USH1924H - Load-adaptive nanocrystalline carbon/amorphous diamond-like carbon composite and preparation method - Google Patents

Load-adaptive nanocrystalline carbon/amorphous diamond-like carbon composite and preparation method Download PDF

Info

Publication number
USH1924H
USH1924H US09/358,072 US35807299A USH1924H US H1924 H USH1924 H US H1924H US 35807299 A US35807299 A US 35807299A US H1924 H USH1924 H US H1924H
Authority
US
United States
Prior art keywords
substrate
vacuum chamber
carbon
flux
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/358,072
Inventor
Jeffrey S. Zabinski
Andrey A. Voevodin
Somuri V. Prasad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Air Force
Original Assignee
US Air Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Air Force filed Critical US Air Force
Priority to US09/358,072 priority Critical patent/USH1924H/en
Assigned to UNITED STATES AIR FORCE reassignment UNITED STATES AIR FORCE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PRASAD, SOMURI V., VOEVODIN, ANDREY A.
Assigned to AIR FORCE, UNITED STATES reassignment AIR FORCE, UNITED STATES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZABINSKI, JEFFREY S.
Application granted granted Critical
Publication of USH1924H publication Critical patent/USH1924H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/262Non-scanning techniques

Definitions

  • the present invention relates generally to vapor deposited films, and more particularly to system and method for producing nanocrystalline carbide/diamond-like carbon composite films having particular application to wear and friction reducing coatings.
  • Nanocomposites with microstructures comprising nanocrystalline grains in an amorphous matrix can produce unique mechanical and tribological properties.
  • super-hard (50-55 GPa) nanocomposites previously reported ("Superhard Nanocrystalline W 2 N/amorphous Si 3 N 4 Composite Materials," S. Veprek et al, J Vac Sci Tech A 14(1):46-50 (Jan./Feb. 1966); "A Concept for the Design of Novel Superhard Coatings," S. Veprek et al, Thin Solid Films 268:64-71 (1995)
  • plastic deformation was suppressed in order to maximize hardness, but the composites had characteristic brittleness undesirable for tribological applications where toughness and low friction coefficient are desired.
  • the invention solves or substantially reduces in critical importance problems with prior art composites and deposition methods by providing nanocrystalline carbide/diamond-like carbon (DLC) composite films and preparation method near room temperature.
  • the composites are produced using a deposition technique that combines magnetron sputtering and pulsed laser ablation to produce plasma fluxes intersecting on a substrate surface to form metal, carbide and diamond-like materials.
  • Composites produced according to the invention comprise 10 nm carbide crystallites encapsulated in a sp 3 bonded amorphous DLC matrix having hardness of about 32 GPa and high plasticity at loads exceeding the elastic limit.
  • the invention has substantial application to production of wear and friction reducing composite films applied as coatings for protection against high contact loading in sliding and rolling.
  • Composite films according to the invention exhibit high hardness and contact toughness, low (about 0.2) friction coefficient and low wear rates, and may adapt in use from hard to plastic depending on operating conditions, which substantially increase the wear life of bearings, shafts and other machine parts to which the films are applied as coatings.
  • nanocrystalline carbide/diamond-like carbon composite films and synthesis method near room temperature are described wherein combined magnetron sputtering and pulsed laser ablation produce plasma fluxes intersecting on a substrate surface to form metal carbide and diamond-like carbon composite films of about 10 to 50 nm carbide crystallites encapsulated in a sp 3 bonded amorphous diamond-like carbon matrix having a hardness of about 32 GPa and high plasticity, high toughness in contact loading and low friction coefficient.
  • FIG. 1 shows schematically the magnetron assisted pulsed laser deposition (PLD) system used in demonstration of the method of the invention
  • FIG. 2 shows deposition rate of carbon films plotted as a function of laser pulse frequency in 10 -7 torr vacuum and in Ar at 2 ⁇ 10 -3 torr, and the variation of Ti x C y composition as a function of laser pulse frequency with the magnetron running at constant power;
  • FIG. 3 shows a comparison of carbon 1s binding energy spectra for nanocrystalline TiC, amorphous carbon (a-C) and composite TiC/a-C films from x-ray photoelectron spectroscopy;
  • FIG. 4 shows a bright field transmission electron microscopy (TEM) image of 50 nm thick TiC/a-C film and its SAD pattern
  • FIG. 5 shows the grazing angle x-ray diffraction (XRD) spectrum.a for nanocrystalline TiC/a-C composite film and a similar spectrum for macrocrystalline TiC;
  • FIG. 6a shows the plasticity of hard TiC/a-C composite films according to the invention observed in nanoindentation with 1 mN load applied to a Berkovich pyramid
  • FIG. 6b shows the plasticity of hard TiC/a-C composite films of the invention observed in scratch tests with 50 N load applied to a 0.2 mm radius diamond tip.
  • FIG. 1 shows schematically a diagram of the essential components of magnetron assisted pulsed laser deposition (PLD) system 10 representative of the invention and useful in the practice of the method thereof.
  • An ultra-high vacuum chamber 11, grounded at 12, is operatively connected to turbomolecular vacuum pump unit 13 capable of evacuating chamber 11 to about 10 -9 to 10 -10 torr.
  • Rotatable substrate table 15 supporting substrate 16 is disposed within chamber 11 and driven by suitable external motor means 17.
  • Gas inlet 18 defined in a wall of chamber 11 and communicating with source 19 of inert gas provide means for controlled insertion of an inert gas (preferably argon) atmosphere in the operation of system 10 as described below.
  • an inert gas preferably argon
  • Magnetron sputtering source 21 is disposed in a wall of chamber 11 in suitable position for sputtering a selected metal onto substrate 16.
  • source 21 was a Mini-Mac manufactured by US, Inc., powered by magnetron power supply 22 (model MDX-1, Advanced Energy).
  • the invention was demonstrated by production of nanocrystalline TiC carbides in an amorphous diamond-like carbon (a-DLC) matrix, but is also applicable to other carbides in an a-DLC matrix, including carbides of tungsten, silicon, vanadium, tantalum, zirconium, hafnium, chromium, molybdenum, niobium, copper, aluminum and others as would occur to the skilled artisan practicing the invention.
  • Pulsed laser generator 24 (model 110i, Lambda Physik) is disposed externally of chamber 11, and programmable mirror 25, focusing lens 26 and an entrance window 27 in a wall of chamber 11 provide optical means for directing a pulsed laser beam onto rotatable target 28 disposed within chamber 11. Externally disposed motor 29 is operatively connected to and selectively rotates target 28.
  • pulsed laser beam 31 was focused onto graphite target 28 in order to generate a carbon flux, while magnetron 21 generated a flux of Ti atoms.
  • Target orientations defined a point of intersection of the C and Ti fluxes at the surface of substrate 16.
  • Substrate 16 comprised a disk of metallographically polished 440C steel. Prior to deposition, the substrates were cleaned in a 1 keV Ar discharge for 15 minutes, which raised their temperature to about 50-80° C. No additional substrate heating or biasing was used during deposition. The magnetron target-substrate distance was set at 15 cm, and the PLD target-substrate distance was set at 6 cm.
  • Chamber 11 was initially evacuated to a base pressure of 10 -7 torr, and substrate 16 temperature was held constant at 100° C. Pulses of 248 nm wavelength UV radiation, 17 ns duration and 200 mJ energy from laser generator 24 were focused onto target 28 at about 3-7 Hz to attain about 10 9 W/cm 2 power density. Carbon plumes formed thereby expanded in a direction normal to target 28 toward substrate 16 with kinetic energies of 1.5 keV in the leading edge. A Ti plasma flux directed toward substrate 16 with energy of several electron volts was produced with an unbalanced magnetron 21 operating at 12 W/cm 2 power density in 2 ⁇ 10 -3 torr Ar within chamber 11. Films 0.5 ⁇ m thick were grown at a deposition rate of 10 nm/min.
  • Nanocrystalline TiC/a-C composite films on substrate 16 produced under the foregoing conditions had 10-50 nm sized TiC crystallites encapsulated into an a-DLC matrix of about 30 vol % fraction, and had a friction coefficient of about 0.15 and a contact toughness several times the toughness of amorphous carbon and/or nanocrystalline TiC.
  • independent operation of the Ti and C sources permitted composition control in the composite films, based on the relationship between film stoichiometry and deposition rates of Ti and C.
  • the number of Ti atoms Q Ti and the number of C atoms Q C arriving per unit area of substrate in unit time are related to the respective Ti and C deposition rates D Ti and D C by,
  • S Ti * and S C * are sticking coefficients of Ti and C atoms at simultaneous deposition, assuming that (1) the number of C atoms arriving at substrate 16 in 2 ⁇ 10 -3 torr of Ar is the same as the number arriving in 10 -7 torr, (2) no interaction occurs between C and Ti sources during simultaneous deposition, and (3) sticking coefficients S Ti * and S C * are approximately equal to S Ti and S C , respectively.
  • the first two assumptions are met by suitable target 28 orientation (FIG. 1), and by the highly directed fluxes of atomic and molecular species with kinetic energies exceeding the thermal energies of the sputter gas molecules by a factor of ten or more.
  • the mean free paths for energetic C and Ti atoms at 2 ⁇ 10 -3 torr are 6 cm and 5 cm, respectively, based on thermalized distance calculations (W. D. Westwood, J Vac Sci Tech 15, 1 (1978)); the distance required to thermalize an atom with initial energy of 5 eV is 10 cm for C and 20 cm for Ti. Comparing these values with the substrate-target distances, the directional character of both fluxes is preserved, and the average atom will undergo one or two collisions with Ar atoms before reaching substrate 16. The third assumption was verified experimentally in demonstration depositions.
  • (M Ti ⁇ C )/(M C ⁇ Ti ) and equals 2.66 if the titanium film density is 4.5 g/cm 3 and the DLC film density is 3.0 g/cm 3 .
  • D Ti or D C can be varied to affect Ti x C y film composition.
  • composition was controlled by varying D c with D Ti held constant at 10 nm/min using constant power to magnetron 21.
  • magnetron 21 was turned off but Ar pressure was kept constant.
  • Deposition rate of C was varied by changing the frequency of laser pulses. Referring now to FIG. 2, plot 35 shows the linear dependence of D C on laser pulse frequency at 10 -7 torr pressure (open circles) and in Ar at 2 ⁇ 10 -3 torr (solid circles), and shows the negligible difference in deposition rates in vacuum and 2 ⁇ 10 -3 torr Ar.
  • Plots 36 (for carbon) and 37 (for titanium) show Ti x C y composition as a function of laser pulse frequency with magnetron 21 at constant power.
  • Solid squares are experimental x-ray photoelectron spectroscopy (XPS) measured elemental concentrations in demonstration depositions and dashed lines are calculated values.
  • the slope of plot 35 in FIG. 2 gives the deposition rate of carbon as 0.016 nm/pulse, thereby allowing Ti x C y composition to be predicted from Eqs (3a) and (3b) as a function of pulse frequency.
  • TABLE I shows the laser pulse frequency of about 7 Hz provided nanocrystalline TiC/a-DLC composites with the volume fraction of TiC and a-DLC phases corresponding to the design of load adaptive composites.
  • the films were shown by XPS to contain about 61 at% C, 30 at% Ti and 9 at% O. Oxygen contamination resulted from high Ti reactivity to residual water in chamber 11 during deposition and to laboratory air after deposition. From Ti/C composition ratio, Ti 0 .3 C 0 .7 stoichiometry of the films was determined. In the over stoichiometric films, carbon was found to be in both Ti-C and C-C bonded forms.
  • FIG. 4 shows selected area diffraction (SAD) rings originating from polycrystalline TiC and a diffused ring from an a-DLC phase. Diffraction from (111) and (200) TiC planes were close to each other, producing an inside broad ring in the SAD insert in FIG. 4. A second in brightness ring was in a position for diffraction from the (220) TiC plane with 0.15 nm d-spacing.
  • SAD selected area diffraction
  • a-DLC carbon produced a diffusive halo at the same position due to an averaged 0.15 nm interatomic distance in a hydrogen-free sp 3 bonded amorphous DLC. Based on a high intensity and broadness of this ring, it was assigned primarily to the a-DLC phase. Outside diffraction rings in FIG. 4 were from (311), (222) and (420) TiC crystal planes.
  • FIG. 5 shows the grazing angle XRD spectrum for nanocrystalline TiC/a-C composite film and a similar spectrum for macrocrystalline TiC.
  • the size of TiC crystallites was about 10 nm from XRD and TEM, with uniform distribution and a complete encapsulation of TiC nanocrystals in the a-C matrix.
  • FIG. 6a shows the plasticity of hard TiC/a-C composite films observed in nanoindentation with 1 mN load applied to a Berkovich pyramid.
  • FIG. 6b shows the plasticity of hard TiC/a-C composite films observed in scratch tests (in the direction of the arrow) with 50 N load applied to a 0.2 mm radius diamond tip.
  • Hardness of the TiC/a-DLC composite was 32 GPa, determined in nanoindentation tests with a Verkovich indenter under a 1 mN load. This was higher than 27 GPa hardness of nanocrystalline stoichiometric TiC, but not as high as 60 GPa hardness of a-DLC.
  • TiC/a-C composite showed 40% plasticity in the indentation deformation (FIG. 6a), which was four times more than that observed for the super-hard but brittle a-DLC.
  • the invention therefore provides a method for producing nanocrystalline carbide/a-DLC composite films having high hardness, low friction coefficient and high toughness. It is understood that modifications to the invention may be made as might occur to one with skill in the field of the invention within the scope of the appended claims. All embodiments contemplated hereunder which achieve the objects of the invention have therefore not been shown in complete detail. Other embodiments may be developed without departing from the spirit of the invention or from the scope of the appended claims.

Abstract

Nanocrystalline carbide/diamond-like carbon composite films and synthesis method near room temperature are described wherein combined magnetron sputtering and pulsed laser ablation produce plasma fluxes intersecting on a substrate surface to form metal carbide and diamond-like carbon composite films of about 10 to 50 nm carbide crystallites encapsulated in a sp3 bonded amorphous diamond-like carbon matrix having a hardness of about 32 GPa and high plasticity, high toughness in contact loading and low friction coefficient.

Description

RIGHTS OF THE GOVERNMENT
The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.
CLAIM OF PRIORITY
This application claims priority of the filing date of Provisional application Ser. No. 60/100,307 filed Sep. 15, 1998.
BACKGROUND OF THE INVENTION
The present invention relates generally to vapor deposited films, and more particularly to system and method for producing nanocrystalline carbide/diamond-like carbon composite films having particular application to wear and friction reducing coatings.
Nanocomposites with microstructures comprising nanocrystalline grains in an amorphous matrix can produce unique mechanical and tribological properties. For example, in super-hard (50-55 GPa) nanocomposites previously reported ("Superhard Nanocrystalline W2 N/amorphous Si3 N4 Composite Materials," S. Veprek et al, J Vac Sci Tech A 14(1):46-50 (Jan./Feb. 1966); "A Concept for the Design of Novel Superhard Coatings," S. Veprek et al, Thin Solid Films 268:64-71 (1995)), plastic deformation was suppressed in order to maximize hardness, but the composites had characteristic brittleness undesirable for tribological applications where toughness and low friction coefficient are desired. Room temperature ductility in brittle ceramics was achieved by reducing grain size to nanometer levels ("Nanocrystalline Materials," H. Gleiter, in Progress In Materials Science 33:223-315 (1989); "Ceramics Ductile at Low Temperatures," J. Karch et al, Nature 330:556 (Dec. 1987)).
The invention solves or substantially reduces in critical importance problems with prior art composites and deposition methods by providing nanocrystalline carbide/diamond-like carbon (DLC) composite films and preparation method near room temperature. The composites are produced using a deposition technique that combines magnetron sputtering and pulsed laser ablation to produce plasma fluxes intersecting on a substrate surface to form metal, carbide and diamond-like materials. Composites produced according to the invention comprise 10 nm carbide crystallites encapsulated in a sp3 bonded amorphous DLC matrix having hardness of about 32 GPa and high plasticity at loads exceeding the elastic limit.
The invention has substantial application to production of wear and friction reducing composite films applied as coatings for protection against high contact loading in sliding and rolling. Composite films according to the invention exhibit high hardness and contact toughness, low (about 0.2) friction coefficient and low wear rates, and may adapt in use from hard to plastic depending on operating conditions, which substantially increase the wear life of bearings, shafts and other machine parts to which the films are applied as coatings.
It is therefore a principal object of the invention to provide improved nanocrystalline carbide/diamond-like carbon composites and method for producing the composites.
It is a further object of the invention to provide nanocrystalline carbide/diamond-like composite coatings for tribological applications.
It is a further object of the invention to provide low friction coatings having high contact toughness and low wear rates for systems operating under high contact stress such as in bearings, shafts and other precision turbine engine parts.
These and other objects of the invention will become apparent as a detailed description of representative embodiments proceeds.
SUMMARY OF THE INVENTION
In accordance with the foregoing principles and objects of the invention, nanocrystalline carbide/diamond-like carbon composite films and synthesis method near room temperature are described wherein combined magnetron sputtering and pulsed laser ablation produce plasma fluxes intersecting on a substrate surface to form metal carbide and diamond-like carbon composite films of about 10 to 50 nm carbide crystallites encapsulated in a sp3 bonded amorphous diamond-like carbon matrix having a hardness of about 32 GPa and high plasticity, high toughness in contact loading and low friction coefficient.
DESCRIPTION OF THE DRAWINGS
The invention will be more clearly understood from the following detailed description of representative embodiments thereof read in conjunction with the accompanying drawings wherein:
FIG. 1 shows schematically the magnetron assisted pulsed laser deposition (PLD) system used in demonstration of the method of the invention;
FIG. 2 shows deposition rate of carbon films plotted as a function of laser pulse frequency in 10-7 torr vacuum and in Ar at 2×10-3 torr, and the variation of Tix Cy composition as a function of laser pulse frequency with the magnetron running at constant power;
FIG. 3 shows a comparison of carbon 1s binding energy spectra for nanocrystalline TiC, amorphous carbon (a-C) and composite TiC/a-C films from x-ray photoelectron spectroscopy;
FIG. 4 shows a bright field transmission electron microscopy (TEM) image of 50 nm thick TiC/a-C film and its SAD pattern;
FIG. 5 shows the grazing angle x-ray diffraction (XRD) spectrum.a for nanocrystalline TiC/a-C composite film and a similar spectrum for macrocrystalline TiC;
FIG. 6a shows the plasticity of hard TiC/a-C composite films according to the invention observed in nanoindentation with 1 mN load applied to a Berkovich pyramid; and
FIG. 6b shows the plasticity of hard TiC/a-C composite films of the invention observed in scratch tests with 50 N load applied to a 0.2 mm radius diamond tip.
DETAILED DESCRIPTION
Background information and discussions of the underlying principles of the invention and experimental work related to the invention may be found by reference to the papers "Nanocrystalline WC and WC/a-C Composite Coatings Produced from Intersected Plasma Fluxes at Low Deposition Temperatures," A. A. Voevodin et al, submitted to J Vac Sci Tech (1998); "Load-adaptive Crystalline-Amorphous Nanocomposites," A. A. Voevodin et al, J Mat Sci 33 (1998) 319-327; and "Nanocrystalline Carbide/Amorphous Carbon Composites," A. A. Voevodin et al, J Appl Phys 82(2) (Jul. 15, 1997) 855-8, copies of which are attached hereto as Appendices A through C, the entire teachings of which are incorporated by reference herein.
Referring now to the accompanying drawings, FIG. 1 shows schematically a diagram of the essential components of magnetron assisted pulsed laser deposition (PLD) system 10 representative of the invention and useful in the practice of the method thereof. An ultra-high vacuum chamber 11, grounded at 12, is operatively connected to turbomolecular vacuum pump unit 13 capable of evacuating chamber 11 to about 10-9 to 10-10 torr. Rotatable substrate table 15 supporting substrate 16 is disposed within chamber 11 and driven by suitable external motor means 17. Gas inlet 18 defined in a wall of chamber 11 and communicating with source 19 of inert gas provide means for controlled insertion of an inert gas (preferably argon) atmosphere in the operation of system 10 as described below. Magnetron sputtering source 21 is disposed in a wall of chamber 11 in suitable position for sputtering a selected metal onto substrate 16. In a unit built and operated in demonstration of the invention, source 21 was a Mini-Mac manufactured by US, Inc., powered by magnetron power supply 22 (model MDX-1, Advanced Energy). The invention was demonstrated by production of nanocrystalline TiC carbides in an amorphous diamond-like carbon (a-DLC) matrix, but is also applicable to other carbides in an a-DLC matrix, including carbides of tungsten, silicon, vanadium, tantalum, zirconium, hafnium, chromium, molybdenum, niobium, copper, aluminum and others as would occur to the skilled artisan practicing the invention. Pulsed laser generator 24 (model 110i, Lambda Physik) is disposed externally of chamber 11, and programmable mirror 25, focusing lens 26 and an entrance window 27 in a wall of chamber 11 provide optical means for directing a pulsed laser beam onto rotatable target 28 disposed within chamber 11. Externally disposed motor 29 is operatively connected to and selectively rotates target 28.
In the operation of system 10 for producing composites in demonstration of the invention, pulsed laser beam 31 was focused onto graphite target 28 in order to generate a carbon flux, while magnetron 21 generated a flux of Ti atoms. Target orientations defined a point of intersection of the C and Ti fluxes at the surface of substrate 16. Substrate 16 comprised a disk of metallographically polished 440C steel. Prior to deposition, the substrates were cleaned in a 1 keV Ar discharge for 15 minutes, which raised their temperature to about 50-80° C. No additional substrate heating or biasing was used during deposition. The magnetron target-substrate distance was set at 15 cm, and the PLD target-substrate distance was set at 6 cm. Chamber 11 was initially evacuated to a base pressure of 10-7 torr, and substrate 16 temperature was held constant at 100° C. Pulses of 248 nm wavelength UV radiation, 17 ns duration and 200 mJ energy from laser generator 24 were focused onto target 28 at about 3-7 Hz to attain about 109 W/cm2 power density. Carbon plumes formed thereby expanded in a direction normal to target 28 toward substrate 16 with kinetic energies of 1.5 keV in the leading edge. A Ti plasma flux directed toward substrate 16 with energy of several electron volts was produced with an unbalanced magnetron 21 operating at 12 W/cm2 power density in 2×10-3 torr Ar within chamber 11. Films 0.5 μm thick were grown at a deposition rate of 10 nm/min. Nanocrystalline TiC/a-C composite films on substrate 16 produced under the foregoing conditions had 10-50 nm sized TiC crystallites encapsulated into an a-DLC matrix of about 30 vol % fraction, and had a friction coefficient of about 0.15 and a contact toughness several times the toughness of amorphous carbon and/or nanocrystalline TiC.
In accordance with a principal feature of the invention, independent operation of the Ti and C sources permitted composition control in the composite films, based on the relationship between film stoichiometry and deposition rates of Ti and C. For dense films, the number of Ti atoms QTi and the number of C atoms QC arriving per unit area of substrate in unit time are related to the respective Ti and C deposition rates DTi and DC by,
D.sub.Ti =M.sub.Ti ρ.sub.Ti.sup.-1 N.sub.a.sup.-1 S.sub.Ti Q.sub.Ti (1a)
D.sub.c =M.sub.C ρ.sub.C.sup.-1 N.sub.a.sup.-1 S.sub.C Q.sub.C (1b)
where ρTi and ρC are the densities and MTi and MC are the atomic weights of Ti and C, Na is the Avogadro number, and STi is the sticking coefficient for Ti atoms deposited by magnetron sputtering and SC is the sticking coefficient for C atoms deposited by PLD. Eqs (1a) and (1b) can be used to predict Tix Cy film stoichiometric coefficients using,
x/y=(Q.sub.Ti S.sub.Ti *)/(Q.sub.C S.sub.C.sup.c *)        (2)
where STi * and SC * are sticking coefficients of Ti and C atoms at simultaneous deposition, assuming that (1) the number of C atoms arriving at substrate 16 in 2×10-3 torr of Ar is the same as the number arriving in 10-7 torr, (2) no interaction occurs between C and Ti sources during simultaneous deposition, and (3) sticking coefficients STi * and SC * are approximately equal to STi and SC, respectively. The first two assumptions are met by suitable target 28 orientation (FIG. 1), and by the highly directed fluxes of atomic and molecular species with kinetic energies exceeding the thermal energies of the sputter gas molecules by a factor of ten or more. The mean free paths for energetic C and Ti atoms at 2×10-3 torr are 6 cm and 5 cm, respectively, based on thermalized distance calculations (W. D. Westwood, J Vac Sci Tech 15, 1 (1978)); the distance required to thermalize an atom with initial energy of 5 eV is 10 cm for C and 20 cm for Ti. Comparing these values with the substrate-target distances, the directional character of both fluxes is preserved, and the average atom will undergo one or two collisions with Ar atoms before reaching substrate 16. The third assumption was verified experimentally in demonstration depositions.
Stoichiometric coefficients of Tix Cy films can be found from Eqs (1a), (1b) and (2)
x=[1+α(D.sub.C /D.sub.Ti)].sup.-1                    (3a)
y=[1+α.sup.-1 (D.sub.Ti /D.sub.C)].sup.-1            (3b)
where α=(MTi ρC)/(MC ρTi) and equals 2.66 if the titanium film density is 4.5 g/cm3 and the DLC film density is 3.0 g/cm3.
According to Eqs (3a) and (3b), either DTi or DC can be varied to affect Tix Cy film composition. In the demonstration films, composition was controlled by varying Dc with DTi held constant at 10 nm/min using constant power to magnetron 21. For films without Ti, magnetron 21 was turned off but Ar pressure was kept constant. Deposition rate of C was varied by changing the frequency of laser pulses. Referring now to FIG. 2, plot 35 shows the linear dependence of DC on laser pulse frequency at 10-7 torr pressure (open circles) and in Ar at 2×10-3 torr (solid circles), and shows the negligible difference in deposition rates in vacuum and 2×10-3 torr Ar. Plots 36 (for carbon) and 37 (for titanium) show Tix Cy composition as a function of laser pulse frequency with magnetron 21 at constant power. Solid squares are experimental x-ray photoelectron spectroscopy (XPS) measured elemental concentrations in demonstration depositions and dashed lines are calculated values. The slope of plot 35 in FIG. 2 gives the deposition rate of carbon as 0.016 nm/pulse, thereby allowing Tix Cy composition to be predicted from Eqs (3a) and (3b) as a function of pulse frequency.
It is important that energies of deposited Ti and C atoms stay constant in the range of Tix Cy compositions because magnetron power, laser pulse energy and pressure remain the same. TABLE 1 shows correlations of laser pulse frequency, TiC stoichiometry, chemical composition and volume percent carbon bonded in a-DLC and nanocrystalline TiC phases in demonstration depositions.
TABLE I shows the laser pulse frequency of about 7 Hz provided nanocrystalline TiC/a-DLC composites with the volume fraction of TiC and a-DLC phases corresponding to the design of load adaptive composites. The films were shown by XPS to contain about 61 at% C, 30 at% Ti and 9 at% O. Oxygen contamination resulted from high Ti reactivity to residual water in chamber 11 during deposition and to laboratory air after deposition. From Ti/C composition ratio, Ti0.3 C0.7 stoichiometry of the films was determined. In the over stoichiometric films, carbon was found to be in both Ti-C and C-C bonded forms. FIG. 3 shows a comparison of C 1s binding energy spectra for nanocrystalline TiC, a-C and composite TiC/a-C films from XPS studies. Two peaks corresponding to TiC and a-DLC phases indicated a two-phase composition of the deposited films.
              TABLE 1                                                     
______________________________________                                    
Laser Pulse                                                               
        Ti--C       Composition (at %)                                    
                                 Percent C Bonded                         
Freq (Hz)                                                                 
        Stoichiometry                                                     
                    Ti     C    O    a-DLC TiC                            
______________________________________                                    
4       Ti.sub..45 C.sub..55                                              
                    41     50   9    15    85                             
5       Ti.sub..41 C.sub..59                                              
                    37     54   9    22    78                             
6       Ti.sub..37 C.sub..63                                              
                    34     58   8    29    71                             
7       Ti.sub..32 C.sub..68                                              
                    29     62   9    50    50                             
9       Ti.sub..28 C.sub..72                                              
                    26     67   7    67    33                             
11      Ti.sub..25 C.sub..75                                              
                    23     69   8    73    27                             
17      Ti.sub..18 C.sub..82                                              
                    17     78   5    90    10                             
40      Ti.sub..09 C.sub..91                                              
                    9      88   3    99    1                              
______________________________________                                    
Formation of both nanocrystalline TiC and a-DLC phases was confirmed in TEM of similar films deposited on a copper grid to about 50 nm thickness to allow TEM investigations (FIG. 4). An insert in FIG. 4 shows selected area diffraction (SAD) rings originating from polycrystalline TiC and a diffused ring from an a-DLC phase. Diffraction from (111) and (200) TiC planes were close to each other, producing an inside broad ring in the SAD insert in FIG. 4. A second in brightness ring was in a position for diffraction from the (220) TiC plane with 0.15 nm d-spacing. Also, a-DLC carbon produced a diffusive halo at the same position due to an averaged 0.15 nm interatomic distance in a hydrogen-free sp3 bonded amorphous DLC. Based on a high intensity and broadness of this ring, it was assigned primarily to the a-DLC phase. Outside diffraction rings in FIG. 4 were from (311), (222) and (420) TiC crystal planes.
A crystalline character of the TiC phase was additionally proved in 5° incident angle XRD of 0.5 μm films deposited on steel substrates. Diffraction peaks for (111), (200), (220), (311) and (222) planes had a considerable broadening indicating nanocrystallinity. FIG. 5 shows the grazing angle XRD spectrum for nanocrystalline TiC/a-C composite film and a similar spectrum for macrocrystalline TiC. The size of TiC crystallites was about 10 nm from XRD and TEM, with uniform distribution and a complete encapsulation of TiC nanocrystals in the a-C matrix.
FIG. 6a shows the plasticity of hard TiC/a-C composite films observed in nanoindentation with 1 mN load applied to a Berkovich pyramid. FIG. 6b shows the plasticity of hard TiC/a-C composite films observed in scratch tests (in the direction of the arrow) with 50 N load applied to a 0.2 mm radius diamond tip. Hardness of the TiC/a-DLC composite was 32 GPa, determined in nanoindentation tests with a Verkovich indenter under a 1 mN load. This was higher than 27 GPa hardness of nanocrystalline stoichiometric TiC, but not as high as 60 GPa hardness of a-DLC. However, TiC/a-C composite showed 40% plasticity in the indentation deformation (FIG. 6a), which was four times more than that observed for the super-hard but brittle a-DLC.
Extremely high toughness was observed in the scratch tests of TiC/a-DLC composites. Tests were performed with a 0.2 mm radius diamond tip loaded from 0 to 100 N and dragged on the film surface with a constant speed of 10 mm/min. Composite TiC/a-C films (0.5 μm thick) withstood 70 N load without brittle failure. The high toughness of the composites was associated with plastic behavior at a high local load as demonstrated in FIG. 6b. A 10 GPa contact stress was estimated to be induced in this test, using an applied load and the scratch geometry. Under this stress, a hard TiC/a-C film exhibited a remarkable plasticity without signs of brittle fracturing. This change in TiC/a-C behavior from hard to plastic at deformations above elastic limit reduced acting peak stresses and prevented failure of the composite integrity.
Ball-on-disk friction tests of TiC/a-C composites shown friction coefficient of about 0.15 in unlubricated sliding against a steel ball at 0.8 GPa initial contact pressure in air with 50% relative humidity. This was considerably lower than the friction coefficients of TiN, CrN (0.5-0.6) and TiC (0.3-0.4) coatings in similar sliding conditions.
The entire teachings of all references cited herein are incorporated herein by reference.
The invention therefore provides a method for producing nanocrystalline carbide/a-DLC composite films having high hardness, low friction coefficient and high toughness. It is understood that modifications to the invention may be made as might occur to one with skill in the field of the invention within the scope of the appended claims. All embodiments contemplated hereunder which achieve the objects of the invention have therefore not been shown in complete detail. Other embodiments may be developed without departing from the spirit of the invention or from the scope of the appended claims.

Claims (16)

We claim:
1. A magnetron assisted laser deposition system for producing metal carbide and diamond-like carbon composite films, comprising:
(a) a vacuum chamber and vacuum pump operatively connected to said vacuum chamber for selectively evacuating said vacuum chamber;
(b) a substrate disposed within said vacuum chamber;
(c) a gas inlet defined in a wall of said vacuum chamber and a source of inert gas operatively connected to said gas inlet for selectively inserting said inert gas into said vacuum chamber;
(d) a magnetron sputtering source for generating within said vacuum chamber a flux of metal atoms directed toward said substrate;
(e) a carbon graphite target disposed within said vacuum chamber;
(f) a laser generator and optical means for directing a laser beam onto said carbon graphite target for generating a flux of carbon atoms directed toward said substrate;
(g) wherein said flux of metal atoms intersects said flux of carbon atoms near the surface of said substrate to form on said substrate a composite film of metal carbide in a diamond-like carbon matrix.
2. The system of claim 1 wherein said metal is selected from the group consisting of titanium, tungsten, silicon, vanadium, tantalum, zirconium, hafnium, chromium, molybdenum, niobium, copper and aluminum.
3. The system of claim 1 wherein said source of inert gas comprises argon.
4. The system of claim 1 wherein said substrate comprises a stainless steel.
5. The system of claim 1 further comprising means for rotating said substrate and means for rotating said carbon graphite target.
6. The system of claim 1 wherein said laser source is an excimer pulsed laser generator.
7. A method for producing a metal carbide and diamond-like carbon composite film, comprising the steps of:
(a) providing a vacuum chamber and vacuum pump operatively connected to said vacuum chamber for selectively evacuating said vacuum chamber, said vacuum chamber having a gas inlet defined in a wall of said vacuum chamber and a source of inert gas operatively connected to said gas inlet for selectively inserting said inert gas into said vacuum chamber;
(b) disposing within said vacuum chamber a substrate and a carbon graphite target;
(c) providing a means for generating a flux of metal atoms within said vacuum chamber and generating a flux of metal atoms directed toward said substrate;
(d) directing a laser beam onto said carbon graphite target to generate a flux of carbon atoms directed toward said substrate;
(e) wherein said flux of metal atoms intersects said flux of carbon atoms near the surface of said substrate to form on said substrate a composite film of metal carbide in a diamond-like carbon matrix.
8. The method of claim 7 wherein said metal is selected from the group consisting of titanium, tungsten, silicon, vanadium, tantalum, zirconium, hafnium, chromium, molybdenum, niobium, copper and aluminum.
9. The method of claim 7 wherein said source of inert gas comprises argon.
10. The method of claim 7 wherein said substrate comprises a stainless steel.
11. The method of claim 7 further comprising the steps of rotating said substrate and rotating said carbon graphite target.
12. The method of claim 7 wherein said composite film is formed on said substrate at about room temperature.
13. The method of claim 7 wherein said step of generating a flux of metal atoms is performed utilizing a magnetron sputtering source.
14. The method of claim 7 wherein said step of generating a flux of carbon atoms is performed utilizing an excimer pulsed laser generator.
15. A nanocrystalline metal carbide and diamond-like carbon composite film containing about 10 to 50 nm metal carbide crystallites encapsulated in an amorphous diamond-like carbon matrix of about 30 volume percent fraction and fabricated according to the method of claim 7.
16. The composite film of claim 15 wherein said metal is selected from the group consisting of titanium, tungsten, silicon, vanadium, tantalum, zirconium, hafnium, chromium, molybdenum, niobium, copper and aluminum.
US09/358,072 1998-09-15 1999-07-21 Load-adaptive nanocrystalline carbon/amorphous diamond-like carbon composite and preparation method Abandoned USH1924H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/358,072 USH1924H (en) 1998-09-15 1999-07-21 Load-adaptive nanocrystalline carbon/amorphous diamond-like carbon composite and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10030798P 1998-09-15 1998-09-15
US09/358,072 USH1924H (en) 1998-09-15 1999-07-21 Load-adaptive nanocrystalline carbon/amorphous diamond-like carbon composite and preparation method

Publications (1)

Publication Number Publication Date
USH1924H true USH1924H (en) 2000-12-05

Family

ID=26797024

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/358,072 Abandoned USH1924H (en) 1998-09-15 1999-07-21 Load-adaptive nanocrystalline carbon/amorphous diamond-like carbon composite and preparation method

Country Status (1)

Country Link
US (1) USH1924H (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524755B2 (en) 2000-09-07 2003-02-25 Gray Scale Technologies, Inc. Phase-shift masks and methods of fabrication
US6599400B2 (en) * 2000-02-09 2003-07-29 Hauzer Techno Coating Europe Bv Method for the manufacture of coatings and an article
US6820676B2 (en) 1999-11-19 2004-11-23 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US20050101472A1 (en) * 2003-10-29 2005-05-12 Sumitomo Electric Industries, Ltd. Ceramic Composite Material and Method of Its Manufacture
US20050126486A1 (en) * 2002-03-14 2005-06-16 Denis Teer Apparatus and method for applying diamond-like carbon coatings
US20060014638A1 (en) * 2003-01-31 2006-01-19 Eiji Iwamura Hydrogen storage materials and process for the preparation of the same
US20060222772A1 (en) * 2005-03-31 2006-10-05 Bao Feng Method and apparatus for the production of thin film coatings
US7575978B2 (en) 2005-08-04 2009-08-18 Micron Technology, Inc. Method for making conductive nanoparticle charge storage element
US7670646B2 (en) 2002-05-02 2010-03-02 Micron Technology, Inc. Methods for atomic-layer deposition
US7704274B2 (en) 2002-09-26 2010-04-27 Advanced Bio Prothestic Surfaces, Ltd. Implantable graft and methods of making same
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US8367506B2 (en) 2007-06-04 2013-02-05 Micron Technology, Inc. High-k dielectrics with gold nano-particles
CN103160780A (en) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 Preparation method of multilayer nano-composite-class diamond films on surface of camshaft
US8641754B2 (en) 2000-11-07 2014-02-04 Advanced Bio Prosthetic Surfaces, Ltd. a wholly owned subsidiary of Palmaz Scientific, Inc. Endoluminal stent, self-supporting endoluminal graft and methods of making same
US20160101974A1 (en) * 2014-05-20 2016-04-14 Uchicago Argonne, Llc Low-stress doped ultrananocrystalline diamond
US9475089B2 (en) 2008-04-01 2016-10-25 The United States Of America, As Represented By The Secretary Of The Air Force Method for durably bonding functional layers to surfaces
CN113873738A (en) * 2021-09-26 2021-12-31 中国工程物理研究院激光聚变研究中心 Self-supporting carbon-based capacitor target and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478703A (en) * 1983-03-31 1984-10-23 Kawasaki Jukogyo Kabushiki Kaisha Sputtering system
US5423970A (en) * 1991-04-12 1995-06-13 Balzers Aktiengesellschaft Apparatus for reactive sputter coating at least one article
US5525199A (en) * 1991-11-13 1996-06-11 Optical Corporation Of America Low pressure reactive magnetron sputtering apparatus and method
US5989397A (en) * 1996-11-12 1999-11-23 The United States Of America As Represented By The Secretary Of The Air Force Gradient multilayer film generation process control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478703A (en) * 1983-03-31 1984-10-23 Kawasaki Jukogyo Kabushiki Kaisha Sputtering system
US5423970A (en) * 1991-04-12 1995-06-13 Balzers Aktiengesellschaft Apparatus for reactive sputter coating at least one article
US5525199A (en) * 1991-11-13 1996-06-11 Optical Corporation Of America Low pressure reactive magnetron sputtering apparatus and method
US5989397A (en) * 1996-11-12 1999-11-23 The United States Of America As Represented By The Secretary Of The Air Force Gradient multilayer film generation process control

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"A Concept for the Design of Novel Superhard Coatings," S. Veprek et al, Thin Solid Films 268:64-71 (1995)), (Month Unknown).
"Load-adaptive Crystalline-Amorphous Nanocomposites," A.A. Voevodin et al, J Mat Sci 33 (1998) 319-327, (Month Unknown).
"Nanocrystalline Carbide/Amorphous Carbon Composites," A.A. Voevodin et al, J Appl Phys 82(2) (Jul. 15, 1997) 855-8.
"Nanocrystalline Materials," H. Gleiter, in Progress In Materials Science 33:223-315 (1989), (month unknown).
"Nanocrystalline WC and WC/a-C Composite Coatings Produced from Intersected Plasma Fluxes at Low Deposition Temperatures," A.A. Voevodin et al, submitted to J Vac Sci Tech (1998), (month unknown).
"Superhard Nanocrystalline W2 W/amorphous Si3 N4 Composite Materials." S. Veprek et al, J Vac Sci Tech A 14(1):46-50 (Jan./Feb. 1966).
A Concept for the Design of Novel Superhard Coatings, S. Veprek et al, Thin Solid Films 268:64 71 (1995)), (Month Unknown). *
Ceramics Ductile at Low Temperatures, J. Karch et al., Nature 330:556 (Dec. 1987). *
Load adaptive Crystalline Amorphous Nanocomposites, A.A. Voevodin et al, J Mat Sci 33 (1998) 319 327, (Month Unknown). *
Nanocrystalline Carbide/Amorphous Carbon Composites, A.A. Voevodin et al, J Appl Phys 82(2) (Jul. 15, 1997) 855 8. *
Nanocrystalline Materials, H. Gleiter, in Progress In Materials Science 33:223 315 (1989), (month unknown). *
Nanocrystalline WC and WC/a C Composite Coatings Produced from Intersected Plasma Fluxes at Low Deposition Temperatures, A.A. Voevodin et al, submitted to J Vac Sci Tech (1998), (month unknown). *
Superhard Nanocrystalline W 2 W/amorphous Si 3 N 4 Composite Materials. S. Veprek et al, J Vac Sci Tech A 14(1):46 50 (Jan./Feb. 1966). *
Voevodin et al, "Combined magnetron sputtering and pulsed laser deposition of carbides and diamond-like carbon films," Appl. Phys. Lett., 69(2), pp. 188-190, Jul. 1996.
Voevodin et al, "Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti-C thin films," Thin Solid Films, 298(1,2), pp. 107-115, Apr. 1997.
Voevodin et al, "Nanocrystalline carbide/amorphous carbon composites," J. Appl. Phys., 82(2), pp. 855-858, Jul. 1997.
Voevodin et al, Combined magnetron sputtering and pulsed laser deposition of carbides and diamond like carbon films, Appl. Phys. Lett., 69(2), pp. 188 190, Jul. 1996. *
Voevodin et al, Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti C thin films, Thin Solid Films, 298(1,2), pp. 107 115, Apr. 1997. *
Voevodin et al, Nanocrystalline carbide/amorphous carbon composites, J. Appl. Phys., 82(2), pp. 855 858, Jul. 1997. *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6820676B2 (en) 1999-11-19 2004-11-23 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US9284637B2 (en) 1999-11-19 2016-03-15 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Implantable graft and methods of making same
US6599400B2 (en) * 2000-02-09 2003-07-29 Hauzer Techno Coating Europe Bv Method for the manufacture of coatings and an article
US6524755B2 (en) 2000-09-07 2003-02-25 Gray Scale Technologies, Inc. Phase-shift masks and methods of fabrication
US8641754B2 (en) 2000-11-07 2014-02-04 Advanced Bio Prosthetic Surfaces, Ltd. a wholly owned subsidiary of Palmaz Scientific, Inc. Endoluminal stent, self-supporting endoluminal graft and methods of making same
US20050126486A1 (en) * 2002-03-14 2005-06-16 Denis Teer Apparatus and method for applying diamond-like carbon coatings
US7323219B2 (en) * 2002-03-14 2008-01-29 Teer Coatings Ltd Apparatus and method for applying diamond-like carbon coatings
US7670646B2 (en) 2002-05-02 2010-03-02 Micron Technology, Inc. Methods for atomic-layer deposition
US10465274B2 (en) 2002-09-26 2019-11-05 Vactronix Scientific, Llc Implantable graft and methods of making same
US7704274B2 (en) 2002-09-26 2010-04-27 Advanced Bio Prothestic Surfaces, Ltd. Implantable graft and methods of making same
US8178471B2 (en) * 2003-01-31 2012-05-15 Japan Science And Technology Agency Hydrogen storage materials and process for the preparation of the same
US20060014638A1 (en) * 2003-01-31 2006-01-19 Eiji Iwamura Hydrogen storage materials and process for the preparation of the same
US7348286B2 (en) * 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
US20050101472A1 (en) * 2003-10-29 2005-05-12 Sumitomo Electric Industries, Ltd. Ceramic Composite Material and Method of Its Manufacture
US7749564B2 (en) * 2005-03-31 2010-07-06 Caterpillar Inc. Method and apparatus for the production of thin film coatings
US20060222772A1 (en) * 2005-03-31 2006-10-05 Bao Feng Method and apparatus for the production of thin film coatings
US8501563B2 (en) 2005-07-20 2013-08-06 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US8288818B2 (en) 2005-07-20 2012-10-16 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US8921914B2 (en) 2005-07-20 2014-12-30 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7575978B2 (en) 2005-08-04 2009-08-18 Micron Technology, Inc. Method for making conductive nanoparticle charge storage element
US8314456B2 (en) 2005-08-04 2012-11-20 Micron Technology, Inc. Apparatus including rhodium-based charge traps
US9496355B2 (en) 2005-08-04 2016-11-15 Micron Technology, Inc. Conductive nanoparticles
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US8367506B2 (en) 2007-06-04 2013-02-05 Micron Technology, Inc. High-k dielectrics with gold nano-particles
US9064866B2 (en) 2007-06-04 2015-06-23 Micro Technology, Inc. High-k dielectrics with gold nano-particles
US9475089B2 (en) 2008-04-01 2016-10-25 The United States Of America, As Represented By The Secretary Of The Air Force Method for durably bonding functional layers to surfaces
CN103160780A (en) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 Preparation method of multilayer nano-composite-class diamond films on surface of camshaft
US20160101974A1 (en) * 2014-05-20 2016-04-14 Uchicago Argonne, Llc Low-stress doped ultrananocrystalline diamond
US9475690B2 (en) * 2014-05-20 2016-10-25 Uchicago Argonne, Llc Low-stress doped ultrananocrystalline diamond
CN113873738A (en) * 2021-09-26 2021-12-31 中国工程物理研究院激光聚变研究中心 Self-supporting carbon-based capacitor target and preparation method thereof
CN113873738B (en) * 2021-09-26 2024-01-12 中国工程物理研究院激光聚变研究中心 Self-supporting carbon-based capacitor target and preparation method thereof

Similar Documents

Publication Publication Date Title
USH1924H (en) Load-adaptive nanocrystalline carbon/amorphous diamond-like carbon composite and preparation method
Voevodin et al. Combined magnetron sputtering and pulsed laser deposition of carbides and diamond‐like carbon films
Voevodin et al. Nanocrystalline WC and WC/a-C composite coatings produced from intersected plasma fluxes at low deposition temperatures
Voevodin et al. Nanocrystalline carbide/amorphous carbon composites
Voevodin et al. Pulsed laser deposition of diamond-like carbon wear protective coatings: a review
Voevodin et al. Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti–C thin films
US5897751A (en) Method of fabricating boron containing coatings
US5670252A (en) Boron containing multilayer coatings and method of fabrication
Vetter 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications
Stearns Stochastic model for thin film growth and erosion
USH1933H1 (en) Magnetron sputter-pulsed laser deposition system and method
Marechal et al. Silver thin films deposited by magnetron sputtering
Larhlimi et al. Magnetron sputtered titanium carbide-based coatings: A review of science and technology
EP0474369B1 (en) Diamond-like carbon coatings
Engström et al. Interdiffusion studies of single crystal TiN/NbN superlattice thin films
Falub et al. Interdependence between stress and texture in arc evaporated Ti–Al–N thin films
Windt Reduction of stress and roughness by reactive sputtering in W/B4C X-ray multilayer films
Misra et al. Effects of ion irradiation on the residual stresses in Cr thin films
Tang et al. TiC coatings prepared by pulsed laser deposition and magnetron sputtering
EP1135541B1 (en) Sliding member and manufacturing method therefor
US5370778A (en) Method for preparing basal oriented molybdenum disulfide (MoS2) thin films
Ding et al. Preferential orientation of titanium carbide films deposited by a filtered cathodic vacuum arc technique
Eizner et al. Deposition stages and applications of CAE multicomponent coatings
Bai et al. Effects of deposition parameters on microstructure of CrN/Si3N4 nanolayered coatings and their thermal stability
Perekrestov et al. Regularities of structure formation and physical properties of multilayered composites based on W, Ta, Нf, Ti, Mo, Сr, Al, and С

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES AIR FORCE, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VOEVODIN, ANDREY A.;PRASAD, SOMURI V.;REEL/FRAME:010520/0268;SIGNING DATES FROM 19990713 TO 19990715

STCF Information on status: patent grant

Free format text: PATENTED CASE