USH1423H - Method for fabricating a silicon-on-insulator voltage multiplier - Google Patents

Method for fabricating a silicon-on-insulator voltage multiplier Download PDF

Info

Publication number
USH1423H
USH1423H US07/988,551 US98855192A USH1423H US H1423 H USH1423 H US H1423H US 98855192 A US98855192 A US 98855192A US H1423 H USH1423 H US H1423H
Authority
US
United States
Prior art keywords
silicon
layer
silicon layer
insulating substrate
diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/988,551
Inventor
Larry D. Flesner
Graham A. Garcia
George P. Imthurn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US07/988,551 priority Critical patent/USH1423H/en
Assigned to UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY. reassignment UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FLESNER, LARRY D., GARCIA, GRAHAM A., IMTHURN, GEORGE P.
Application granted granted Critical
Publication of USH1423H publication Critical patent/USH1423H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/86Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS

Definitions

  • the present invention relates to the field of voltage multiplier circuits, and more particularly, to a voltage multiplier incorporating diodes fabricated by bonding silicon to an insulating substrate and a method of fabricating same.
  • Voltage multiplier circuits employing capacitors and diodes to effect voltage multiplication by means of charge pumping are well known. Applications of voltage multiplier circuits include providing relatively high voltage within integrated circuits, and multiplying the voltage output of high voltage power supplies.
  • the simplest method of producing a voltage multiplier circuit is to wire together discrete diodes and capacitors. This method is generally employed for high voltage power supply applications.
  • Another method of producing a voltage multiplier circuit is to integrate the diodes and capacitors on a semiconducting substrate as is done for applications within an integrated circuit. Both of these approaches have disadvantages for some applications.
  • the size of the circuit elements limits the number of multiplier stages which can be practicably implemented.
  • the frequency of the oscillatory charge pumping voltages is limited by the large size of the circuit elements.
  • the voltages which can be attained are limited by voltage induced breakdown between circuit elements and the semiconducting substrate on which the circuits are fabricated.
  • the semiconducting substrate can also cause capacitive shunting of the oscillatory pumping voltages at high frequency.
  • An approach which avoids the limitations of prior art discussed above is to use an integrated voltage multiplier circuit fabricated on an insulating substrate.
  • One silicon-on-insulator technology which can be employed is epitaxially grown silicon-on-sapphire (SOS).
  • SOS silicon-on-sapphire
  • the problem with epitaxially grown SOS is that the high temperatures required in the fabrication process and differential thermal expansion effects cause relatively high reverse current leakage in SOS diodes. Low reverse leakage current is necessary for efficient voltage multiplier circuit operation.
  • FIG. 1 is an electrical schematic representation of a voltage multiplier circuit.
  • FIG. 2 illustrates an implementation of the voltage multiplier circuit of FIG. 1 formed by bonding silicon on an insulating substrate in accordance with the teachings of the present invention.
  • FIGS. 3-9 show cross-sectional views of the several stages in the manufacture of the serially connected diodes employed in the voltage multiplier of FIG. 2.
  • FIG. 10 is a cross-sectional view of an example of a capacitor which may be employed in the voltage multiplier circuit of FIG. 2.
  • the present invention provides a method for fabricating a silicon-on-insulator voltage multiplier.
  • the method comprises the steps of: forming a first silicon layer having a first concentration of a first dopant with a first polarity on a silicon wafer having a second concentration of a second dopant with a second polarity opposite the first polarity to create a diode junction; forming a second silicon layer on the first silicon layer, the second silicon layer having a third concentration of a third dopant having the first polarity, where the third concentration is greater than the first concentration of the first dopant; forming a silicon dioxide layer on the second silicon layer by thermal oxidation; bonding an insulating substrate to the silicon dioxide layer to create a bonded wafer, where the insulating substrate is selected from the group consisting of quartz, glass, sapphire, and silicon dioxide on silicon; thinning the silicon wafer to form a thinned silicon layer; etching the bonded wafer to form a plurality of separate diodes
  • the insulating substrate provides the advantages of extremely high breakdown voltage and very small parasitic capacitance between circuit elements.
  • the advantages of integrated circuit fabrication are also realized, while the method of fabrication overcomes the problem of diode degradation caused by differential thermal expansion of the device layer and the substrate during high temperature processing. These advantages make possible voltage multiplier circuits with higher voltage capability, more multiplier stages, and higher operating frequency than is possible with conventional voltage multipliers.
  • the present invention provides a voltage multiplier comprising diodes formed by bonding silicon to an insulating substrate which overcomes the aforementioned limitations of multipliers such as are taught in U.S. Pat. No. 4,922,402.
  • FIG. 1 Represented in FIG. 1 is a schematic diagram of an example of a voltage multiplier 10 embodying various features of the present invention which incorporates diodes D 1 , D 2 , D 3 , . . . D m formed by bonding silicon on an insulating substrate and which are interconnected with capacitors C 1 , C 2 , C 3 , . . . C m .
  • the circuit configuration of the voltage multiplier represented in FIG. 1 is presented by way of example only for the purpose of describing the implementation of the present invention. It is to be understood that the scope of the invention encompasses any voltage multiplier circuit comprising interconnected diodes which are formed by bonding silicon to an insulating substrate.
  • the voltage multiplier 10 having an electrical circuit represented schematically in FIG. 1, comprising multiple diodes manufactured as described further herein by bonding silicon to an insulating substrate.
  • the diodes preferably are interconnected to the capacitors on a single substrate.
  • the voltage multiplier 10 is shown to include an m number of serially connected diodes, D 1 , D 2 , D 3 , . . . D.sub.(m-1), D m each having an anode 12 and a cathode 14, where m is a positive integer.
  • the cathode 14 of each diode D m is connected to the anode 12 of the immediately successive diode, D.sub.(m+1), where n is a positive integer and pb 0 ⁇ n ⁇ m.
  • the odd numbered capacitors C 1 , C 3 , C 5 , . . . of a first set 18 of capacitors are interconnected between successive pairs of diodes D 1 and D 2 , D 3 and D 4 , etc, and an electrical contact 24 by a patterned metallization layer 141, shown in FIG. 2.
  • the even numbered capacitors C 2 , C 4 , C 6 , . . . of a second set of capacitors 20 are interconnected between successive pairs of diodes D 2 and D 3 , D 4 and D 5 , etc, and an electrical contact 26 by the metallization layer 141.
  • the anode 12 of the diode D 1 is electrically connected by the metalization layer 141 to an electrical contact 28 disposed to receive the voltage V cc that is to be multiplied.
  • Phi 1 and phi 2 are two voltage pulse trains substantially in phase opposition between themselves, and which are generally generated by a suitable oscillator, not shown.
  • V cc supply voltage
  • V cc supply voltage
  • a silicon wafer structure 110 comprising a silicon layer 112 is formed on a silicon wafer 114.
  • the silicon wafer 114 is doped with impurities to form either an n-type or p-type semiconductor.
  • the layer 112 may be epitaxially grown or formed by ion implantation. As an example, the layer 112 may be epitaxially grown to a thickness of about 10 microns.
  • the layer 112 is doped with impurities to form either an n-type or p-type semiconducting material. If the wafer 114 is n-type, then layer 112 is p-type, and vice-versa.
  • arsenic may be used to dope the silicon wafer 114 to form n-type material and boron may be used to dope the silicon layer 112 to form p-type material.
  • concentration of dopant in the wafer 114 is preferably about 10 19 /cm 3 or greater which facilitates the formation of ohmic contacts at a later stage in the manufacture of the diode circuit 10 formed on the silicon wafer structure 110.
  • the doping concentration of the layer 112 is typically less than 10 18 /cm 3 .
  • the dopant concentrations and layer thicknesses are variable parameters which are selected to optimize the electrical properties of the diodes. A wide range of values for such parameters may provide satisfactory results.
  • the interface 116 between the silicon layer 112 and silicon wafer 114 provides a diode junction.
  • a diode junction is a junction between p-type and n-type semiconducting layers which produces rectification of electrical current flow.
  • a dopant of the same polarity as that of the layer 112 is implanted or diffused into the silicon layer 112 to form a layer 117 which is more heavily doped than the rest of layer 112.
  • the layer 112 includes n-type material with a doping concentration of about 10 17 /cm 3
  • the layer 117 may include n-type material with a doping concentration of about 10 19 /cm.
  • doping facilitates formation of ohmic contacts at a later stage to the diodes, set forth below.
  • the formation of the layer 117 requires subjecting the silicon wafer structure 110 to a high temperature anneal.
  • Such anneal is required to either promote diffusion if the layer 117 is formed by diffusion, or to activate ion-implanted dopant impurities if the layer 117 is formed by ion-implantation.
  • a silicon dioxide layer 118 is formed on the layer 17 by thermal oxidation to provide a bonding surface, as described below.
  • the thickness of the layer 117 is preferably in the range of about 100 to 500 nm.
  • the ion-implanted dopants are activated by placing the silicon wafer structure 110 in a high temperature anneal, as for example, in an atmosphere of oxygen maintained at about 900° C. for about 25 minutes, during which time, the silicon dioxide layer 118, which may be about 50 to 100 nm thick, is grown in the layer 117.
  • the silicon dioxide layer 118 is used as a bonding surface because it will adsorb hydroxyl ions which promote bonding between the silicon dioxide layer 18 and an insulating substrate to which the silicon wafer structure 110 is bonded, as described further herein.
  • the insulating substrate is preferably a sapphire wafer 120, as shown in FIG. 5, although the insulating substrate may also be made of materials selected from the group consisting of quartz, glass, and silicon dioxide on silicon.
  • the sapphire wafer 120 should be flat and polished to a mirror-like surface on at least one side having an RMS roughness, as for example, of less than 0.25 ⁇ m.
  • the silicon wafer structure 110 and sapphire wafer 120 are each approximately of the same size and shape.
  • the surface of silicon dioxide layer 118 is generally smooth enough to bond well with the insulating substrate without polishing, particularly where the insulating substrate is the sapphire wafer 120.
  • the sapphire wafer 120 and silicon wafer structure 110 are each cleaned, as for example, by a process such as an RCA clean, employing the hydrofluoric acid, hydrogen peroxide, and ammonium hydroxide cleaning, or by a hydrophilization bath using hydrogen peroxide and ammonium hydroxide.
  • the sapphire and silicon wafers are rinsed in de-ionized water, and dried with heated nitrogen. The cleaning results in hydrolyzing, or adsorption of - (OH) ions on the cleaned surfaces which promotes bonding between the sapphire wafer 120 and silicon wafer structure 110.
  • the silicon wafer structure 110 may be placed on a clean surface to expose the layer 118. Then, the polished surface of the sapphire wafer 120 is placed against the exposed surface of the layer 118 of the silicon wafer structure 110. The silicon wafer structure 110 and sapphire wafer 120, now in contact with each other, are heated to about 200° C. for a period which may range from 1 to 100 hours in air, nitrogen, or oxygen to create a bonded wafer 122. Generally, the application of pressure to hold the silicon wafer 114 and sapphire wafer 120 together is not necessary, although such compressive force may be provided if desired.
  • the temperature at which the sapphire wafer 120 and silicon wafer structure 110 are heated is relatively low compared to temperatures employed in processes involving epitaxial growth, ion implantation, and diffusion. Such low temperature advantageously avoids the generation of thermally induced defects associated with the higher temperature processes normally used to grow silicon on sapphire.
  • a major advantage of the present invention is that it provides a method for manufacturing a voltage multiplier on an insulating substrate such as sapphire wafer 120, where after being bonded together, the silicon wafer structure 110 and the insulating substrate are not subjected to temperatures which would cause the silicon to develop thermally induced cracks. After being allowed to cool to ambient temperature, the bonded wafer 122 may be handled without risk of separating the silicon wafer structure 110 from the sapphire wafer 120.
  • the silicon layer 114 may be thinned and thereby transformed into a thinned silicon layer 114 so that only a minimal thickness of about 100 to 1000 nm remains by any of the methods commonly employed in the art of thinning bonded wafers.
  • Such processes may include, but are not limited to surface grinding, precision grinding with electrolytic in-process dressing, or ductile mode grinding.
  • a layer of masking material 130 is deposited onto the surface of the thinned silicon layer 114 and patterned using well known lithographic techniques.
  • An etch using potassium hydroxide solution (KOH) or an isotropic plasma etch, for example, then may be performed so as to leave islands, now diodes 132 of silicon having sloped sidewalls 133 extending from the sapphire substrate 120.
  • the masking material 130 is removed.
  • the bonded wafer 122 includes a series circuit of diodes 132 which need to be electrically interconnected.
  • a layer of silicon dioxide 140 which is thick enough to provide good electrical insulating properties (500 nm thickness is typically sufficient), is deposited over the diodes and exposed surface of the sapphire substrate 120.
  • a layer of photoresist 134 is deposited on top of the layer of silicon dioxide 140, and then patterned using photolithographic techniques. The photoresist 134 serves as a mask for the etching of contact holes 136 in the layer of silicon dioxide 140 to expose selected regions of the silicon layer 117 and thinned silicon layer 114, shown in FIG. 8. Such exposure is facilitated by the sloped sidewalls 133 of the photodiodes 132.
  • the layer of photoresist 134 is removed by any one of the commonly used methods for removing photoresist.
  • a metallization layer 141 is deposited over the photodiodes 132 and then is suitably patterned using well known photoresist masking methods to create a series circuit photocell array.
  • the diode circuit is comprised of multiple, individual diodes 132 connected in series by interconnecting a heavily doped layer 117 of one diode 132 with the thinned silicon layer 114 of another diode 132, as shown in FIG. 9.
  • the p-type layers of the diodes constitute the anodes 12, and the n-type layers constitute the cathodes 14.
  • the contacts to the anodes 12 and cathodes 14 occur at the openings or vias 136 in the oxide layer 140 as shown in FIG. 8.
  • the capacitors are formed during the same processing steps which form the diodes.
  • FIG. 10 which is a vertical cross-section through the center of one of the capacitors shown in FIG. 2, the capacitors comprise one electrode which is formed by n-type and p-type silicon layers 114, 112, 117, and 118 mutually contacted by metal layer 141, an insulating dielectric layer 140, and a second electrode formed by overlying metal layer 141.

Abstract

The present invention provides a method for fabricating a silicon-on-insulator voltage multiplier. The method comprises the steps of: forming a first silicon layer having a first concentration of a first dopant with a first polarity on a silicon wafer having a second concentration of a second dopant with a second polarity opposite the first polarity to create a diode junction; forming a second silicon layer on the first silicon layer, the second silicon layer having a third concentration of a third dopant having the first polarity, where the third concentration is greater than the first concentration of the first dopant; forming a silicon dioxide layer on the second silicon layer by thermal oxidation; bonding an insulating substrate to the silicon dioxide layer to create a bonded wafer, where the insulating substrate is selected from the group consisting of quartz, glass, sapphire, and silicon dioxide on silicon; thinning the silicon wafer to form a thinned silicon layer; etching the bonded wafer to form a plurality of separate diodes having sloped sidewalls and to expose selected regions of the insulating substrate; forming an insulating silicon layer on the selected regions of the insulating substrate and on the separate diodes; exposing selected regions of the thinned silicon layer and regions of the second silicon layer of each of the diodes; and forming metal interconnects between the exposed selected regions of the thinned silicon layer of one of the diodes with the silicon layer of another of the diodes.

Description

STATEMENT OF GOVERNMENT INTEREST
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
BACKGROUND OF THE INVENTION
The present invention relates to the field of voltage multiplier circuits, and more particularly, to a voltage multiplier incorporating diodes fabricated by bonding silicon to an insulating substrate and a method of fabricating same.
Voltage multiplier circuits employing capacitors and diodes to effect voltage multiplication by means of charge pumping are well known. Applications of voltage multiplier circuits include providing relatively high voltage within integrated circuits, and multiplying the voltage output of high voltage power supplies.
The simplest method of producing a voltage multiplier circuit is to wire together discrete diodes and capacitors. This method is generally employed for high voltage power supply applications. Another method of producing a voltage multiplier circuit is to integrate the diodes and capacitors on a semiconducting substrate as is done for applications within an integrated circuit. Both of these approaches have disadvantages for some applications. In the case of the discrete element circuits, the size of the circuit elements limits the number of multiplier stages which can be practicably implemented. Also, the frequency of the oscillatory charge pumping voltages is limited by the large size of the circuit elements. In the case of the integrated voltage multiplier circuits, the voltages which can be attained are limited by voltage induced breakdown between circuit elements and the semiconducting substrate on which the circuits are fabricated. The semiconducting substrate can also cause capacitive shunting of the oscillatory pumping voltages at high frequency.
An approach which avoids the limitations of prior art discussed above is to use an integrated voltage multiplier circuit fabricated on an insulating substrate. One silicon-on-insulator technology which can be employed is epitaxially grown silicon-on-sapphire (SOS). The problem with epitaxially grown SOS is that the high temperatures required in the fabrication process and differential thermal expansion effects cause relatively high reverse current leakage in SOS diodes. Low reverse leakage current is necessary for efficient voltage multiplier circuit operation. Thus, a need exists for voltage multiplier circuits having high quality diode devices integrated on an insulating substrate and a method for fabricating such circuits.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is an electrical schematic representation of a voltage multiplier circuit.
FIG. 2 illustrates an implementation of the voltage multiplier circuit of FIG. 1 formed by bonding silicon on an insulating substrate in accordance with the teachings of the present invention.
FIGS. 3-9 show cross-sectional views of the several stages in the manufacture of the serially connected diodes employed in the voltage multiplier of FIG. 2.
FIG. 10 is a cross-sectional view of an example of a capacitor which may be employed in the voltage multiplier circuit of FIG. 2.
SUMMARY OF THE INVENTION
The present invention provides a method for fabricating a silicon-on-insulator voltage multiplier. The method comprises the steps of: forming a first silicon layer having a first concentration of a first dopant with a first polarity on a silicon wafer having a second concentration of a second dopant with a second polarity opposite the first polarity to create a diode junction; forming a second silicon layer on the first silicon layer, the second silicon layer having a third concentration of a third dopant having the first polarity, where the third concentration is greater than the first concentration of the first dopant; forming a silicon dioxide layer on the second silicon layer by thermal oxidation; bonding an insulating substrate to the silicon dioxide layer to create a bonded wafer, where the insulating substrate is selected from the group consisting of quartz, glass, sapphire, and silicon dioxide on silicon; thinning the silicon wafer to form a thinned silicon layer; etching the bonded wafer to form a plurality of separate diodes having sloped sidewalls and to expose selected regions of the insulating substrate; forming an insulating silicon layer on the selected regions of the insulating substrate and on the separate diodes; exposing selected regions of the thinned silicon layer and regions of the second silicon layer of each of the diodes; and forming metal interconnects between the exposed selected regions of the thinned silicon layer of one of the diodes with the silicon layer of another of the diodes.
The insulating substrate provides the advantages of extremely high breakdown voltage and very small parasitic capacitance between circuit elements. The advantages of integrated circuit fabrication are also realized, while the method of fabrication overcomes the problem of diode degradation caused by differential thermal expansion of the device layer and the substrate during high temperature processing. These advantages make possible voltage multiplier circuits with higher voltage capability, more multiplier stages, and higher operating frequency than is possible with conventional voltage multipliers.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention provides a voltage multiplier comprising diodes formed by bonding silicon to an insulating substrate which overcomes the aforementioned limitations of multipliers such as are taught in U.S. Pat. No. 4,922,402.
Represented in FIG. 1 is a schematic diagram of an example of a voltage multiplier 10 embodying various features of the present invention which incorporates diodes D1, D2, D3, . . . Dm formed by bonding silicon on an insulating substrate and which are interconnected with capacitors C1, C2, C3, . . . Cm. However, the circuit configuration of the voltage multiplier represented in FIG. 1 is presented by way of example only for the purpose of describing the implementation of the present invention. It is to be understood that the scope of the invention encompasses any voltage multiplier circuit comprising interconnected diodes which are formed by bonding silicon to an insulating substrate.
Referring to FIG. 2, there is shown the voltage multiplier 10, having an electrical circuit represented schematically in FIG. 1, comprising multiple diodes manufactured as described further herein by bonding silicon to an insulating substrate. The diodes preferably are interconnected to the capacitors on a single substrate. The voltage multiplier 10 is shown to include an m number of serially connected diodes, D1, D2, D3, . . . D.sub.(m-1), Dm each having an anode 12 and a cathode 14, where m is a positive integer. The cathode 14 of each diode Dm is connected to the anode 12 of the immediately successive diode, D.sub.(m+1), where n is a positive integer and pb 0<n≦m.
The odd numbered capacitors C1, C3, C5, . . . of a first set 18 of capacitors are interconnected between successive pairs of diodes D1 and D2, D3 and D4, etc, and an electrical contact 24 by a patterned metallization layer 141, shown in FIG. 2. The even numbered capacitors C2, C4, C6, . . . of a second set of capacitors 20 are interconnected between successive pairs of diodes D2 and D3, D4 and D5, etc, and an electrical contact 26 by the metallization layer 141. The anode 12 of the diode D1 is electrically connected by the metalization layer 141 to an electrical contact 28 disposed to receive the voltage Vcc that is to be multiplied.
The operation of a voltage multiplier of the type represented by the voltage multiplier 10 of FIG. 2 is described with reference to FIG. 1. Phi 1 and phi 2 are two voltage pulse trains substantially in phase opposition between themselves, and which are generally generated by a suitable oscillator, not shown. By supposing ideal diode behavior, and phi 1 and phi 2 having an amplitude equal to the supply voltage, Vcc, the asymptotic level approached by the output voltage Vout, in an open circuit situation, is equal to p times Vcc, where p is the number of stages (corresponding to the number of serially connected diodes) of the multiplier circuit. Initially, where the capacitors are in a discharged state and where phi 1=Vcc, and phi 2=0, the C1 capacitor charges to the Vcc voltage, while the capacitor C2 remains uncharged. When phi 1 and phi 2 switch because the diode D2 cannot sustain a positive voltage across its terminals, the capacitor C1 pours charge in the capacitor C2, which thus charges to the voltage Vcc. A similar transfer of electrical charge will occur from all of the odd numbered capacitors to the even numbered capacitors represented in FIG. 1. When phi 1 and phi 2 switch again, the capacitor C1 recharges through the supply, and no return of charge from C2 occurs because the diode D1 is reverse biased. Similarly all the other odd numbered capacitors recharge by means of the current provided by the preceding stage (to the left thereof in the diagram). Under open circuit conditions, i.e., when no current is drawn from the output terminal of the last stage, the output voltage Vout will be decisively greater than Vcc because of the transfer of electrical charge from the preceding stage. Moreover, the current drawn from the preceding stage upon any subsequent switching will become progressively smaller because the output capacitor will result already partially charged. At steady state, any intermediate node of the voltage multiplier assumes a voltage greater than that of the preceding intermediate stage by a quantity equal to the supply voltage. Therefore, the output voltage Vout is equal to p times the supply voltage Vcc.
In an example of the manufacture of the diodes D comprising the voltage multiplier 10, as shown in FIG. 3, a silicon wafer structure 110 comprising a silicon layer 112 is formed on a silicon wafer 114. The silicon wafer 114 is doped with impurities to form either an n-type or p-type semiconductor. The layer 112 may be epitaxially grown or formed by ion implantation. As an example, the layer 112 may be epitaxially grown to a thickness of about 10 microns. The layer 112 is doped with impurities to form either an n-type or p-type semiconducting material. If the wafer 114 is n-type, then layer 112 is p-type, and vice-versa. By way of example, arsenic may be used to dope the silicon wafer 114 to form n-type material and boron may be used to dope the silicon layer 112 to form p-type material. The concentration of dopant in the wafer 114 is preferably about 1019 /cm3 or greater which facilitates the formation of ohmic contacts at a later stage in the manufacture of the diode circuit 10 formed on the silicon wafer structure 110. The doping concentration of the layer 112 is typically less than 1018 /cm3. The dopant concentrations and layer thicknesses are variable parameters which are selected to optimize the electrical properties of the diodes. A wide range of values for such parameters may provide satisfactory results. The interface 116 between the silicon layer 112 and silicon wafer 114 provides a diode junction. A diode junction is a junction between p-type and n-type semiconducting layers which produces rectification of electrical current flow.
Next, as shown in FIG. 4, a dopant of the same polarity as that of the layer 112 is implanted or diffused into the silicon layer 112 to form a layer 117 which is more heavily doped than the rest of layer 112. For example, if the layer 112 includes n-type material with a doping concentration of about 1017 /cm3, then the layer 117 may include n-type material with a doping concentration of about 1019 /cm. Such doping facilitates formation of ohmic contacts at a later stage to the diodes, set forth below. The formation of the layer 117 requires subjecting the silicon wafer structure 110 to a high temperature anneal. Such anneal is required to either promote diffusion if the layer 117 is formed by diffusion, or to activate ion-implanted dopant impurities if the layer 117 is formed by ion-implantation. A silicon dioxide layer 118 is formed on the layer 17 by thermal oxidation to provide a bonding surface, as described below.
By way of example, the thickness of the layer 117 is preferably in the range of about 100 to 500 nm. The ion-implanted dopants are activated by placing the silicon wafer structure 110 in a high temperature anneal, as for example, in an atmosphere of oxygen maintained at about 900° C. for about 25 minutes, during which time, the silicon dioxide layer 118, which may be about 50 to 100 nm thick, is grown in the layer 117. The silicon dioxide layer 118 is used as a bonding surface because it will adsorb hydroxyl ions which promote bonding between the silicon dioxide layer 18 and an insulating substrate to which the silicon wafer structure 110 is bonded, as described further herein.
The insulating substrate is preferably a sapphire wafer 120, as shown in FIG. 5, although the insulating substrate may also be made of materials selected from the group consisting of quartz, glass, and silicon dioxide on silicon. The sapphire wafer 120 should be flat and polished to a mirror-like surface on at least one side having an RMS roughness, as for example, of less than 0.25 μm. Preferably, the silicon wafer structure 110 and sapphire wafer 120 are each approximately of the same size and shape. The surface of silicon dioxide layer 118 is generally smooth enough to bond well with the insulating substrate without polishing, particularly where the insulating substrate is the sapphire wafer 120.
Next, the sapphire wafer 120 and silicon wafer structure 110 are each cleaned, as for example, by a process such as an RCA clean, employing the hydrofluoric acid, hydrogen peroxide, and ammonium hydroxide cleaning, or by a hydrophilization bath using hydrogen peroxide and ammonium hydroxide. After cleaning, the sapphire and silicon wafers are rinsed in de-ionized water, and dried with heated nitrogen. The cleaning results in hydrolyzing, or adsorption of - (OH) ions on the cleaned surfaces which promotes bonding between the sapphire wafer 120 and silicon wafer structure 110.
The silicon wafer structure 110 may be placed on a clean surface to expose the layer 118. Then, the polished surface of the sapphire wafer 120 is placed against the exposed surface of the layer 118 of the silicon wafer structure 110. The silicon wafer structure 110 and sapphire wafer 120, now in contact with each other, are heated to about 200° C. for a period which may range from 1 to 100 hours in air, nitrogen, or oxygen to create a bonded wafer 122. Generally, the application of pressure to hold the silicon wafer 114 and sapphire wafer 120 together is not necessary, although such compressive force may be provided if desired. The temperature at which the sapphire wafer 120 and silicon wafer structure 110 are heated is relatively low compared to temperatures employed in processes involving epitaxial growth, ion implantation, and diffusion. Such low temperature advantageously avoids the generation of thermally induced defects associated with the higher temperature processes normally used to grow silicon on sapphire. Thus, a major advantage of the present invention is that it provides a method for manufacturing a voltage multiplier on an insulating substrate such as sapphire wafer 120, where after being bonded together, the silicon wafer structure 110 and the insulating substrate are not subjected to temperatures which would cause the silicon to develop thermally induced cracks. After being allowed to cool to ambient temperature, the bonded wafer 122 may be handled without risk of separating the silicon wafer structure 110 from the sapphire wafer 120.
Next, as shown in FIG. 6, the silicon layer 114 may be thinned and thereby transformed into a thinned silicon layer 114 so that only a minimal thickness of about 100 to 1000 nm remains by any of the methods commonly employed in the art of thinning bonded wafers. Such processes may include, but are not limited to surface grinding, precision grinding with electrolytic in-process dressing, or ductile mode grinding.
Referring now to FIG. 7, a layer of masking material 130 is deposited onto the surface of the thinned silicon layer 114 and patterned using well known lithographic techniques. An etch, using potassium hydroxide solution (KOH) or an isotropic plasma etch, for example, then may be performed so as to leave islands, now diodes 132 of silicon having sloped sidewalls 133 extending from the sapphire substrate 120. After the etch, the masking material 130 is removed. At this stage, the bonded wafer 122 includes a series circuit of diodes 132 which need to be electrically interconnected.
With reference to FIG. 8, a layer of silicon dioxide 140, which is thick enough to provide good electrical insulating properties (500 nm thickness is typically sufficient), is deposited over the diodes and exposed surface of the sapphire substrate 120. A layer of photoresist 134 is deposited on top of the layer of silicon dioxide 140, and then patterned using photolithographic techniques. The photoresist 134 serves as a mask for the etching of contact holes 136 in the layer of silicon dioxide 140 to expose selected regions of the silicon layer 117 and thinned silicon layer 114, shown in FIG. 8. Such exposure is facilitated by the sloped sidewalls 133 of the photodiodes 132. After patterning the layer of silicon dioxide 140 to create the contact holes 136, the layer of photoresist 134 is removed by any one of the commonly used methods for removing photoresist.
Referring now to FIG. 9, a metallization layer 141 is deposited over the photodiodes 132 and then is suitably patterned using well known photoresist masking methods to create a series circuit photocell array. The diode circuit is comprised of multiple, individual diodes 132 connected in series by interconnecting a heavily doped layer 117 of one diode 132 with the thinned silicon layer 114 of another diode 132, as shown in FIG. 9.
The p-type layers of the diodes constitute the anodes 12, and the n-type layers constitute the cathodes 14. The contacts to the anodes 12 and cathodes 14 occur at the openings or vias 136 in the oxide layer 140 as shown in FIG. 8.
The capacitors are formed during the same processing steps which form the diodes. Referring to FIG. 10, which is a vertical cross-section through the center of one of the capacitors shown in FIG. 2, the capacitors comprise one electrode which is formed by n-type and p-type silicon layers 114, 112, 117, and 118 mutually contacted by metal layer 141, an insulating dielectric layer 140, and a second electrode formed by overlying metal layer 141.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims (4)

We claim:
1. A bonded silicon-on-insulator diode circuit, comprising:
a bulk insulating substrate; and
multiple diodes, each diode including:
a silicon dioxide layer bonded to said insulating substrate;
a silicon layer conjoined with said silicon dioxide layer; and
a p-n diode junction formed in said silicon layer, said silicon layer being differential thermal expansion defect free.
2. The bonded silicon-on-insulator diode circuit of claim 1 wherein said insulating substrate includes a material selected from the group of sapphire, quartz, glass, and silicon dioxide on silicon.
3. A voltage multiplier diode circuit, comprising:
a bulk insulating substrate; and
an electrical circuit formed on said bulk insulating substrate, said electrical circuit having a multiplicity of diodes and capacitors interconnected to form a voltage multiplier, each of said diodes including:
a silicon dioxide layer bonded to said insulating substrate;
a silicon layer conjoined with said silicon dioxide layer; and
a p-n diode junction formed in said silicon layer, said silicon layer being differential thermal expansion defect free.
4. The voltage multiplier diode circuit of claim 3 wherein said insulating substrate includes a material selected from the group of sapphire, quartz, glass, and silicon dioxide on silicon.
US07/988,551 1992-12-10 1992-12-10 Method for fabricating a silicon-on-insulator voltage multiplier Abandoned USH1423H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/988,551 USH1423H (en) 1992-12-10 1992-12-10 Method for fabricating a silicon-on-insulator voltage multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/988,551 USH1423H (en) 1992-12-10 1992-12-10 Method for fabricating a silicon-on-insulator voltage multiplier

Publications (1)

Publication Number Publication Date
USH1423H true USH1423H (en) 1995-04-04

Family

ID=25534248

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/988,551 Abandoned USH1423H (en) 1992-12-10 1992-12-10 Method for fabricating a silicon-on-insulator voltage multiplier

Country Status (1)

Country Link
US (1) USH1423H (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671914A (en) * 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US5726440A (en) * 1995-11-06 1998-03-10 Spire Corporation Wavelength selective photodetector
US10110119B2 (en) 2013-12-06 2018-10-23 Ut-Battelle, Llc Power supply and method of manufacturing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241360A (en) * 1978-08-10 1980-12-23 Galileo Electro-Optics Corp. Series capacitor voltage multiplier circuit with top connected rectifiers
JPS56105677A (en) * 1980-01-28 1981-08-22 Nec Corp Complementary type high breakdown voltage semiconductor device and manufacture thereof
JPS5731177A (en) * 1980-07-31 1982-02-19 Toshiba Corp Insulated gate type field effect transistor
US4501060A (en) * 1983-01-24 1985-02-26 At&T Bell Laboratories Dielectrically isolated semiconductor devices
US4520461A (en) * 1979-01-24 1985-05-28 Xicor, Inc. Integrated high voltage distribution and control systems
US4575746A (en) * 1983-11-28 1986-03-11 Rca Corporation Crossunders for high density SOS integrated circuits
JPS61232655A (en) * 1985-04-08 1986-10-16 Hitachi Ltd Semiconductor integrated circuit
US4922403A (en) * 1987-11-17 1990-05-01 Ernst Feller Voltage multiplier circuit with reduced back-gate bias effect
US5014097A (en) * 1987-12-24 1991-05-07 Waferscale Integration, Inc. On-chip high voltage generator and regulator in an integrated circuit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241360A (en) * 1978-08-10 1980-12-23 Galileo Electro-Optics Corp. Series capacitor voltage multiplier circuit with top connected rectifiers
US4520461A (en) * 1979-01-24 1985-05-28 Xicor, Inc. Integrated high voltage distribution and control systems
JPS56105677A (en) * 1980-01-28 1981-08-22 Nec Corp Complementary type high breakdown voltage semiconductor device and manufacture thereof
JPS5731177A (en) * 1980-07-31 1982-02-19 Toshiba Corp Insulated gate type field effect transistor
US4501060A (en) * 1983-01-24 1985-02-26 At&T Bell Laboratories Dielectrically isolated semiconductor devices
US4575746A (en) * 1983-11-28 1986-03-11 Rca Corporation Crossunders for high density SOS integrated circuits
JPS61232655A (en) * 1985-04-08 1986-10-16 Hitachi Ltd Semiconductor integrated circuit
US4922403A (en) * 1987-11-17 1990-05-01 Ernst Feller Voltage multiplier circuit with reduced back-gate bias effect
US5014097A (en) * 1987-12-24 1991-05-07 Waferscale Integration, Inc. On-chip high voltage generator and regulator in an integrated circuit

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Method to Form Very Thin SOI Films", IBM Technical Disclosure Bulletin, . 35, #2 Jul. 1992, pp. 37-38.
"Process for Fabrication of Very Thin Epitaxial Silicon Films Over Insulating Layers," IBM Technical Disclosure Bulletin, vol. 35, #2, Jul. 1992, pp. 247-249.
Method to Form Very Thin SOI Films , IBM Technical Disclosure Bulletin, vol. 35, 2 Jul. 1992, pp. 37 38. *
Process for Fabrication of Very Thin Epitaxial Silicon Films Over Insulating Layers, IBM Technical Disclosure Bulletin, vol. 35, 2, Jul. 1992, pp. 247 249. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671914A (en) * 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US5726440A (en) * 1995-11-06 1998-03-10 Spire Corporation Wavelength selective photodetector
US10110119B2 (en) 2013-12-06 2018-10-23 Ut-Battelle, Llc Power supply and method of manufacturing

Similar Documents

Publication Publication Date Title
US5750000A (en) Semiconductor member, and process for preparing same and semiconductor device formed by use of same
US5330918A (en) Method of forming a high voltage silicon-on-sapphire photocell array
JP2717979B2 (en) Method of fabricating thin single crystal silicon islands on insulator
US6388290B1 (en) Single crystal silicon on polycrystalline silicon integrated circuits
US6452086B1 (en) Solar cell comprising a bypass diode
US6800518B2 (en) Formation of patterned silicon-on-insulator (SOI)/silicon-on-nothing (SON) composite structure by porous Si engineering
US4700466A (en) Method of manufacturing semiconductor device wherein silicon substrates are bonded together
US5759903A (en) Circuit structure having at least one capacitor and a method for the manufacture thereof
EP0296738A2 (en) Miniature thermoelectric converters
US3423651A (en) Microcircuit with complementary dielectrically isolated mesa-type active elements
KR19980081093A (en) Electrical contact point for buried SOH structure and its manufacturing method
US6384422B2 (en) Method for manufacturing semiconductor device and ultrathin semiconductor device
US20030139022A1 (en) Gettering of SOI wafers without regions of heavy doping
JP2001210811A (en) Method for manufacturing semiconductor substrate
JP2740038B2 (en) MOS (MIS) type condenser
EP0323549B1 (en) Bipolar semiconductor device having a conductive recombination layer
US6281428B1 (en) Photovoltaic generator
USH1423H (en) Method for fabricating a silicon-on-insulator voltage multiplier
US5468674A (en) Method for forming low and high minority carrier lifetime layers in a single semiconductor structure
US3390022A (en) Semiconductor device and process for producing same
CN113540140B (en) Back-illuminated complementary metal oxide semiconductor image sensor and preparation method thereof
JP2002111041A (en) Semiconductor device and its manufacturing method
US3350760A (en) Capacitor for miniature electronic circuits or the like
EP0140749A1 (en) Method for producing a complementary semiconductor device with a dielectric isolation structure
KR100543520B1 (en) A vertical-type multiple junction solar cells manufacture method

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:FLESNER, LARRY D.;GARCIA, GRAHAM A.;IMTHURN, GEORGE P.;REEL/FRAME:006350/0744

Effective date: 19921210

STCF Information on status: patent grant

Free format text: PATENTED CASE