Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS9354374 B2
Type de publicationOctroi
Numéro de demandeUS 14/470,498
Date de publication31 mai 2016
Date de dépôt27 août 2014
Date de priorité24 oct. 2013
Autre référence de publicationCN105659150A, CN105683816A, CN105683817A, US9348076, US9632223, US9798058, US20150116824, US20150116825, US20150131150, US20170184768
Numéro de publication14470498, 470498, US 9354374 B2, US 9354374B2, US-B2-9354374, US9354374 B2, US9354374B2
InventeursBin Wang, Ted Wangensteen, Rumyana Petrova, Mike Black, Steven Marks, Dean Probst, Mark Alan Davis
Cessionnaire d'origineMoxtek, Inc.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Polarizer with wire pair over rib
US 9354374 B2
Résumé
Wire grid polarizers, and methods of making wire grid polarizers, including an array of parallel, elongated nano-structures disposed over a surface of a substrate. Each of the nano-structures can include a first rib disposed over a surface of a substrate and a pair of parallel, elongated wires, each laterally oriented with respect to one another, and disposed over the first rib. The wire grid polarizers can be durable with high transmission of one polarization of light, high contrast, and/or small pitch. The wire grid polarizers can also have high absorption or high reflection of an opposite polarization of light.
Images(10)
Previous page
Next page
Revendications(20)
What is claimed is:
1. A wire grid polarizer comprising:
an array of parallel, elongated nano-structures disposed over a surface of a substrate, each of the nano-structures including:
a first rib disposed over the surface of the substrate;
a pair of parallel, elongated wires, each laterally oriented with respect to one another, and disposed over the first rib;
a first gap between the pair of wires; and
each wire of the pair of wires has two opposite sides substantially orthogonal to the surface of the substrate;
a plurality of second gaps including a second gap disposed between adjacent first ribs; and
the substrate being transmissive.
2. The wire grid polarizer of claim 1, further comprising a pair of parallel, elongated side bars, each laterally oriented with respect to one another, including a side bar disposed along and adjoining each side of each wire.
3. The wire grid polarizer of claim 2, wherein:
at least one of the first rib, the pair of wires, or the pair of side bars is absorptive; and
at least one of the first rib, the pair of wires, or the pair of side bars is reflective.
4. The wire grid polarizer of claim 1, further comprising a support rib disposed above the first rib between the pair of wires and extending partially into the first gap.
5. The wire grid polarizer of claim 4, wherein a support rib thickness is between 5% and 35% of a wire thickness.
6. The wire grid polarizer of claim 1, further comprising a pair of parallel, elongated second ribs disposed over the first rib at outer edges of the first rib, wherein each wire of the pair of wires is disposed over a different second rib and the first gap extends from between the pair of wires down between the pair of second ribs.
7. The wire grid polarizer of claim 6, further comprising a pair of parallel, elongated side bars, each laterally oriented with respect to one another, including a side bar disposed along and adjoining each side of each wire and disposed along and adjoining each of two opposite sides of each second rib.
8. The wire grid polarizer of claim 7, wherein:
at least one of the pair of second ribs, the first rib, the pair of wires, or the pair of side bars is absorptive; and
at least one of the pair of second ribs, the first rib, the pair of wires, or the pair of side bars is reflective.
9. The wire grid polarizer of claim 1, wherein the first gaps and the second gaps are solid-material-free gaps.
10. The wire grid polarizer of claim 1, further comprising a fill material disposed in the first gaps and in the second gaps.
11. The wire grid polarizer of claim 10, wherein fill material in a gap is separate from fill material in an adjacent gap.
12. The wire grid polarizer of claim 11, wherein the fill material is absorptive.
13. The wire grid polarizer of claim 1, wherein a first gap width is substantially equal to a second gap width.
14. The wire grid polarizer of claim 1, wherein a larger of a first gap width or a second gap width divided by a smaller of the first gap width or the second gap width is greater than 1.0 and less than or equal to 1.1.
15. The wire grid polarizer of claim 1, wherein a larger of a first gap width or a second gap width divided by a smaller of the first gap width or the second gap width is greater than or equal to 1.1 and less than or equal to 1.5.
16. A method of making a wire grid polarizer, the method comprising the following steps in order:
providing a substrate having an array of parallel, elongated support ribs disposed over the substrate with solid-material-free support-rib gaps between the support ribs, the substrate being substantially transmissive to incoming light;
conformal coating the substrate and the support ribs with a layer of material while maintaining the support-rib gaps between the support ribs;
etching the layer of material to remove horizontal segments and leaving an array of parallel, elongated wires along sides of the support ribs, including a pair of wires for each support rib with a wire disposed along each side of the support rib; and
using the wires as a mask and etching the support ribs between two wires of the pair of wires and etching the substrate between adjacent pairs of wires forming:
an array of parallel elongated first ribs, with each pair of wires disposed over a single first rib;
a first gap between the pair of wires; and
a plurality of second gaps including a second gap disposed between adjacent first ribs.
17. The method of claim 16, wherein etching the support ribs includes etching only part of the support ribs such that a portion of the support ribs remains in the first gaps between the wires.
18. The method of claim 16, wherein etching the support ribs includes etching away the entire support ribs and stopping the etch between the pair of wires substantially at a base of the wires and at a top of the first ribs.
19. The method of claim 16, wherein etching the support ribs includes substantially etching away the entire support ribs and then etching into the first ribs between two wires of each pair of wires forming a pair of parallel, elongated second ribs disposed over and at outer edges of each of the first ribs with a wire disposed over each second rib.
20. The method of claim 16, further comprising:
conformal coating the wires, the first ribs, and exposed portions of the substrate with a second layer of material while maintaining the first gap between the pair of wires and the second gaps between adjacent first ribs;
etching the second layer of material to remove horizontal segments and leaving an array of parallel, elongated side bars.
Description
CLAIM OF PRIORITY

This claims priority to U.S. Provisional Patent Application Nos. 61/924,569, filed on Jan. 7, 2014, 61/924,560, filed on Jan. 7, 2014, 61/895,225, filed on Oct. 24, 2013, which are hereby incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

The present application is related generally to wire grid polarizers.

BACKGROUND

Wire grid polarizers may be used for polarizing light, by allowing one polarization of light to pass through the polarizer, and reflecting or absorbing an opposite polarization of light. For simplicity, the polarization that primarily passes through the polarizer will be hereafter referred to as p-polarized light and the polarization that is primarily reflected or absorbed will be hereafter referred to as s-polarized light. Goals of wire grid polarizer design include increasing transmission of p-polarized light, decreasing transmission of s-polarized light, and increasing reflection or absorption of s-polarized light. Different applications have different requirements.

The goals of increasing transmission of p-polarized light and decreasing transmission of s-polarized light are common to most or all applications. There can be a trade-off between these two. In other words, certain designs that may increase transmission of p-polarized light may also undesirably increase transmission of s-polarized light. Other designs that decrease transmission of s-polarized light may also undesirably decrease transmission of p-polarized light.

For some applications, it is desirable to reflect as much s-polarized light as possible so that both polarized light beams can be effectively utilized. It can be important in such designs to increase reflection of s-polarized light without reducing transmission of p-polarized light. Sometimes there is a trade-off in a particular design between increasing transmission of p-polarized light and increasing reflection of s-polarized light.

For other applications, absorption of s-polarized light may be preferred, such as for example if reflection of light can disrupt the image or other intended use. In a transmissive panel image projection system, reflected light may go back into the LCD imager causing image degradation, or stray light can reach the screen, degrading contrast. An ideal selectively absorptive wire grid polarizer will transmit all p-polarized light and selectively absorb all s-polarized light. In reality, some s-polarized light is transmitted and some reflected and some p-polarized light is absorbed and some reflected. Sometimes there is a trade-off in a particular design between increasing transmission of p-polarized light and increasing absorption of s-polarized light.

The effectiveness of a wire grid polarizer can thus be quantified by (1) high transmission of p-polarized light; (2) high contrast; and (3) depending on the design, high absorption or reflection of s-polarized light. Contrast is equal to percent of p-polarized light transmitted (Tp) divided by percent of s-polarized light transmitted (Ts): Contrast=Tp/Ts.

It can be important in wire grid polarizers for infrared, visible, and ultraviolet light to have wires with small width and pitch, such as nanometer or micrometer width and pitch, for effective polarization. Typically, a pitch of less than half of the wavelength of light to be polarized is needed for effective polarization. Smaller pitches may improve the contrast. Thus, small pitch can be an important feature of wire grid polarizers. Manufacture of wire grid polarizers with sufficiently small pitch is challenging and is a goal of research in this field.

Small wires can be damaged by handling and by environmental conditions. Protection of the wires can be important in wire grid polarizers. Durability of wire grid polarizers is thus another important feature.

For example, see U.S. Pat. Nos. 5,991,075, 6,288,840, 6,665,119, 7,630,133, 7,692,860, 7,800,823, 7,961,393, and 8,426,121; U.S. Patent Publication Numbers US 2008/0055723, US 2009/0041971, and US 2009/0053655; U.S. patent application Ser. No. 13/326,566, filed on Dec. 15, 2011; “Application of 100 Å linewidth structures fabricated by shadowing techniques” by D.C. Flanders in J. Vac. Sci. Technol., 19(4), November/December 1981; and “Submicron periodicity gratings as artificial anisotropic dielectrics” by Dale C. Flanders in Appl. Phys. Lett. 42 (6), 15 Mar. 1983, pp. 492-494.

SUMMARY

It has been recognized that it would be advantageous to provide a durable wire grid polarizer with high transmission of p-polarized light, high contrast, and/or small pitch. High absorption or high reflection of s-polarized light, depending on the design, can also be important. The present invention is directed to various embodiments of, and methods of making, wire grid polarizers having a wire pair over a first rib. Each of the various embodiments or methods may satisfy one or more of these needs.

The wire grid polarizer can comprise an array of parallel, elongated nano-structures disposed over a surface of a substrate. Each of the nano-structures can include (1) a first rib disposed over the surface of the substrate; (2) a pair of parallel, elongated wires, each laterally oriented with respect to one another, and disposed over the first rib; and (3) a first gap between the pair of wires. There can be a plurality of second gaps, including a second gap disposed between adjacent first ribs. The substrate can be transmissive to incoming light.

A method of making a wire grid polarizer can comprise the following steps:

  • 1. providing a substrate having an array of parallel, elongated support ribs disposed over a transmissive substrate with solid-material-free support-rib gaps between the support ribs;
  • 2. conformal coating the substrate and the support ribs with a layer of material while maintaining the support-rib gaps between the support ribs;
  • 3. etching the layer of material to remove horizontal segments and leaving an array of parallel, elongated wires along sides of the support ribs, including a pair of wires for each support rib with a wire disposed along each side of the support rib; and
  • 4. using the wires as a mask and etching the support ribs between two wires of the pair of wires and etching the substrate between adjacent pairs of wires forming an array of parallel elongated first ribs, with each pair of wires disposed over a single first rib.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a wire grid polarizer 10 which includes a support rib 13 disposed over the first rib 14 between the pair of wires 12 and extending partially into the first gap G1.

FIG. 2 shows a wire grid polarizer 20 wherein the first gaps G1 are solid-material-free gaps from a top 12 t of the wires 12 to a base 12 b of the wires 12.

FIG. 3 shows a wire grid polarizer 30 which includes a pair of parallel, elongated second ribs 34 disposed over the first rib 14 at outer edges 14 o of the first rib 14, wherein each wire 12 of the pair of wires 12 is disposed over a different second rib 34, and wherein the first gap G1 extends from between the pair of wires 12 down between the pair of second ribs 34.

FIGS. 4-6 show wire grid polarizers 40, 50, and 60 which are similar to wire grid polarizers 10, 20, and 30 respectively, but with the addition of a pair of parallel, elongated side bars 42, each laterally oriented with respect to one another, including a side bar 42 disposed along and adjoining each side 12 s of each wire 12.

FIG. 7 shows a wire grid polarizer 70, similar to one of the wire grid polarizers 10, 20, 30, 40, 50, or 60 in FIGS. 1-6, but with the addition of a fill material 41 disposed in the gaps G and above tops 12 t of the wires 12.

FIGS. 8-11 show wire grid polarizers 80, 90, 100, and 110, similar to the wire grid polarizers in FIGS. 1-6, but also showing that the wires 12, the support ribs 13, the first ribs 14, the second ribs 34, the fill material 41, and the substrate 11 can be separate regions and each region can be made of a different material than one, some, or all of the other regions.

FIG. 12 shows a step of providing a substrate 11 having an array of parallel, elongated support ribs 13 disposed over the substrate 11 with solid-material-free support-rib gaps Gs between the support ribs 13.

FIG. 13 shows that the substrate 11 can be divided into different regions 101 b, 101 c, and 101 d (each region can be a different material from one or both of the other regions) and the support ribs 13 can be a different material 101 a than one, some, or all of the other regions 101 b, 101 c, and 101 d.

FIG. 14 shows a step of conformal coating the substrate 11 and the support ribs 13 with a layer of material 112 while maintaining the support-rib gaps Gs between the support ribs 13.

FIG. 15 shows a step of etching the layer of material 112 to remove horizontal segments 112 h and leaving an array of parallel, elongated wires 12 along sides of the support ribs 13, including a pair of wires 12 for each support rib 13 with a wire 12 disposed along each side of the support rib 13.

FIG. 16 shows a step of etching 131 a the support ribs 13 between two wires 12 of the pair of wires 12 and etching 131 b the substrate 11 between adjacent pairs of wires 12 forming the first ribs 14 as shown in FIGS. 1-11.

FIG. 17 shows a step of conformal coating the wires 12, the first ribs 14, the second ribs 34 (if used) and exposed portions of the substrate 11 with a second layer of material 172 while maintaining the first gap G1 between the pair of wires 12 and the second gaps G2 between adjacent first ribs 14.

REFERENCE NUMBERS IN THE DRAWINGS

  • 10 wire grid polarizer
  • 11 substrate
  • 11 s substrate surface
  • 12 wire
  • 12 b wire base
  • 12 t wire top
  • 13 support rib
  • 13 t support rib top
  • 14 first rib
  • 14 o first rib outer edge
  • 14 t first rib top
  • 15 nano-structure
  • 20 wire grid polarizer
  • 30 wire grid polarizer
  • 34 second rib
  • 70 wire grid polarizer
  • 41 fill material
  • 41 a fill material in the first gap
  • 41 b fill material in the second gap
  • 42 side bar
  • 80 wire grid polarizer
  • 90 wire grid polarizer
  • 100 wire grid polarizer
  • 110 wire grid polarizer
  • 112 layer of material
  • 112 h horizontal segment of the layer of material
  • 112 v vertical segment of the layer of material
  • 172 second layer of material
  • 172 h horizontal segment of the second layer of material
  • 172 v vertical segment of the second layer of material
  • G gap—first gap and/or second gap
  • G1 first gap
  • G2 second gap
  • Gs support-rib gap
  • T12 wire thickness
  • T13 support rib thickness
  • T14 first rib thickness
  • T34 second rib thickness
  • W1 first gap width
  • W2 second gap width
  • W12 wire width
  • W13 support rib width
  • W112 layer of material width
  • WGs support rib gap width
DEFINITIONS

Many materials used in optical structures absorb some light, reflect some light, and transmit some light. The following definitions are intended to distinguish between materials or structures that are primarily absorptive, primarily reflective, or primarily transmissive.

  • 1. As used herein, the term “absorptive” means substantially absorptive of light in the wavelength of interest.
    • a. Whether a material is “absorptive” is relative to other materials used in the polarizer. Thus, an absorptive structure will absorb substantially more than a reflective or a transmissive structure.
    • b. Whether a material is “absorptive” is dependent on the wavelength of interest. A material can be absorptive in one wavelength range but not in another.
    • c. In one aspect, an absorptive structure can absorb greater than 40% and reflect less than 60% of light in the wavelength of interest (assuming the absorptive structure is an optically thick film—i.e. greater than the skin depth thickness).
    • d. Absorptive ribs can be used for selectively absorbing one polarization of light.
  • 2. As used herein, the term “reflective” means substantially reflective of light in the wavelength of interest.
    • a. Whether a material is “reflective” is relative to other materials used in the polarizer. Thus, a reflective structure will reflect substantially more than an absorptive or a transmissive structure.
    • b. Whether a material is “reflective” is dependent on the wavelength of interest. A material can be reflective in one wavelength range but not in another. Some wavelength ranges can effectively utilize highly reflective materials. At other wavelength ranges, especially lower wavelengths where material degradation is more likely to occur, the choice of materials may be more limited and an optical designer may need to accept materials with a lower reflectance than desired.
    • c. In one aspect, a reflective structure can reflect greater than 80% and absorb less than 20% of light in the wavelength of interest (assuming the reflective structure is an optically thick film—i.e. greater than the skin depth thickness).
    • d. Reflective wires can be used for separating one polarization of light from an opposite polarization of light.
    • e. Metals are often used as reflective materials.
  • 3. As used herein, the term “transmissive” means substantially transmissive to light in the wavelength of interest.
    • a. Whether a material is “transmissive” is relative to other materials used in the polarizer. Thus, a transmissive structure will transmit substantially more than an absorptive or a reflective structure.
    • b. Whether a material is “transmissive” is dependent on the wavelength of interest. A material can be transmissive in one wavelength range but not in another.
    • c. In one aspect, a transmissive structure can transmit greater than 90% and absorb less than 10% of light in the wavelength of interest.
  • 4. As used in these definitions, the term “material” refers to the overall material of a particular structure. Thus, a structure that is “absorptive” is made of a material that as a whole is substantially absorptive, even though the material may include some reflective or transmissive components. Thus for example, a rib made of a sufficient amount of absorptive material so that it substantially absorbs light is an absorptive rib even though the rib may include some reflective or transmissive material embedded therein.
  • 5. As used herein, the term “light” can mean light or electromagnetic radiation in the x-ray, ultraviolet, visible, and/or infrared, or other regions of the electromagnetic spectrum.
  • 6. As used herein, the term “substrate” includes a base material, such as for example a glass wafer. The term “substrate” includes a single material, and also includes multiple materials, such as for example a glass wafer with at least one thin film on a surface of the wafer used together as the base material.
DETAILED DESCRIPTION

As illustrated in FIGS. 1-11, wire grid polarizers 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110 are shown comprising an array of parallel, elongated nano-structures 15 disposed over a surface 11 s of a substrate 11. Each of the nano-structures 15 can include (1) a first rib 14 disposed over the surface 11 s of the substrate 11; (2) a pair of parallel, elongated wires 12, each laterally oriented with respect to one another, and disposed over the first rib 14; and (3) a first gap G1 between the pair of wires 12. The wires 12 can be disposed at outer lateral edges 14 o of the first ribs 14. There can be a plurality of second gaps G2 including a second gap G2 disposed between adjacent first ribs 14.

As illustrated in FIGS. 4-6, wire grid polarizers 40, 50, and 60 are similar to wire grid polarizers 10, 20, and 30 respectively, but with the addition of a pair of parallel, elongated side bars 42, each laterally oriented with respect to one another, including a side bar 42 disposed along and adjoining each side 12 s of each wire 12. These added side bars 42 can be beneficial for improving contrast and transmission of p-polarized light. The side bars 42 can also be beneficial for improved corrosion resistance. Side bars 42 can also be added to the polarizers shown in FIGS. 7-11.

The first rib 14, the pair of wires 12, and the side bars 42 can be made of the same or different materials. In one embodiment, at least one of the first rib 14, the pair of wires 12, and the side bars 42 can be absorptive and at least one of the first rib 14, the pair of wires 12, and the side bars 42 can be reflective. At least one of the first rib 14, the pair of wires 12, and the side bars 42 can be transmissive. These designs can be effective selectively absorptive wire grid polarizers.

As shown in FIGS. 1, 4, and 8, the wire grid polarizer 10 and 80 can further comprise a support rib 13 disposed over the first rib 14 between the pair of wires 12 and extending partially into the first gap G1. The support rib 13 can provide structural support to the wires 12. Modeling has shown that the presence of the support rib can adversely affect contrast and transmission of p-polarized light (Tp). Thus, there can be a trade-off in design between a need for additional support for the wires 12 and a decrease in performance. Smaller wires (e.g. <50 nm wide) may need additional support, thus the support rib 13 may be needed for polarizers for lower wavelengths, such as the ultraviolet.

Use of a shorter or thinner support rib 13 can in some designs provide sufficient support with minimal degradation of performance. The wire grid polarizers of the present invention can include a support rib thickness T13 that is between 5% and 35% of a wire thickness T12 in one aspect, between 5% and 25% of a wire thickness T12 in another aspect, or between 15% and 35% of a wire thickness T12 in another aspect. These thicknesses can balance between support and performance.

The support rib 13, the first rib 14, and the substrate 11 can all be made of a single material. The support rib 13 and the first rib 14 can be formed by etching the substrate 11. The support rib 13, the first rib 14, and the substrate 11 can all be transmissive. The wires 12 can be reflective in order to polarize incoming light.

As indicated on polarizer 80 in FIG. 8, by lines separating the support rib 13, the first rib 14, and the substrate 11, these different regions can comprise different materials. Two of these regions can have the same material as another region or all three can have different materials. At least one of the support rib 13, the first rib 14, and the wires 12 can be absorptive. At least one of the support rib 13, the first rib 14, and the wires 12 can be transmissive. At least one of the support rib 13, the first rib 14, and the wires 12 can be reflective.

A polarizer in which the support rib 13, the first rib 14, and the substrate 11 include different regions with different materials can be made by initially selecting a substrate 11 which includes multiple thin film layers, then etching a top layer to form the support ribs 13, as shown in FIG. 13. As shown in FIG. 13, material 101 a is the support rib material 13 and material 101 b and possibly also 101 c can be the first rib material 14.

As shown on wire grid polarizers 20, 50, and 90 in FIGS. 2, 5, and 9, the support ribs 13 can be totally etched away down to a top 14 t of the first ribs 14. The first gaps G1 can be solid-material-free gaps from a top 12 t of the wires 12 to a base 12 b of the wires 12. As shown on wire grid polarizer 20 in FIG. 2, the first ribs 14 can comprise the same material as the substrate 11, and both can be transmissive to incoming light. Alternatively, as shown on wire grid polarizer 90 in FIG. 9, the first ribs 14 can comprise a different material than the substrate 11. In one embodiment, one of the first ribs 14 or the wires 12 can be absorptive and the other of the first ribs 14 or the wires 12 can be reflective.

As shown in FIGS. 3, 6, 7, 10, and 11 wire grid polarizers 30, 60, 70, 100, and 110 can further comprise a pair of parallel, elongated second ribs 34 disposed over the first rib 14 at outer edges 14 o of the first rib 14. Each wire 12 of the pair of wires 12 can be disposed over a different second rib 34. The first gap G1 can extend from between the pair of wires 12 down between the pair of second ribs 34. The second gap G2 can extend from a top of the wires 12 t, between adjacent pairs of wires 12, between adjacent pairs of second ribs 34, between adjacent first ribs 14, down to a base 14 b of the first ribs 14/surface 11 s of the substrate 11.

Second rib thickness T34 can affect wire grid polarizer performance. This effect on performance is wavelength dependent and can also dependent on first rib thickness T14, especially in regard to contrast, but less so in regard to transmission of p-polarization (Tp). Thus, a wire grid polarizer designer may need to consider the intended wavelength range of use and the first rib thickness T14 in an analysis of optimal second rib thickness T34 for a given design. Second rib thickness T34 may also relate to wire grid polarizer durability. Thus, both performance and durability requirements may need to be considered in determining optimal second rib thickness T34.

As shown on wire grid polarizer 30, the first ribs 14, the second ribs 34, and the substrate 11 can all be formed of a single material and can all be transmissive of incoming light. The wires 12 can be reflective. The first ribs 14 and the second ribs 34 can be formed by etching into the substrate 11 and can be integrally formed from the substrate 11.

As shown on wire grid polarizer 100, the first ribs 14, the second ribs 34, and the substrate 11 can be different and separate regions. All three can be different materials or two of the regions can be the same material and a third can be a different material. At least one of the second ribs 34, the first ribs 14, or the wires 12 can be absorptive. At least one of the second ribs 34, the first ribs 14, or the wires 12 can be transmissive. At least one of the second ribs 34, the first ribs 14, or the wires 12 can be reflective. In one embodiment, the wires 12 or the second ribs 34 can be absorptive and the other of the wires 12 or the second ribs 34 can be reflective.

As shown in FIGS. 7 and 11, wire grid polarizers 70 and 110 can further comprise a fill material 41 disposed in the first gaps G1 and in the second gaps G2. Thus, the first gaps G1 and the second gaps G2 can be solid-material-free gaps. The fill material 41 can substantially or totally fill the first gaps G1 and the second gaps G2. The gaps G can be filled with fill material 41, such as by spin-on glass or ALD for example.

This filling or backfilling process can also add fill material 41 above tops 12 t of the wires 12, as shown in FIG. 7. This design can provide both structural strength and corrosion protection for the nano-structures. This design may be preferred if a transparent material is used as the fill material 41, such as for example glass for visible light polarization. The fill material 41 can in some designs substantially degrade polarizer performance, so fill material might be selected in these designs only if a need for structural strength and/or corrosion protection outweighs degradation in performance.

As shown in FIG. 11, fill material 41 in a gap G can be separate from fill material in an adjacent gap G. Fill material 41 a in the first gap G1 can be separate from fill material 41 b in an adjacent second gap G2. In other words, the fill material 41 does not extend over tops 12 t of the wires 12. This can be accomplished by beginning with wire grid polarizer 70, then etching the fill material 41 at least down to tops 12 t of the wires 12. By separating the fill material 41 in one gap G from fill material 41 in an adjacent gap G, the fill material 41 can be reflective for polarization of light or can be absorptive.

Wire grid polarizers 70 and 110, with fill material 41 in the gaps G, are illustrated with a wire grid polarizer design having the second ribs 34, similar to wire grid polarizers 30, 60, and 100; but use of the fill material 41 is not limited to these designs and the fill material 41 can be added to wire grid polarizer designs shown in the other figures as well, such as with polarizers 10, 20, 40, 50, 80, and 90 for example.

Various regions of a polarizer, with fill material 41 in one gap G separate from fill material in an adjacent gap G, can have different purposes. The following is related to having this separated fill material 41, as shown in FIG. 11. At least one of the support ribs 13 (if used), the second ribs 34 (if used), the first ribs 14, the wires 12, or the fill material 41 can be absorptive. At least one of the support ribs 13 (if used), the second ribs 34 (if used), the first ribs 14, the wires 12, or the fill material 41 can be transmissive. At least one of the support ribs 13 (if used), the second ribs 34 (if used), the first ribs 14, the wires 12, or the fill material 41 can be reflective.

As shown on wire grid polarizer 110 in FIG. 11, the second ribs 34 can be divided into two regions 34 a and 34 b with a different material in each region. This division may be applicable to a wire grid polarize with the fill material 41, as shown in FIGS. 7 & 11, or without the fill material 41, as shown in FIG. 3. The upper region 34 a can be formed from one material 101 b and the lower region 34 b can be formed from a different material 101 c (see FIG. 13). The lower region 34 b can be the same material as, or a different material than, the first ribs 14.

Method to Make

Following are steps of a method of making a wire grid polarizer. This method can be performed in the order shown. The method need not include all of the following steps, depending on the wire grid polarizer design.

  • 1. Providing a substrate 11 having an array of parallel, elongated support ribs 13 disposed over the substrate 11 with solid-material-free support-rib gaps Gs between the support ribs 13. See FIGS. 12 and 13.
    • a. This step may be accomplished by patterning and etching a substrate 11.
    • b. The substrate may be homogenous and made of a single material, such as a wafer of glass for example. The support ribs 13 can be formed by etching into the substrate 11 and thus can be integrally formed from, and made of the same material as, the substrate 11.
    • c. Alternatively, the substrate 11 and the support ribs 13 can include multiple regions 101 a-d, with different regions comprising different materials, to allow for different functions of different regions, such as is shown in FIGS. 8-11.
    • d. Material 101 a can be the support rib material 13 and can be the same as or different from substrate materials 101 b, 101 c, and/or 101 d.
    • e. Material 101 b can become second rib 34 material and possibly part or all of the first rib 14 material and can be the same as or different from materials 101 a, 101 c, and/or 101 d.
    • f. Material 101 c can be the first rib 14 material and possibly also a material for part of the second rib 34 and can be the same as or different from materials 101 a, 101 b, and/or 101 d.
    • g. Material 101 d can be material of the final substrate and can be the same as or different from materials 101 a, 101 b, and/or 101 c.
  • 2. Conformal coating the substrate 11 and the support ribs 13 with a layer of material 112 while maintaining the support-rib gaps Gs between the support ribs 13 (using a substrate 11 and support ribs 13 made of a single material as shown in FIG. 12 or a substrate and support ribs 13 made of layers of multiple materials as shown in FIG. 13). The conformal coating may be done by various methods, such as for example atomic layer deposition (ALD) or sputter. See FIG. 14. The layer of material 112 can be the material of the wires 12 that will be formed in the next step.
  • 3. Etching the layer of material 112 to remove horizontal segments 112 h and leaving an array of parallel, elongated wires 12 along sides of the support ribs 13, including a pair of wires 12 for each support rib 13 with a wire 12 disposed along each side of the support rib 13. An anisotropic etch can etch away horizontal segments 112 h but leave most of the vertical segments 112 v due to the directional nature of this etch. See FIGS. 14-15.
  • 4. Using the wires 12 as a mask to etch 131 a the support ribs 13 forming a first gap G1 between two wires 12 of each pair of wires 12 and to etch 131 b the substrate 11 between adjacent pairs of wires 12 (see FIG. 16) forming an array of parallel elongated first ribs 14, with each pair of wires 12 disposed over a single first rib 14 and a plurality of second gaps G2 including a second gap G2 disposed between adjacent first ribs 14.
    • a. Etching 131 a the support ribs 13 to create the first gap G1 between the wires 12 can improve wire grid polarizer performance.
    • b. Etch chemistry and settings can be selected such that both the support ribs 13 and the substrate 11 are etched with minimal etch of the wires 12.
    • c. Using the wires 12 as a mask to etch 131 a the support ribs 13 can include etching only part of the support ribs 13 such that a portion of the support ribs 13 remains in the first gaps G1 between the wires. See FIGS. 1, 4, and 8. This may be preferred for added structural support for the wires 12.
    • d. Using the wires 12 as a mask to etch 131 a the support ribs 13 can include etching 131 a away the entire support ribs 13 and stopping the etch between the pair of wires 12 substantially at a base 12 b of the wires 12 and at a top 14 t of the first ribs 14. See FIGS. 2, 5, and 9.
    • e. Using the wires 12 as a mask to etch 131 a the support ribs 13 can include etching away substantially the entire support ribs 13 and can further comprise etching 131 a the first ribs 14 between two wires 12 of each pair of wires 12 forming a pair of parallel, elongated second ribs 34 disposed over and at outer edges 14 o of each of the first ribs 14 with a wire 12 disposed over each second rib 34. See FIGS. 3, 6, 7, 10, and 11. This may be preferred for improved wire grid polarizer performance, but may create wire grid polarizer durability concerns if wire 12 aspect ratio is too high and/or wire width is too small.
  • 5. Backfilling the gaps G with fill material 41. The fill material 41 can be formed by spinning on a liquid that can harden upon evaporation of an included solvent. For example, spin-on a liquid glass in a solvent, then bake out the solvent. Another method is applying multiple layers by use of atomic layer deposition (ALD). See FIG. 7. Backfilling may be preferred as an additional step for improved wire grid polarizer durability, but can adversely affect wire grid polarizer performance, and thus durability requirements may need to be balanced against performance requirements.
  • 6. Etching the fill material 41 at least down to tops 12 t of the wires 12 and separating fill material 41 in one gap G (e.g. 41 a in G1) from fill material 41 in an adjacent gap G (e.g. 41 b in G2). See FIG. 11. This may be preferred if the fill material 41 in the gaps G is an absorptive material to absorb one polarization or is a reflective material to separate polarization states.
  • 7. Conformal coating the wires 12, the first ribs 14, the second ribs 34 (if used), and exposed portions of the substrate 11 with a second layer of material 172 while maintaining the first gap G1 between the pair of wires and the second gaps G2 between adjacent first ribs 14;
  • 8. Etching the second layer of material 172 to remove horizontal segments 172 h and leaving an array of parallel, elongated side bars 42. An anisotropic etch can etch away horizontal segments 172 h but leave most of the vertical segments 172 v due to the directional nature of this etch. See FIGS. 4-6 and 17.
    Gap Width (W1 and W2) Relationships

As shown in FIGS. 1 and 3, the first gap G1 can have a first gap width W1 and the second gap G2 can have a second gap width W2. The first gap width W1 can be the same as the support rib width. The second gap width W2 can be equal to the support rib gap width WGs minus two times the wire width W12 (W2=WGs−2*W12). Support rib gap width WGs and support rib width W13 can be controlled by the lithography technique (mask, interference lithography, etc.) used to make the support ribs 13. Wire width W12 can be controlled by the layer of material width W112, which can be determined by the deposition technique used (e.g. ALD or sputter) and duration of application of this layer of material 112. The ability to control separately the first gap width W1 and the second gap width W2 can give the wire grid polarizer designer considerable freedom for optimizing a wire grid polarizer design.

In some applications, it can be beneficial, for improved performance, durability, or manufacturing considerations, to equalize the gaps G. Thus, the first gap width W1 can be substantially equal to a second gap width W2.

In other applications, it can be beneficial, for improved performance, durability, or manufacturing considerations, to have non-equal gaps G. A larger of a first gap width W1 or a second gap width W2 divided by a smaller of the first gap width W1 or the second gap width W2 can be greater than 1.0 and less than or equal to 1.1

( 1.0 < W 1 W 2 1.1 or 1.0 < W 2 W 1 1.1 ) .
A larger of a first gap width W1 or a second gap width W2 divided by a smaller of the first gap width W1 or the second gap width W2 can be greater or equal to than 1.1 and less than or equal to 1.5

( 1.1 W 1 W 2 1.5 or 1.1 W 2 W 1 1.5 ) .
A difference between the first gap width W1 and the second gap width W2 can be between 0 nanometers and 30 nanometers in one aspect, between 25 nanometers and 50 nanometers in another aspect, or less than 60 nanometers in another aspect.

Measurement of gap width on an actual wire grid polarizer may be less precise than measurement on a drawing because the wires or ribs can lean to one side and can vary in width from top to bottom. Thus, if there question of where to measure in order to determine if the gap widths fall within these requirements, then measure at base 12 b of the wires 12.

General Information for all Embodiments

U.S. patent application Ser. No. 13/326,566, filed on Dec. 15, 2011, and U.S. Pat. Nos. 7,570,424 and 7,961,393, incorporated herein by reference in their entirety, provide examples of possible substrate materials, dielectric materials including absorptive dielectric materials and transmissive dielectric materials, and reflective materials for separating the light into two, opposite polarization states. The reflective materials can also be made of a semiconductor material doped to achieve a desired level of conductivity, or other types of conductors such as certain forms of carbon.

The wire grid polarizers described herein can be made with a relatively large wire 12 and/or side bar 42 aspect ratio (wire thickness divided by wire width—Th12/W12 or side bar thickness divided by side bar width). A large wire 12 aspect ratio can be accomplished by formation of relatively tall support ribs 13 in relation to a width W112 of the layer of material 112 (which may approximate eventual wire width W12). Modeling has shown good polarization characteristics with wire 12 and/or side bar aspect ratios of between 8 and 60 in one aspect, between 4 and 7 in another aspect, or between 3 and 8 in another aspect, depending on the wavelength for desired polarization and overall wire grid polarizer design. Modeling has shown good polarization characteristics with wire width W12 of between 5 nm and 20 nm for polarization of some ultraviolet wavelengths. Modeling has shown good polarization characteristics with a wire thickness Th12 of between 50 nm and 100 nm in one aspect, between 90 nm and 160 nm in another aspect, or between 150 nm and 300 nm in another aspect, depending on the wavelength for desired polarization. Modeling has shown that optimal first rib thickness T14 is wavelength dependent.

Lithography techniques can limit a possible minimum pitch. Lithography techniques can provide a pitch of the support ribs 13, but two wires can be made for every support rib, thus effectively cutting the pitch in half. This small pitch can allow for more effective polarization and can allow polarization at lower wavelengths.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US222421428 déc. 193710 déc. 1940Polaroid CorpLight polarizing body
US22375674 mai 19398 avr. 1941Polaroid CorpLight polarizer and process of manufacturing the same
US228759831 juil. 194023 juin 1942Polaroid CorpMethod of manufacturing lightpolarizing bodies
US239145110 juin 194125 déc. 1945Fischer Friedrich ErnstProcess and appliance for projecting television pictures
US24037311 avr. 19439 juil. 1946Eastman Kodak CoBeam splitter
US260535223 déc. 194729 juil. 1952Friedrich Fischer ErnstDeformable medium for controlling a light stream
US274865926 févr. 19515 juin 1956Jenaer Glaswerk Schott & GenLight source, searchlight or the like for polarized light
US28131461 juin 195412 nov. 1957Gen ElectricColored light system
US281545212 nov. 19543 déc. 1957Baird Associates IncInterferometer
US288756614 nov. 195219 mai 1959Marks Polarized CorpGlare-eliminating optical system
US304683912 janv. 195931 juil. 1962Polaroid CorpProcesses for preparing light polarizing materials
US308459026 févr. 19599 avr. 1963Gen ElectricOptical system
US320203927 juin 196124 août 1965Philips CorpOptical system for a color television camera
US321375324 janv. 196226 oct. 1965Polaroid CorpMultilayer lenticular light polarizing device
US323563017 juil. 196215 févr. 1966Little Inc AMethod of making an optical tool
US329155016 avr. 196513 déc. 1966Polaroid CorpMetallic grid light-polarizing device
US329187113 nov. 196213 déc. 1966Little Inc AMethod of forming fine wire grids
US329333113 nov. 196220 déc. 1966Little Inc AMethod of forming replicas of contoured substrates
US343614330 nov. 19651 avr. 1969Bell Telephone Labor IncGrid type magic tee
US34791689 mars 196418 nov. 1969Polaroid CorpMethod of making metallic polarizer by drawing fusion
US353637312 févr. 196827 oct. 1970Polaroid CorpLight polarizer
US356609916 sept. 196823 févr. 1971Polaroid CorpLight projection assembly
US362743122 déc. 196914 déc. 1971Komarniski John VictorDensitometer
US363128823 janv. 197028 déc. 1971Polaroid CorpSimplified polarized light projection assembly
US365374116 févr. 19704 avr. 1972Alvin M MarksElectro-optical dipolar material
US373198622 avr. 19718 mai 1973Int Liquid Xtal CoDisplay devices utilizing liquid crystal light modulation
US385762729 août 197331 déc. 1974Hoffmann La RochePolarizer arrangement for liquid crystal displays
US385762829 août 197331 déc. 1974Hoffmann La RocheSelective polarizer arrangement for liquid crystal displays
US387628524 août 19738 avr. 1975Battelle Memorial InstituteMultilayer brewster angle polarization device
US387778926 oct. 197315 avr. 1975Marie G R PMode transformer for light or millimeter electromagnetic waves
US39123692 juil. 197414 oct. 1975Gen ElectricSingle polarizer reflective liquid crystal display
US396954519 nov. 197413 juil. 1976Texas Instruments IncorporatedLight polarizing material method and apparatus
US40099337 mai 19751 mars 1977Rca CorporationPolarization-selective laser mirror
US402516424 févr. 197624 mai 1977Bbc Brown Boveri & Company LimitedLiquid crystal display device for colored display of information with a selective polarizer
US402568824 nov. 197524 mai 1977Polaroid CorporationPolarizer lamination
US404994420 août 197520 sept. 1977Hughes Aircraft CompanyProcess for fabricating small geometry semiconductive devices including integrated components
US406826015 févr. 197710 janv. 1978Minolta Camera Kabushiki KaishaCombination optical low pass filter capable of phase and amplitude modulation
US40735715 mai 197614 févr. 1978Hughes Aircraft CompanyCircularly polarized light source
US41045989 juin 19751 août 1978Hughes Aircraft CompanyLaser internal coupling modulation arrangement with wire grid polarizer serving as a reflector and coupler
US41817565 oct. 19771 janv. 1980Fergason James LProcess for increasing display brightness of liquid crystal displays by bleaching polarizers using screen-printing techniques
US422070512 sept. 19782 sept. 1980Sanritsu Denki KabushikikaishaProcess for manufacturing a multi-colored display polarizer
US422146417 oct. 19789 sept. 1980Hughes Aircraft CompanyHybrid Brewster's angle wire grid infrared polarizer
US426812720 avr. 197919 mai 1981Nitto Electric Industrial Co., Ltd.Light transmitting and reflecting polarizer
US42893812 juil. 197915 sept. 1981Hughes Aircraft CompanyHigh selectivity thin film polarizer
US429411917 mai 197913 oct. 1981Siemens AktiengesellschaftUltrasonic applicator for ultrasonic scanning of bodies
US430807916 juin 198029 déc. 1981Martin Marietta CorporationDurability of adhesively bonded aluminum structures and method for inhibiting the conversion of aluminum oxide to aluminum hydroxide
US44417917 juin 198210 avr. 1984Texas Instruments IncorporatedDeformable mirror light modulator
US445651511 avr. 197926 juin 1984Siemens AktiengesellschaftMethod for making polarizers comprising a multiplicity of parallel electrically conductive strips on a glass carrier
US446670431 janv. 198321 août 1984Polaroid CorporationPatterned polarizer having differently dyed areas
US449243214 juil. 19818 janv. 1985Bbc Brown, Boveri & Company, LimitedHomeotropic nematic display with internal reflector
US451263831 août 198223 avr. 1985Westinghouse Electric Corp.Wire grid polarizer
US45144791 juil. 198030 avr. 1985The United States Of America As Represented By The Secretary Of The NavyMethod of making near infrared polarizers
US451544113 oct. 19827 mai 1985Westinghouse Electric Corp.Dielectric polarizer for high average and high peak power operation
US451544329 déc. 19827 mai 1985The United States Of America As Represented By The Secretary Of The ArmyPassive optical system for background suppression in starring imagers
US453261921 janv. 198330 juil. 1985Hitachi, Ltd.Method and apparatus for reducing semiconductor laser optical noise
US456059928 janv. 198524 déc. 1985Marquette UniversityAssembling multilayers of polymerizable surfactant on a surface of a solid material
US467991020 mars 198514 juil. 1987Hughes Aircraft CompanyDual liquid-crystal cell-based visible-to-infrared dynamic image converter
US468889717 juin 198525 août 1987Hughes Aircraft CompanyLiquid crystal device
US470102816 mai 198520 oct. 1987Commissariat A L'energie AtomiqueLiquid crystal cell which can have a homeotropic structure with compensated birefringence of said structure
US471153024 sept. 19868 déc. 1987Alps Electric Co., Ltd.Liquid crystal device having birefringent plate next to polarizer
US471288121 juin 198515 déc. 1987The United States Of America As Represented By The Secretary Of The ArmyBirefringent artificial dielectric structures
US472443622 sept. 19869 févr. 1988Environmental Research Institute Of MichiganDepolarizing radar corner reflector
US474309226 nov. 198610 mai 1988The United States Of America As Represented By The Secretary Of The ArmyPolarizing grids for far-infrared and method for making same
US474309323 avr. 198710 mai 1988Eastman Kodak CompanyOptical disc player lens
US475961119 déc. 198626 juil. 1988Polaroid Corporation, Patent DepartmentLiquid crystal display having silylated light polarizers
US475961223 juil. 198626 juil. 1988Hitachi, Ltd.Twisted nematic type liquid crystal display device having a color polarizer to provide an achromatic or colorless background
US476397224 sept. 198616 août 1988Thomson-CsfDifferential absorption polarizer, a method of forming same and device implementing said method
US47952339 mars 19873 janv. 1989Honeywell Inc.Fiber optic polarizer
US479977627 juin 198624 janv. 1989Semiconductor Energy Laboratory Co., Ltd.Ferroelectric liquid crystal display device having a single polarizer
US481807612 juin 19874 avr. 1989Merck Patent Gesellschaft Mit Beschrankter HaftungColor-selective circular polarizer and its use
US484075719 mai 198720 juin 1989S. D. Warren CompanyReplicating process for interference patterns
US48656705 févr. 198812 sept. 1989Mortimer MarksMethod of making a high quality polarizer
US487064928 déc. 198826 sept. 1989American Telephone And Telegraph Company, At&T Bell LaboratoriesTranverse mode control in solid state lasers
US489390510 juin 198816 janv. 1990Hughes Aircraft CompanyOptical light valve system for providing phase conjugated beam of controllable intensity
US48957699 août 198823 janv. 1990Polaroid CorporationMethod for preparing light polarizer
US490406022 nov. 198827 févr. 1990Asulab, S.A.Liquid crystal display cell having a diffusely-reflective counter electrode
US491352927 déc. 19883 avr. 1990North American Philips Corp.Illumination system for an LCD display system
US491546318 oct. 198810 avr. 1990The United States Of America As Represented By The Department Of EnergyMultilayer diffraction grating
US493952622 déc. 19883 juil. 1990Hughes Aircraft CompanyAntenna system having azimuth rotating directive beam with selectable polarization
US494623119 mai 19897 août 1990The United States Of America As Represented By The Secretary Of The ArmyPolarizer produced via photographic image of polarizing grid
US49664384 avr. 198930 oct. 1990Societe Anonyme Dite: Alcatel CitDielectric layer polarizer
US49749418 mars 19894 déc. 1990Hercules IncorporatedProcess of aligning and realigning liquid crystal media
US499193727 juin 198912 févr. 1991Nec CorporationBirefringence diffraction grating type polarizer
US502998828 juin 19899 juil. 1991Nec CorporationBirefringence diffraction grating type polarizer
US50391853 juil. 198913 août 1991Stanley Electric Co., Ltd.Homeotropic liquid crystal display device
US506105016 oct. 199029 oct. 1991Matsushita Electric Industrial Co., Ltd.Polarizer
US508798512 juil. 198911 févr. 1992Toray Industries, Inc.Polarizer for visible light
US50927749 janv. 19913 mars 1992National Semiconductor CorporationMechanically compliant high frequency electrical connector
US511328528 sept. 199012 mai 1992Honeywell Inc.Full color three-dimensional flat panel display
US51153055 juil. 199019 mai 1992Baur Thomas GElectrically addressable liquid crystal projection system with high efficiency and light output
US51228875 mars 199116 juin 1992Sayett Group, Inc.Color display utilizing twisted nematic LCDs and selective polarizers
US51229073 juil. 199116 juin 1992Polatomic, Inc.Light polarizer and method of manufacture
US512484115 oct. 199023 juin 1992Mitsubishi Rayon Co., Ltd.Polarization forming optical device and polarization beam splitter
US51393407 déc. 199018 août 1992Seiko Epson CorporationSingle polarizer, reflective type liquid crystal display device with high brightness and contrast ratio
US51575261 juil. 199120 oct. 1992Hitachi, Ltd.Unabsorbing type polarizer, method for manufacturing the same, polarized light source using the same, and apparatus for liquid crystal display using the same
US516387719 déc. 199017 nov. 1992Heinrich MarpertJoint for the transmission of torque from a first shaft to a second shaft
US51776356 sept. 19905 janv. 1993Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V.Polarizer for infrared radiation
US519692614 mai 199123 mars 1993Goldstar Co., Ltd.Optical system for an lcd projector
US51969531 nov. 199123 mars 1993Rockwell International CorporationCompensator for liquid crystal display, having two types of layers with different refractive indices alternating
US519892121 nov. 199130 mars 1993Hamamatsu Photonics K.K.Light amplifying polarizer
US520476517 janv. 199220 avr. 1993Sharp Kabushiki KaishaLiquid crystal display device having reflector of a substrate, a patterned resin, and a reflective film, and method of making same
US52066741 nov. 199127 avr. 1993Thomson-CsfSystem for the display of images given by a spatial modulator with transfer of energy
US521653910 oct. 19901 juin 1993U.S. Philips Corp.Device of the mirror type in the range of x-uv rays
US52229076 août 199229 juin 1993Nec CorporationMultiple-pin connector
US52259204 avr. 19916 juil. 1993Matsushita Electric Industrial Co., Ltd.Liquid crystal modulator including a diffuser with plural phase shifting regions
US523544324 févr. 199210 août 1993Hoffmann-La Roche Inc.Polarizer device
US52354491 mars 199110 août 1993Hitachi, Ltd.Polarizer with patterned diacetylene layer, method for producing the same, and liquid crystal display device including such polarizer
US523932215 mai 199124 août 1993Victor Company Of Japan, Ltd.Display apparatus
US52454711 juin 199214 sept. 1993Tdk CorporationPolarizers, polarizer-equipped optical elements, and method of manufacturing the same
US526702931 janv. 199230 nov. 1993Katsumi KurematsuImage projector
US527968914 févr. 199218 janv. 1994E. I. Du Pont De Nemours And CompanyMethod for replicating holographic optical elements
US52950097 mai 199315 mars 1994Hoffmann-La RochePolarizer device
US529819911 oct. 199129 mars 1994Stanley Electric Co., Ltd.Optical birefringence compensator adapted for LCD
US53051439 août 199119 avr. 1994Kabushiki Kaisha Toyota Chuo KenkyushoInorganic thin film polarizer
US532521831 déc. 199228 juin 1994Minnesota Mining And Manufacturing CompanyCholesteric polarizer for liquid crystal display and overhead projector
US533307231 déc. 199226 juil. 1994Minnesota Mining And Manufacturing CompanyReflective liquid crystal display overhead projection system using a reflective linear polarizer and a fresnel lens
US534919220 mai 199320 sept. 1994Wisconsin Alumni Research FoundationSolid state detector for polarized x-rays
US535737027 mai 199218 oct. 1994Matsushita Electric Industrial Co., Ltd.Polarizer and light valve image projector having the polarizer
US53830537 avr. 199217 janv. 1995Hughes Aircraft CompanyVirtual image display having a high efficiency grid beamsplitter
US538795323 déc. 19917 févr. 1995Canon Kabushiki KaishaPolarization illumination device and projector having the same
US539109130 juin 199321 févr. 1995American Nucleonics CorporationConnection system for blind mate electrical connector applications
US540158727 mars 199128 mars 1995Kabushiki Kaisha Toyota Chuo KenkyushoAnisotropic nanophase composite material and method of producing same
US542275618 mai 19926 juin 1995Minnesota Mining And Manufacturing CompanyBacklighting system using a retroreflecting polarizer
US543057315 déc. 19934 juil. 1995Corning IncorporatedUV-absorbing, polarizing glass article
US543676126 août 199425 juil. 1995Mitsubishi Denki Kabushiki KaishaProjection exposure apparatus and polarizer
US54555897 janv. 19943 oct. 1995Millitech CorporationCompact microwave and millimeter wave radar
US546631919 juin 199114 nov. 1995U.S. Philips CorporationMethod for making optically readable media containing embossed information
US547735921 janv. 199419 déc. 1995Sharp Kabushiki KaishaLiquid crystal projector having a vertical orientating polyimide film
US54854995 août 199416 janv. 1996Moxtek, Inc.High throughput reflectivity and resolution x-ray dispersive and reflective structures for the 100 eV to 5000 eV energy range and method of making the devices
US548693529 juin 199323 janv. 1996Kaiser Aerospace And Electronics CorporationHigh efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays having a notch polarization bandwidth of 100 nm to 250 nm
US548694926 nov. 199023 janv. 1996The Dow Chemical CompanyBirefringent interference polarizer
US549000321 oct. 19936 févr. 1996U.S. Philips CorporationReflective liquid crystal display device with twist angle between 50° and 68° and the polarizer at the bisectrix
US54991262 déc. 199312 mars 1996Ois Optical Imaging Systems, Inc.Liquid crystal display with patterned retardation films
US55046034 avr. 19942 avr. 1996Rockwell International CorporationOptical compensator for improved gray scale performance in liquid crystal display
US550670410 janv. 19949 avr. 1996U.S. Philips CorporationCholesteric polarizer and the manufacture thereof
US550883030 juin 199316 avr. 1996Citizen Watch Co., Ltd.Liquid crystal display unit having an enclosed space between the liquid crystal cell and at least one polarizer
US551021525 janv. 199523 avr. 1996Eastman Kodak CompanyMethod for patterning multilayer dielectric color filter
US55130233 oct. 199430 avr. 1996Hughes Aircraft CompanyPolarizing beamsplitter for reflective light valve displays having opposing readout beams onto two opposing surfaces of the polarizer
US551303524 août 199430 avr. 1996Matsushita Electric Industrial Co., Ltd.Infrared polarizer
US55173561 juil. 199414 mai 1996Corning IncorporatedGlass polarizer for visible light
US553504718 avr. 19959 juil. 1996Texas Instruments IncorporatedActive yoke hidden hinge digital micromirror device
US554842720 janv. 199520 août 1996Sharp Kabushiki KaishaSwitchable holographic apparatus
US555518615 févr. 199510 sept. 1996Nec CorporationProjection type liquid crystal display apparatus using multiple polarizing beam splitters
US555734326 janv. 199517 sept. 1996Matsushita Electric Industrial, Co., Ltd.Optical system including a reflecting polarizer for a rear projection picture display apparatus
US555963426 oct. 199424 sept. 1996Minnesota Mining And Manufacturing CompanyRetroreflecting polarizer
US557021310 mai 199429 oct. 1996Hughes-Jvc Technology CorporationLiquid crystal light valve with minimized double reflection
US55702153 août 199529 oct. 1996Matsushita Electric Industrial Co., Ltd.Liquid crystal display apparatus and projection displaying apparatus having a rotatable phase difference plate and polarizer
US557458012 déc. 199512 nov. 1996Hughes Aircraft CompanyLCD with integral light confinement having a pair of afocal lenslets positioned between liquid crystal cells and color polarizers
US557685412 nov. 199319 nov. 1996Hughes-Jvc Technology CorporationLiquid crystal light valve projector with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve
US557913828 mars 199426 nov. 1996Matsushita Electric Industrial Co., Ltd.Polarizer having a glass substrate with films on either side with different wavelength characteristics and projection display using same
US559456131 mars 199314 janv. 1997Palomar Technologies CorporationFlat panel display with elliptical diffuser and fiber optic plate
US559955122 déc. 19944 févr. 1997Kelly; Patrick D.Genital lubricants containing zinc as an anti-viral agent
US56003837 juin 19954 févr. 1997Texas Instruments IncorporatedMulti-level deformable mirror device with torsion hinges placed in a layer different from the torsion beam layer
US560266110 févr. 199411 févr. 1997Hoffmann-La Roche Inc.Optical component
US560993914 déc. 199411 mars 1997Physical Optics CorporationViewing screen formed using coherent light
US561282030 mai 199518 mars 1997The Dow Chemical CompanyBirefringent interference polarizer
US561403524 oct. 199525 mars 1997Alcan International LimitedNonabrasive, corrosion resistant, hydrophilic coatings for aluminum surfaces, methods of application, and articles coated therewith
US561935616 sept. 19948 avr. 1997Sharp Kabushiki KaishaReflective liquid crystal display device having a compensator with a retardation value between 0.15 μm and 0.38 μm and a single polarizer
US562075515 juin 199415 avr. 1997Jvc - Victor Company Of Japan, Ltd.Inducing tilted perpendicular alignment in liquid crystals
US562640815 déc. 19946 mai 1997U.S. Philips CorporationIllumination system for a color projection device and circular polarizer suitable for use in such an illumination system, and color image projection device comprising such an illumination system and circular polarizer
US563819730 sept. 199410 juin 1997Rockwell International Corp.Inorganic thin film compensator for improved gray scale performance in twisted nematic liquid crystal displays and method of making
US56526676 nov. 199529 juil. 1997Victor Company Of Japan, Ltd.Liquid crystal display apparatus
US565806015 août 199619 août 1997International Business Machines CorporationArrangement for projection displays employing reflective light valves
US568697926 juin 199511 nov. 1997Minnesota Mining And Manufacturing CompanyOptical panel capable of switching between reflective and transmissive states
US570606313 oct. 19956 janv. 1998Samsung Electronics Co., Ltd.Optical system of a reflection LCD projector
US57061319 sept. 19946 janv. 1998Nippon Kayaku Kabushiki KaishaPolarizing element, polarizing plate, and process for production thereof
US57196955 déc. 199617 févr. 1998Texas Instruments IncorporatedSpatial light modulator with superstructure light shield
US573124615 oct. 199624 mars 1998International Business Machines CorporationProtection of aluminum metallization against chemical attack during photoresist development
US574836821 déc. 19955 mai 1998Sony CorporationPolarization optical element
US574836928 sept. 19955 mai 1998Canon Kabushiki KaishaPolarizing beam splitter and an illuminating device provided with the same
US57513887 avr. 199512 mai 1998Honeywell Inc.High efficiency polarized display
US575146611 janv. 199612 mai 1998University Of Alabama At HuntsvillePhotonic bandgap apparatus and method for delaying photonic signals
US576782722 déc. 199516 juin 1998Victor Company Of Japan, Ltd.Reflective type active matrix display panel and method of manufacturing same
US579881911 déc. 199625 août 1998Nikon CorporationProjection-display apparatus and method providing improved brightness of projected color image
US58087956 mars 199615 sept. 1998Nikon CorporationProjection type display apparatus
US58269597 mai 199727 oct. 1998Pioneer Electronic CorporationProjection image display apparatus
US582696010 juil. 199727 oct. 1998Fujitsu LimitedProtection type display device with polarized light reflecting mirror and polarized light source
US582848912 avr. 199627 oct. 1998Rockwell International CorporationNarrow wavelength polarizing beamsplitter
US583336012 nov. 199610 nov. 1998Compaq Computer CorporationHigh efficiency lamp apparatus for producing a beam of polarized light
US583840314 févr. 199617 nov. 1998Physical Optics CorporationLiquid crystal display system with internally reflecting waveguide for backlighting and non-Lambertian diffusing
US584149426 juin 199624 nov. 1998Hall; Dennis R.Transflective LCD utilizing chiral liquid crystal filter/mirrors
US58447225 juin 19971 déc. 1998Hughes-Jvc Technology CorporationInternal aperture mask for embedded optics
US586442723 mai 199626 janv. 1999Kyocera CorporationPolarizer and production method thereof
US588675417 janv. 199723 mars 1999Industrial Technology Research InstituteLiquid crystal display projector
US589009521 janv. 199730 mars 1999Nichols Research CorporationSystem for receiving and enhancing electromagnetic radiation input signals
US58985218 nov. 199627 avr. 1999Matsushita Electric Industrial Co., Ltd.LCD Projector
US589955124 mai 19954 mai 1999U.S. Philips CorporationDisplay device having a diffusing display panel and a reflecting polarizer
US590097620 févr. 19984 mai 1999Displaytech, Inc.Display system including a polarizing beam splitter
US590742724 oct. 199725 mai 1999Time Domain CorporationPhotonic band gap device and method using a periodicity defect region to increase photonic signal delay
US591276212 août 199615 juin 1999Li; LiThin film polarizing device
US591481818 nov. 199722 juin 1999Texas Instruments IncorporatedOffset projection lens for use with reflective spatial light modulators
US591756215 déc. 199529 juin 1999Sharp Kabushiki KaishaAutostereoscopic display and spatial light modulator
US59189617 mai 19976 juil. 1999Nikon CorporationProjection type display device
US593005016 sept. 199827 juil. 1999Texas Instruments IncorporatedAnamorphic lens for providing wide-screen images generated by a spatial light modulator
US59431713 juin 199824 août 1999International Business Machines CorporationHead mounted displays utilizing reflection light valves
US595834514 mars 199728 sept. 1999Moxtek, Inc.Thin film sample support
US596524728 oct. 199712 oct. 19993M Innovative Properties CompanyProcess for forming reflective polarizer
US59698611 août 199619 oct. 1999Nikon CorporationPolarizing optical system
US597383329 août 199726 oct. 1999Lightware, Inc.High efficiency polarizing converter
US597805615 oct. 19962 nov. 1999Victor Company Of Japan, LtdReflection-type display apparatus having antireflection films
US598254113 août 19979 nov. 1999Nationsl Research Council Of CanadaHigh efficiency projection displays having thin film polarizing beam-splitters
US59867301 déc. 199816 nov. 1999MoxtekDual mode reflective/transmissive liquid crystal display apparatus
US599107525 nov. 199723 nov. 1999Ricoh Company, Ltd.Light polarizer and method of producing the light polarizer
US599107721 août 199823 nov. 19993M Innovative Properties CompanyMultilayer polarizer having a continuous and disperse phase
US600591819 déc. 199721 déc. 1999Picker International, Inc.X-ray tube window heat shield
US600887120 janv. 199828 déc. 1999Seiko Epson CorporationTransflective liquid crystal display device having a reflective polarizer
US600895130 déc. 199728 déc. 1999Texas Instruments IncorporatedOffset projection zoom lens with fixed rear group for reflective spatial light modulators
US601012121 avr. 19994 janv. 2000Lee; Chi PingWork piece clamping device of workbench
US601617318 févr. 199818 janv. 2000Displaytech, Inc.Optics arrangement including a compensator cell and static wave plate for use in a continuously viewable, reflection mode, ferroelectric liquid crystal spatial light modulating system
US60188412 févr. 19981 févr. 2000Marshalltowntrowel CompanyFinishing trowel including handle
US60468515 sept. 19974 avr. 2000Nec CorporationPolarization beam splitter and method for making the same
US604942817 nov. 199511 avr. 2000Optiva, Inc.Dichroic light polarizers
US605361616 nov. 199825 avr. 2000Seiko Epson CorporationProjection type display device
US605510326 juin 199825 avr. 2000Sharp Kabushiki KaishaPassive polarisation modulating optical element and method of making such an element
US605521521 avr. 199825 avr. 2000Ricoh Company, Ltd.Magneto-optical recording medium having a plurality of ferromagnectic thin layers
US605640717 déc. 19972 mai 2000Seiko Epson CorporationProjection display device
US606269418 déc. 199716 mai 2000Nikon CorporationProjection type display apparatus
US60752352 janv. 199813 juin 2000Chun; Cornell Seu LunHigh-resolution polarization-sensitive imaging sensors
US608131210 mars 199827 juin 2000Fuji Photo Film Co., Ltd.Homeotropic liquid crystal cell with one or more compensator plates with a small birefringence
US608137616 juil. 199827 juin 2000MoxtekReflective optical polarizer device with controlled light distribution and liquid crystal display incorporating the same
US608286116 sept. 19984 juil. 2000International Business Machines CorporationOptical system and method for high contrast projection display
US60897172 sept. 199718 juil. 2000Sony CorporationProjector apparatus
US60961553 oct. 19971 août 2000Digital Optics CorporationMethod of dicing wafer level integrated multiple optical elements
US609637516 févr. 19991 août 20003M Innovative Properties CompanyOptical polarizer
US610092818 juil. 19978 août 2000Ricoh Company, Ltd.Digital camera with variable gain to offset exposure error
US610813114 mai 199822 août 2000MoxtekPolarizer apparatus for producing a generally polarized beam of light
US612210322 juin 199919 sept. 2000MoxtechBroadband wire grid polarizer for the visible spectrum
US612240312 nov. 199619 sept. 2000Digimarc CorporationComputer system linked by using information in data objects
US612497117 oct. 199726 sept. 20003M Innovative Properties CompanyTransflective displays with reflective polarizing transflector
US614107524 févr. 199731 oct. 2000Fujitsu LimitedLiquid crystal display device operating in a vertically aligned mode
US614772817 juil. 199614 nov. 2000Seiko Epson CorporationReflective color LCD with color filters having particular transmissivity
US617281323 oct. 19989 janv. 2001Duke UniversityProjection lens and system including a reflecting linear polarizer
US617281623 oct. 19989 janv. 2001Duke UniversityOptical component adjustment for mitigating tolerance sensitivities
US618138617 déc. 199630 janv. 2001Duke UniversityProjecting images
US618145818 déc. 199830 janv. 2001Eastman Kodak CompanyMechanical grating device with optical coating and method of making mechanical grating device with optical coating
US618504123 oct. 19986 févr. 2001Duke UniversityProjection lens and system
US620846314 mai 199827 mars 2001MoxtekPolarizer apparatus for producing a generally polarized beam of light
US621554719 nov. 199810 avr. 2001Eastman Kodak CompanyReflective liquid crystal modulator based printing system
US623463428 juil. 199922 mai 2001MoxtekImage projection system with a polarizing beam splitter
US62431997 sept. 19995 juin 2001MoxtekBroad band wire grid polarizing beam splitter for use in the visible wavelength region
US62478167 août 199719 juin 2001International Business Machines CorporationOptical system for projection displays using spatial light modulators
US624937827 févr. 199819 juin 2001Nikon CorporationMirror and projection type display apparatus
US625076230 juin 199926 juin 2001U.S. Philips CorporationImage projection system
US62512979 déc. 199826 juin 2001Tdk CorporationMethod of manufacturing polarizing plate
US62820252 août 199928 août 2001New Focus, Inc.Optical polarization beam combiner/splitter
US628884011 janv. 200011 sept. 2001MoxtekImbedded wire grid polarizer for the visible spectrum
US629179711 août 199718 sept. 2001Nippon Sheet Glass Co., Ltd.Laser machining method for glass substrate, diffraction type optical device fabricated by the machining method, and method of manufacturing optical device
US631034512 oct. 199930 oct. 2001The United States Of America As Represented By The Secretary Of The ArmyPolarization-resolving infrared imager
US633945420 nov. 200015 janv. 2002Duke UniversityProjecting images
US634023010 mars 200022 janv. 2002Optical Coating Laboratory, Inc.Method of using a retarder plate to improve contrast in a reflective imaging system
US63458953 déc. 199912 févr. 2002Nikon CorporationProjection type display apparatus
US634899527 mars 200019 févr. 2002MoxtekReflective optical polarizer device with controlled light distribution and liquid crystal display incorporating the same
US637533030 déc. 199923 avr. 2002Gain Micro-Optics, Inc.Reflective liquid-crystal-on-silicon projection engine architecture
US639062617 oct. 199621 mai 2002Duke UniversityImage projection system engine assembly
US63983646 oct. 19994 juin 2002Optical Coating Laboratory, Inc.Off-axis image projection display system
US64061511 févr. 200018 juin 2002Seiko Epson CorporationElectro-optical device mounting unit and projector using the same
US640952511 déc. 200025 juin 2002Tyco Electronics CorporationTerminal position housing assembly
US641174911 mai 200125 juin 2002Micro-Optice, Inc.In-line fiber optic polarization combiner/divider
US64244364 avr. 200023 juil. 2002Nec CorporationHolographic element
US642683721 mars 200030 juil. 2002Mems Optical, Inc.Diffractive selectively polarizing beam splitter and beam routing prisms produced thereby
US644712021 mai 200110 sept. 2002MoxtexImage projection system with a polarizing beam splitter
US645272426 juin 200017 sept. 2002MoxtekPolarizer apparatus for producing a generally polarized beam of light
US64609982 mars 20008 oct. 2002Seiko Epson CorporationAdjustment mechanism and projector employing the same
US647323619 janv. 200129 oct. 2002Duke UniversityProjection lens and system
US648699717 mai 199926 nov. 20023M Innovative Properties CompanyReflective LCD projection system using wide-angle Cartesian polarizing beam splitter
US649001728 janv. 19993 déc. 2002Duke UniversitySeparating white light into polarized, colored light
US649623917 juil. 200117 déc. 2002Rolic AgOptical component for producing linearly polarized light
US64962874 avr. 199917 déc. 2002Rolic AgOptical identification element
US65111832 juin 200128 janv. 2003Koninklijke Philips Electronics N.V.Digital image projector with oriented fixed-polarization-axis polarizing beamsplitter
US65146748 mars 20004 févr. 2003Canon Kabushiki KaishaMethod of forming an optical element
US65206459 oct. 200118 févr. 2003Sony CorporationProjection-type display device and method of adjustment thereof
US65321115 mars 200111 mars 2003Eastman Kodak CompanyWire grid polarizer
US654739627 déc. 200115 avr. 2003Infocus CorporationStereographic projection system
US658047114 janv. 200217 juin 2003Duke UniversityProjecting images
US658393023 déc. 199824 juin 20033M Innovative PropertiesBirefringent interference polarization
US658537820 mars 20011 juil. 2003Eastman Kodak CompanyDigital cinema projector
US662493610 mai 200123 sept. 20033M Innovative Properties CompanyColor-compensated information displays
US664307715 avr. 20024 nov. 20033M Innovative Properties CompanyMethods and apparatus for positioning optical prisms
US665416825 mars 199925 nov. 2003Corning IncorporatedInorganic visible light reflection polarizer
US666147523 mars 20009 déc. 2003Infocus CorporationColor video projection system employing reflective liquid crystal display device
US666148412 avr. 20009 déc. 2003Matsushita Electric Industrial Co., Ltd.Retardation matching using the liquid crystal twist angle for different color dots within a pixel of a reflective color LCD
US666511915 oct. 200216 déc. 2003Eastman Kodak CompanyWire grid polarizer
US66665569 sept. 200223 déc. 2003Moxtek, IncImage projection system with a polarizing beam splitter
US666934331 mai 200130 déc. 2003Koninklijke Philips Electronics N.V.Image display system
US66988911 nov. 20022 mars 2004Nec Viewtechnology, Ltd.Polarizing unit, polarizing illumination device using same polarizing unit and projection display device using same polarizing illumination device
US670446912 sept. 20009 mars 2004Finisar CorporationPolarization beam combiner/splitter
US671092115 janv. 200223 mars 2004MoxtekPolarizer apparatus for producing a generally polarized beam of light
US6713396 *29 avr. 200230 mars 2004Hewlett-Packard Development Company, L.P.Method of fabricating high density sub-lithographic features on a substrate
US671435015 oct. 200130 mars 2004Eastman Kodak CompanyDouble sided wire grid polarizer
US672109615 nov. 200213 avr. 20043M Innovative Properties CompanyPolarizing beam splitter
US67397237 déc. 200125 mai 2004Delta Electronics, Inc.Polarization recapture system for liquid crystal-based data projectors
US674612212 avr. 20028 juin 2004Duke UniversityImage projection system engine assembly
US676418116 mai 200220 juil. 20043M Innovative Properties CompanyPolarization arrangement
US676977922 juil. 20033 août 2004Eastman Kodak CompanyHousing for mounting modulation and polarization components in alignment with an optical path
US678164015 nov. 199924 août 2004Sharp Laboratories Of America, Inc.Projection display having polarization compensator
US67850509 mai 200231 août 2004Moxtek, Inc.Corrosion resistant wire-grid polarizer and method of fabrication
US67884616 août 20037 sept. 2004Eastman Kodak CompanyWire grid polarizer
US68054455 juin 200219 oct. 2004Eastman Kodak CompanyProjection display using a wire grid polarization beamsplitter with compensator
US680986422 nov. 200226 oct. 2004Osmic, IncMulti-layer structure with variable bandpass for monochromatization and spectroscopy
US68098739 sept. 200226 oct. 2004Eastman Kodak CompanyColor illumination system for spatial light modulators using multiple double telecentric relays
US68112744 déc. 20022 nov. 2004General Electric CompanyPolarization sensitive optical substrate
US681307719 juin 20012 nov. 2004Corning IncorporatedMethod for fabricating an integrated optical isolator and a novel wire grid structure
US68162905 juil. 20019 nov. 2004Sony CorporationImage display element, and image display device
US68211356 août 200323 nov. 2004Tyco Electronics CorporationAlignment plate for aligning connector terminals
US682309311 juin 200223 nov. 2004Jds Uniphase CorporationTunable micro-optic architecture for combining light beam outputs of dual capillary polarization-maintaining optical fibers
US682909030 sept. 20027 déc. 2004Sony CorporationPrism, projection device and optical component
US684497110 déc. 200318 janv. 2005Eastman Kodak CompanyDouble sided wire grid polarizer
US684608916 mai 200325 janv. 20053M Innovative Properties CompanyMethod for stacking surface structured optical films
US685930317 juin 200322 févr. 2005Nanoopto CorporationOptical components exhibiting enhanced functionality and method of making same
US687678430 mai 20025 avr. 2005Nanoopto CorporationOptical polarization beam combiner/splitter
US68963713 déc. 200224 mai 2005Koninklijke Philips Electronics N.V.Digital image projector with oriented fixed-polarization-axis polarizing beamsplitter
US689792627 mai 200424 mai 2005Eastman Kodak CompanyModulation optical system including a compensator conditioning oblique and skew rays
US689944017 mai 200231 mai 2005Infocus CorporationPolarized light source system with mirror and polarization converter
US690086613 nov. 200331 mai 2005Eastman Kodak CompanyModulation optical system with compensator
US69094737 janv. 200221 juin 2005Eastman Kodak CompanyDisplay apparatus and method
US692027217 juin 200319 juil. 2005Nanoopto CorporationMonolithic tunable lasers and reflectors
US692228723 oct. 200126 juil. 2005Unaxis Balzers AktiengesellschaftLight coupling element
US69264108 août 20039 août 20053M Innovative Properties CompanyPolarizing beam splitter
US692791512 juin 20039 août 2005Canon Kabushiki KaishaDiffractive optical element, and optical system and optical apparatus provided with the same
US693408228 juin 200423 août 20053M Innovative Properties CompanyOptical devices using reflecting polarizing materials
US694394127 févr. 200313 sept. 2005Asml Netherlands B.V.Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US694721524 déc. 200220 sept. 2005Canon Kabushiki KaishaOptical element, optical functional device, polarization conversion device, image display apparatus, and image display system
US695424527 mai 200411 oct. 2005Moxtek, Inc.Display apparatus with two polarization compensators
US697290618 déc. 20016 déc. 2005Technion Research And Development Foundation Ltd.Space-variant subwavelength polarization grating and applications thereof
US697675912 avr. 200420 déc. 20053M Innovative Properties CompanyCompound polarization beam splitters
US698177130 juin 20003 janv. 2006Sanyo Electric Co., Ltd.Rear projection display device
US70097683 juin 20037 mars 2006Canon Kabushiki KaishaOptical component and method of manufacturing same
US701306417 juin 200314 mars 2006Nanoopto CorporationFreespace tunable optoelectronic device and method
US70235121 févr. 20054 avr. 2006Moxtek, Inc.Spatially patterned polarization compensator
US702360222 déc. 20004 avr. 20063M Innovative Properties CompanyReflective LCD projection system using wide-angle Cartesian polarizing beam splitter and color separation and recombination prisms
US702546430 mars 200411 avr. 2006Goldeneye, Inc.Projection display systems utilizing light emitting diodes and light recycling
US702604612 avr. 200511 avr. 2006Unaxis Balzers Ltd.Component comprising submicron hollow spaces
US704642215 oct. 200416 mai 2006Fuji Photo Film Co., Ltd.Reflection-type light modulating array element and exposure apparatus
US704644131 mars 200416 mai 2006Industrial Technology Research InstituteHigh transmittance sub-wavelength structure polarization module
US70464422 déc. 200416 mai 2006Enplas CorporationWire grid polarizer
US70502331 août 200323 mai 2006Nanoopto CorporationPrecision phase retardation devices and method of making same
US70502341 mai 200223 mai 2006Adc Telecommunications, Inc.Lossless beam combination in a dual fiber collimator using a polarizing beamsplitter
US707560211 juin 200211 juil. 2006Sharp Kabushiki KaishaSubstrate for reflective liquid crystal display device and reflective liquid crystal display device using the same wherein the reflective surface is a wrinkled pattern of small mirrors
US707572230 mai 200111 juil. 2006Canon Kabushiki KaishaDiffractive optical element and optical system having the same
US708505013 déc. 20011 août 2006Sharp Laboratories Of America, Inc.Polarized light beam splitter assembly including embedded wire grid polarizer
US709906812 nov. 200429 août 2006Nanoopto CorporationOptical components exhibiting enhanced functionality and method of making same
US711333511 déc. 200326 sept. 2006Sales Tasso RGrid polarizer with suppressed reflectivity
US711647831 août 20043 oct. 2006Canon Kabushiki KaishaPolarization beam splitter and optical system using the same, and image displaying apparatus, using the same
US712918320 juin 200531 oct. 2006Sanyo Electric Co., Ltd.Method of forming grating microstrutures by anodic oxidation
US713173729 juil. 20047 nov. 2006Moxtek, Inc.Housing for mounting a beamsplitter and a spatial light modulator with an output optical path
US714236313 sept. 200528 nov. 2006Asahi Glass Company, LimitedDiffraction element and optical device
US714237510 mai 200428 nov. 2006Nanoopto CorporationFilms for optical use and methods of making such films
US71550733 mai 200526 déc. 2006Canon Kabushiki KaishaPolarization element and optical device using polarization element
US71583028 avr. 20042 janv. 2007Industry Technology Research InstituteWire grid polarizer with double metal layers
US715998726 mars 20049 janv. 2007Seiko Epson CorporationDisplay device, lighting device and projector
US717725919 août 200313 févr. 2007Sony CorporationOptical head and optical recording medium drive device
US71841155 août 200527 févr. 2007Moxtek, Inc.Display apparatus with two polarization compensators
US71859842 juil. 20016 mars 2007Seiko Epson CorporationIllumination optical system and projector comprising the same
US720300113 août 200410 avr. 2007Nanoopto CorporationOptical retarders and related devices and systems
US721392028 nov. 20038 mai 2007Sony CorporationImage display apparatus
US722037124 août 200422 mai 2007Enplas CorporationWire grid polarizer and method for producing same
US722142010 mai 200622 mai 2007Sony CorporationDisplay with a wire grid polarizing beamsplitter
US722150115 avr. 200522 mai 2007Asml Netherlands B.V.Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US722768420 août 20035 juin 2007Jian WangMethod and system for providing beam polarization
US723076624 mai 200412 juin 2007Optical Research AssociatesOptical combiner designs and head mounted displays
US72348163 févr. 200426 juin 20073M Innovative Properties CompanyPolarizing beam splitter assembly adhesive
US723665512 mai 200626 juin 2007Canon Kabushiki KaishaPolarization element and optical device using polarization element
US725544418 févr. 200514 août 2007Hitachi, Ltd.Optical unit and projection-type image display apparatus using the same
US725693817 mars 200514 août 2007General AtomicsMethod for making large scale multilayer dielectric diffraction gratings on thick substrates using reactive ion etching
US726894610 févr. 200411 sept. 2007Jian WangUniversal broadband polarizer, devices incorporating same, and method of making same
US729738620 févr. 200320 nov. 2007Dai Nippon Printing Co., Ltd.Antireflection structure
US72984756 août 200320 nov. 2007The Secretary Of State For DefenceMethod and apparatus for stand-off chemical detection
US73063388 mars 200511 déc. 2007Moxtek, IncImage projection system with a polarizing beam splitter
US737588724 nov. 200420 mai 2008Moxtek, Inc.Method and apparatus for correcting a visible light beam using a wire-grid polarizer
US741478423 sept. 200419 août 2008Rohm And Haas Denmark Finance A/SLow fill factor wire grid polarizer and method of use
US746648430 mai 200616 déc. 2008Rohm And Haas Denmark Finance A/SWire grid polarizers and optical elements containing them
US75455641 août 20079 juin 2009Api Nanofabrication And Research CorporationUniversal broadband polarizer, devices incorporating same, and method of making same
US756133228 nov. 200514 juil. 2009Agoura Technologies, Inc.Applications and fabrication techniques for large scale wire grid polarizers
US75704246 déc. 20044 août 2009Moxtek, Inc.Multilayer wire-grid polarizer
US76198163 nov. 200517 nov. 2009Api Nanofabrication And Research Corp.Structures for polarization and beam control
US763013331 janv. 20078 déc. 2009Moxtek, Inc.Inorganic, dielectric, grid polarizer and non-zero order diffraction grating
US767075827 mai 20052 mars 2010Api Nanofabrication And Research CorporationOptical films and methods of making the same
US76928606 déc. 20076 avr. 2010Cheil Industries, Inc.Wire grid polarizer and method of manufacturing the same
US77221944 juin 200825 mai 2010Seiko Epson CorporationOptical element having a reflected light diffusing function and a polarization separation function and a projection display device
US77557186 août 200813 juil. 2010Seiko Epson CorporationOptical element, liquid crystal device, and display
US778951517 mai 20077 sept. 2010Moxtek, Inc.Projection device with a folded optical path and wire-grid polarizer
US780082315 déc. 200621 sept. 2010Moxtek, Inc.Polarization device to polarize and further control light
US78130399 mars 200912 oct. 2010Moxtek, Inc.Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US794454430 mai 200817 mai 2011Seiko Epson CorporationLiquid crystal device having a diffraction function layer that includes a flat portion and a non-flat portion with a grid disposed in the non-flat portion
US796139322 juin 200714 juin 2011Moxtek, Inc.Selectively absorptive wire-grid polarizer
US80093555 déc. 200730 août 2011Canon Kabushiki KaishaOptical element having periodic structure and optical apparatus using the same
US802708710 sept. 201027 sept. 2011Moxtek, Inc.Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US804984119 oct. 20071 nov. 2011Hitachi Displays, Ltd.Wire grid polarized and liquid crystal display device using the same
US813853429 avr. 201020 mars 2012International Business Machines CorporationAnti-reflection structures for CMOS image sensors
US82486979 déc. 200921 août 2012Seiko Epson CorporationMethod for manufacturing an optical element to polarize and split incident light
US84261218 févr. 201123 avr. 2013Stc.UnmSelf-aligned spatial frequency doubling
US849365823 juin 200823 juil. 2013Semiconductor Energy Laboratory Co., Ltd.Polarizer and display device including polarizer
US850682721 sept. 200913 août 2013Polarization Solutions, LlcShort pitch metal gratings and methods for making the same
US86110072 sept. 201117 déc. 2013Moxtek, Inc.Fine pitch wire grid polarizer
US861921514 nov. 200831 déc. 2013Seiko Epson CorporationOptical element, method for manufacturing the same, liquid crystal device, and electronic apparatus
US869613112 janv. 201115 avr. 2014Seiko Epson CorporationPolarization element and projector
US870970321 mars 200829 avr. 2014Polarization Solutions, LlcMethods for forming patterned structures
US875511322 juin 200717 juin 2014Moxtek, Inc.Durable, inorganic, absorptive, ultra-violet, grid polarizer
US880424115 nov. 201012 août 2014Polarization Solutions, LlcMethods for forming optical films
US880897222 janv. 201019 août 2014Polarization Solutions, LlcOptical films and methods of making the same
US891332127 sept. 201216 déc. 2014Moxtek, Inc.Fine pitch grid polarizer
US9097857 *31 mai 20114 août 2015Dexerials CorporationPolarizing plate and method for producing polarizing plate
US2001000642121 févr. 20015 juil. 2001Parriaux Olivier M.Device for measuring translation, rotation or velocity via light beam interference
US2001005302330 avr. 200120 déc. 2001Jasco CorporationWire grid type polarizer and method of manufacturing the same
US2002000366130 mai 200110 janv. 2002Takehiko NakaiDiffractive optical element and optical system having the same
US2002001513521 mai 20017 févr. 2002MoxtekImage projection system with a polarizing beam splitter
US200200408923 juil. 200111 avr. 2002Nippon Sheet Glass Co., Ltd.Laser processing method to a glass substrate and an optical diffraction element obtained thereby, and a method for manufacturing optical elements
US200201222355 mars 20015 sept. 2002Eastman Kodak CompanyWire grid polarizer
US2002016772727 mars 200114 nov. 2002Hansen Douglas P.Patterned wire grid polarizer and method of use
US2002017616622 mai 200228 nov. 2002Carl Zeiss Semiconductor Manufacturing Technologies AgPolarizer and microlithography projection system with a polarizer
US2002018182430 mai 20015 déc. 2002Shangyuan HuangCompact polarization beam combiner/splitter
US2002019128611 mars 200219 déc. 2002Michael GalePolarisers and mass-production method and apparatus for polarisers
US2003005840816 mai 200227 mars 2003Corning Precision Lens IncorporatedPolarization arrangement
US2003007207915 oct. 200117 avr. 2003Eastman Kodak CompanyDouble sided wire grid polarizer
US200300811783 déc. 20021 mai 2003Koninklijke Philips Electronics N.V.Digital image projector with oriented fixed-polarization-axis polarizing beamsplitter
US200300811795 déc. 20021 mai 2003Clark PenticoColor management system
US2003011219017 oct. 200219 juin 2003Baliarda Carles PuenteAdvanced multilevel antenna for motor vehicles
US2003011770821 déc. 200126 juin 2003Koninklijke Philips Electronics N.V.Sealed enclosure for a wire-grid polarizer and subassembly for a display system
US2003014240027 janv. 200331 juil. 2003Hansen Douglas P.Patterned wire grid polarizer and method of use
US2003015632524 déc. 200221 août 2003Canon Kabushiki KaishaOptical element, optical functional device, polarization conversion device, image display apparatus, and image display system
US2003016102927 janv. 200328 août 2003Kurtz Andrew F.Micro-mechanical polarization-based modulator
US200301936528 mai 200316 oct. 2003Clark PenticoColor management system having a transmissive panel and optical isolator
US200302021578 mai 200330 oct. 2003Clark PenticoColor management system having a field lens
US2003021872222 mai 200327 nov. 2003Chien-Ming TsaoPolarizer module
US200302231183 juin 20034 déc. 2003Junichi SakamotoOptical component and method of manufacturing same
US2003022367030 mai 20024 déc. 2003Anguel NikolovOptical polarization beam combiner/splitter
US2003022411630 mai 20024 déc. 2003Erli ChenNon-conformal overcoat for nonometer-sized surface structure
US200302276789 mai 200211 déc. 2003Moxtek, Inc.Corrosion resistant wire-grid polarizer and method of fabrication
US2004000841626 juin 200315 janv. 2004Canon Kabushiki KaishaPolarization separation element and optical apparatus using the same
US2004004210117 juin 20034 mars 2004Jian WangOptical components exhibiting enhanced functionality and method of making same
US2004004703917 juin 200311 mars 2004Jian WangWide angle optical device and method for making same
US2004004738817 juin 200311 mars 2004Jian WangOptical device and method for making same
US2004005192812 sept. 200218 mars 2004Eastman Kodak CompanyApparatus and method for selectively exposing photosensitive materials using a reflective light modulator
US200400708296 août 200315 avr. 2004Kurtz Andrew F.Wire grid polarizer
US2004007142517 juin 200315 avr. 2004Jian WangMonolithic tunable lasers and reflectors
US200400956371 août 200320 mai 2004Anguel NikolovPrecision phase retardation devices and method of making same
US2004012004110 déc. 200324 juin 2004Silverstein Barry D.Double sided wire grid polarizer
US2004012544911 déc. 20031 juil. 2004Sales Tasso R.Grid polarizer with suppressed reflectivity
US2004014110827 déc. 200122 juil. 2004Hideyuki TanakaLight guiding plate and liquid crystal display device with the light guiding plate
US2004016512624 févr. 200426 août 2004Asahi Glass Company LimitedMulti-layer diffraction type polarizer and liquid crystal element
US2004016992427 févr. 20032 sept. 2004Asml Netherlands, B.V.Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US200401745964 mars 20049 sept. 2004Ricoh Optical Industries Co., Ltd.Polarization optical device and manufacturing method therefor
US2004020188920 août 200314 oct. 2004Jian WangMethod and system for providing beam polarization
US2004020189029 déc. 200314 oct. 2004Ian CrosbyMicrolens including wire-grid polarizer and methods of manufacture
US2004021827010 févr. 20044 nov. 2004Jian WangUniversal broadband polarizer, devices incorporating same, and method of making same
US2004022792326 févr. 200418 nov. 2004Flagello Donis GeorgeStationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US2004022799416 mai 200318 nov. 2004Jiaying MaPolarizing beam splitter and projection systems using the polarizing beam splitter
US200402333625 sept. 200325 nov. 2004Dai Nippon Prtg. Co., Ltd.Laminated retardation optical element, process of producing the same, and liquid crystal display
US2004024077731 juil. 20022 déc. 2004Woodgate Graham JohnOptical switching apparatus
US2004025835517 juin 200323 déc. 2004Jian WangMicro-structure induced birefringent waveguiding devices and methods of making same
US200500088398 janv. 200313 janv. 2005Cramer Ronald DeanMethod for hydrophilizing materials using hydrophilic polymeric materials with discrete charges
US2005001830824 mai 200427 janv. 2005Cassarly William J.Light distribution apparatus and methods for illuminating optical systems
US2005004579913 août 20043 mars 2005Nanoopto CorporationOptical retarders and related devices and systems
US200500469416 nov. 20033 mars 2005Sony CorporationMethod for manufacturing divided waveplate filter
US200500783747 oct. 200414 avr. 2005International Business Machines CorporationDispersive element, diffraction grating, color display device, demultiplexer, and diffraction grating manufacture
US2005008461319 août 200421 avr. 2005Jian WangSub-micron-scale patterning method and system
US200500887398 avr. 200428 avr. 2005Chih-Ho ChiuWire grid polarizer with double metal layers
US2005012258715 déc. 20049 juin 20053M Innovative Properties CompanyOptical polarizer
US2005012856712 nov. 200416 juin 2005Jian WangOptical components exhibiting enhanced functionality and method of making same
US200501285872 déc. 200416 juin 2005Enplas CorporationWire grid polarizer
US200501520339 déc. 200414 juil. 2005Lg Electronics Inc.Display device and display method
US2005017999510 mai 200418 août 2005Nikolov Anguel N.Films for optical use and methods of making such films
US2005018001410 mai 200418 août 2005Nikolov Anguel N.Films for optical use and methods of making such films
US2005018112810 mai 200418 août 2005Nikolov Anguel N.Films for optical use and methods of making such films
US2005019044523 févr. 20051 sept. 2005Yoshio FukuzakiWire grid polarizer
US200501954851 mars 20058 sept. 2005Hideaki HiraiOptical device, method of producing the same, optical pickup, and optical information processing device
US2005020165622 févr. 200515 sept. 2005Anguel NikolovOptical polarization beam combiner/splitter
US200502068478 mars 200522 sept. 2005Moxtek, Inc.Image projection system with a polarizing beam splitter
US2005021304318 févr. 200529 sept. 2005Hitachi, Ltd.Optical unit and projection-type image display apparatus using the same
US2005025932425 juil. 200524 nov. 2005Asml Netherlands B.V.Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US2005027109126 mai 20058 déc. 2005Jian WangMonolithic tunable lasers and reflectors
US2005027594411 juin 200415 déc. 2005Wang Jian JOptical films and methods of making the same
US2005027706327 mai 200515 déc. 2005Wang Jian JOptical films and methods of making the same
US2006000196915 nov. 20045 janv. 2006Nanoopto CorporationGratings, related optical devices and systems, and methods of making such gratings
US2006005602415 sept. 200416 mars 2006Ahn Seh WWire grid polarizer and manufacturing method thereof
US2006006186223 sept. 200423 mars 2006Eastman Kodak CompanyLow fill factor wire grid polarizer and method of use
US2006007207428 nov. 20036 avr. 2006Sony CorporationImage display apparatus
US200600721944 oct. 20056 avr. 2006Lg Electronics Inc.Wire grid polarizer and fabrication method thereof
US2006008760226 oct. 200527 avr. 2006Terufusa KunisadaPolarizer and method for producing it
US200600925131 nov. 20054 mai 2006Canon Kabushiki KaishaPolarizing beam splitter and display including the same
US2006010381012 nov. 200418 mai 20063M Innovative Properties CompanyProjection apparatus
US2006011327930 nov. 20041 juin 2006Little Michael JNon-photolithographic method for forming a wire grid polarizer for optical and infrared wavelengths
US2006011851428 nov. 20058 juin 2006Agoura Technologies, Inc.Applications and fabrication techniques for large scale wire grid polarizers
US200601199376 déc. 20048 juin 2006Moxtek, Inc.Multilayer wire-grid polarizer
US200601278293 nov. 200515 juin 2006Xuegong DengStructures for polarization and beam control
US200601278303 nov. 200515 juin 2006Xuegong DengStructures for polarization and beam control
US2006018741612 avr. 200624 août 2006Satoshi OuchiImage display device
US2006019296024 mars 200431 août 2006Rencs Erik VPolarization detection
US2006021526330 mai 200628 sept. 2006Eastman Kodak CompanyWire grid polarizers with optical features
US2006023871520 avr. 200626 oct. 2006Koji HirataProjection type image display apparatus, and optical unit and polarization splitting unit each used for the apparatus
US2006026820723 mai 200630 nov. 2006Jds Uniphase CorporationTilted C-Plate Retarder Compensator And Display Systems Incorporating The Same
US2007014664422 déc. 200528 juin 2007Jiaying MaPolarizing beamsplitter assembly
US2007018303519 sept. 20069 août 2007Koji AsakawaShort-wavelength polarizing elements and the manufacture and use thereof
US2007019567613 janv. 200523 août 2007Koninklijke Philips Electronic, N.V.Optical system
US2007021700817 mars 200620 sept. 2007Wang Jian JPolarizer films and methods of making the same
US2007022334922 août 200627 sept. 2007Hitachi Media Electronics Co., Ltd.Optical pickup and optical disc drive
US2007024218717 oct. 200618 oct. 2007Hiroshi YamakiWire grid polarizer and liquid crystal display device using the polarizer
US2007024222819 juin 200718 oct. 2007Colorlink, Inc.Compensation schemes for LCoS projection systems using form birefringent polarization beam splitters
US200702423525 avr. 200718 oct. 2007Macmaster Steven WilliamWire-grid polarizers, methods of fabrication thereof and their use in transmissive displays
US2007029705226 juin 200627 déc. 2007Bin WangCube wire-grid polarizing beam splitter
US20080018997 *18 sept. 200724 janv. 2008Mitsuhiro KawazuPolarizing element
US2008003710111 août 200614 févr. 2008Eastman Kodak CompanyWire grid polarizer
US2008003846711 août 200614 févr. 2008Eastman Kodak CompanyNanostructured pattern method of manufacture
US2008005554931 août 20066 mars 2008Perkins Raymond TProjection Display with an Inorganic, Dielectric Grid Polarizer
US2008005571931 août 20066 mars 2008Perkins Raymond TInorganic, Dielectric Grid Polarizer
US2008005572031 août 20066 mars 2008Perkins Raymond TOptical Data Storage System with an Inorganic, Dielectric Grid Polarizer
US2008005572131 août 20066 mars 2008Perkins Raymond TLight Recycling System with an Inorganic, Dielectric Grid Polarizer
US2008005572231 août 20066 mars 2008Perkins Raymond TOptical Polarization Beam Combiner/Splitter with an Inorganic, Dielectric Grid Polarizer
US2008005572322 juin 20076 mars 2008Eric GardnerDurable, Inorganic, Absorptive, Ultra-Violet, Grid Polarizer
US2008009454719 oct. 200724 avr. 2008Tatsuya SugitaWire grid polarized and liquid crystal display device using the same
US200801371886 déc. 200712 juin 2008Atsushi SatoWire grid polarizer and method of manufacturing the same
US2008019234626 oct. 200714 août 2008Samsung Electronics Co., Ltd.Wire grid polarizer and method of fabricating the same
US2008031659922 juin 200725 déc. 2008Bin WangReflection-Repressed Wire-Grid Polarizer
US2009000986523 juin 20088 janv. 2009Semiconductor Energy Laboratory Co., Ltd.Polarizer and display device including polarizer
US200900406076 août 200812 févr. 2009Seiko Epson CorporationOptical element, liquid crystal device, and display
US2009004197114 août 200812 févr. 2009Api Nanofabrication And Research Corp.Polarizer films and methods of making the same
US20090052030 *7 oct. 200826 févr. 2009Asahi Glass Company, LimitedWire-grid polarizer and process for producing the same
US2009005365521 mars 200826 févr. 2009Nanoopto CorporationMethods for forming patterned structures
US2009010937713 oct. 200830 avr. 2009Seiko Epson CorporationOptical element, liquid crystal device, and electronic apparatus
US2009023170217 mars 200817 sept. 2009Qihong WuOptical films and methods of making the same
US20100072170 *21 sept. 200925 mars 2010Qihong WuShort pitch metal gratings and methods for making the same
US201000912369 oct. 200815 avr. 2010Pasquale MateraPolarized eyewear
US2010010351722 juil. 200929 avr. 2010Mark Alan DavisSegmented film deposition
US201001887475 avr. 201029 juil. 2010Seiko Epson CorporationOptical element having a diffractive layer and a relief pattern with concave and convex portions
US201002258321 févr. 20109 sept. 2010Seiko Epson CorporationPolarizing element and method for manufacturing the same, projection type display, liquid crystal device, and electronic apparatus
US2010023855528 mai 201023 sept. 2010Seiko Epson CorporationOptical element, liquid crystal device, and display
US2010023982819 mars 200923 sept. 2010Cornaby Sterling WResistively heated small planar filament
US2010032876825 juin 200930 déc. 2010Michael LinesNano fractal diffuser
US201003287693 sept. 201030 déc. 2010Moxtek, Inc.Polarization device to polarize and further control light
US201100379281 mai 200817 févr. 2011Little Michael JWire grid polarizer for use on the front side oflcds
US2011008064030 sept. 20107 avr. 2011Asahi Glass Company, LimitedWire-grid polarizer and process for producing the same
US201100963967 janv. 201128 avr. 2011Asahi Glass Company, LimitedWire-grid polarizer and process for producing the same
US2011011599129 sept. 201019 mai 2011Seiko Epson CorporationPolarization element and projector
US2011023518118 sept. 200929 sept. 2011Sony CorporationOptical film, antireflection optical element and master
US2012000820516 sept. 201112 janv. 2012Perkins Raymond TMultilayer wire-grid polarizer with off-set wire-grid dielectric grid
US2012007569930 mars 201129 mars 2012Mark Alan DavisSegmented film deposition
US2012008688712 avr. 201012 avr. 2012Lg Innotek Co., Ltd.Wire Grid Polarizer, Liquid Crystal Device Including The Wire Grid Polarizer, 3-D Stereoscopic Image Display Device Including The Wire Grid Polarizer, and Method of Manufacturing The Wire Grid Polarizer
US20120105745 *27 oct. 20113 mai 2012Seiko Epson CorporationPolarization element, projector, liquid crystal device, electronic apparatus, and method of manufacturing polarization element
US2012020680517 août 201016 août 2012Liquidia Technologies, IncNanowire grid polarizers and methods for fabricating the same
US201202501542 sept. 20114 oct. 2012Mark Alan DavisFine pitch wire grid polarizer
US2013004395615 août 201121 févr. 2013Honeywell International Inc.Systems and methods for a nanofabricated optical circular polarizer
US2013007716427 mars 201228 mars 2013Mark Alan DavisWire grid polarizer with multiple functionality sections
US2013012835831 mai 201123 mai 2013Dexerials CorporationPolarizing plate and method for producing polarizing plate
US2013015353419 déc. 201220 juin 2013Molecular Imprints, Inc.Fabrication of seamless large area master templates for imprint lithography using step and repeat tools
US2013015551613 juin 201220 juin 2013Michael LinesNano fractal diffuser
US201302015576 août 20128 août 2013Mark Alan DavisWire grid polarizer with bordered sections
US2013025041121 mars 201226 sept. 2013Vern BangerterPolarizer edge rib modification
US2013025847127 sept. 20123 oct. 2013Moxtek, Inc.Fine pitch grid polarizer
US2014030096415 déc. 20119 oct. 2014Mark Alan DavisWire grid polarizer with substrate channels
US2015007785125 juin 201419 mars 2015Moxtek, Inc.Multi-layer absorptive wire grid polarizer
US2015011682527 août 201430 avr. 2015Moxtek, Inc.Polarizer with variable inter-wire distance
US2015013115027 août 201414 mai 2015Moxtek, Inc.Wire grid polarizer with side region
CN1438544A28 févr. 200327 août 2003北京大学Method for deep etching multi-layer high depth-width-ratio silicon stairs
CN1692291A1 août 20032 nov. 2005纳诺普托公司Precision phase retardation devices and method of making same
CN101688939A3 mars 200831 mars 2010莫克斯泰克公司Durable, inorganic, absorptive, ultra-violet, grid polarizer
DE3707984A112 mars 198722 sept. 1988Max Planck GesellschaftPolarisierender spiegel fuer optische strahlung
DE10327963A119 juin 20035 janv. 2005Carl Zeiss Jena GmbhPolarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics
DE10341596B45 sept. 200329 janv. 2009Carl ZeissPolarisationsstrahlteiler
DE102004041222A126 août 20042 mars 2006Carl Zeiss Jena GmbhPhotonic crystal structure, for a frequency selective reflector or diffractive polarization-dependent band splitter, has grate bars on a substrate of alternating low and high refractive material layers
EP0300563B113 juil. 19882 mars 1994Philips Electronics N.V.Method of manufacturing semiconductor devices in which a surface of a semiconductor structure is selectively treated
EP1347315A127 déc. 200124 sept. 2003Fuji Electric Co., Ltd.Light guiding plate and liquid crystal display device with the light guiding plate
EP2270553A123 juin 20105 janv. 2011Sony CorporationOptical element, method for producing the same, and display apparatus
JP1028675Y2 Titre non disponible
JP2308106A Titre non disponible
JP3005706B2 Titre non disponible
JP3126910B2 Titre non disponible
JP3486334B2 Titre non disponible
JP4331913B2 Titre non disponible
JP5134115B2 Titre non disponible
JP5288910B2 Titre non disponible
JP5341234B2 Titre non disponible
JP6138413A Titre non disponible
JP6202042A Titre non disponible
JP7005316Y2 Titre non disponible
JP7072428B2 Titre non disponible
JP7294850A Titre non disponible
JP7294851A Titre non disponible
JP7318861A Titre non disponible
JP9015534A Titre non disponible
JP9090122A Titre non disponible
JP9090129A Titre non disponible
JP9178943A Titre non disponible
JP9212896A Titre non disponible
JP9288211A Titre non disponible
JP10268301A Titre non disponible
JP2000147487A Titre non disponible
JP2000284117A Titre non disponible
JP2001074935A Titre non disponible
JP2002116302A Titre non disponible
JP2003207646A Titre non disponible
JP2003502708A Titre non disponible
JP2004157159A Titre non disponible
JP2004309903A Titre non disponible
JP2005151154A Titre non disponible
JP2005195824A Titre non disponible
JP2005202104A Titre non disponible
JP2005534981T5 Titre non disponible
JP2006047813A Titre non disponible
JP2006133402A Titre non disponible
JP2006201540A Titre non disponible
JP2006330178A Titre non disponible
JP2007058100A Titre non disponible
JP2007101859A Titre non disponible
JP2011248284A Titre non disponible
JPH103078A Titre non disponible
JPH1073722A Titre non disponible
JPH1114814A Titre non disponible
JPH1164794A Titre non disponible
JPH04366916A Titre non disponible
JPH06138413A Titre non disponible
JPH06174907A Titre non disponible
JPH07146469A Titre non disponible
JPH07202266A Titre non disponible
JPH10153706A Titre non disponible
JPH10260403A Titre non disponible
JPH11142650A Titre non disponible
JPH11164819A Titre non disponible
JPH11174396A Titre non disponible
JPH11237507A Titre non disponible
JPH11258603A Titre non disponible
JPH11306581A Titre non disponible
JPS5842003Y2 Titre non disponible
JPS56156815U Titre non disponible
JPS61122626U Titre non disponible
KR100707083B1 Titre non disponible
KR20030079268A Titre non disponible
KR20030090021A Titre non disponible
KR20040046137A Titre non disponible
KR20130024041A Titre non disponible
SU1283685A1 Titre non disponible
TW200528927A Titre non disponible
WO1996015474A123 oct. 199523 mai 1996Philips Electronics N.V.Display device and display panel
WO1999059005A111 mai 199918 nov. 1999MoxtekPolarizer apparatus for producing a generally polarized beam of light
WO2000070386A116 mai 200023 nov. 20003M Innovative Properties CompanyReflective lcd projection system using wide-angle polarizing beam splitter
WO2001051964A111 janv. 200119 juil. 2001MoxtekImbedded wire grid polarizer for the visible spectrum
WO2002021205A120 août 200114 mars 2002Sony Electronics, Inc.Footprint reduction in a rear projection television system
WO2002077588A326 mars 200221 nov. 2002MoxtekPatterned wire grid polarizer and method of use
WO2003069381A312 févr. 200313 nov. 2003Unaxis Balzers LtdOptical component comprising submicron hollow spaces
WO2003107046A317 juin 200326 août 2004Nanoopto CorpOptical components exhibiting enhanced functionality and method of making same
WO2004013684A31 août 200329 juil. 2004Nanoopto CorpPrecision phase retardation devices and method of making same
WO2005123277A37 juin 200527 avr. 2006Nanoopto CorpOptical films and methods of making the same
WO2006014408A31 juil. 200519 avr. 2007Lei ChenGratings, related optical devices and systems, and methods of making such gratings
WO2006036546A113 sept. 20056 avr. 2006Eastman Kodak CompanyLow fill factor wire grid polarizer
WO2011056496A225 oct. 201012 mai 20113M Innovative Properties CompanyApparatus and method for providing a structured surface on a substrate
Citations hors brevets
Référence
1Auton et al.; "Grid Polarizers for Use in the Near Infrared." Infrared Physics, 1972, vol. 12, pp. 95-100.
2Auton; "Infrared Transmission Polarizers by Photolithography." Applied Optics; Jun. 1967; vol. 6, No. 6, pp. 1023-1027.
3Baur; "A new type of beam splitting polarizer cube." Meadowlark Optics, 2005, pp. 1-9.
4Bird et al.; "The Wire Grid as a Near-Infrared Polarizer." J. Op. Soc. Am. vol. 50 No. 9 (1960).
5Brummelaar et al.; "Beam combining optical components," Chara Technical Report, Jan. 5, 1998, pp. TR61-1 to TR 61-17, No. 61.
6Bruzzone et al.; "High-performance LCoS optical engine using cartesian polarizer technology;" SID 03 Digest, 2003, pp. 1-4.
7Chen et al.; "Optimum film compensation modes for TN and VA LCDs." SID 98 Digest, pp. 315-318, 1998.
8Chen et al.; Novel polymer patterns formed by lithographically induced self-assembly (LISA)., American Chemical Society, Jan. 2005, pp. 818-821, vol. 21, No. 3.
9Dainty et al.; "Measurements of light scattering by characterized random rough surface." Waves in Random Media 3 (1991).
10Deguzman et al.; "Stacked subwavelength gratings as circular polarization filters." Applied Optics, Nov. 1, 2001, pp. 5731-5737, vol. 40, No. 31.
11Deng et al.; "Multiscale structures for polarization control by using imprint and UV lithography." Proc. of SPIE, 2005, pp. 1-12. vol. 6003.
12Deng et al.; "Wideband antireflective polarizers based on integrated diffractive multilayer microstructures." Optics Letters, Feb. 1, 2006, pp. 344-346, vol. 31., No. 3.
13DeSanto et al.; "Rough surface scattering." Waves in Random Media 1 (1991).
14Enger et al.; "Optical elements with ultrahigh spatial-frequency surface corrugations." Applied Optics Oct. 15, 1983, vol. 22, No. 20 pp. 3220-3228.
15Flanders; "Application of .100 Delta linewidth structures fabricated by shadowing techniques." J. Vac. Sci. Technol., 19(4), Nov./Dec. 1981.
16Flanders; "Application of .100 Δ linewidth structures fabricated by shadowing techniques." J. Vac. Sci. Technol., 19(4), Nov./Dec. 1981.
17Flanders; "Submicron periodicity gratings as artificial anisotropic dielectrics." Appl. Phys. Lett. 42 (6), Mar. 15, 1983, pp. 492-494.
18Fritsch et al.; "A liquid-crystal phase modulator for large-screen projection." IEEE, Sep. 1989, pp. 1882-1887, vol. 36, No. 9.
19Glytsis et al.; "High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces." Applied Optics Aug. 1, 1992 vol. 31, No. 22 pp. 4459-4470.
20Haggans et al.; "Lamellar gratings as polarization components for specularly reflected beams." Journal of Modern Optics, 1993, vol. 40, No. 4, pp. 675-686.
21Haisma et al.; "Mold-assisted nanolithography: a process for reliable pattern replication." Journal Vac. Sci. Technology B, Nov./Dec. 1996, pp. 4124-4128, vol. 14, No. 6.
22Handbook of Optics, 1978, pp. 10-68-10-77.
23Hass et al.; "Sheet Infrared Transmission Polarizers." Applied Optics Aug. 1965, vol. 4, No. 8 pp. 1027-1031.
24Ho et al.; "The mechanical-optical properties of wire-grid type polarizer in projection display system." SID 02 Digest, pp. 648-651, 2002.
25Knop; "Reflection Grating Polarizer for the Infrared." Optics Communications vol. 26, No. 3, Sep. 1978.
26Kostal et al.; "Adding parts for a greater whole." SPIE's oeMagazine, May 2003, pp. 24-26.
27Kostal et al.; "MEMS Meets Nano-optics The marriage of MEMES and nano-optics promises a new and viable platform for tunable optical filters." www.fiberoptictechnology.net, Fiber Optic Technology, Nov. 2005, pp. 8-13.
28Kostal; "Nano-optic devices enable integrated fabrication." www.laserfocuswold.com, Jun. 2004 pp. 155, 157-159.
29Kostal; "Nano-optics: robust, optical devices for demanding applications." Military & Aerospace Electronics, Jul. 2005, 6 pages.
30Kostal; "Using advanced lithography to pattern nano-optic devices;" NanoTechnology; www.solid-state.com, Sep. 2005, p. 26 and 29.
31Kuta et al.; "Coupled-wave analysis of lamellar metal transmission gratings for the visible and the infrared." J. Opt. Soc. Am. A/vol. 12, No. 5 /May 1995.
32Li Li et al.; "Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter." Applied Optics May 1, 1996, vol. 35, No. 13, pp. 2221-2224.
33Lloyd; Manual of Advanced Undergraduate Experiments in Physics, p. 302 (1959).
34Lockbihler et al.; "Diffraction from highly conducting wire gratings of arbitrary cross-section." Journal of Modern Optics, 1993, vol. 40, No. 7, pp. 1273-1298.
35Lopez et al.; "Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating." Optics Letters, vol. 23, No. 20, pp. 1627-1629, Oct. 15, 1998.
36Maystre & Dainty; Modern Analysis of Scattering Phenomena Proceeding from International Workshop held at Domaine deTournon, Aix en Provence, France Sep. 5-8, 1990.
37Moshier et al.; "The Corrosion and Passively of Aluminum Exposed to Dilute Sodium Sulfate Solutions." Corrosion Science vol. 27. No. 8 pp. 785-801; (1987).
38N.M. Ceglio; Invited Review "Revolution in X-Ray Optics." J. X-Ray Science & Tech. 1; pp. 7-78 (1989).
39Nordin et al.; "Micropolarizer array for infrared imaging polarimetry." J. Op. Soc. Am. A. vol. 16 No. 5, May 1999.
40Novak et al.; "Far infrared polarizing grids for use at cryogenic temperatures." Applied Optics, Aug. 15, 1989/vol. 28, No. 15, pp. 3425-3427.
41Optics 9th Edition, pp. 338-339; (1980).
42PCT Application No.: PCT/US2008/055685; Filing date Mar. 3, 2008; Moxtek, Inc. et al.; International Search Report mailed Jun. 27, 2008.
43PCT Application No.: PCT/US2012/043979; Filing date Jun. 25, 2012; Moxtek, Inc. et al.; International Search Report dated Feb. 1, 2013.
44PCT Application No.: PCT/US2014/045287; Filing date Jul. 2, 2014; Moxtek, Inc.; International Search Report mailed Nov. 7, 2014.
45PCT Application No.: PCT/US2014/053083; Filing date Aug. 28, 2014; Moxtek, Inc.; International Search Report mailed Dec. 8, 2014.
46PCT Application No.: PCT/US2014/053161; Filing date Aug. 28, 2014; Moxtek, Inc.; International Search Report mailed Dec. 8, 2014.
47PCT Application No.: PCT/US2014/053216; Filing date Aug. 28, 2014; Moxtek, Inc.; International Search Report mailed Dec. 8, 2014.
48Pentico et al.; "New, High Performance, Durable Polarizers for Projection Displays." SID 01 Digest, 2001, pp. 1287-1289.
49Richter et al.; "Design considerations of form birefringent microstructures." Applied Optics, vol. 34, No. 14, pp. 2421-2429, May 10, 1995.
50Robinson et al.; "Wide Field of View Compensation Scheme for Cube Polarizing Beam Splitters." SID 03 Digest, pp. 1-4, www.colorlink.com.
51Savas et al.; "Achromatic interferometric lithography for 100-nm-period gratings and grids." Journal Vac. Sci. Technology B, Nov./Dec. 1995, pp. 2732-2735, vol. 13, No. 6.
52Scandurra et al.; "Corrosion Inhibition of Al Metal in Microelectronic Devices Assemble in Plastic Packages." Journal of the Electrochemical Society, 148 (8) B289-B292 (2001).
53Sonek et al.; "Ultraviolet grating polarizers." J. Vac. Sci. Technol., 19(4), Nov./Dec. 1981, pp. 921-923.
54SZE; VLSI Technology; 1988; pp. 198-199; 2nd Edition; McGraw-Hill Publishing Company.
55Takano et al.; "Cube polarizers by the use of metal particles in anodic alumina films." Applied Optics, vol. 33, No. 16, 3507-3512, Jun. 1, 1994.
56Tyan et al.; "Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter." Optical Society of America, vol. 14, No. 7, pp. 1627-1636, Jul. 1997.
57Tyan et al.; "Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings." Optics Letters, May 15, 1996, pp. 761-763, vol. 21, No. 10.
58U.S. Appl. No. 13/937,433; filed Jul. 9, 2013; Paul Steven Mills.
59Wang et al.; "Diffractive optics: nanoimprint lithography enables fabrication of subwavelength optics." LaserFocusWorld, http://lfw.pennnet.com/Articles/Article Dispaly.cf . . . Apr. 19, 2006, 6 pages.
60Wang et al.; "Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography." Journal Vac. Sci. Technology B, Nov./Dec. 1999, pp. 2957-2960, vol. 17, No. 6.
61Wang et al.; "Free-Space nano-optical devices and integration: design, fabrication, and manufacturing." Bell Labs Technical Journal, 2005 pp. 107-127, vol. 10, No. 3.
62Wang et al.; "High-performance large-area ultra-broadband (UV to IR) nanowire-grid polarizers and polarizing beam-splitters." Proc. of SPIE 2005, pp. 1-12, vol. 5931.
63Wang et al.; "High-performance nanowire-grid polarizers" Optical Society of America. 2005, pp. 195-197, vol. 30, No. 2.
64Wang et al.; "Monolithically integrated isolators based on nanowire-grid polarizers." IEEE, Photonics Technology Letters, Feb. 2005, pp. 396-398, vol. 17, No. 2.
65Wang, et al.; "Innovative High-Performance Nanowire-Grid Polarizers and integrated Isolators," IEEE Journal of Selected Topics in Quantum Electronics, pp. 241-253, vol. 11 No. 1 Jan./Feb. 2005.
66Whitbourn et al.; "Phase shifts in transmission line models of thin periodic metal grids." Applied Optics Aug. 15, 1989 vol. 28, No. 15, pp. 3511-3515.
67Zhang et al.; "A broad-angle polarization beam splitter based on a simple dielectric periodic structure." Optics Express, Oct. 29, 2007, 6 pages, vol. 15, No. 22.
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US9632223 *27 août 201425 avr. 2017Moxtek, Inc.Wire grid polarizer with side region
US963222410 nov. 201525 avr. 2017Moxtek, Inc.Broadband, selectively-absorptive wire grid polarizer
US979805814 mars 201724 oct. 2017Moxtek, Inc.Wire grid polarizer with side region
US20150063753 *5 sept. 20145 mars 2015Southern Methodist UniversityEnhanced coupling strength gratings
US20150131150 *27 août 201414 mai 2015Moxtek, Inc.Wire grid polarizer with side region
Classifications
Classification internationaleG02B1/12, G02B1/08, G02B5/30, C23F17/00
Classification coopérativeG02B5/3058, G02B1/12, C23F17/00, G02B1/08
Événements juridiques
DateCodeÉvénementDescription
9 févr. 2015ASAssignment
Owner name: MOXTEK, INC., UTAH
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, BIN;WANGENSTEEN, TED;PETROVA, RUMYANA;AND OTHERS;SIGNING DATES FROM 20140909 TO 20140910;REEL/FRAME:034922/0645