USRE24822E - Richard - Google Patents

Richard Download PDF

Info

Publication number
USRE24822E
USRE24822E US24822DE USRE24822E US RE24822 E USRE24822 E US RE24822E US 24822D E US24822D E US 24822DE US RE24822 E USRE24822 E US RE24822E
Authority
US
United States
Prior art keywords
bath
microorganisms
membrane
nutrient
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE24822E publication Critical patent/USRE24822E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/243Dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/28Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/068Tubular membrane modules with flexible membrane tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/14Rotation or movement of the cells support, e.g. rotated hollow fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis

Definitions

  • This invention relates to methods and apparatus for the propagation of photosynthetic microorganisms employing the principle of dialysis.
  • algae including Chlorella
  • Chlorella pyrenoidosa are among the more useful of these microorganisms to which the method and apparatus of the present invention have been applied thus far.
  • the microorganism bath is separated from its nutrient bath by a dialyzing membrane
  • replacement of nutrients to the microorganism bath is efiected on a continuous basis, facilitating the maintenance of the required nutrients and producing an optimum hydrogen ion concentration for the best growth conditions.
  • removal of the toxic ingredients from the microorganism bath becomes automatic, thus again contributing to the attainment of nearly ideal conditions.
  • cellophane Of the commercially available relatively inexpensive materials adapting itself to the present invention, various forms of cellophane have produced excellent results.
  • a material in its regenerated cellulose form for example, is semi-permeable, excluding bacteria, algae and other high molecular weight materials yet permitting the passage of the nutrient bath ingredients such as those listed on page 94 of the Carnegie Institution of Washington publication already mentioned.
  • This characteristic of semi-permeable or dialyzing membrances permits ordinary sewage to serve as the nutrient bath without endangering the sterility of the medium in which the microorganisms are carried.
  • Another great advantage of the cellophane type of material is its light transmitting characteristic permitting the access of natural or artificial light to the microorganism bath for periods of duration and frequency to produce the optimum growth conditions.
  • the method of the present invention relates to the propagation of photosynthetic microorganisms comprising exposing an aqueous bath containing such microorganisms to one surface of a dialyzing membrane, exposing a nutrient bath for the microorganisms to an opposed surface of the membrane and exposing the micro organisms to light. It is preferable to agitate the bath containing the microorganisms during the operation but in any event, movement relative to the membrane is preferably imparted to one of the baths and eminently satisfactory results have been obtained in this connection by imparting the relative movement to the bath containing the microorganisms and at the same time advancing this bath along the surface of the membrane.
  • the microorganisms in their bath are exposed to light and such exposure may be intermittent.
  • the introduction of carbon dioxide into one or both of the baths has produced excellent results even where the introduction of atmospheric air containing only a small proportion of carbon dioxide is employed.
  • the use of counterfiow for the microorganism and nutrient baths has indicated further advantages.
  • the method of the present invention is applicable to widely different types of photosynthetic microorganisms, its applicability to the green algae Chlorella pyrenoidosa promises startling results on a commercial scale.
  • the apparatus contemplated herein comprises a tubular dialyzing membrane having an inlet and an outlet for the passage of liquid and a receptacle receiving at least a portion of the membrane for its immersion in a second liquid.
  • the membrane preferably assumes the form of a substantially helical tube and agitation means is preferably provided to produce relative movement between the membrane and receptacle.
  • Fig. 1 is a diagrammatic representation of apparatus adapted for the practicing of the present invention
  • Fig. 2 is a fragmentary View depicting a modified form of tube
  • Fig. 3 is a sectional view taken along line 33 of Fig. 2.
  • one form of apparatus productive of highly satisfactory results includes a tank or receptacle 18 providing journals 12 rotatably supporting a drum 14 carrying at one of its ends, an internal gear 16 in mesh with a spur gear 18 whose shaft 20 rotates in a journal 22 also carried by the wall of the tank It), the outer end of the shaft 26 carrying a sprocket 24 driven by, a chain 26 which is in turn driven by a sprocket 28 on the shaft 30 of a motor 32.
  • Helically wound about the drum or cylinder 14 is a tube 34 having light transmitting properties and being semipermeable so as to constitute a dialyzing membrane permeable to the nutrient components required for the culture of such microorganisms as those contemplated hereinand impermeable of course, to the microorganisms themselves.
  • the inlet end of the Cellophane or other dialyzing membrane tube extends through one of the shafts 36 of the drum, the outlet endpassing through a similar shaft 38, both of which shafts will be provided with rotary joints, not shown, to permit the introduction and discharge of the aqueous bath relative to the tube without leakage.
  • the tank 10 will receive an aqueous bath containing the nutrient materials, depicted as having a level 40 determined by the adjusted position of an overflow pipe 42 penetrating a wall of the tank 10.
  • the nutrient solution can be introduced by directing it into the tank by means of a supply pipe 44 and a tube 46 connected therewith and/ or through a branch line 48 provided with spray heads 50.
  • the nutrient bath can be introduced through either or both of the branch lines.
  • nutrient materials will be supplied to the dialyzing membranous tube, and therefore the microorganism bath, even when there is no immersion. It will be understood of course, that the two baths can be interchanged so that if desired, the nutrient bath could be directed through the dialyzing membranous tube while the microorganism bath could be introduced to the outer surface thereof.
  • Rotation of the drum 14 by means of the motor 32 will produce agitation of both the bath within the tube 34 and that within the tank and if the tube is not completely filled with liquid, it will be advanced in the desired direction through the tube by proper rotation of the drum.
  • the liquid flowing through the tube can be advanced by the use of differential pressures by means of a pressure head or pumping apparatus, not shown.
  • Any number of components such as that shown in Fig. 1 of the drawing can be connected in series by suitable couplings of conventional types to produce an optimum length of growing cycle.
  • the rate of rotation of the drum can assume a value most consistent with the results desired and even a variable rate can be produced in order to modify the time cycle and/or the light application cycle.
  • the apparatus depicted in Figs. 2 and 3 contemplates the use of a plurality of cells 6t), 62, 64, 66, 68 and 70 separated one from the next by means of a dialyzing membrane 72.
  • the microorganism bath is introduced into the cell 60 through an inlet pipe 74, it will flow through a connector 76 to the cell 64, through another connector 78 to the cell 68 from which it will be discharged through a tubular outlet 80.
  • the nutrient bath will be introduced in countercurrent flow into the cell 70 through an inlet tube 82, through a connector 84 to the cell 66, through a connector 86 to the cell 62 and through a discharge tube 88 for disposal or recirculation in a suitable manner.
  • sewage is used as the nutrient bath, it can be processed by the conventional methods and then introduced into an appa ratus of the type contemplated herein resulting not only in the utilization of its nutrient content while excluding any of its contaminants from the microorganism bath but in oxygenation of the sewage itself which is very advantageous in the preservation of marine life.
  • Temperature conditions can be controlled readily by applying elevated or reduced temperatures to the nutrient bath for example, or by selecting a source of water for such bath as will produce the desired temperature conditions of the microorganism bath by heat exchange principles.
  • the bath containing the microorganisms will be withdrawn and the Chlorella pyrenoidosa or other end products will be separated by means of a centrifuge or other appropriate methods for use as food, animal feed and other purposes for which such end products are suitable.
  • a method of propagating photosynthetic microorganisms comprising exposing an aqueous bath containing microorganisms to one surface of a dialyzing membrane, exposing a nutrient bath for said microorganisms to an opposed surface of said membrane, and exposing said microorganisms to light.
  • microorganisms are algae.
  • microorganisms are Chlorella.
  • microorganisms are Chlorella pyrenoidosa.
  • dialyzing membrane is a light transmitting tube serving as a conductor for one of said baths.
  • Apparatus for the propagation of photosynthetic microorganisms comprising a dialyzing membrane in the form of a substantially helical tube having an inlet and an outlet for the passage of liquid therethrough, and a receptacle receiving at least a portion of said membrane for immersion thereof in a second liquid.
  • a method of propagating photosynthetic microorganisms comprising the steps of: continuously forming a fine dispersion of at least a portion of said culture in the presence of light; exposing said dispersion to one surface of a dialyzing membrane; and exposing a nutrient bath for said microorganisms to an opposed surface of said membrane.
  • a method of propagating photosynthetic microorganisms comprising the steps of: withdrawing at least a portion of an aqueous bath containing microorganisms; dispersing said portion in the form of fine particles into an atmosphere containing oxygen and carbon dioxide in the presence of light; returning the light treated particles in the form of fine films of liquid medium to one surface of a dialyzing membrane; exposing a nutrient bath for said microorganisms to an opposed surface of said membrane; and continuously repeating the operation until a desired, predetermined density of algae cells is obtained.
  • a method of propagating photosynthetic microorganisms comprising exposing an aqueous bath containing microorganisms to one surface of a dialyzing membrane, exposing a nutrient bath for said microorganisms to an opposed surface of said membrane, and exposing said microorganisms to a cycle of higher and lower intensities of light.

Description

y 1960 A. J. PALLOTTA ETAL Re. 24,822
MICROORGANISM CULTURE METHOD AND APPARATUS Original Filed June 22, 1954 INVENTOR ARTHUR d PALL07TA DOMLD F 506LWV5K I RIC/MRO Q ThDMAS ATTORNEYS United States Patent Ofiice Re. 24,822 Reissued May 3, 1960 MJCROORGANISM CULTURE METHOD AND APPARATUS Original No. 2,715,795, dated August 23, 1955, Serial No. 438,384, June 22, 1954. Application for reissue March 11, 1959, Serial No. 798,796
25 Claims. CI. 47-58 Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This invention relates to methods and apparatus for the propagation of photosynthetic microorganisms employing the principle of dialysis.
Among the photosynthetic microorganisms contemplated are algae, including Chlorella, and Chlorella pyrenoidosa are among the more useful of these microorganisms to which the method and apparatus of the present invention have been applied thus far.
The general subject with which the present invention concerns itself is rather exhaustively treated in a publication of the Carnegie Institute of Washington, Publication 600, entitled Algal Culture: From Laboratory to Pilot Plant, edited by John S. Burlew, published July 15, 1953. According to that publication, the conventional method and apparatus for the culture of such microorganisms contemplates the addition of nutrients to an aqueous bath containing the microorganisms as a batch operation based upon periodic analyses to determine which of the nutrients requires replacementand in what proportions. With such procedures, it is very diflicult if nct'impossible to maintain conditions that will assure optimum growth of the microorganisms undergoing the culture.
By way of contrast, in accordance with the present invention, where the microorganism bath is separated from its nutrient bath by a dialyzing membrane, replacement of nutrients to the microorganism bath is efiected on a continuous basis, facilitating the maintenance of the required nutrients and producing an optimum hydrogen ion concentration for the best growth conditions. Moreover, by the use of such a dialyzing membrane, removal of the toxic ingredients from the microorganism bath becomes automatic, thus again contributing to the attainment of nearly ideal conditions.
Of the commercially available relatively inexpensive materials adapting itself to the present invention, various forms of cellophane have produced excellent results. Such a material, in its regenerated cellulose form for example, is semi-permeable, excluding bacteria, algae and other high molecular weight materials yet permitting the passage of the nutrient bath ingredients such as those listed on page 94 of the Carnegie Institution of Washington publication already mentioned. This characteristic of semi-permeable or dialyzing membrances permits ordinary sewage to serve as the nutrient bath without endangering the sterility of the medium in which the microorganisms are carried. Another great advantage of the cellophane type of material is its light transmitting characteristic permitting the access of natural or artificial light to the microorganism bath for periods of duration and frequency to produce the optimum growth conditions.
The method of the present invention relates to the propagation of photosynthetic microorganisms comprising exposing an aqueous bath containing such microorganisms to one surface of a dialyzing membrane, exposing a nutrient bath for the microorganisms to an opposed surface of the membrane and exposing the micro organisms to light. It is preferable to agitate the bath containing the microorganisms during the operation but in any event, movement relative to the membrane is preferably imparted to one of the baths and eminently satisfactory results have been obtained in this connection by imparting the relative movement to the bath containing the microorganisms and at the same time advancing this bath along the surface of the membrane.
Highly desirable results have been achieved through the use of the membrane in tubular form and advancing one of the baths therethrough in a substantially helical path.
Under any conditions, the microorganisms in their bath are exposed to light and such exposure may be intermittent. The introduction of carbon dioxide into one or both of the baths has produced excellent results even where the introduction of atmospheric air containing only a small proportion of carbon dioxide is employed. The use of counterfiow for the microorganism and nutrient baths has indicated further advantages. Although the method of the present invention is applicable to widely different types of photosynthetic microorganisms, its applicability to the green algae Chlorella pyrenoidosa promises startling results on a commercial scale.
The apparatus contemplated herein comprises a tubular dialyzing membrane having an inlet and an outlet for the passage of liquid and a receptacle receiving at least a portion of the membrane for its immersion in a second liquid. The membrane preferably assumes the form of a substantially helical tube and agitation means is preferably provided to produce relative movement between the membrane and receptacle.
A more complete understanding of the invention will follow from a more detailed description in conjunction with the accompanying drawing wherein:
Fig. 1 is a diagrammatic representation of apparatus adapted for the practicing of the present invention;
Fig. 2 is a fragmentary View depicting a modified form of tube; and
Fig. 3 is a sectional view taken along line 33 of Fig. 2.
With reference to the drawing, one form of apparatus productive of highly satisfactory results includes a tank or receptacle 18 providing journals 12 rotatably supporting a drum 14 carrying at one of its ends, an internal gear 16 in mesh with a spur gear 18 whose shaft 20 rotates in a journal 22 also carried by the wall of the tank It), the outer end of the shaft 26 carrying a sprocket 24 driven by, a chain 26 which is in turn driven by a sprocket 28 on the shaft 30 of a motor 32.
Helically wound about the drum or cylinder 14 is a tube 34 having light transmitting properties and being semipermeable so as to constitute a dialyzing membrane permeable to the nutrient components required for the culture of such microorganisms as those contemplated hereinand impermeable of course, to the microorganisms themselves. The inlet end of the Cellophane or other dialyzing membrane tube extends through one of the shafts 36 of the drum, the outlet endpassing through a similar shaft 38, both of which shafts will be provided with rotary joints, not shown, to permit the introduction and discharge of the aqueous bath relative to the tube without leakage.
Assuming that the microorganism bath. is introduced through the shaft 36, tube 34 and shaft 38, then the tank 10 will receive an aqueous bath containing the nutrient materials, depicted as having a level 40 determined by the adjusted position of an overflow pipe 42 penetrating a wall of the tank 10. The nutrient solution can be introduced by directing it into the tank by means of a supply pipe 44 and a tube 46 connected therewith and/ or through a branch line 48 provided with spray heads 50.
By the manipulation of valves 52, 54 and 56 arranged in these lines respectively, the nutrient bath can be introduced through either or both of the branch lines. Where the spray heads are used, nutrient materials will be supplied to the dialyzing membranous tube, and therefore the microorganism bath, even when there is no immersion. It will be understood of course, that the two baths can be interchanged so that if desired, the nutrient bath could be directed through the dialyzing membranous tube while the microorganism bath could be introduced to the outer surface thereof.
Rotation of the drum 14 by means of the motor 32 will produce agitation of both the bath within the tube 34 and that within the tank and if the tube is not completely filled with liquid, it will be advanced in the desired direction through the tube by proper rotation of the drum. Of course, the liquid flowing through the tube can be advanced by the use of differential pressures by means of a pressure head or pumping apparatus, not shown.
Any number of components such as that shown in Fig. 1 of the drawing can be connected in series by suitable couplings of conventional types to produce an optimum length of growing cycle. The rate of rotation of the drum can assume a value most consistent with the results desired and even a variable rate can be produced in order to modify the time cycle and/or the light application cycle.
The apparatus depicted in Figs. 2 and 3 contemplates the use of a plurality of cells 6t), 62, 64, 66, 68 and 70 separated one from the next by means of a dialyzing membrane 72. Assuming that the microorganism bath is introduced into the cell 60 through an inlet pipe 74, it will flow through a connector 76 to the cell 64, through another connector 78 to the cell 68 from which it will be discharged through a tubular outlet 80. Similarly, the nutrient bath will be introduced in countercurrent flow into the cell 70 through an inlet tube 82, through a connector 84 to the cell 66, through a connector 86 to the cell 62 and through a discharge tube 88 for disposal or recirculation in a suitable manner. Where sewage is used as the nutrient bath, it can be processed by the conventional methods and then introduced into an appa ratus of the type contemplated herein resulting not only in the utilization of its nutrient content while excluding any of its contaminants from the microorganism bath but in oxygenation of the sewage itself which is very advantageous in the preservation of marine life.
The light and dark cycles which have been found to be desirable as described in the publication of the Carnegie Institution will occur naturally where a drum is rotated in the manner described with reference to Fig. 1 since the microorganisms submerged in the tank carried bath will be obscured from the light and of course the light itself can be terminated for prescribed periods necessary to achieve the best results.
Temperature conditions can be controlled readily by applying elevated or reduced temperatures to the nutrient bath for example, or by selecting a source of water for such bath as will produce the desired temperature conditions of the microorganism bath by heat exchange principles.
A most outstanding result achieved in the culture of Chlorella pyrenoidosa by the use of dialysis as described herein is the greatly increased yield over previously known methods.
Where natural sunlight is employed, considerable variation will be experienced. This variation can be cornpensated by modifying the length of tubing through which the microorganism bath passes as by changing the number of units of the type depicted in Fig. l or 2 to increase or decrease the length of the path traversed.
At the discharge end of the apparatus, the bath containing the microorganisms will be withdrawn and the Chlorella pyrenoidosa or other end products will be separated by means of a centrifuge or other appropriate methods for use as food, animal feed and other purposes for which such end products are suitable.
Whereas the invention has been described with reference to only two specific forms of apparatus, these examples should not be construed as limiting nor should the specific aspects of the methods described be construed as limiting beyond the scope of the appended claims.
We claim:
l. A method of propagating photosynthetic microorganisms comprising exposing an aqueous bath containing microorganisms to one surface of a dialyzing membrane, exposing a nutrient bath for said microorganisms to an opposed surface of said membrane, and exposing said microorganisms to light.
2. A method as set forth in claim 1 wherein the bath containing said microorganisms is agitated.
3. A method as set forth in claim 1 wherein movement relative to said membrane is imparted to one of said baths.
4. A method as set forth in claim 1 wherein movement relative to said membrane is imparted to said microorganism containing bath.
5. A method as set forth in claim 1 wherein said microorganism containing bath is advanced along the surface of said membrane.
6. A method as set forth in claim 1 wherein said membrane is tubular and one of said baths flows therethrough.
7. A method as set forth in claim 1 wherein one of said baths is advanced along a substantially helical path.
8. A method as set forth in claim 1 wherein said microorganisms are exposed to light intermittently.
9. A method as set forth in claim 1 wherein at least one of said baths is aerated.
10. A method as set forth in claim 1 wherein carbon dioxide is introduced into at least one of said baths.
11. A method as set forth in claim 1 wherein said baths are advanced in opposite directions relative to said membrane.
12. A method as set forth in claim 1 wherein said microorganisms are algae.
13. A method as set forth in claim 1 wherein said microorganisms are Chlorella.
14. A method as set forth in claim 1 wherein said microorganisms are Chlorella pyrenoidosa.
15. A method as set forth in claim 1 wherein said dialyzing membrane is a light transmitting tube serving as a conductor for one of said baths.
16. A method as set forth in claim 1 wherein the diffusion of nutrients from said nutrient bath to said microorganism bath is regulated by said membrane to maintain a substantially constant concentration of nutrients in said microorganism bath.
17. A method as set forth in claim 1 wherein said microorganisms are exposed to light continuously.
18. Apparatus for the propagation of photosynthetic microorganisms comprising a dialyzing membrane in the form of a substantially helical tube having an inlet and an outlet for the passage of liquid therethrough, and a receptacle receiving at least a portion of said membrane for immersion thereof in a second liquid.
19. Apparatus as set forth in claim 18 wherein said membrane in the form of a substantially helical tube is supported on a rotatable drum.
20. Apparatus as set forth in claim 18 wherein agitation means produces relative movement between said membrane and receptacle.
21. A method of propagating photosynthetic microorganisms comprising the steps of: continuously forming a fine dispersion of at least a portion of said culture in the presence of light; exposing said dispersion to one surface of a dialyzing membrane; and exposing a nutrient bath for said microorganisms to an opposed surface of said membrane.
22. A method of propagating photosynthetic microorganisms comprising the steps of: withdrawing at least a portion of an aqueous bath containing microorganisms; dispersing said portion in the form of fine particles into an atmosphere containing oxygen and carbon dioxide in the presence of light; returning the light treated particles in the form of fine films of liquid medium to one surface of a dialyzing membrane; exposing a nutrient bath for said microorganisms to an opposed surface of said membrane; and continuously repeating the operation until a desired, predetermined density of algae cells is obtained.
23. The process of claim 22 wherein the forming of the fine dispersion portion of the aqueous bath containing microorganisms is obtained by intermittent spraying of the same.
24. The process of claim 22 which includes the step of continuously feeding and bleeding liquid medium and product respectively to provide for continuous large scale operation.
25. A method of propagating photosynthetic microorganisms comprising exposing an aqueous bath containing microorganisms to one surface of a dialyzing membrane, exposing a nutrient bath for said microorganisms to an opposed surface of said membrane, and exposing said microorganisms to a cycle of higher and lower intensities of light.
References Cited in the file of this patent or the original rpatent UNITED STATES PATENTS Livingston Plant World, vol. 11, No. 2, pp. 39-40 (February 1908).
Livington, Plant World, vol. 11, No. 8, pp. 183-184 (August 1908).
US24822D Richard Expired USRE24822E (en)

Publications (1)

Publication Number Publication Date
USRE24822E true USRE24822E (en) 1960-05-03

Family

ID=2093227

Family Applications (1)

Application Number Title Priority Date Filing Date
US24822D Expired USRE24822E (en) Richard

Country Status (1)

Country Link
US (1) USRE24822E (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422008A (en) * 1963-10-24 1969-01-14 Dow Chemical Co Wound hollow fiber permeability apparatus and process of making the same
US5133932A (en) * 1988-03-29 1992-07-28 Iatros Limited Blood processing apparatus
US5556765A (en) * 1994-02-18 1996-09-17 Dedolph; Richard R. Reactor using tubular spiroids for gas/liquid propulsion
US6720178B1 (en) * 2000-06-29 2004-04-13 University Of Louisville Research Foundation, Inc. Self-feeding roller bottle
US20080254529A1 (en) * 2007-04-13 2008-10-16 Freeman Howard G Biomass cultivation system and corresponding method of operation
US7578933B1 (en) * 2005-12-16 2009-08-25 Benjamin B. Selman Biological filter for aquatic ecosystems
US9388372B2 (en) 2014-11-07 2016-07-12 Tristan Victor Wilson Bioreactor using macroalgae
US20220022393A1 (en) * 2019-04-19 2022-01-27 Nichiman Co., Ltd. Alga growing apparatus and alga growing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422008A (en) * 1963-10-24 1969-01-14 Dow Chemical Co Wound hollow fiber permeability apparatus and process of making the same
US5133932A (en) * 1988-03-29 1992-07-28 Iatros Limited Blood processing apparatus
US5556765A (en) * 1994-02-18 1996-09-17 Dedolph; Richard R. Reactor using tubular spiroids for gas/liquid propulsion
US6720178B1 (en) * 2000-06-29 2004-04-13 University Of Louisville Research Foundation, Inc. Self-feeding roller bottle
US7578933B1 (en) * 2005-12-16 2009-08-25 Benjamin B. Selman Biological filter for aquatic ecosystems
US20080254529A1 (en) * 2007-04-13 2008-10-16 Freeman Howard G Biomass cultivation system and corresponding method of operation
US8062880B2 (en) 2007-04-13 2011-11-22 Freeman Energy Corporation Biomass cultivation system and corresponding method of operation
US9388372B2 (en) 2014-11-07 2016-07-12 Tristan Victor Wilson Bioreactor using macroalgae
US9695389B2 (en) 2014-11-07 2017-07-04 Tristan Victor Wilson Bioreactor using a macroalgae
US9949451B2 (en) 2014-11-07 2018-04-24 Tristan Victor Wilson Bioreactor using macroalgae
US20220022393A1 (en) * 2019-04-19 2022-01-27 Nichiman Co., Ltd. Alga growing apparatus and alga growing method
US11758860B2 (en) * 2019-04-19 2023-09-19 Nichiman Co., Ltd. Alga growing apparatus and alga growing method

Similar Documents

Publication Publication Date Title
US2715795A (en) Microorganism culture method and apparatus
EP0052252B1 (en) Method and apparatus for the submerged culture of cell cultures
Chaumont Biotechnology of algal biomass production: a review of systems for outdoor mass culture
US20020034817A1 (en) Process and apparatus for isolating and continuosly cultivating, harvesting, and processing of a substantially pure form of a desired species of algae
CN111248139B (en) Culture device and method for high-density rotifers
JPH04500032A (en) Water purification systems and equipment
USRE24822E (en) Richard
US20150173398A9 (en) Method for using vinasse
CN109548720A (en) The compound shrimp ecosystem cultivated based on heterotopic biological floc sedimentation and nitrified in situ
GB1291991A (en) Improvements in or relating to methods of culturing shrimp artificially
CN104221946A (en) Closed type aquaculture larval rearing system
JP7406776B1 (en) aquaponics system
EP2751255B1 (en) Method and device for feeding gases or gas mixtures into a liquid, suspension, or emulsion in a photobioreactor in a specific manner
US3439449A (en) Apparatus and method for culturing and propagating marine algae
CN209383617U (en) A kind of cultivation tail water three-level filter system
JP5324532B2 (en) Circulating photobioreactor
CN217470937U (en) Continuous algae culture device
DE102019003798A1 (en) Method and device for introducing carbon dioxide into photobioreactors
CA1170596A (en) Algae growth system with dializying fibers
DE102008049120A1 (en) Method for reducing deposits in the cultivation of organisms
CN204634758U (en) A kind of fresh water seed semi-aerobic landfill system
AU5231798A (en) Culture of micro-organisms
FR2576034A1 (en) Process and device for the production of carbohydrate raw materials by photosynthesis
CH525959A (en) Vaccine/virus prodn appts - in which animal tissue cells are sown on carrier body surfaces
EP3757201A1 (en) Bioreactor and method for treating at least one fluid and/or cultivating phototrophic organisms