USRE28680E - Apertured nonwoven fabrics and methods of making the same - Google Patents

Apertured nonwoven fabrics and methods of making the same Download PDF

Info

Publication number
USRE28680E
USRE28680E US05/478,664 US47866474A USRE28680E US RE28680 E USRE28680 E US RE28680E US 47866474 A US47866474 A US 47866474A US RE28680 E USRE28680 E US RE28680E
Authority
US
United States
Prior art keywords
fibers
water
heat
polyvinyl alcohol
insensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/478,664
Inventor
Carlyle Harmon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson
Original Assignee
Johnson and Johnson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson filed Critical Johnson and Johnson
Priority to US05/478,664 priority Critical patent/USRE28680E/en
Application granted granted Critical
Publication of USRE28680E publication Critical patent/USRE28680E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/12Aldehydes; Ketones
    • D06M13/127Mono-aldehydes, e.g. formaldehyde; Monoketones
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres

Definitions

  • This invention relates to apertured nonwoven fabrics having a predetermined pattern of fabric apertures and fiber bundles comprising polyvinyl alcohol fibers, and to methods of making the same.
  • Polyvinyl alcohol fibers are obtainable, for example, by dry or wet extruding or spinning from their aqueous solutions and, by definition, are composed of at least about 50 percent by weight of vinyl alcohol units (--CH 2 --CHOH--) n and in which the total of the vinyl alcohol units and any one or more of the various acetal units is at least about 85% by weight of the fiber.
  • polyvinyl alcohol is usually prepared by polymerization of vinyl acetate into polyvinyl acetate, followed by conversion by alcoholysis, hydrolysis, saponification, or the like, to polyvinyl alcohol.
  • Polyvinyl alcohol fibers are naturally strong and abrasion resistant and have high resistance to chemicals, including acids and alkalis. Resistance to fungi, mildew, and insects is good. Polyvinyl alcohol fibers, can be manufactured at relatively low cost and have many excellent physical and chemical properties and characteristics. Unfortunately, however, such fibers, as they are originally produced, have an undesirable sensitivity to heat and water, and particularly to hot water. Specifically, if they are immersed in water at room temperature, they shrink by more than about 10%, and, if they are immersed in hot water at a temperature of about 65° C., they become soluble and dissolve.
  • the freshly spun polyvinyl alcohol fibers have been subjected to heat treatments, usually in the range of from about 200° C. to about 250° C. whereby their wet-softening temperature, that is, by definition, the temperature at which the fibers shrink 10% of their original length, can be raised to a range of from about 60° C. to about 100°C.
  • their wet-softening temperature that is, by definition, the temperature at which the fibers shrink 10% of their original length
  • the heat-treated fibers are further subjected to an insolubilizing or a cross-linking operation by treatment with aldehydes, such as an acetalization by means of formaldehydes, their wet softening temperature can be raised to a value in excess of about 150° C. Additionally, they become less water sensitive and they do not dissolve in water at such temperature. .Iadd.
  • the wet softening temperature always be raised to a value in excess of about 150° C., provided the fibers are capable of meeting the previously-mentioned standard of not being essentially water-soluble and not dissolving in hot water at a temperature of about 110° C. .Iaddend.
  • apertured nonwoven textile fabrics having a predetermined pattern of fabric apertures and fiber bundles can be successfully made from polyvinyl alcohol fibers by the fluid processing techniques of the above-described patent if such fibers possess specific chemical and physical properties and characteristics which can be built into them by selective manufacturing and processing techniques. These specific chemical and physical properties and characteristics which are necessary require that the fibers have an average degree of acetalization of from about 20 mol percent to about 35 mol percent whereby they develop the necessary balance of hydrophobic-hydrophilic properties and are sufficiently heat-insensitive and water-insoluble as to be capable of controlled movement and manipulation by the applied fluid forces used in the processes of said patent.
  • the heat-insensitive and water-insoluble fibers are to be given a crimping treatment whereby from about six crimps to about 16 crimps are formed in the fibers and they are thus rendered more amenable to the formation of fibrous webs which are cohesive, do not split, and are well adapted for fluid processing into apertured nonwoven textile fabrics by applied fluid forces.
  • Such other insolubilizing or acetalizing agents include other aldehydes, both aliphatic and aromatic, such as acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, isovaleraldehyde, n-caproaldehyde, n-heptaldehyde, stearaldehyde, acrolein, crotonaldehyde, benzaldehyde, furfural, naphthaldehyde, etc.
  • Substituted aldehydes are also of use and include chloroacetaldehyde, bromoacetaldehyde, chlorobenzaldehyde, nitro-benzaldehyde, hexahydrobenzaldehyde, etc.
  • Aminoaldehydes are also of use and include aminoacetaldehyde, beta-amino-propionaldehyde, beta-amino-butyraldehyde, the isomeric amino valeraldehydes, cyclohexylaminoacetaldehyde, beta-(amino-ethoxy) acetaldehyde, N-methyl-amino-acetaldehyde, N-ethyl-amino-acetaldehyde, N-methyl-amino-propionaldehyde, beta-N-methyl-amino-butyraldehyde, etc.
  • Dialdehydes which are bi-functional, similarly, are of use and include glyoxal, succinaldehyde, malonaldehyde, glutaraldehyde, terephthal-aldehyde, etc.
  • the average degree of acetalization or the mol percent of hydroxy groups which are reacted with the selected aldehyde is in the range of from about 20 mol percent to about 35 mol percent.
  • polyvinyl alcohol fibers When the polyvinyl alcohol fibers have an average degree of acetalization of from about 20 mol percent to about 35 mol percent, they develop the necessary balance of hydrophobic-hydrophilic properties and are sufficient heat-insensitive and water-insoluble, as to be capable of controlled movement and manipulation by the applied fluid forces which are employed in the process described in the patent to rearrange the individual fibers into a predetermined pattern of fabric apertures and fiber bundles.
  • crimps are formed in the fibers, preferably subsequent to the heat treatment and insolubilizing step and, of course, prior to the formation of the fibrous web.
  • the number of crimps per inch of fiber will vary according to the denier and length of the fiber, upon the nature, shape and amplitude of the crimp itself, and other related factors. From about six crimps per inch to about 16 or more crimps per inch is satisfactory, with a preferred commercial range extending from about eight crimps per inch to about 12 crimps per inch.
  • crimps may be obtained in many ways, such as, for example, mechanically, as by passage of the fibers through intermeshing heated gears.
  • the particular nature, shape, and amplitude of the crimps is controlled by the nature and shape of the teeth or intermeshing elements, of the heated intermeshing gears and by the depth to which these gears intermesh.
  • Other crimping techniques may, of course, be utilized.
  • inventive concept is also applicable to other types of starting fibrous materials.
  • One such type is the so-called “isotropic" web formed by air-laying techniques in which the fibers are disposed at random and are not oriented in any particular direction.
  • Still another aspect of the present invention is its application to fibrous webs made basically by conventional or modified papermaking techniques. Such fibrous webs are also not oriented but are basically "isotropic" and generally have like properties in all directions.
  • fibrous webs normally comprise individualized overlapping and intersecting fibers and, in the case of the carded or oriented fibrous webs, have an average length of from about 1/2 inch to about 21/2 inches or more. This range is, of course, most desirable and in most respects necessary when the starting fibrous materials are carded or oriented webs.
  • the starting fibrous materials are "isotropic" webs derived from air-laying techniques or from conventional or modified papermaking techniques
  • shorter lengths of fibers may be employed provided they are of sufficient length to be handled in the subsequent fluid rearranging process.
  • fiber lengths down to about 1/4 inch are capable of use, with shorter lengths of use by means of special handling techniques.
  • Fibers of a natural, synthetic or man-made base or origin may be used in various proportions and various blends to partially replace the polyvinyl alcohol fibers.
  • Such other fibers include cellulosic fibers such as cotton or rayon; polyamide fibers notably nylon 6 and nylon 6/6; polyester fibers such as “Dacron,” “Fortrel,” and “Kodel;” acrylic fibers such as “Acrilan,” “Orlon,” and “Creslan;” modacrylic fibers such as “Verel” and “Dynel;” polyolefinic fibers derived from polyethylene and polypropylene; cellulose ester fibers such as "Arnel” and "Acele,” etc.
  • the denier of the synthetic fibers used in applying the principles of the present inventive concept may be selected from a relatively wide range of sizes.
  • a denier range of from about 1 to about 3 is generally preferred for conventional commercial purposes, although for special purposes, deniers as low as 1/2 or as high as 5, 10, 15 or even more find utility in special cases.
  • a carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde.
  • the fibers have the following properties and characteristics:
  • the carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 which issued Dec. 2, 1958.
  • a rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings, however, is not well defined and is not commercially acceptable. It is believed that such unsatisfactory formation is due to the hydrophilicity of the fibers.
  • a materials balance determination of the weight of the product before rearranging and after rearranging indicates a substantial and commercially uneconomical loss of fiber weight during the rearranging process. Additionally, there is considerable evidence of autogenous bonding between the individual fibers, created presumably by the softening and adhering of such fibers as a result of the fluid rearranging process. Such bonding leads to undesirable loss of softness, hand, and drape.
  • the rearranged nonwoven fabric is economically and commercially unsatisfactory and unacceptable to industry.
  • a carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde.
  • the fibers have the following properties and characteristics:
  • the carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 which issued Dec. 2, 1958.
  • a rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings is well defined and is commercially acceptable. The materials balance determination of the weight of the product before rearranging and after rearranging is satisfactory and within commercially acceptable limits. There is substantially no evidence of autogenous bonding between the individual fibers.
  • the nonwoven fabric has a high degree of softness, hand, and drape.
  • the rearranged nonwoven fabric is economically and commercially satisfactory and acceptable to industry.
  • Example II The procedures of Example II are followed substantially as set forth therein with the exception that the polyvinyl alcohol fibers are not crimped.
  • Fibrous lap and web formation is produced only with extreme difficulty because of lack of crimp and cohesiveness of the fibers.
  • the fibrous laps and webs also split very badly when they are carded.
  • Example II The procedures of Example II are repeated substantially as set forth therein with the exception that the polyvinyl alcohol fibers have a degree of formalization of about 20.2%.
  • the moisture regain of such fibers is about 10% at a temperature of 40° C. and a relative humidity of 90%.
  • a carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde.
  • the fibers have the following properties and characteristics:
  • the carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 issued Dec. 2, 1958.
  • a rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings is well defined and is commercially acceptable. The materials balance determination of the weight of the product before rearranging and after rearranging is satisfactory and within commercially acceptable limits. There is substantially no evidence of autogenous bonding between the individual fibers.
  • the nonwoven fabric has a high degree of softness, hand, and drape.
  • the rearranged nonwoven fabric is economically and commercially satisfactory and acceptable to industry.
  • Example III The procedures of Example III are followed substantially as set forth therein with the exception that the polyvinyl alcohol fibers are not crimped.
  • Fibrous lap and web formation is produced only with extreme difficulty because of lack of crimp and cohesiveness of the fibers.
  • the fibrous laps and webs also split very badly when they are carded.
  • Example III The procedures of Example III are followed substantially as set forth therein with the exception that the polyvinyl alcohol fibers have a degree of formalization of about 32.2%. The moisture regain of such fibers is about 71/2% at a temperature of 40° C. and a relative humidity of 90%.
  • a carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde.
  • the fibers have the following properties and characteristics:
  • the carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 issued Dec. 2, 1958.
  • a rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings, however, is not well defined and is marginal but not commercially acceptable. It is believed that such satisfactory formation is due to the increased hydrophobicity of the fibers. The resulting appearance of the rearranged nonwoven fabric is not pleasing.
  • the rearranged nonwoven fabric is marginal but commercially unsatisfactory and unacceptable to industry.
  • a carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde.
  • the fibers have the following properties and characteristics:
  • the carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 issued Dec. 2, 1958.
  • a rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings, however, is not well defined and is not commercially acceptable. It is believed that such unsatisfactory formation is due to the increased hydrophobicity of the fibers. The resulting appearance of the rearranged nonwoven fabric is not pleasing.
  • the rearranged nonwoven fabric is commercially unsatisfactory and unacceptable to industry.
  • Polyvinyl alcohol fibers are treated with a conventional heat treatment at elevated temperatures and an insolubilizing step with formaldehyde to raise their wet-softening temperature and make them heat insensitive at a temperature of 150° C. (less than 10% shrinkage) and give them an average degree of acetalization of about 35 mol percent.
  • a card web is prepared weighing 442 grams per square yard and comprising such heat-insensitive, water-insoluble polyvinyl alcohol fibers having a denier of 21/2, a staple length of 38 mm. (11/2 inch), and 8 crimps per inch.
  • the polyvinyl alcohol fibers have a moisture regain of 7.8% at a temperature of 40° C. and a relative humidity of 90%.
  • This fibrous card web is exposed to fluid rearranging techniques in the apparatus illustrated in FIGS. 7-12 of U.S. Pat. No. 2,862,251 and the fibers are rearranged into a predetermined pattern of fabric apertures and fiber bundles.
  • the apertured nonwoven textile fabric is bonded with National Starch NS4260, a non-ionic, cross-linking acrylic resin.
  • the final weight of the bonded nonwoven textile fabric, after drying and curing, is 532 grains per square yard.
  • nonwoven textile fabric made of polyvinyl alcohol fibers is exceptionally strong in both the machine direction and cross direction, both in the dry and wet conditions.
  • the softness of the nonwoven textile fabric is excellent. Its absorbency rate and absorbent capacity is very good. Its elongation and its bulk are comparable to similar products made of rayon fibers.
  • the product is of use as a facing for absorbent products such as diapers. In a lighter weight, it is of use as a facing for sanitary napkins.
  • Example VI The procedure of Example VI are followed substantially as set forth therein with the exception that the polyvinyl alcohol fibers have a denier of 1.4, rather than 21/2. The results are generally comparable.
  • Example VI The procedures of Example VI are followed substantially as set forth therein with the exception that the acetalization with formaldehyde is carried out to a much higher degree.
  • the average degree of acetalization of the polyvinyl alcohol fibers is approximately 70 mol percent.
  • the moisture regain of such fibers is low and is less than 6% at 40° C. and a relative humidity of 90%.
  • Such fibers tend to exhibit a greater degree of hydrophobicity and do not respond satisfactorily to applied fluid forces exerted during the fluid rearranging techniques disclosed in FIGS. 7-12 of U.S. Pat. No. 2,862,251.
  • Example VI The procedures of Example VI are followed substantially as set forth therein with the exception that the acetalization with formaldehyde is carried out to a much lower degree.
  • the average degree of acetalization of the polyvinyl alcohol is only about 9 mol percent.
  • the moisture regain of such fibers is very high and is greater than 12% at 40° C. and a relative humidity of 90°.
  • Such fibers tend to exhibit a greater degree of hydrophilicity and do not respond satisfactorily to applied fluid forces exerted during the fluid rearranging techniques disclosed in FIGS. 7-12 of U.S. Pat. No. 2,862,251.
  • a materials balance determination of the weight of the product before rearranging and after rearranging reveals a relatively large loss of fiber weight during the rearranging process.
  • There is also undesirable evidence of autogenous bonding between the individual fibers which makes the product harsh, papery, and boardy, and lacking in softness, hand and drape.
  • Example VI The procedures of Example VI are followed substantially as set forth therein with the exception that benzaldehyde is used instead of formaldehyde in the insolubilizing treatment. The results are generally comparable and the resulting nonwoven textile fabrics are commercially acceptable.

Abstract

Apertured nonwoven textile fabrics comprising polyvinyl alcohol fibers and having a predetermined pattern of fabric apertures and fiber bundles created by applied fluid forces; and methods of making the same which comprises: chemically treating and modifying heat-sensitive, water-soluble polyvinyl alcohol fibers to (a) raise their wet softening temperature whereby they are essentially wet heat-insensitive up to a temperature of at least about 150° C. and (b) give them an average degree of acetalization of from about 20 mol percent to about 35 mol percent whereby they develop the necessary balance of hydrophobic-hydrophilic properties and are sufficiently water-insensitive and water-insoluble as to be capable of controlled movement and manipulation by applied fluid forces; forming a cohesive fibrous web from said heat-insensitive, water-insoluble fibers; and applying fluid forces to said fibrous web to move and rearrange said heat-insensitive, water-insoluble fibers into a predetermined pattern of fabric apertures and fiber bundles constituting an apertured nonwoven fabric.

Description

This invention relates to apertured nonwoven fabrics having a predetermined pattern of fabric apertures and fiber bundles comprising polyvinyl alcohol fibers, and to methods of making the same.
Polyvinyl alcohol fibers are obtainable, for example, by dry or wet extruding or spinning from their aqueous solutions and, by definition, are composed of at least about 50 percent by weight of vinyl alcohol units (--CH2 --CHOH--)n and in which the total of the vinyl alcohol units and any one or more of the various acetal units is at least about 85% by weight of the fiber.
The simplest molecular structure of polyvinyl alcohol is therefore seen as idealistically possessing the following characteristic polymer chain, of which five typical units are shown, as follows: ##EQU1##
Inasmuch as the vinyl alcohol molecule as such is unknown as a monomer, polyvinyl alcohol is usually prepared by polymerization of vinyl acetate into polyvinyl acetate, followed by conversion by alcoholysis, hydrolysis, saponification, or the like, to polyvinyl alcohol.
It is therefore to be appreciated that the above structural formula assumes (primarily for illustrative purposes) the substantially complete alcoholysis, hydrolysis, saponification, or other conversion of the polyvinyl acetate into polyvinyl alcohol. This assumption of 100% conversion, will be followed throughout this disclosure to simplify the chemistry involved and is not intended to limit the scope of the applicability of the inventive concept.
Polyvinyl alcohol fibers are naturally strong and abrasion resistant and have high resistance to chemicals, including acids and alkalis. Resistance to fungi, mildew, and insects is good. Polyvinyl alcohol fibers, can be manufactured at relatively low cost and have many excellent physical and chemical properties and characteristics. Unfortunately, however, such fibers, as they are originally produced, have an undesirable sensitivity to heat and water, and particularly to hot water. Specifically, if they are immersed in water at room temperature, they shrink by more than about 10%, and, if they are immersed in hot water at a temperature of about 65° C., they become soluble and dissolve.
Such heat-sensitive, water-soluble polyvinyl alcohol fibers have some utility in the textile and related industries but have very little applicability in the manufacture of apertured nonwoven textile fabrics by the well-known fluid techniques described in U.S. Pat. No. 2,862,251 which issued Dec. 2, 1958 to F. Kalwaites. Efforts to utilize such heat-sensitive, water-soluble polyvinyl alcohol fibers in the apparatus illustrated, for example, in FIGS. 7-12 of this patent, have lead to completely undesirable results which come about especially when the heat-sensitive, water-soluble polyvinyl alcohol fibers are exposed to the applied fluid forces during their movement and manipulation into the predetermined patterns of the desired fabric apertures and fiber bundles.
In order to overcome such shortcomings, the freshly spun polyvinyl alcohol fibers have been subjected to heat treatments, usually in the range of from about 200° C. to about 250° C. whereby their wet-softening temperature, that is, by definition, the temperature at which the fibers shrink 10% of their original length, can be raised to a range of from about 60° C. to about 100°C. Unfortunately, however, although the fibers have far less heat sensitivity, they are still essentially water-soluble and will still dissolve in hot water at a temperature of about 110° C.
However, if the heat-treated fibers are further subjected to an insolubilizing or a cross-linking operation by treatment with aldehydes, such as an acetalization by means of formaldehydes, their wet softening temperature can be raised to a value in excess of about 150° C. Additionally, they become less water sensitive and they do not dissolve in water at such temperature. .Iadd.
It is not essential, however, that the wet softening temperature always be raised to a value in excess of about 150° C., provided the fibers are capable of meeting the previously-mentioned standard of not being essentially water-soluble and not dissolving in hot water at a temperature of about 110° C. .Iaddend.
Unfortunately, when efforts are made to form these heat treated and acetalized heat-insensitive, water-insoluble polyvinyl alcohol fibers into fibrous webs by exposure to the fluid processing and manipulation involved in the manufacture of apertured nonwoven textile fabrics, as described in the above-mentioned patent, the results are still unsuccessful. The polyvinyl alcohol fibers do not make completely satisfactory fibrous webs and, although the fibers do not dissolve when treated by the fluid techniques of the above-described patent, they do not make commercially satisfactory apertured nonwoven textile fabrics.
The reasons for such lack of success have not been discovered and the purpose and object of this inventive concept is to disclose and illustrate methods for successfully manufacturing commercially acceptable apertured nonwoven textile fabrics from polyvinyl alcohol fibers by the above-mentioned fluid processes.
It has been discovered that apertured nonwoven textile fabrics having a predetermined pattern of fabric apertures and fiber bundles can be successfully made from polyvinyl alcohol fibers by the fluid processing techniques of the above-described patent if such fibers possess specific chemical and physical properties and characteristics which can be built into them by selective manufacturing and processing techniques. These specific chemical and physical properties and characteristics which are necessary require that the fibers have an average degree of acetalization of from about 20 mol percent to about 35 mol percent whereby they develop the necessary balance of hydrophobic-hydrophilic properties and are sufficiently heat-insensitive and water-insoluble as to be capable of controlled movement and manipulation by the applied fluid forces used in the processes of said patent. Additionally, the heat-insensitive and water-insoluble fibers are to be given a crimping treatment whereby from about six crimps to about 16 crimps are formed in the fibers and they are thus rendered more amenable to the formation of fibrous webs which are cohesive, do not split, and are well adapted for fluid processing into apertured nonwoven textile fabrics by applied fluid forces.
Although the present inventive concept will be described with reference to heat-insensitive, water-insoluble polyvinyl alcohol fibers which have been subjected to a specific heat treatment at a selected temperature range to improve their resistance to heat shrinking and a subsequent cross-linking or acetalization preferably with formaldehyde to improve their resistance to water-sensitivity, it is to be appreciated that other processing techniques can be resorted to in order to create the desired and necessary physical and chemical properties and characteristics.
This is particularly true of the cross-linking or insolubilizing step wherein a large number of other insolubilizing agents are of use. Such other insolubilizing or acetalizing agents include other aldehydes, both aliphatic and aromatic, such as acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, isovaleraldehyde, n-caproaldehyde, n-heptaldehyde, stearaldehyde, acrolein, crotonaldehyde, benzaldehyde, furfural, naphthaldehyde, etc. Substituted aldehydes are also of use and include chloroacetaldehyde, bromoacetaldehyde, chlorobenzaldehyde, nitro-benzaldehyde, hexahydrobenzaldehyde, etc.
Aminoaldehydes are also of use and include aminoacetaldehyde, beta-amino-propionaldehyde, beta-amino-butyraldehyde, the isomeric amino valeraldehydes, cyclohexylaminoacetaldehyde, beta-(amino-ethoxy) acetaldehyde, N-methyl-amino-acetaldehyde, N-ethyl-amino-acetaldehyde, N-methyl-amino-propionaldehyde, beta-N-methyl-amino-butyraldehyde, etc.
Dialdehydes, which are bi-functional, similarly, are of use and include glyoxal, succinaldehyde, malonaldehyde, glutaraldehyde, terephthal-aldehyde, etc.
However, regardless of the particular heat treatment employed or the specific aldehydes selected for the insolubilizing treatment, the average degree of acetalization or the mol percent of hydroxy groups which are reacted with the selected aldehyde is in the range of from about 20 mol percent to about 35 mol percent.
The following molecular structure is shown to illustrate polyvinyl alcohol in which 20 mol percent of the hydroxy groups are reacted, for this particular segment of the polymer chain: ##EQU2##
The molecular structure is idealistically shown in its simplest form and it is to be appreciated that many other similar ether linkages are possible. Additionally, other types of ether linkages are possible, such as, for example, a cyclic ether linkage between adjacent hydroxy groups on the same polymer chain. Such can be illustrated as follows, showing a 40 mol percent acetalization for this particular segment of the polymer chain: ##EQU3##
When the polyvinyl alcohol fibers have an average degree of acetalization of from about 20 mol percent to about 35 mol percent, they develop the necessary balance of hydrophobic-hydrophilic properties and are sufficient heat-insensitive and water-insoluble, as to be capable of controlled movement and manipulation by the applied fluid forces which are employed in the process described in the patent to rearrange the individual fibers into a predetermined pattern of fabric apertures and fiber bundles.
Average degrees of acetalization which are definitely above about 35 mol percent are not desirable inasmuch as such degrees of acetalization tend to possess too much hydrophobicity and tend to resist the desired movement and rearrangement by the applied fluid forces. Also, average degrees of acetalization which are definitely below about 20 mol percent are not desirable as such degrees of acetalization tend to possess too much hydrophilicity and tend to be too water-sensitive or water-soluble.
The average degree of acetalization is noted as also having an inverse effect upon the moisture regain of the polyvinyl alcohol fibers. This is evidenced in the following Table, developed at 40° C. and a Relative Humidity of 90%:
              TABLE I                                                     
______________________________________                                    
Mol % Acetalization                                                       
                  % Moisture Regain                                       
______________________________________                                    
10                11                                                      
20                10                                                      
32                 8                                                      
40                71/2                                                    
60                 7                                                      
70                 6                                                      
______________________________________                                    
Additionally, in order that a fibrous web be formed which is sufficiently cohesive and self-sustaining and does not split apart during conventional commercial handling and processing, crimps are formed in the fibers, preferably subsequent to the heat treatment and insolubilizing step and, of course, prior to the formation of the fibrous web.
The number of crimps per inch of fiber will vary according to the denier and length of the fiber, upon the nature, shape and amplitude of the crimp itself, and other related factors. From about six crimps per inch to about 16 or more crimps per inch is satisfactory, with a preferred commercial range extending from about eight crimps per inch to about 12 crimps per inch.
These crimps may be obtained in many ways, such as, for example, mechanically, as by passage of the fibers through intermeshing heated gears. The particular nature, shape, and amplitude of the crimps is controlled by the nature and shape of the teeth or intermeshing elements, of the heated intermeshing gears and by the depth to which these gears intermesh. Other crimping techniques may, of course, be utilized.
Although the invention will be described and illustrated with particular reference to starting fibrous materials comprising carded webs in which the individual fibers are generally oriented in the machine or long direction, it is to be appreciated that such is done because the invention is of primary importance in connection with such carded or oriented webs.
However, the inventive concept is also applicable to other types of starting fibrous materials. One such type is the so-called "isotropic" web formed by air-laying techniques in which the fibers are disposed at random and are not oriented in any particular direction.
Still another aspect of the present invention is its application to fibrous webs made basically by conventional or modified papermaking techniques. Such fibrous webs are also not oriented but are basically "isotropic" and generally have like properties in all directions.
These fibrous webs normally comprise individualized overlapping and intersecting fibers and, in the case of the carded or oriented fibrous webs, have an average length of from about 1/2 inch to about 21/2 inches or more. This range is, of course, most desirable and in most respects necessary when the starting fibrous materials are carded or oriented webs.
When the starting fibrous materials are "isotropic" webs derived from air-laying techniques or from conventional or modified papermaking techniques, shorter lengths of fibers may be employed provided they are of sufficient length to be handled in the subsequent fluid rearranging process. Usually, fiber lengths down to about 1/4 inch are capable of use, with shorter lengths of use by means of special handling techniques.
Other fibers of a natural, synthetic or man-made base or origin may be used in various proportions and various blends to partially replace the polyvinyl alcohol fibers. Such other fibers include cellulosic fibers such as cotton or rayon; polyamide fibers notably nylon 6 and nylon 6/6; polyester fibers such as "Dacron," "Fortrel," and "Kodel;" acrylic fibers such as "Acrilan," "Orlon," and "Creslan;" modacrylic fibers such as "Verel" and "Dynel;" polyolefinic fibers derived from polyethylene and polypropylene; cellulose ester fibers such as "Arnel" and "Acele," etc.
The denier of the synthetic fibers used in applying the principles of the present inventive concept may be selected from a relatively wide range of sizes. A denier range of from about 1 to about 3 is generally preferred for conventional commercial purposes, although for special purposes, deniers as low as 1/2 or as high as 5, 10, 15 or even more find utility in special cases.
The invention will be further illustrated in greater detail by the following examples. It should be understood, however, that although these examples may describe in particular detail some of the more specific features of the invention, they are given primarily for purposes of illustration and the invention in its broader aspects is not to be construed as limited thereto.
EXAMPLE I
A carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde. The fibers have the following properties and characteristics:
Degree of formalization                                                   
                       10%                                                
Formalization treating time                                               
                       2 minutes                                          
Denier                 1.32                                               
Tenacity (grams/denier)                                                   
                       5.11                                               
Elongation (%)         16.5                                               
Staple length (mm)     35                                                 
DFA (mol % by analysis)                                                   
                       10.0                                               
The carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 which issued Dec. 2, 1958.
A rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings, however, is not well defined and is not commercially acceptable. It is believed that such unsatisfactory formation is due to the hydrophilicity of the fibers.
A materials balance determination of the weight of the product before rearranging and after rearranging indicates a substantial and commercially uneconomical loss of fiber weight during the rearranging process. Additionally, there is considerable evidence of autogenous bonding between the individual fibers, created presumably by the softening and adhering of such fibers as a result of the fluid rearranging process. Such bonding leads to undesirable loss of softness, hand, and drape.
The rearranged nonwoven fabric is economically and commercially unsatisfactory and unacceptable to industry.
EXAMPLE II
A carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde. The fibers have the following properties and characteristics:
Degree of formalization                                                   
                       20%                                                
Formalization treating time                                               
                       5 minutes                                          
Denier                 1.32                                               
Tenacity (grams/denier)                                                   
                       5.29                                               
Elongation (%)         16.8                                               
Staple length (mm)     35                                                 
DFA (mol % by analysis)                                                   
                       19.3                                               
The carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 which issued Dec. 2, 1958.
A rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings is well defined and is commercially acceptable. The materials balance determination of the weight of the product before rearranging and after rearranging is satisfactory and within commercially acceptable limits. There is substantially no evidence of autogenous bonding between the individual fibers. The nonwoven fabric has a high degree of softness, hand, and drape.
The rearranged nonwoven fabric is economically and commercially satisfactory and acceptable to industry.
EXAMPLE II-A
The procedures of Example II are followed substantially as set forth therein with the exception that the polyvinyl alcohol fibers are not crimped.
Fibrous lap and web formation is produced only with extreme difficulty because of lack of crimp and cohesiveness of the fibers. The fibrous laps and webs also split very badly when they are carded.
The difficulties were such as to render the use of uncrimped polyvinyl alcohol fibers commercially unsatisactory and unacceptable to industry.
EXAMPLE II-B
The procedures of Example II are repeated substantially as set forth therein with the exception that the polyvinyl alcohol fibers have a degree of formalization of about 20.2%. The moisture regain of such fibers is about 10% at a temperature of 40° C. and a relative humidity of 90%.
The results are generally comparable to the results obtained in Example II.
EXAMPLE III
A carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde. The fibers have the following properties and characteristics:
Degree of formalization                                                   
                       30%                                                
Formalization treating time                                               
                       17 minutes                                         
Denier                 1.39                                               
Tenacity (grams/denier)                                                   
                       4.88                                               
Elongation (%)         16.2                                               
Staple length (mm)     35                                                 
DFA (mol % by analysis)                                                   
                       30.4                                               
The carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 issued Dec. 2, 1958.
A rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings is well defined and is commercially acceptable. The materials balance determination of the weight of the product before rearranging and after rearranging is satisfactory and within commercially acceptable limits. There is substantially no evidence of autogenous bonding between the individual fibers. The nonwoven fabric has a high degree of softness, hand, and drape.
The rearranged nonwoven fabric is economically and commercially satisfactory and acceptable to industry.
EXAMPLE III-A
The procedures of Example III are followed substantially as set forth therein with the exception that the polyvinyl alcohol fibers are not crimped.
Fibrous lap and web formation is produced only with extreme difficulty because of lack of crimp and cohesiveness of the fibers. The fibrous laps and webs also split very badly when they are carded.
The difficulties were such as to render the use of uncrimped polyvinyl alcohol fibers commercially unsatisfactory and unacceptable to industry.
EXAMPLE III-B
The procedures of Example III are followed substantially as set forth therein with the exception that the polyvinyl alcohol fibers have a degree of formalization of about 32.2%. The moisture regain of such fibers is about 71/2% at a temperature of 40° C. and a relative humidity of 90%.
The results are generally comparable to the results obtained in Example III.
EXAMPLE IV
A carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde. The fibers have the following properties and characteristics:
Degree of formalization                                                   
                       40%                                                
Formalization treating time                                               
                       2 hours                                            
Denier                 1.38                                               
Tenacity (grams/denier)                                                   
                       5.16                                               
Elongation (%)         15.2                                               
Staple length (mm)     35                                                 
DFA (mol % by analysis)                                                   
                       40.2                                               
The carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 issued Dec. 2, 1958.
A rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings, however, is not well defined and is marginal but not commercially acceptable. It is believed that such satisfactory formation is due to the increased hydrophobicity of the fibers. The resulting appearance of the rearranged nonwoven fabric is not pleasing.
The rearranged nonwoven fabric is marginal but commercially unsatisfactory and unacceptable to industry.
EXAMPLE V
A carded fibrous web is prepared from dull, crimped polyvinyl alcohol fibers which are chemically treated and modified by a heat treatment and by reaction with formaldehyde. The fibers have the following properties and characteristics:
Degree of formalization                                                   
                       50%                                                
Formalization treating time                                               
                       14 hours                                           
Denier                 1.35                                               
Tenacity (grams/denier)                                                   
                       5.43                                               
Elongation (%)         16.0                                               
Staple length (mm)     35                                                 
DFA (mol % by analysis)                                                   
                       48.0                                               
The carded fibrous web is exposed to fluid rearranging techniques similar to those set forth and illustrated in FIGS. 7-12 of Kalwaites U.S. Pat. No. 2,862,251 issued Dec. 2, 1958.
A rearranged nonwoven fabric having fiber bundles and fabric apertures or openings is obtained. Formation of fiber bundles and fabric apertures or openings, however, is not well defined and is not commercially acceptable. It is believed that such unsatisfactory formation is due to the increased hydrophobicity of the fibers. The resulting appearance of the rearranged nonwoven fabric is not pleasing.
The rearranged nonwoven fabric is commercially unsatisfactory and unacceptable to industry.
EXAMPLE VI
Polyvinyl alcohol fibers are treated with a conventional heat treatment at elevated temperatures and an insolubilizing step with formaldehyde to raise their wet-softening temperature and make them heat insensitive at a temperature of 150° C. (less than 10% shrinkage) and give them an average degree of acetalization of about 35 mol percent.
A card web is prepared weighing 442 grams per square yard and comprising such heat-insensitive, water-insoluble polyvinyl alcohol fibers having a denier of 21/2, a staple length of 38 mm. (11/2 inch), and 8 crimps per inch. The polyvinyl alcohol fibers have a moisture regain of 7.8% at a temperature of 40° C. and a relative humidity of 90%.
This fibrous card web is exposed to fluid rearranging techniques in the apparatus illustrated in FIGS. 7-12 of U.S. Pat. No. 2,862,251 and the fibers are rearranged into a predetermined pattern of fabric apertures and fiber bundles.
The apertured nonwoven textile fabric is bonded with National Starch NS4260, a non-ionic, cross-linking acrylic resin. The final weight of the bonded nonwoven textile fabric, after drying and curing, is 532 grains per square yard.
Physical tests show that the nonwoven textile fabric made of polyvinyl alcohol fibers is exceptionally strong in both the machine direction and cross direction, both in the dry and wet conditions.
              TABLE II                                                    
______________________________________                                    
Tensile Strength - Dry                                                    
              Machine Direction                                           
                            Cross Direction                               
Thwing Albert - 3 ply                                                     
              (Pounds)      (Pounds)                                      
______________________________________                                    
            38.1        6.8                                               
            38.9        7.0                                               
            39.1        7.2                                               
       Average                                                            
              38.7          7.0                                           
            28.7        5.6                                               
            29.1        5.2                                               
            26.6        5.2                                               
       Average                                                            
              28.13         5.33                                          
Tensile Strength - Cross Direction                                        
Instron - 1 ply (Pounds)                                                  
              2.02                                                        
              2.20                                                        
              1.80                                                        
              1.93                                                        
              1.90                                                        
        Average 1.97                                                      
______________________________________                                    
The softness of the nonwoven textile fabric is excellent. Its absorbency rate and absorbent capacity is very good. Its elongation and its bulk are comparable to similar products made of rayon fibers.
The product is of use as a facing for absorbent products such as diapers. In a lighter weight, it is of use as a facing for sanitary napkins.
EXAMPLE VII
The procedure of Example VI are followed substantially as set forth therein with the exception that the polyvinyl alcohol fibers have a denier of 1.4, rather than 21/2. The results are generally comparable.
EXAMPLE VIII
The procedures of Examples VI and VII are followed substantially as set forth therein with the exception that the polyvinyl alcohol fibers do not possess any substantial crimp. Web formation is rendered extremely difficult; there is a lack of cohesiveness and laps split badly when the fibers are carded.
EXAMPLE IX
The procedures of Example VI are followed substantially as set forth therein with the exception that the acetalization with formaldehyde is carried out to a much higher degree. The average degree of acetalization of the polyvinyl alcohol fibers is approximately 70 mol percent. The moisture regain of such fibers is low and is less than 6% at 40° C. and a relative humidity of 90%. Such fibers tend to exhibit a greater degree of hydrophobicity and do not respond satisfactorily to applied fluid forces exerted during the fluid rearranging techniques disclosed in FIGS. 7-12 of U.S. Pat. No. 2,862,251.
EXAMPLE X
The procedures of Example VI are followed substantially as set forth therein with the exception that the acetalization with formaldehyde is carried out to a much lower degree. The average degree of acetalization of the polyvinyl alcohol is only about 9 mol percent. The moisture regain of such fibers is very high and is greater than 12% at 40° C. and a relative humidity of 90°. Such fibers tend to exhibit a greater degree of hydrophilicity and do not respond satisfactorily to applied fluid forces exerted during the fluid rearranging techniques disclosed in FIGS. 7-12 of U.S. Pat. No. 2,862,251. Additionally, a materials balance determination of the weight of the product before rearranging and after rearranging reveals a relatively large loss of fiber weight during the rearranging process. There is also undesirable evidence of autogenous bonding between the individual fibers which makes the product harsh, papery, and boardy, and lacking in softness, hand and drape.
EXAMPLE XI
The procedures of Example VI are followed substantially as set forth therein with the exception that benzaldehyde is used instead of formaldehyde in the insolubilizing treatment. The results are generally comparable and the resulting nonwoven textile fabrics are commercially acceptable.
Although several specific examples of the inventive concept have been described, the same should not be construed as limited thereby nor to the specific features mentioned therein but to include various other equivalent features as set forth in the claims appended hereto. It is understood that any suitable changes, modifications and variations may be made without departing from the spirit and scope of the invention.

Claims (3)

What is claimed is:
1. A method of making an apertured nonwoven textile fabric having a predetermined pattern of fabric apertures and fiber bundles created by applied fluid forces which comprises: (1) chemically treating and modifying heat-sensitive water-soluble polyvinyl alcohol fibers by (a) a heat treatment in the range of from about 200° C. to about 250° C. to raise their wet softening temperature whereby they are essentially wet heat-insensitive up to a temperature .[.of at least about 150° C..]. .Iadd.in the range of from about 60° C. to about 100° C. .Iaddend.and by (b) insolubilizing or cross-linking treatment with an aldehyde to give them an average degree of acetalization of from about 20 mol percent to about 35 mol percent and a moisture regain at 40°C. and a relative humidity of 90% down to about 10% but not to as low as 71/2% whereby they develop the necessary balance of hydrophobic-hydrophilic properties and are sufficiently heat-insensitive and water-insoluble .Iadd.as not to dissolve in hot water at a temperature of about 110° C. and .Iaddend.as to be capable of controlled movement and manipulation by applied fluid forces; (2) crimping said relatively heat-insensitive, water-insoluble polyvinyl alcohol fibers so that they possess from about six to about 16 crimps per inch; (3) forming a cohesive fibrous web from said crimped, heat-insensitive, water-insoluble fibers; and (4) applying fluid forces to said fibrous web to move and rearrange said crimped, heat-insensitive, water-insoluble fibers into a predetermined pattern of fabric apertures and fiber bundles constituting an apertured nonwoven fabric.
2. A method as defined in claim 1 wherein the polyvinyl alcohol fibers are chemically treated and modified by a reaction with formaldehyde.
3. A method as defined in claim 1 wherein the polyvinyl alcohol fibers are chemically treated and modified by a reaction with benzaldehyde.
US05/478,664 1971-01-05 1974-06-12 Apertured nonwoven fabrics and methods of making the same Expired - Lifetime USRE28680E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/478,664 USRE28680E (en) 1971-01-05 1974-06-12 Apertured nonwoven fabrics and methods of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10417471A 1971-01-05 1971-01-05
US05/478,664 USRE28680E (en) 1971-01-05 1974-06-12 Apertured nonwoven fabrics and methods of making the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10417471A Reissue 1971-01-05 1971-01-05

Publications (1)

Publication Number Publication Date
USRE28680E true USRE28680E (en) 1976-01-13

Family

ID=26801250

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/478,664 Expired - Lifetime USRE28680E (en) 1971-01-05 1974-06-12 Apertured nonwoven fabrics and methods of making the same

Country Status (1)

Country Link
US (1) USRE28680E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440192B2 (en) * 1997-04-10 2002-08-27 Valeo Filtration device and process for its manufacture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2749208A (en) * 1952-09-18 1956-06-05 Du Pont Process of shrinking polyvinyl alcohol fibers and acetylizing with mixture of mono-and di-aldehydes and product thereof
US2862251A (en) * 1955-04-12 1958-12-02 Chicopee Mfg Corp Method of and apparatus for producing nonwoven product
US2977183A (en) * 1951-12-19 1961-03-28 Air Reduction Process of improving the dyeing properties of polyvinyl alcohol fibers
US3167383A (en) * 1959-10-26 1965-01-26 Rhodiaceta Crimping of polyvinyl alcohol yarns by means of alkaline solutions
US3512230A (en) * 1965-07-29 1970-05-19 Snia Viscosa Method and apparatus for the production of nonwoven fabrics
US3563241A (en) * 1968-11-14 1971-02-16 Du Pont Water-dispersible nonwoven fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977183A (en) * 1951-12-19 1961-03-28 Air Reduction Process of improving the dyeing properties of polyvinyl alcohol fibers
US2749208A (en) * 1952-09-18 1956-06-05 Du Pont Process of shrinking polyvinyl alcohol fibers and acetylizing with mixture of mono-and di-aldehydes and product thereof
US2862251A (en) * 1955-04-12 1958-12-02 Chicopee Mfg Corp Method of and apparatus for producing nonwoven product
US3167383A (en) * 1959-10-26 1965-01-26 Rhodiaceta Crimping of polyvinyl alcohol yarns by means of alkaline solutions
US3512230A (en) * 1965-07-29 1970-05-19 Snia Viscosa Method and apparatus for the production of nonwoven fabrics
US3563241A (en) * 1968-11-14 1971-02-16 Du Pont Water-dispersible nonwoven fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440192B2 (en) * 1997-04-10 2002-08-27 Valeo Filtration device and process for its manufacture

Similar Documents

Publication Publication Date Title
US3930086A (en) Apertured nonwoven fabrics
US4410579A (en) Nonwoven fabric of ribbon-shaped polyester fibers
US3087833A (en) Fibrous structures and methods of making the same
US3741724A (en) Apertured nonwoven fabrics and methods of making the same
EP0401538B1 (en) Cellulose-based, inflammable, bulky processed sheets and method for making such sheets
US3897206A (en) Method of preparing cellulosic textile materials having improved soil release and stain resistance properties
US3630831A (en) Binding agent for nonwoven materials and nonwoven material made therewith
US20070167096A1 (en) Latex bonded airlaid fabric and its use
US2962762A (en) Manufacture of non-woven two dimensional structures from fibers
US2785947A (en) Process for producing durable mechanical effects on cellulose fabrics by applying acetals and products resulting therefrom
US2486805A (en) Diapers and like sheetlike materials
US3093502A (en) Nonwoven fabrics and methods of manufacturing the same
US3253715A (en) Process and composition for boil proof non-woven filter media
US2437689A (en) Process for making needle felts
JPS63235558A (en) Steaming adhesive nonwoven cloth and its production
US2528129A (en) Textile product
USRE28680E (en) Apertured nonwoven fabrics and methods of making the same
US3576703A (en) Stretchable fabric-plastic film laminates
US2968581A (en) Method of insolubilizing polymeric hydroxyl-bearing compounds
IL23476A (en) Aldehyde fixation on polymeric material
US3394047A (en) Process of forming water-laid felts containing hollow-viscose, textile, and synthetic fibers
US3122447A (en) Bonded nonwoven fabrics and methods of making the same
EP3752541B1 (en) Formaldehyde-free binder composition
US3518041A (en) Nonwoven fabrics and methods of making the same
US3004868A (en) Resilient non-woven textile materials