In step 1060, the microprocessor 810 compares the contemporary signal strength to a predetermined threshold. If the contemporary signal strength is greater than the predetermined threshold, the microprocessor 810 instructs the variable attenuator 400 to add an amount of additional signal level adjustment (e.g. 1 dB), but if the contemporary signal strength is lower than the predetermined threshold, the microprocessor 810 returns to step 1030.
After adding the amount of additional signal level adjustment, the microprocessor 810 reads a new contemporary signal strength in step 1080 while saving the previously read contemporary signal strength (i.e., from step 1030) as a previous signal strength in preparation for step 1090. In step 1090, the microprocessor 810 compares the contemporary signal strength measured in step 1080 and the previous signal strength measured in step 1030 to one another. If the contemporary signal strength is equal to the previous signal strength then the microprocessor 810 returns to step 1030, but if the contemporary signal strength is less than the previous signal strength the microprocessor 810 proceeds to step 1100 where it instructs the variable attenuator 400 to reduce the amount of signal level adjustment by a predetermined amount (e.g. the amount of additional signal level adjustment added in step 1070 or an amount greater than the additional signal level adjustment added in step 1070). After step 1100, the microprocessor 810 saves the total amount of signal level adjustment in step 1110 and stops the routine at step 1120. Again, it should be understood that the amount of additional signal level adjustment may be added/removed by the variable amplifier 415, or by the AGC discussed above.
As mentioned above, an important aspect of the present signal level setting routine is the comparison step conducted in step 1090. A traditional cable modem 140 (FIG. 2) used in CATV systems can adjust its output level based on information signals received from the suppler in the downstream bandwidth. In particular, if the modem signal received by the supplier 20 is weak, the supplier 20 instructs the modem 140 to increase its transmission signal level. As this relates to the current invention, the modem 140 will continually increase signal level as a result of increased amounts of upstream bandwidth signal level adjustment until the modem 140 can no longer increase its transmission signal strength. Accordingly, the contemporary signal strength measured in step 1080 after the addition of additional signal level adjustment in step 1070 should be equal to the previous signal strength if the modem 140 is able to compensate for the additional signal level adjustment. However, if the modem 140 is already producing its maximum signal strength, the contemporary signal strength will be less than the previous signal strength when an additional amount of upstream bandwidth signal level adjustment is applied.
Because problems could result in the modem 140 from operating it at its maximum output (i.e., signal distortion may be high when the modem 140 is operating at or near a maximum level and/or the durability of the modem 140 may be sacrificed when the modem 140 is operating at or near a maximum level), the amount of signal level adjustment may be reduced by a sufficient amount in step 1100 to ensure quality of the output signal generated by the modem 140 and the durability of the modem 140 once the maximum output strength of the modem 140 is identified.
It is noted that in a system with more than one device passing data packets into the upstream bandwidth, the premise device 100 may identify the maximum output strength of one device and not the other. In other words, the premise device 100 may identify the first device achieving its maximum output strength without proceeding to identify the maximum output strength of any other devices. If the premise device 100 fails to identify the first observed maximum output strength, that device may continue to operate at its maximum output strength until another determination cycle is initiated.
The predetermined number compared in 1050 can be related directly to the amount of signal level adjustment. For example, if the variable signal level adjustment device is a step attenuator including 25 steps of 1 dB attenuation, as is the case in the embodiment represented in FIG. 6 a, the predetermined number can be set to 25 to allow for the finest resolution (i.e., 1 dB) and the broadest use of the particular step attenuator's range (i.e., 25 dB). It should be understood that the number of steps could be reduced and the resolution could be decreased (i.e., 5 steps of 5 dB) if faster overall operation is desired. It is also foreseeable that the predetermined number could be increased if a variable signal level adjustment device having a finer resolution (i.e., less than 1 dB) or a broader range (i.e., greater than 25 dB) is utilized. The incremented amount discussed here relating the counter and the predetermined number is one (1) such that there are 25 iterations (i.e., 25 steps) when the predetermined number is 25. The increment could easily be any number (i.e., 1, 5, 10, −1, −10, etc.) depending on the predetermined number and the total number of steps desired, which, as discussed above, is based on the desired resolution and the desired range of signal level adjustment.
The amount of additional attenuation added in step 1070, and the predetermined amount of attenuation reduced in step 1100 are all variables that are currently based, at least partially, on hardware design limitations and can, depending on the hardware, be adjusted by one skilled in the art based on the conditions experienced in a particular CATV system and with particular CATV equipment. As discussed above, the variable signal level adjustment device in one embodiment of the present invention is a step attenuator having a resolution of 1 dB and a range of 25 dB. Accordingly, the amount of additional attenuation added in step 1070 using the present hardware could be 1 dB or multiples of 1 dB. Similarly, the predetermined amount of attenuation reduced in step 1100 can be 1 dB or multiples of 1 dB. It should be understood that if the amount of additional attenuation added in step 1070 is a multiple of 1 dB, such as 5 dB, the amount of attenuation reduced in step 1100 can be a lesser amount, such as 2 dB or 4 dB. The amount of attenuation reduced in step 1100 can also be greater than the amount of additional attenuation added in step 1070 for the reasons stated above relating to maintaining the quality of the output from the modem 140 and the and durability of the modem 140.
The predetermined threshold compared in step 1060 is a signal level sufficient to distinguish the presence of upstream data packets in the upstream bandwidth from interference signals. This value will vary depending on the output power of any cable modem 140, STB, STU, etc. in the system and the average observed level of interference signals. A goal is, for example, to determine if a device is present that sends upstream data packets via the upstream bandwidth. If the predetermined threshold is set too low, the interference signals may appear to be upstream data packets, but if the predetermined threshold is set too high, the upstream data packets may appear as interference signals.
Any of the high quality, commercially available signal couplers, signal level detectors, variable attenuation devices, filters, amplifiers, and microprocessors will function well within the specified locations within the premise device 100.
Referring now to FIGS. 3, 4, and 8, the premise device 100 preferably includes circuit components creating the downstream bandwidth output level and/or output level tilt compensation device 3, which helps to maintain a desired signal quality in transmitted signals using relatively high frequencies within the downstream bandwidth, which are much more susceptible to traditional parasitic losses. At a simplistic level, the microprocessor 810 observes channel data obtained from the tuner circuit 600, compares the observed channel data to a known parasitic loss curve, and then adjusts a pair of variable output level compensation devices 440, 450 and a variable slope adjusting circuit 460 located in the circuit 200 to create an output having a desired gain curve (i.e., a curve representative of transmitted signal strengths) across the downstream bandwidth. While each of the variable output level compensation devices 440, 450 are depicted in FIGS. 4 and 8 as a variable attenuator, it should be understood that the term “variable output level compensation device” used herein should be understood to include not only a variable attenuation device, but also circuits containing a variable amplifier, AGC circuits, other variable amplifier/attenuation circuits, and related optical circuits that can be used to alter the signal strength of signals in the downstream bandwidth. Each of these steps will be discussed in further detail below.
The tuner circuit 600 obtains the downstream bandwidth from a coupler 420 drawing the downstream bandwidth off of the high frequency signal path 930 (FIG. 5). Please note that these signals will be referred to herein as the coupled downstream bandwidth. The coupled downstream bandwidth is passed through a resistor 430 prior to being passed into a tuner 610.
Through instructions provided by the microprocessor 810, the tuner 610 scans the coupled downstream bandwidth in an effort to locate and identify a channel having a low frequency, referred to herein as a low band signal channel 1250 (FIG. 9), and a channel having a high frequency, referred to herein as a high band signal channel 1260 (FIG. 9). In the present instance, the microprocessor 810 instructs the tuner 610 to begin at the lowest frequency in the downstream bandwidth and scan toward higher frequencies until the low band signal channel 1250 is found. Similarly, the microprocessor 810 instructs the tuner 610 to begin at the highest frequency in the coupled downstream bandwidth and scan toward lower frequencies until the high band signal channel 1260 is found. Accordingly, the low band signal channel 1250 is a channel located near the lowest frequency within the coupled downstream bandwidth while the high band channel 1260 is a channel located near the highest frequency within the coupled downstream bandwidth. Even though the low band signal channel 1250 and the high band signal channel 1260 are depicted in FIG. 9 as a single frequency for clarity, it should be understood that a channel is typically a range of frequencies. It should also be understood that the low band signal channel 1250 and the high band signal channel 1260 do not need to be the lowest or highest frequency channels, respectively. It is beneficial, however that the two channels be spaced as far apart from one another as practical to better estimate the amount of parasitic loss experiences across the entire downstream bandwidth.
During the scanning process to locate and identify the low and high band signal channels 1250, 1260, the tuner circuit 600 provides the microprocessor 810 with three types of information. First, a signal indicating that a channel has been identified is provided to the microprocessor 810 through input line 640. Second, a signal indicating signal strength of the identified channel is provided to the microprocessor 810 through input line 630. Third, a signal indicating the format of the identified channel is provided to the microprocessor 810 through input line 620.
The signal indicating that a channel has been identified is created by passing the coupled downstream bandwidth though a band pass filter 650 to remove extraneous noise, a signal level detector 660 to convert signal into a voltage, and another signal level detector 670. The signal leaving the signal level detector 670 is compared to a predetermined threshold voltage using comparator 680. The predetermined threshold voltage is created using a voltage source 690 and an resistive divider 700, and is set such that if the voltage associated with the coupled downstream bandwidth at the tuner frequency is greater than the threshold voltage, it is likely a channel in use by the supplier 20, whereas if the voltage associated with the coupled downstream bandwidth at the tuner frequency is less than the threshold voltage, it is likely interference signals.
The signal indicating signal strength is created similarly to the signal indicating that a channel has been identified. The signal indicating signal strength passes through comparator 720 when it is greater than a threshold voltage created by a voltage source 730 and a resistive divider 740. To clarify the differences, the signal indicating that a channel has been identified may not have any direct relation to the actual signal strength, whereas the signal indicating signal strength is directly proportional to the actual signal strength of the identified channel.
The signal indicating the format of the identified channel is created when the coupled downstream bandwidth passes through a channel analyzer, which includes the band pass filter 650, the signal level detector 660, a synch detector 750, a low pass filter 760, and a signal level detector 770. The resulting signal identifies whether the identified channel is an analog format channel or another type of signal format.
According to current signal transmission specifications, digital format channels have a signal strength that is typically 6 dB less than a corresponding analog channel. Accordingly, the microprocessor 810 must include a level offset calculation that can account for this 6 dB difference when comparing the relative signal strengths of the low and high band signal channels 1250, 1260. If this inherent difference is not accounted for, any resulting comparisons of the two channels 1250, 1260 for the purpose of determining relative signal strengths would necessarily be flawed. For example, if the high band channel 1260 is digital while the low band channel 1250 is analog, the additional, inherent 6 dB difference would incorrectly indicate that there is more parasitic losses than there actually is. Similarly, if the high band channel 1260 is analog and the low band channel 1250 is digital, any resulting comparison would incorrectly indicate that there is less parasitic loss that there actually is. Therefore, it should be understood that it does not matter whether the 6 dB offset is added to the signal strength of a digital format channel or the 6 dB offset is subtracted from the signal strength of an analog format channel. Further, it should be understood that the 6 dB offset can be added to the signal strength of both the low and high band channels 1250, 1260 if they are both digital or the 6 dB offset can be subtracted from the signal strength of both the low and high band channels 1250, 1260 if they are both analog. Even further, it should be understood that the offset value is dictated by the standards observed by a particular supplier and can be, therefore, a value other than 6 dB.
After completing the scanning process and the process of adding/removing any offsets, the microprocessor 810 now has a low band signal strength (including any offset), a low band channel frequency, a high band signal strength (including any offset), and a high band channel frequency. The known information (i.e., the strength and frequency) of the low and high band channels 1250, 1260 are now compared, by the microprocessor 810, to a predetermined signal strength loss curve (i.e., a gain loss curve), which corresponds to the known parasitic losses associated with the type of coaxial/optical cables used, as shown in FIG. 9. This step beneficially allows the known information to be interpolated across the entire downstream bandwidth. Using the interpolated curve, the microprocessor 810 determines how much signal level adjustment to apply and in what manner to apply the level adjustment across the entire downstream bandwidth such that the a resulting gain curve across the entire bandwidth is nearly linear and preferably with a slight increase in gain toward the higher frequencies in anticipation of parasitic losses that will occur downstream from the premise device 100. For example, the amount of level is determined by the high band signal strength (i.e., high band gain) including any interpolation to the highest frequency, and the amount of level reduction is determined by the low band signal strength (i.e., low band level) including any interpolation to the lowest frequency.
It should be understood that parasitic losses affect higher frequencies more than lower frequencies. Accordingly, if a known signal having a −10 dB signal strength, for example, is transmitted at various frequencies across the entire downstream bandwidth and across a length of coaxial/optical cable, a plot of the resulting gain curve would result in a curve, which is known. Because the end goal is to have a gain curve that is a straight line near the original signal strengths or to have a gain curve that has an increasing slope versus frequency, the microprocessor 810 directly controls the variable slope adjustment circuit to adjust the downstream signal transmission in curve such that the lower frequencies are lower in amplitude than the higher frequencies.
For example, as shown in FIG. 9, using the known frequency and signal strength for each of the low band channel 1250 and the high band channel 1260, a gain curve 1210 can be plotted across the entire downstream bandwidth, which is shown, for example, as being from 50 MHz to 1000 MHz. The microprocessor 810 then determines a total amount of level adjustment to be added by the amplifier 490 and/or the amplifier 500 that will at least replace the loss at the highest frequency. In the present example, the amount of level adjustment would be at least +38 dB, resulting in a gain curve 1220 that is shown in FIG. 10. Based on the interpolated gain curve shown in FIG. 9, the microprocessor 810 instructs the variable slope circuit 460 to apply a similar, but inversely curved amount of correction to result in a relatively flat gain curve 1230 shown in FIG. 10. It may be desirable to increase the amount of level adjustment applied and increase the curvature of the slope adjustment to result in a gain curve 1240, as shown in FIG. 8, which has an increasing slope toward the higher frequencies.
As with the other devices discussed above, the downstream bandwidth output level and/or output level tilt compensation device 3 can be activated automatically upon initialization of the premise device 100, a set intervals, upon the occurrence of a particular event, and/or upon receipt of an information signal (e.g. a tone, a coded operating signal, etc.) from the supplier 20.
While the present invention has been particularly shown and described with reference to certain exemplary embodiments, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the invention as defined by claims that can be supported by the written description and drawings. Further, where exemplary embodiments are described with reference to a certain number of elements it will be understood that the exemplary embodiments can be practiced utilizing either less than or more than the certain number of elements.

Claims (12)

The following is claimed:
1. A frequency band selection device that can be inserted into a signal transmission line of a CATV system on the premise of a user, the device comprising:
at least two signal path sets between a tap-side and a premise-side, each of the at least two signal path sets comprising:
a first discrete signal path comprising a high frequency signal path allowing a downstream bandwidth to pass from the tap-side to the premise-side,
a second discrete signal path comprising a low frequency signal path allowing an upstream bandwidth to pass from the premise-side to the tap-side, and
the high frequency signal path and the low frequency signal path are separated by a cut-off transition frequency that is different for each of the at least two signal path sets; and
a switch controller having at least two discrete switch positions, the switch controller choosing one of the switch positions as a result of an information signal, each of the switch positions corresponding to a respective one of the at least two signal path sets.
2. The frequency band selection device of claim 1 further comprising:
a tap-side switch comprising an input terminal connected to a supplier side terminal; and
a tap-side filter set including a pair of frequency band splitting devices selectable by the tap-side switch,
wherein:
the tap-side switch comprises a first position directly connected to a first frequency band splitting device of the pair of frequency band splitting devices,
the first frequency band splitting device of the pair of frequency band splitting devices is associated with a first signal path set of the at least two signal path sets,
the tap-side switch comprises a second position directly connected to a second frequency band splitting device of the pair of frequency band splitting devices,
the second frequency band splitting device of the pair of frequency band splitting devices is associated with a second signal path set of the at least two signal path sets, and
the tap-side switch is actuated by the switch controller.
3. The frequency band selection device of claim 2, wherein at least one of the first frequency band splitting device of the pair of frequency band splitting devices and the second frequency band splitting device of the pair of frequency band splitting devices separates the upstream bandwidth from the downstream bandwidth.
4. The frequency band selection device of claim 1 further comprising:
a premise-side switch connected to a premise-side terminal; and
a premise-side filter set including a pair of frequency band splitting devices selectable by the premise-side switch,
wherein:
the premise-side switch comprises a first position directly connected to a first frequency band splitting device of the pair of frequency band splitting devices,
the first frequency band splitting device of the pair of frequency band splitting devices is associated with the first signal path set,
the premise-side switch comprises a second position directly connected to a second frequency band splitting device of the pair of frequency band splitting devices,
the second frequency band splitting device of the pair of frequency band splitting devices is associated with the second signal path set, and
the premise-side switch is actuated by the switch controller.
5. The frequency band selection device of claim 4, wherein one of the first frequency band splitting device of the pair of frequency band splitting devices and the second frequency band splitting device of the pair of frequency band splitting devices separates the upstream bandwidth from the downstream bandwidth.
6. The frequency band selection device of claim 1 further comprising:
a tap-side switch set connected between a first pair of frequency band splitting devices and a second pair of frequency band splitting devices; and
a premise-side switch set connected between the first pair of frequency band splitting devices and the second pair of frequency band splitting devices,
wherein the tap-side switch set and the premise-side switch set are actuated by the switch controller.
7. The frequency band selection device of claim 1, wherein the information signal comprises a continuous tone.
8. The frequency band selection device of claim 1, wherein the information signal comprises a coded operational signal.
9. The frequency band selection device of claim 1, wherein the at least two signal path sets comprises three signal path sets.
10. The frequency band selection device of claim 9, wherein the switch controller includes three discrete switch positions corresponding, respectively to the three signal path sets.
11. The frequency band selection device of claim 1, wherein each of the at least two signal path sets comprises at least one conductor providing an electrical transmission line between the tap-side and the premise-side.
12. A frequency band selection device comprising:
at least two signal path sets between a tap-side and a premise-side, each of the at least two signal path sets comprising:
a first discrete signal path comprising a high frequency signal path allowing a downstream bandwidth to pass from the tap-side to the premise-side,
a second discrete signal path comprising a low frequency signal path allowing an upstream bandwidth to pass from the premise-side to the tap-side, and
the high frequency signal path and the low frequency signal path are separated by a cut-off transition frequency that is different for each of the at least two signal path sets;
a switch controller having at least two discrete switch positions, the switch controller choosing one of the switch positions as a result of an information signal, each of the switch positions corresponding to a respective one of the at least two signal path sets;
a tap-side switch comprising an input terminal connected to a supplier side terminal;
a premise-side switch connected to a premise-side terminal;
a tap-side filter set including a first pair of frequency band splitting devices selectable by the tap-side switch; and
a premise-side filter set including a second pair of frequency band splitting devices selectable by the premise-side switch,
wherein:
each of the at least two signal path sets comprises at least one conductor providing an electrical transmission line between the tap-side and the premise-side,
the tap-side switch and the premise-side switch are actuated by the switch controller,
the tap-side switch comprises a first position directly connected to a first frequency band splitting device of the first pair of frequency band splitting devices,
the first frequency band splitting device of the first pair of frequency band splitting devices is associated with a first signal path set of the at least two signal path sets,
the tap-side switch comprises a second position directly connected to a second frequency band splitting device of the first pair of frequency band splitting devices,
the second frequency band splitting device of the first pair of frequency band splitting devices is associated with a second signal path set of the at least two signal path sets,
the premise-side switch comprises a first position directly connected to a first frequency band splitting device of the second pair of frequency band splitting devices,
the first frequency band splitting device of the second pair of frequency band splitting devices is associated with the first signal path set,
the premise-side switch comprises a second position directly connected to a second frequency band splitting device of the second pair of frequency band splitting devices, and
the second frequency band splitting device of the second pair of frequency band splitting devices is associated with the second signal path set.
US14/337,424 2008-10-16 2014-07-22 Dynamically configurable frequency band selection device between CATV distribution system and CATV user Active US9271026B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/337,424 US9271026B2 (en) 2008-10-16 2014-07-22 Dynamically configurable frequency band selection device between CATV distribution system and CATV user
US15/049,661 US10264325B2 (en) 2008-10-16 2016-02-22 System, method and device having teaching and commerce subsystems
US16/280,277 US10924811B2 (en) 2008-10-16 2019-02-20 Compensation device for maintaining a desired signal quality in transmitted signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/252,907 US8832767B2 (en) 2008-10-16 2008-10-16 Dynamically configurable frequency band selection device between CATV distribution system and CATV user
US14/337,424 US9271026B2 (en) 2008-10-16 2014-07-22 Dynamically configurable frequency band selection device between CATV distribution system and CATV user

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/252,907 Continuation US8832767B2 (en) 2008-10-16 2008-10-16 Dynamically configurable frequency band selection device between CATV distribution system and CATV user

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/049,661 Continuation US10264325B2 (en) 2008-10-16 2016-02-22 System, method and device having teaching and commerce subsystems

Publications (2)

Publication Number Publication Date
US20140331270A1 US20140331270A1 (en) 2014-11-06
US9271026B2 true US9271026B2 (en) 2016-02-23

Family

ID=42109661

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/252,907 Expired - Fee Related US8832767B2 (en) 2008-10-16 2008-10-16 Dynamically configurable frequency band selection device between CATV distribution system and CATV user
US14/337,424 Active US9271026B2 (en) 2008-10-16 2014-07-22 Dynamically configurable frequency band selection device between CATV distribution system and CATV user
US15/049,661 Active US10264325B2 (en) 2008-10-16 2016-02-22 System, method and device having teaching and commerce subsystems
US16/280,277 Active 2028-10-25 US10924811B2 (en) 2008-10-16 2019-02-20 Compensation device for maintaining a desired signal quality in transmitted signals

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/252,907 Expired - Fee Related US8832767B2 (en) 2008-10-16 2008-10-16 Dynamically configurable frequency band selection device between CATV distribution system and CATV user

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/049,661 Active US10264325B2 (en) 2008-10-16 2016-02-22 System, method and device having teaching and commerce subsystems
US16/280,277 Active 2028-10-25 US10924811B2 (en) 2008-10-16 2019-02-20 Compensation device for maintaining a desired signal quality in transmitted signals

Country Status (1)

Country Link
US (4) US8832767B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9363469B2 (en) 2008-07-17 2016-06-07 Ppc Broadband, Inc. Passive-active terminal adapter and method having automatic return loss control
US9647851B2 (en) 2008-10-13 2017-05-09 Ppc Broadband, Inc. Ingress noise inhibiting network interface device and method for cable television networks
US8213457B2 (en) * 2009-10-09 2012-07-03 John Mezzalingua Associates, Inc. Upstream bandwidth conditioning device
US8464301B2 (en) * 2008-10-16 2013-06-11 Ppc Broadband, Inc. Upstream bandwidth conditioning device between CATV distribution system and CATV user
US8516537B2 (en) * 2009-10-09 2013-08-20 Ppc Broadband, Inc. Downstream bandwidth conditioning device
US20110085586A1 (en) * 2009-10-09 2011-04-14 John Mezzalingua Associates, Inc. Total bandwidth conditioning device
US8385219B2 (en) 2009-10-09 2013-02-26 John Mezzalingua Associates, Inc. Upstream bandwidth level measurement device
US8510782B2 (en) 2008-10-21 2013-08-13 Ppc Broadband, Inc. CATV entry adapter and method for preventing interference with eMTA equipment from MoCA Signals
US11910052B2 (en) 2008-10-21 2024-02-20 Ppc Broadband, Inc. Entry device for communicating external network signals and in-home network signals
US20110138440A1 (en) * 2009-12-03 2011-06-09 John Mezzalingua Associates, Inc. Downstream output level tilt compensation device between CATV distribution system and CATV user
US8479247B2 (en) 2010-04-14 2013-07-02 Ppc Broadband, Inc. Upstream bandwidth conditioning device
US8707339B2 (en) * 2010-07-30 2014-04-22 CSC Holdings, LLC System and method for detecting hacked modems
US8561125B2 (en) 2010-08-30 2013-10-15 Ppc Broadband, Inc. Home network frequency conditioning device and method
US10021343B2 (en) 2010-12-21 2018-07-10 Ppc Broadband, Inc. Method and apparatus for reducing isolation in a home network
US9021086B2 (en) * 2011-10-21 2015-04-28 Comcast Cable Communications, Llc System and method for network management
US8971792B2 (en) * 2012-06-25 2015-03-03 Commscope, Inc. Of North Carolina Signal amplifiers that switch to an attenuated or alternate communications path in response to a power interruption
US8995912B2 (en) * 2012-12-03 2015-03-31 Broadcom Corporation Transmission line for an integrated circuit package
JP6876938B2 (en) * 2015-08-18 2021-05-26 インターディジタル・シーイー・パテント・ホールディングス・ソシエテ・パ・アクシオンス・シンプリフィエ Methods and devices for controlling filter circuits in signal communication devices
US9935661B2 (en) 2016-02-16 2018-04-03 Thomson Licensing Apparatus and method for controlling a filter in a signal communication device
US10425617B2 (en) 2016-10-03 2019-09-24 Enseo, Inc. Distribution element for a self-calibrating RF network and system and method for use of the same
US10701569B2 (en) 2016-10-03 2020-06-30 Enseo, Inc. Self-calibrating RF network and system and method for use of the same
US10798374B2 (en) 2016-10-28 2020-10-06 Enseo, Inc. Set-top box with self-monitoring and system and method for use of same
US11502716B2 (en) 2020-12-16 2022-11-15 Texas Instruments Incorporated On-off keying receivers
US20220368440A1 (en) * 2021-05-03 2022-11-17 Arris Enterprises Llc System for channel map delivery for hi split cable networks
US11831934B2 (en) 2022-01-11 2023-11-28 Enseo, Llc Set-top box with self-monitoring and system and method for use of same

Citations (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790909A (en) 1973-01-26 1974-02-05 Gte Sylvania Inc Varactor tuner band switch circuitry
JPS5580989A (en) 1978-12-15 1980-06-18 Nec Corp Automatic balancing system for exchange
JPS55132126A (en) 1979-03-31 1980-10-14 Fujitsu Ltd Selective switching circuit of signal transmission line
JPS5791055A (en) 1980-11-27 1982-06-07 Toshiba Corp Branching device
JPS58101582U (en) 1974-11-14 1983-07-11 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン display tube
US4418424A (en) 1980-03-17 1983-11-29 Matsushita Electric Industrial Co., Ltd. Cable television transmission control system
US4512033A (en) 1982-11-29 1985-04-16 C-Cor Labs, Inc. Remote level adjustment system for use in a multi-terminal communications system
US4520508A (en) 1982-12-21 1985-05-28 General Instrument Corporation Subscriber terminal for monitoring radio-frequency signal ingress into cable television systems
US4521920A (en) 1980-09-01 1985-06-04 Telefonaktiebolaget L M Ericsson Method and an arrangement for increasing the dynamic range at the input stage of a receiver in an optical fibre information transmission system
JPS61157035A (en) 1984-12-28 1986-07-16 Fujitsu Ltd Impedance matching system
US4648123A (en) 1982-11-29 1987-03-03 C-Cor Labs, Inc. Remote level measurement system for use in a multi-terminal communications system
US4677390A (en) 1985-05-31 1987-06-30 Texscan Corporation Low-power feedforward amplifier
US4961218A (en) 1989-05-17 1990-10-02 Tollgrade Communications, Inc. Enhanced line powered amplifier
US4982440A (en) 1988-04-21 1991-01-01 Videotron Ltee CATV network with addressable filters receiving MSK upstream signals
US5010399A (en) 1989-07-14 1991-04-23 Inline Connection Corporation Video transmission and control system utilizing internal telephone lines
US5126840A (en) 1988-04-21 1992-06-30 Videotron Ltee Filter circuit receiving upstream signals for use in a CATV network
US5214505A (en) 1991-04-08 1993-05-25 Hughes Aircraft Company Automatic rf equalization in passenger aircraft video distribution system
US5231660A (en) 1988-03-10 1993-07-27 Scientific-Atlanta, Inc. Compensation control for off-premises CATV system
JPH05191416A (en) 1992-01-10 1993-07-30 Matsushita Electric Ind Co Ltd Automatic termination resistor connector
US5235612A (en) 1990-12-21 1993-08-10 Motorola, Inc. Method and apparatus for cancelling spread-spectrum noise
US5345504A (en) 1988-03-10 1994-09-06 Scientific-Atlanta, Inc. Differential compensation control for off-premises CATV system
US5361394A (en) 1989-12-19 1994-11-01 Kabushiki Kaisha Toshiba Upstream signal control apparatus for cable television system
US5369642A (en) 1992-05-29 1994-11-29 Nec Corporation Switcher for redundant signal transmission system
JPH0738580A (en) 1993-06-28 1995-02-07 Nec Corp Variable terminating system
US5548255A (en) 1995-06-23 1996-08-20 Microphase Corporation Compact diplexer connection circuit
US5745836A (en) 1995-09-01 1998-04-28 Cable Television Laboratories, Inc. Undesirable energy suppression system in a contention based communication network
US5815794A (en) 1995-09-01 1998-09-29 Cable Television Laboratories, Inc. Undesirable energy suppression system in the return path of a bidirectional cable network having dynamically allocated time slots
US5839052A (en) 1996-02-08 1998-11-17 Qualcom Incorporated Method and apparatus for integration of a wireless communication system with a cable television system
JPH1169334A (en) 1997-08-19 1999-03-09 Miharu Tsushin Kk Standby tv modulator for catv head end
US5893024A (en) 1996-08-13 1999-04-06 Motorola, Inc. Data communication apparatus and method thereof
US5937330A (en) 1997-02-18 1999-08-10 General Instrument Corporation Settop terminal controlled return path filter for minimizing noise ingress on bidirectional cable systems
US5950111A (en) 1997-09-25 1999-09-07 Lucent Technologies Inc. Self-terminating coaxial to unshielded twisted-pair cable passive CATV distribution panel
US5956075A (en) 1996-07-22 1999-09-21 Nec Corporation CATV terminal unit
US5970053A (en) 1996-12-24 1999-10-19 Rdl, Inc. Method and apparatus for controlling peak factor of coherent frequency-division-multiplexed systems
US6014547A (en) 1997-04-28 2000-01-11 General Instrument Corporation System for enhancing the performance of a CATV settop terminal
US6049693A (en) 1996-08-15 2000-04-11 Com21, Inc. Upstream ingress noise blocking filter for cable television system
WO2000024124A1 (en) 1998-10-22 2000-04-27 Ericsson, Inc. Dual-band, dual-mode power amplifier with reduced power loss
US6069960A (en) 1996-09-05 2000-05-30 Sony Corporation Connector device for information-handling apparatus and connector device for stereophonic audio/video apparatus
US6160990A (en) 1996-05-13 2000-12-12 Kabushiki Kaisha Toshiba Cable network system with ingress noise suppressing function
US6205138B1 (en) 1998-04-24 2001-03-20 International Business Machines Corporation Broadband any point to any point switch matrix
US6253077B1 (en) 1997-05-16 2001-06-26 Texas Instruments Incorporated Downstream power control in point-to-multipoint systems
JP2001177580A (en) 1999-12-20 2001-06-29 Sony Corp Impedance adapting system
WO2001072005A1 (en) 2000-03-17 2001-09-27 Transcorp Systems Pty Ltd Digital data splitter with switch and automatic termination restoration
US6348837B1 (en) 2000-08-08 2002-02-19 Scientific-Atlanta, Inc. Bi-directional amplifier having a single gain block for amplifying both forward and reverse signals
US6348955B1 (en) 1998-02-23 2002-02-19 Zenith Electronics Corporation Tuner with switched analog and digital demodulators
US6373349B2 (en) 2000-03-17 2002-04-16 Bae Systems Information And Electronic Systems Integration Inc. Reconfigurable diplexer for communications applications
US6377316B1 (en) 1998-02-23 2002-04-23 Zenith Electronics Corporation Tuner with switched analog and digital modulators
WO2002033969A1 (en) 2000-10-16 2002-04-25 Xtend Networks Ltd. System and method for expanding the operational bandwidth of a communication system
US6388539B1 (en) 2001-04-16 2002-05-14 At&T Corp. Broadband switch/coupler
US6425132B1 (en) 1998-04-06 2002-07-23 Wavetek Corporation Ingress testing of CATV system utilizing remote selection of CATV node
US20020144292A1 (en) 2001-02-19 2002-10-03 Jun Uemura Bi-directional CATV system, line equipment, center equipment
US20020141494A1 (en) 2001-03-29 2002-10-03 Chappell Daniel K. Sweep method using digital signals
US20020141347A1 (en) 2001-03-30 2002-10-03 Harp Jeffrey C. System and method of reducing ingress noise
US20020166124A1 (en) 2001-05-04 2002-11-07 Itzhak Gurantz Network interface device and broadband local area network using coaxial cable
WO2002091676A1 (en) 2001-05-08 2002-11-14 Hoseo Telecom Co., Ltd Subscriber tap-off capable of monitoring state of transmission line at subscriber end, and remote control system and method using the same
US20020174435A1 (en) 2001-02-27 2002-11-21 Hillel Weinstein System, apparatus and method for expanding the operational bandwidth of a communication system
US6495998B1 (en) 2000-09-28 2002-12-17 Sunrise Telecom Corp. Selectable band-pass filtering apparatus and method
US6498925B1 (en) 1999-05-13 2002-12-24 Denso Corporation Transmit power control circuit
US6510152B1 (en) 1997-12-31 2003-01-21 At&T Corp. Coaxial cable/twisted pair fed, integrated residence gateway controlled, set-top box
US6560778B1 (en) 1999-03-29 2003-05-06 Masprodenkoh Kabushikikaisha Tap device of cable broadcasting system
US6570928B1 (en) 1999-01-05 2003-05-27 Masprodenkoh Kabushikikaisha Cable broadcasting system
US6570914B1 (en) 1999-07-07 2003-05-27 Nec Corporation Amplitude calculation circuit
US6587012B1 (en) 1999-10-01 2003-07-01 Arris International, Inc. Automatic slope and gain (ASG) detector technique including a pilot signal
US6622304B1 (en) 1996-09-09 2003-09-16 Thomas W. Carhart Interface system for computing apparatus and communications stations
US6640338B1 (en) 1999-01-27 2003-10-28 Masprodenkoh Kabushikikaisha Electronic device for cable broadcasting system
US6678893B1 (en) 1997-12-26 2004-01-13 Samsung Electronics Co., Ltd. Bidirectional trunk amplifier and cable modem for cable hybrid fiber and coax network which utilizes an upstream pilot signal
US6683513B2 (en) 2000-10-26 2004-01-27 Paratek Microwave, Inc. Electronically tunable RF diplexers tuned by tunable capacitors
JP2004080483A (en) 2002-08-20 2004-03-11 Ntt Communications Kk Adapter for voice over an internet protocol
US6725462B1 (en) 2000-04-19 2004-04-20 At&T Corp. Optimizing upstream transmission in a cable television distribution plant
US6725463B1 (en) 1997-08-01 2004-04-20 Microtune (Texas), L.P. Dual mode tuner for co-existing digital and analog television signals
US20040076192A1 (en) 1999-10-19 2004-04-22 Rambus Inc. Calibrated data communication system and method
US6728968B1 (en) 1999-06-17 2004-04-27 Fujitsu Limited Upward-joining-noise decreasing method and apparatus
US6757910B1 (en) 2000-06-08 2004-06-29 C-Cor.Net Corporation Adaptive filter for reducing ingress noise in CATV return signals
US20040172659A1 (en) 2001-07-13 2004-09-02 Ljungdahl Kjell Arne Arrangement for reduction of noise transmitted from a local cable tv network
US6804828B1 (en) 1998-12-03 2004-10-12 Masprodenkoh Kabushikikaisha Tap device of cable broadcasting system
US20040229561A1 (en) 2003-02-28 2004-11-18 Cowley Nicholas Paul Tuner
JP2005005875A (en) 2003-06-10 2005-01-06 Nec Tohoku Ltd VoIP SWITCHING DEVICE
US6845232B2 (en) 2002-03-25 2005-01-18 Broadcom Corporation Analog peak detection circuitry for radio receivers
US6877166B1 (en) 2000-01-18 2005-04-05 Cisco Technology, Inc. Intelligent power level adjustment for cable modems in presence of noise
US6880170B1 (en) 1994-11-30 2005-04-12 General Instrument Corporation Ingress detection and attenuation
US20050155082A1 (en) * 2001-02-27 2005-07-14 Hillel Weinstein Device, system and method for connecting a subscriber device to a wideband distribution network
US6928175B1 (en) 2000-06-14 2005-08-09 Creative Technology Ltd. Audio system with optional auto-switching secondary connector, and method for same
US20050183130A1 (en) 2004-02-12 2005-08-18 Sadja Aran L. Cable diagnostic and monitoring system
US20050283815A1 (en) 2004-06-01 2005-12-22 Brooks Paul D Apparatus and methods for network interface and spectrum management
US20050289632A1 (en) 2004-06-01 2005-12-29 Brooks Paul D Controlled isolation splitter apparatus and methods
US20060015921A1 (en) 2004-07-19 2006-01-19 Jay Vaughan VoIP drop amplifier
US7003275B1 (en) 2000-05-18 2006-02-21 Broadband Innovations, Inc. Agile frequency converter for multichannel systems using IF-RF level exhange and tunable filters
US7029293B2 (en) 2004-08-20 2006-04-18 Extreme Broadband Engineering, Llc Ground block connector
US7039432B2 (en) 2001-12-04 2006-05-02 General Instrument Corporation Dynamic upstream attenuation for ingress noise reduction
US20060205442A1 (en) 2005-03-10 2006-09-14 Neil Phillips Bi-directional amplifier with non-interruptible port
US20060282871A1 (en) 2005-06-13 2006-12-14 Yao-Tsan Yo Distribution method for noise control
US7162731B2 (en) 2002-02-07 2007-01-09 Advent Networks, Inc. Radio frequency characterization of cable plant and corresponding calibration of communication equipment communicating via the cable plant
US7167693B2 (en) 2001-03-06 2007-01-23 Andrew Corporation Scanning receiver for use in power amplifier linearization
JP2007166110A (en) 2005-12-12 2007-06-28 Matsushita Electric Works Ltd Transmission system and branch device thereof
JP2007166109A (en) 2005-12-12 2007-06-28 Matsushita Electric Works Ltd Branch device of transmission system, and transmission system
US7283479B2 (en) 2000-02-16 2007-10-16 Spacenet Proxilliant Systems Ab Cable TV system or other similar communication system
US20070288981A1 (en) 2006-06-13 2007-12-13 Hwa Lin Electronic (Shenzhen)Co., Ltd. CATV system and automatic noise controller
US20070288982A1 (en) 2006-06-13 2007-12-13 Comcast Cable Holdings, Llc Dynamic ingress arrester
CN101094375A (en) 2006-12-29 2007-12-26 雷科通技术(杭州)有限公司 Method and device for carrying out remote both way communications by using cable TV network
US20080022344A1 (en) 2006-07-07 2008-01-24 Scientific-Atlanta, Inc. Format Converter with Smart Multitap with Digital Forward and Reverse
US20080040764A1 (en) 2001-07-20 2008-02-14 Hillel Weinstein System, apparatus and method for expanding the operational bandwidth of a communication system
US20080127287A1 (en) 2006-11-28 2008-05-29 John Mezzalingua Associates, Inc. Apparatus and method for embedding/detecting an auxiliary signal within a catv traffic stream
US7454252B2 (en) 2006-03-08 2008-11-18 Moore Industries International, Inc. Redundant fieldbus system
US20090031391A1 (en) 2007-03-08 2009-01-29 Emerson Network Power Connectivity Solutions Electronically controlled catv system
US20090047917A1 (en) 2005-03-10 2009-02-19 Phillips Neil P Signal Amplifiers Having Non-Interruptible Communication Paths
US7505819B2 (en) 2006-02-08 2009-03-17 Moore Industries International, Inc. Redundant fieldbus system
US20090077608A1 (en) 2007-09-14 2009-03-19 Romerein Robert L Constant input port impedance for CATV amplifier with passive modem port
US20090113510A1 (en) 2005-10-12 2009-04-30 Paul Gothard Knutson Band Switchable Taps and Amplifier for Use in a Cable System
US20090154369A1 (en) 2007-12-18 2009-06-18 Helvig William J Digital-channel-monitor unit
US7603693B2 (en) 2002-05-15 2009-10-13 Panasonic Corporation CATV uplink optical transmission system
US20090320085A1 (en) 2008-06-23 2009-12-24 Jon-En Wang House amplifier with return path gating
US20090316608A1 (en) * 2008-06-24 2009-12-24 Lgc Wireless, Inc. System and method for configurable time-division duplex interface
US20100100912A1 (en) 2008-10-16 2010-04-22 John Mezzalingua Associates, Inc. Upstream bandwidth conditioning device between catv distribution system and catv user
US20110085452A1 (en) 2009-10-09 2011-04-14 John Mezzalingua Associates, Inc. Upstream bandwidth level measurement device
US20110085586A1 (en) 2009-10-09 2011-04-14 John Mezzalingua Associates, Inc. Total bandwidth conditioning device
US20110085480A1 (en) 2009-10-09 2011-04-14 John Mezzalingua Associates, Inc. Upstream bandwidth conditioning device
US20110088077A1 (en) 2009-10-09 2011-04-14 John Mezzalingua Associates, Inc. Downstream bandwidth conditioning device
US8001579B2 (en) 2008-10-16 2011-08-16 John Mezzalingua Associates, Inc. Downstream output level and/or output level tilt compensation device between CATV distribution system and CATV user

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007487A (en) * 1975-09-25 1977-02-08 The Association Of Motion Picture And Television Producers Inc. Electronic composite photography with color control
JPS5899913A (en) 1981-12-10 1983-06-14 松下電工株式会社 Chair
US6862349B1 (en) * 1993-05-28 2005-03-01 Mediaone Group, Inc. Method and apparatus for delivering secured telephony service in a hybrid coaxial cable network
US6208846B1 (en) * 1997-01-13 2001-03-27 Lucent Technologies, Inc. Method and apparatus for enhancing transmitter circuit efficiency of mobile radio units by selectable switching of power amplifier
CN1190964C (en) * 2000-02-14 2005-02-23 夏普公司 Tuner of cable modem
US6501196B1 (en) * 2000-09-12 2002-12-31 Storage Technology Corporation Fault tolerant AC transfer switch
US20020191718A1 (en) * 2001-06-13 2002-12-19 Ellis Michael Glynn Method and apparatus for automatically compensating for attenuation in a received signal
US7126417B2 (en) * 2003-04-29 2006-10-24 Mediacell Licensing Corp. Distributed gain network
JP4343049B2 (en) 2004-07-13 2009-10-14 富士通株式会社 Hard disk drive carriage assembly
US8330550B2 (en) * 2006-06-23 2012-12-11 Rgb Systems, Inc. Method and apparatus for automatic compensation of video signal losses from transmission over conductors
KR100823847B1 (en) * 2006-12-20 2008-04-21 동부일렉트로닉스 주식회사 Method for patterning a semiconductor device
TWI364195B (en) * 2007-10-12 2012-05-11 Filtering apparatus and method for dual-band sensing circuit
US9647851B2 (en) * 2008-10-13 2017-05-09 Ppc Broadband, Inc. Ingress noise inhibiting network interface device and method for cable television networks
US20110138440A1 (en) * 2009-12-03 2011-06-09 John Mezzalingua Associates, Inc. Downstream output level tilt compensation device between CATV distribution system and CATV user
JP5899913B2 (en) 2011-12-27 2016-04-06 新日鐵住金株式会社 Bogie frame for railcar and manufacturing method, and bogie equipped with the bogie frame

Patent Citations (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790909A (en) 1973-01-26 1974-02-05 Gte Sylvania Inc Varactor tuner band switch circuitry
JPS58101582U (en) 1974-11-14 1983-07-11 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン display tube
JPS5580989A (en) 1978-12-15 1980-06-18 Nec Corp Automatic balancing system for exchange
JPS55132126A (en) 1979-03-31 1980-10-14 Fujitsu Ltd Selective switching circuit of signal transmission line
US4418424A (en) 1980-03-17 1983-11-29 Matsushita Electric Industrial Co., Ltd. Cable television transmission control system
US4521920A (en) 1980-09-01 1985-06-04 Telefonaktiebolaget L M Ericsson Method and an arrangement for increasing the dynamic range at the input stage of a receiver in an optical fibre information transmission system
JPS5791055A (en) 1980-11-27 1982-06-07 Toshiba Corp Branching device
US4512033A (en) 1982-11-29 1985-04-16 C-Cor Labs, Inc. Remote level adjustment system for use in a multi-terminal communications system
US4648123A (en) 1982-11-29 1987-03-03 C-Cor Labs, Inc. Remote level measurement system for use in a multi-terminal communications system
US4520508A (en) 1982-12-21 1985-05-28 General Instrument Corporation Subscriber terminal for monitoring radio-frequency signal ingress into cable television systems
JPS61157035A (en) 1984-12-28 1986-07-16 Fujitsu Ltd Impedance matching system
US4677390A (en) 1985-05-31 1987-06-30 Texscan Corporation Low-power feedforward amplifier
US5231660A (en) 1988-03-10 1993-07-27 Scientific-Atlanta, Inc. Compensation control for off-premises CATV system
US5345504A (en) 1988-03-10 1994-09-06 Scientific-Atlanta, Inc. Differential compensation control for off-premises CATV system
US4982440A (en) 1988-04-21 1991-01-01 Videotron Ltee CATV network with addressable filters receiving MSK upstream signals
US5126840A (en) 1988-04-21 1992-06-30 Videotron Ltee Filter circuit receiving upstream signals for use in a CATV network
US4961218A (en) 1989-05-17 1990-10-02 Tollgrade Communications, Inc. Enhanced line powered amplifier
US5010399A (en) 1989-07-14 1991-04-23 Inline Connection Corporation Video transmission and control system utilizing internal telephone lines
US5361394A (en) 1989-12-19 1994-11-01 Kabushiki Kaisha Toshiba Upstream signal control apparatus for cable television system
US5235612A (en) 1990-12-21 1993-08-10 Motorola, Inc. Method and apparatus for cancelling spread-spectrum noise
US5214505A (en) 1991-04-08 1993-05-25 Hughes Aircraft Company Automatic rf equalization in passenger aircraft video distribution system
JPH05191416A (en) 1992-01-10 1993-07-30 Matsushita Electric Ind Co Ltd Automatic termination resistor connector
US5369642A (en) 1992-05-29 1994-11-29 Nec Corporation Switcher for redundant signal transmission system
JPH0738580A (en) 1993-06-28 1995-02-07 Nec Corp Variable terminating system
US6880170B1 (en) 1994-11-30 2005-04-12 General Instrument Corporation Ingress detection and attenuation
US5548255A (en) 1995-06-23 1996-08-20 Microphase Corporation Compact diplexer connection circuit
US5815794A (en) 1995-09-01 1998-09-29 Cable Television Laboratories, Inc. Undesirable energy suppression system in the return path of a bidirectional cable network having dynamically allocated time slots
US5745836A (en) 1995-09-01 1998-04-28 Cable Television Laboratories, Inc. Undesirable energy suppression system in a contention based communication network
US5839052A (en) 1996-02-08 1998-11-17 Qualcom Incorporated Method and apparatus for integration of a wireless communication system with a cable television system
US6160990A (en) 1996-05-13 2000-12-12 Kabushiki Kaisha Toshiba Cable network system with ingress noise suppressing function
US5956075A (en) 1996-07-22 1999-09-21 Nec Corporation CATV terminal unit
US5893024A (en) 1996-08-13 1999-04-06 Motorola, Inc. Data communication apparatus and method thereof
US6094211A (en) 1996-08-15 2000-07-25 Com21, Inc. TV and data cable system ingress noise blocker
US6049693A (en) 1996-08-15 2000-04-11 Com21, Inc. Upstream ingress noise blocking filter for cable television system
US6069960A (en) 1996-09-05 2000-05-30 Sony Corporation Connector device for information-handling apparatus and connector device for stereophonic audio/video apparatus
US6622304B1 (en) 1996-09-09 2003-09-16 Thomas W. Carhart Interface system for computing apparatus and communications stations
US5970053A (en) 1996-12-24 1999-10-19 Rdl, Inc. Method and apparatus for controlling peak factor of coherent frequency-division-multiplexed systems
US5937330A (en) 1997-02-18 1999-08-10 General Instrument Corporation Settop terminal controlled return path filter for minimizing noise ingress on bidirectional cable systems
US6014547A (en) 1997-04-28 2000-01-11 General Instrument Corporation System for enhancing the performance of a CATV settop terminal
US6253077B1 (en) 1997-05-16 2001-06-26 Texas Instruments Incorporated Downstream power control in point-to-multipoint systems
US6725463B1 (en) 1997-08-01 2004-04-20 Microtune (Texas), L.P. Dual mode tuner for co-existing digital and analog television signals
JPH1169334A (en) 1997-08-19 1999-03-09 Miharu Tsushin Kk Standby tv modulator for catv head end
US5950111A (en) 1997-09-25 1999-09-07 Lucent Technologies Inc. Self-terminating coaxial to unshielded twisted-pair cable passive CATV distribution panel
US6678893B1 (en) 1997-12-26 2004-01-13 Samsung Electronics Co., Ltd. Bidirectional trunk amplifier and cable modem for cable hybrid fiber and coax network which utilizes an upstream pilot signal
US6510152B1 (en) 1997-12-31 2003-01-21 At&T Corp. Coaxial cable/twisted pair fed, integrated residence gateway controlled, set-top box
US6377316B1 (en) 1998-02-23 2002-04-23 Zenith Electronics Corporation Tuner with switched analog and digital modulators
US6348955B1 (en) 1998-02-23 2002-02-19 Zenith Electronics Corporation Tuner with switched analog and digital demodulators
US6425132B1 (en) 1998-04-06 2002-07-23 Wavetek Corporation Ingress testing of CATV system utilizing remote selection of CATV node
US6205138B1 (en) 1998-04-24 2001-03-20 International Business Machines Corporation Broadband any point to any point switch matrix
WO2000024124A1 (en) 1998-10-22 2000-04-27 Ericsson, Inc. Dual-band, dual-mode power amplifier with reduced power loss
US6804828B1 (en) 1998-12-03 2004-10-12 Masprodenkoh Kabushikikaisha Tap device of cable broadcasting system
US6570928B1 (en) 1999-01-05 2003-05-27 Masprodenkoh Kabushikikaisha Cable broadcasting system
US6640338B1 (en) 1999-01-27 2003-10-28 Masprodenkoh Kabushikikaisha Electronic device for cable broadcasting system
US6560778B1 (en) 1999-03-29 2003-05-06 Masprodenkoh Kabushikikaisha Tap device of cable broadcasting system
US6498925B1 (en) 1999-05-13 2002-12-24 Denso Corporation Transmit power control circuit
US6728968B1 (en) 1999-06-17 2004-04-27 Fujitsu Limited Upward-joining-noise decreasing method and apparatus
US6570914B1 (en) 1999-07-07 2003-05-27 Nec Corporation Amplitude calculation circuit
US6587012B1 (en) 1999-10-01 2003-07-01 Arris International, Inc. Automatic slope and gain (ASG) detector technique including a pilot signal
US20040076192A1 (en) 1999-10-19 2004-04-22 Rambus Inc. Calibrated data communication system and method
JP2001177580A (en) 1999-12-20 2001-06-29 Sony Corp Impedance adapting system
US6877166B1 (en) 2000-01-18 2005-04-05 Cisco Technology, Inc. Intelligent power level adjustment for cable modems in presence of noise
US7283479B2 (en) 2000-02-16 2007-10-16 Spacenet Proxilliant Systems Ab Cable TV system or other similar communication system
WO2001072005A1 (en) 2000-03-17 2001-09-27 Transcorp Systems Pty Ltd Digital data splitter with switch and automatic termination restoration
US6373349B2 (en) 2000-03-17 2002-04-16 Bae Systems Information And Electronic Systems Integration Inc. Reconfigurable diplexer for communications applications
US6725462B1 (en) 2000-04-19 2004-04-20 At&T Corp. Optimizing upstream transmission in a cable television distribution plant
US7003275B1 (en) 2000-05-18 2006-02-21 Broadband Innovations, Inc. Agile frequency converter for multichannel systems using IF-RF level exhange and tunable filters
US6757910B1 (en) 2000-06-08 2004-06-29 C-Cor.Net Corporation Adaptive filter for reducing ingress noise in CATV return signals
US6928175B1 (en) 2000-06-14 2005-08-09 Creative Technology Ltd. Audio system with optional auto-switching secondary connector, and method for same
US6348837B1 (en) 2000-08-08 2002-02-19 Scientific-Atlanta, Inc. Bi-directional amplifier having a single gain block for amplifying both forward and reverse signals
US6495998B1 (en) 2000-09-28 2002-12-17 Sunrise Telecom Corp. Selectable band-pass filtering apparatus and method
WO2002033969A1 (en) 2000-10-16 2002-04-25 Xtend Networks Ltd. System and method for expanding the operational bandwidth of a communication system
US6683513B2 (en) 2000-10-26 2004-01-27 Paratek Microwave, Inc. Electronically tunable RF diplexers tuned by tunable capacitors
US20020144292A1 (en) 2001-02-19 2002-10-03 Jun Uemura Bi-directional CATV system, line equipment, center equipment
US7748023B2 (en) 2001-02-27 2010-06-29 Xtend Networks Ltd. Device, system and method for connecting a subscriber device to a wideband distribution network
US20020174435A1 (en) 2001-02-27 2002-11-21 Hillel Weinstein System, apparatus and method for expanding the operational bandwidth of a communication system
US20050155082A1 (en) * 2001-02-27 2005-07-14 Hillel Weinstein Device, system and method for connecting a subscriber device to a wideband distribution network
US7167693B2 (en) 2001-03-06 2007-01-23 Andrew Corporation Scanning receiver for use in power amplifier linearization
US20020141494A1 (en) 2001-03-29 2002-10-03 Chappell Daniel K. Sweep method using digital signals
US20020141347A1 (en) 2001-03-30 2002-10-03 Harp Jeffrey C. System and method of reducing ingress noise
US6388539B1 (en) 2001-04-16 2002-05-14 At&T Corp. Broadband switch/coupler
US20020166124A1 (en) 2001-05-04 2002-11-07 Itzhak Gurantz Network interface device and broadband local area network using coaxial cable
WO2002091676A1 (en) 2001-05-08 2002-11-14 Hoseo Telecom Co., Ltd Subscriber tap-off capable of monitoring state of transmission line at subscriber end, and remote control system and method using the same
US20040172659A1 (en) 2001-07-13 2004-09-02 Ljungdahl Kjell Arne Arrangement for reduction of noise transmitted from a local cable tv network
US20080040764A1 (en) 2001-07-20 2008-02-14 Hillel Weinstein System, apparatus and method for expanding the operational bandwidth of a communication system
US20060148406A1 (en) 2001-12-04 2006-07-06 Jay Strater Dynamic upstream attenuation for ingress noise reduction
US7039432B2 (en) 2001-12-04 2006-05-02 General Instrument Corporation Dynamic upstream attenuation for ingress noise reduction
US7742777B2 (en) 2001-12-04 2010-06-22 General Instrument Corporation Dynamic upstream attenuation for ingress noise reduction
US7162731B2 (en) 2002-02-07 2007-01-09 Advent Networks, Inc. Radio frequency characterization of cable plant and corresponding calibration of communication equipment communicating via the cable plant
US6845232B2 (en) 2002-03-25 2005-01-18 Broadcom Corporation Analog peak detection circuitry for radio receivers
US7603693B2 (en) 2002-05-15 2009-10-13 Panasonic Corporation CATV uplink optical transmission system
JP2004080483A (en) 2002-08-20 2004-03-11 Ntt Communications Kk Adapter for voice over an internet protocol
US20040229561A1 (en) 2003-02-28 2004-11-18 Cowley Nicholas Paul Tuner
JP2005005875A (en) 2003-06-10 2005-01-06 Nec Tohoku Ltd VoIP SWITCHING DEVICE
US20050183130A1 (en) 2004-02-12 2005-08-18 Sadja Aran L. Cable diagnostic and monitoring system
US20050289632A1 (en) 2004-06-01 2005-12-29 Brooks Paul D Controlled isolation splitter apparatus and methods
US20050283815A1 (en) 2004-06-01 2005-12-22 Brooks Paul D Apparatus and methods for network interface and spectrum management
US7530091B2 (en) 2004-07-19 2009-05-05 Pct International, Inc. VOIP drop amplifier
US20060015921A1 (en) 2004-07-19 2006-01-19 Jay Vaughan VoIP drop amplifier
US7029293B2 (en) 2004-08-20 2006-04-18 Extreme Broadband Engineering, Llc Ground block connector
US20060205442A1 (en) 2005-03-10 2006-09-14 Neil Phillips Bi-directional amplifier with non-interruptible port
US20090047917A1 (en) 2005-03-10 2009-02-19 Phillips Neil P Signal Amplifiers Having Non-Interruptible Communication Paths
US20060282871A1 (en) 2005-06-13 2006-12-14 Yao-Tsan Yo Distribution method for noise control
US20090113510A1 (en) 2005-10-12 2009-04-30 Paul Gothard Knutson Band Switchable Taps and Amplifier for Use in a Cable System
JP2007166109A (en) 2005-12-12 2007-06-28 Matsushita Electric Works Ltd Branch device of transmission system, and transmission system
JP2007166110A (en) 2005-12-12 2007-06-28 Matsushita Electric Works Ltd Transmission system and branch device thereof
US7505819B2 (en) 2006-02-08 2009-03-17 Moore Industries International, Inc. Redundant fieldbus system
US7454252B2 (en) 2006-03-08 2008-11-18 Moore Industries International, Inc. Redundant fieldbus system
US20070288981A1 (en) 2006-06-13 2007-12-13 Hwa Lin Electronic (Shenzhen)Co., Ltd. CATV system and automatic noise controller
US20070288982A1 (en) 2006-06-13 2007-12-13 Comcast Cable Holdings, Llc Dynamic ingress arrester
US20080022344A1 (en) 2006-07-07 2008-01-24 Scientific-Atlanta, Inc. Format Converter with Smart Multitap with Digital Forward and Reverse
US20080127287A1 (en) 2006-11-28 2008-05-29 John Mezzalingua Associates, Inc. Apparatus and method for embedding/detecting an auxiliary signal within a catv traffic stream
CN101094375A (en) 2006-12-29 2007-12-26 雷科通技术(杭州)有限公司 Method and device for carrying out remote both way communications by using cable TV network
US20090031391A1 (en) 2007-03-08 2009-01-29 Emerson Network Power Connectivity Solutions Electronically controlled catv system
US20090077608A1 (en) 2007-09-14 2009-03-19 Romerein Robert L Constant input port impedance for CATV amplifier with passive modem port
US20090154369A1 (en) 2007-12-18 2009-06-18 Helvig William J Digital-channel-monitor unit
US20090320085A1 (en) 2008-06-23 2009-12-24 Jon-En Wang House amplifier with return path gating
US20090316608A1 (en) * 2008-06-24 2009-12-24 Lgc Wireless, Inc. System and method for configurable time-division duplex interface
US20100100912A1 (en) 2008-10-16 2010-04-22 John Mezzalingua Associates, Inc. Upstream bandwidth conditioning device between catv distribution system and catv user
US8001579B2 (en) 2008-10-16 2011-08-16 John Mezzalingua Associates, Inc. Downstream output level and/or output level tilt compensation device between CATV distribution system and CATV user
US20110085452A1 (en) 2009-10-09 2011-04-14 John Mezzalingua Associates, Inc. Upstream bandwidth level measurement device
US20110085586A1 (en) 2009-10-09 2011-04-14 John Mezzalingua Associates, Inc. Total bandwidth conditioning device
US20110085480A1 (en) 2009-10-09 2011-04-14 John Mezzalingua Associates, Inc. Upstream bandwidth conditioning device
US20110088077A1 (en) 2009-10-09 2011-04-14 John Mezzalingua Associates, Inc. Downstream bandwidth conditioning device
US8213457B2 (en) 2009-10-09 2012-07-03 John Mezzalingua Associates, Inc. Upstream bandwidth conditioning device

Also Published As

Publication number Publication date
US20170026710A1 (en) 2017-01-26
US20140331270A1 (en) 2014-11-06
US10924811B2 (en) 2021-02-16
US8832767B2 (en) 2014-09-09
US20100100921A1 (en) 2010-04-22
US10264325B2 (en) 2019-04-16
US20190182555A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US10924811B2 (en) Compensation device for maintaining a desired signal quality in transmitted signals
US8001579B2 (en) Downstream output level and/or output level tilt compensation device between CATV distribution system and CATV user
US8464301B2 (en) Upstream bandwidth conditioning device between CATV distribution system and CATV user
US8179814B2 (en) Automatic return path switching for a signal conditioning device
US7783195B2 (en) Format converter with smart multitap with digital forward and reverse
US7885542B2 (en) Format converter with smart multitap and upstream signal regulator
US8397271B2 (en) Power divider networks for cable television networks that include multimedia over coax bypass circuits and signal amplifiers that include such power divider networks
US8181211B2 (en) Total bandwidth conditioning device
US8584192B2 (en) Upstream bandwidth conditioning device
US8516537B2 (en) Downstream bandwidth conditioning device
US8990881B2 (en) Upstream bandwidth conditioning device
US20080010512A1 (en) Format Converter with Smart Multitap
US20140254441A1 (en) Amplifier with noise reduction
US20120044361A1 (en) Tap Units Having Reverse Path Burst Mode Detection Circuits and Related Methods of Identifying Reverse Path Noise Sources and Reducing Reverse Path Noise Funneling
US20100223651A1 (en) Amplifier with noise reduction
US8296818B2 (en) Distribution and amplification systems that automatically terminate to a matched termination in response to power interruptions and related methods
US20130283334A1 (en) Cable Modem for Supporting Multimedia Over Coax Alliance and Data Over Cable Service Interface Specification Standards
US20110138440A1 (en) Downstream output level tilt compensation device between CATV distribution system and CATV user
WO2010045552A1 (en) Bandwidth conditioning device
US20120213083A1 (en) Home network test circuit
KR101336133B1 (en) An apparatus for controlling reverse noise in hfc network and the method thereof
US20100043032A1 (en) Electronic Device for Supporting Multimedia Over Coax Alliance Standard
US20100248633A1 (en) Signal conditioning device with attenuated fail-safe bypass

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHN MEZZALINGUA ASSOCIATES, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OLSON, THOMAS A.;KELMA, DAVID;LAI, JOSEPH;AND OTHERS;SIGNING DATES FROM 20081027 TO 20081106;REEL/FRAME:037126/0712

AS Assignment

Owner name: MR ADVISERS LIMITED, NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:JOHN MEZZALINGUA ASSOCIATES, INC.;REEL/FRAME:037302/0746

Effective date: 20120911

Owner name: PPC BROADBAND, INC., NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:MR ADVISERS LIMITED;REEL/FRAME:037302/0783

Effective date: 20121105

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY