USRE30912E - Stent for heart valve - Google Patents

Stent for heart valve Download PDF

Info

Publication number
USRE30912E
USRE30912E US05/915,451 US91545178A USRE30912E US RE30912 E USRE30912 E US RE30912E US 91545178 A US91545178 A US 91545178A US RE30912 E USRE30912 E US RE30912E
Authority
US
United States
Prior art keywords
arms
framework
portions
heart valve
apical portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/915,451
Inventor
Warren D. Hancock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Hancock Jaffe Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hancock Jaffe Laboratories Inc filed Critical Hancock Jaffe Laboratories Inc
Priority to US05/915,451 priority Critical patent/USRE30912E/en
Application granted granted Critical
Publication of USRE30912E publication Critical patent/USRE30912E/en
Assigned to VASCOR INC. reassignment VASCOR INC. CHANGE OF NAME Assignors: HANCOCK LABORATORIES INCORPORATED
Assigned to EXTRACORPOREAL MEDICAL SPECIALTIES, INC. A CORP reassignment EXTRACORPOREAL MEDICAL SPECIALTIES, INC. A CORP MERGER Assignors: VASCOR INC., A CORP OF CA (INTO)
Assigned to MCNEILAB, INC. reassignment MCNEILAB, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EXTRACORPOREAL MEDICAL SPECIALTIES, INC.
Assigned to MEDTRONIC, INC., 7000 CENTRAL AVENUE, N.E., MINNEAPOLIS, MINNESOTA 55432, A MN CORP. reassignment MEDTRONIC, INC., 7000 CENTRAL AVENUE, N.E., MINNEAPOLIS, MINNESOTA 55432, A MN CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MCNEILAB, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents

Definitions

  • This invention relates to a supporting framework, or stent, for a natural or synthetic heart valve.
  • the present invention provides a stent for natural or synthetic heart valves that results in an improved means for supporting and grafting the heart valve in the patient.
  • This invention makes possible the preparation of natural heart valves, such as those from animals or from humans, which are applied to the stents under controlled conditions and may be stored suitably so that an adequate supply of the heart valves may be maintained.
  • the stent is usable for valves to be used in both the aortic and mitral positions. It comprises a frame of generally tubular configuration that includes three arcuate apexes interconnected by support arms. The apexes are positioned at the approximate locations of the aortic commissures. By having an arcuate contour, they have a finite dimension in a direction circumferential of the stent, so that dimension variations in the valves may be accommodated. Upper and lower support arms interconnect the apexes, being scalloped to extend downwardly intermediate the apexes. Both serve as a means for securing the perimeter of the valve cusps to the stent by suturing or other appropriate means.
  • the stent is of deflectable material, such as stainless steel having some malleability, so that the upper support arms may be bent upwardly.
  • deflectable material such as stainless steel having some malleability
  • this increases the spacing of the arms from the central axis of the stent, so that the stent may be increased in width to fit individual valves of different configurations.
  • the scalloped shape of the upper arms also allows placement of the valve in the aortic position without obstructing the coronary ostia.
  • the stent When the stent is used for valves that are to be installed in the mitral position, it may be provided with a ring outwardly of the lower support arms. This ring provides a means for affixing the stent to the heart. A felt ring is secured to the stent at the location of the attaching ring, providing a hemodynamic seal and a suitable bed over which tissue can be attached. The mitral leaflet and endocardium are brought over the atrial aspect of the attaching ring and affixed to the felt ring.
  • An object of this invention is to provide an improved stent for natural or synthetic heart valves.
  • Another object of this invention is to provide a heart valve stent that can accommodate valves of different dimensions.
  • a further object of this invention is to provide an arrangement by which a heart valve is supported on a stent and secured so that only tissue or other material that does not promote the formation of clots will be exposed in critical areas of the heart when clotting might occur.
  • An additional object of this invention is to provide a stent that permits advance preparation under controlled conditions of heart valves which may be stored under suitable conditions until required.
  • a still further object of this invention is to provide a stent contoured to accommodate animal heart valves for use in xenografts.
  • FIG. 1 is a perspective view of the stent of this invention constructed for use in the aortic position;
  • FIG. 2 is an enlarged fragmentary sectional view taken along line 2--2 of FIG. 1, illustrating the rounded cross-sectional contour of the elements of the stent;
  • FIG. 3 is a perspective view, partialy broken away, showing the stent of FIG. 1 with an aortic valve affixed thereto;
  • FIG. 4 is a side elevational view of the stent, showing how the support arms may be deflected for increasing the transverse dimension;
  • FIG. 5 is a perspective view of the stent constructed for use in the mitral position
  • FIG. 6 is a perspective view, partially broken away, of an assembly of the stent of FIG. 5 and a heart valve;
  • FIG. 7 is a perspective view, partially broken away, illustrating a modified attachment of the heart valve to the stent
  • FIG. 8 is an enlarged sectional view taken along line 8--8 of FIG. 7;
  • FIG. 9 is a sectional view similar to FIG. 8 with the addition of a ring around the outer perimeter of the assembly;
  • FIG. 10 is a view similar to FIG. 9, but in which a cloth member has been applied over the stent prior to attachment of the heart valve;
  • FIG. 11 is a perspective view, partially broken away, of a heart valve assembly for use in the mitral position in which a cloth covering is provided over certain marginal portions;
  • FIG. 12 is a perspective view of a heart valve for use in the mitral position in which there is a cloth attaching ring instead of a metal ring;
  • FIG. 13 is an enlarged sectional view taken along line 13--13 of FIG. 12.
  • the stent 10 shown in FIGS. 1, 2 and 3 is for use in the aortic or pulmonary location. It constitutes an annular framework, circular in plan, that may be constructed of noncorrosive metal, such as stainless steel, or of plastic. When made of metal, it should have some malleability which permits the device to be deflected to alter its shape slightly from that illustrated. This has the advantage of allowing it to accommodate valves of different dimensions, as will be explained below.
  • the metal stent is produced from a single piece of material. This avoids any welded, brazed or other connections, eliminating the likelihood of galvanic corrosion after it has been implanted. All portions of the stent are rounded at their edges so that no sharp corners are presented (see FIG. 2).
  • the stent 10 includes three apical portions 11, 12 and 13, which are of generally oval shape including rounded upper portions.
  • the central areas 14, 15 and 16 of the apical portions 11, 12 and 13 are cut away.
  • the apical portions are not distributed evenly around the perimeter of the stent 10.
  • the spacing between the apical portions 11 and 13 is less than that between the other two adjoining apexes.
  • the spacing between the apexes 11 and 13 is within the range of approximately 17% to 33% under the spacing of the other apexes, preferably around 20% to 25% less. This is in order that the stent will conform to the spacing of the commissures of the valve to be applied to it, which, for animals, is very close to this proportioning.
  • upper support bars 18, 19 and 20 Interconnecting the lower sides of the apical portions 11, 12 and 13 are upper support bars 18, 19 and 20. These are scalloped, being curved away from the apical portions 11, 12 and 13 so that they are concave toward the end of the stent where the apical parts are located.
  • an animal aortic valve 28 is associated with the stent 10 for use in a xenograft.
  • the valve 28 is secured to the stent by appropriate means, such as sutures 29.
  • the valve commissures are positioned at the apexes, while the margins of the cusps conform to the scalloped configuration of the support arms.
  • the marginal portions 30 and 31 of the valve cusps are extended over the support arms of the stent and overlap them, being doubled over the stent where the attachments are made. Consequently, the stent 10 is covered after the valve 28 is affixed.
  • the presence of the various apexes and support arms assures that there is a portion of the stent conforming to the shape of the valve 28 that is available for secure attachment of all peripheral parts of the valve.
  • the arcuate upper portions of the apexes 11, 12 and 13 allow latitude in positioning of the commissures of the valve. There are some dimensional differences among all natural valves, and the spacing of the commissures may vary to some degree. With the upper portions of the apexes 11, 12 and 13 being arcuate, valves of different proportions may be accommodated and allowed to assume their natural contour while still being afforded ready and appropriate locations for attachment.
  • the commissures may be affixed to side portions of the apexes and thereby supported properly and in conformance with the natural valve contour.
  • the stent 32 shown in FIG. 5, for mitral or tricuspid location has the same general configuration as the aortic stent, but is of larger and slightly heavier construction. Additionally, it includes an outer ring, which is used in securing the stent to the heart.
  • the stent 32 as illustrated, includes rounded apexes 33, 34 and 35, each being cut away interiorly so as to be of annular and generally oval configuration.
  • Downwardly scalloped upper support arms 36, 37 and 38 interconnect the apexes. Beneath the upper arms are similarly shaped but more shallowly scalloped lower support arms 40, 41 and 42. These connect at their ends to posts 43, 44 and 45 that extend below the apexes 33, 34 and 35, respectively.
  • Additional short posts 46, 47 and 48 extend downwardly, as the device is shown, from the junctures between the adjacent lower support arms 40, 41 and 42. At their upper ends, the posts 46, 47 and 48 are generally parallel to the axis. The bottom portions of the posts 46, 47 and 48, however, are bent substantially at right angles to extend generally radially to an outer attaching ring 50. The latter element is circular and of greater diameter than the annulus defined by the support arms.
  • valve 51 The attachment of the valve 51 to the stent 32 for the mitral position is essentially the same as that of the valve 28 to the aortic stent 10. Again, suturing 52 normally is employed to effect the attachment of the marginal portions of the valve 51.
  • annular member 53 of felt or other suitable material is positioned around the stent 32 between the outer ring 50 and the annular structure provided by the posts 46, 47 and 48 and the lower arms 40, 41 and 42. The felt ring 53 provides a hemodynamic seal and a suitable bed over which tissue can be affixed.
  • the mitral leaflet and the endocardium 54 are brought over the atrial aspect of the outer ring 50 (i.e., the end remote from the apexes) and affixed by sutures to the felt ring 53.
  • This serves an important function in the prevention of blood clots.
  • the ring 50 and other parts of the stent 32 are completely covered in the portions of the assembly that are positioned in localities of the heart where clotting is likely to take place. Therefore, in the critical zones of the heart where a thrombus may occur, any exposure of material that might promote clotting is minimized.
  • the ring 50 provides a stable and secure means for affixing the stent and associated mitral valve to the heart. This is accomplished normally by sutures to attach the valve in the mitral position between the left atrium and ventricle.
  • the heart valve 55 attached to the aortic stent 10 is not doubled over the upper perimeter of the stent.
  • the upper margin of the heart valve is not arranged as illustrated in FIG. 3, where the margin 31 is shown doubled over the upper arms 18, 19 and 20 and the apexes 11, 12 and 13.
  • the margin 56 of the heart valve 55 of FIGS. 7 and 8 is allowed to project beyond the stent to provide a free edge portion of tissue. Inwardly of this, sutures 57 secure the upper part of the heart valve to the stent.
  • the marginal edge portion 56 provides a flap of material which may be used in attaching the heart valve 55 to the heart wall. This technique is preferred in some instances.
  • FIG. 9 The arrangement of FIG. 9 is similar to that of FIG. 8 except that a ring has been added around the perimeter of the stent.
  • This is an annular member, normally of a suitable cloth such as felt, or of sponge, held in place by sutures and extending around the exterior of the support arms below the apexes of the stent.
  • This ring provides a suitable bed for fibrous ingrowth after the grafting of the valve in the heart.
  • This also provides a compliant member capable of conforming to an irregular aortic root to assure a snug fit and a hemodynamic seal.
  • the annulus of the valve supported on the stent often is irregular, further adding to the desirability of the exteriorly applied member in such instances.
  • the ring 58 While illustrated in FIG. 9 in conjunction with an attachment of the heart valve to leave a free marginal flap 56, the ring 58 also is applicable when the heart valve is attached upon a doubling over of the tissue as indicated in FIG. 3.
  • the ring 58 may be used on either the stent 10 for the aortic position or the stent 32 for the mitral position.
  • FIG. 10 illustrates a further modification in which an annular cloth element 60 is provided on the stent prior to attachment of the heart valve.
  • the cloth 60 is, in effect, tubular in shape, providing a sleeve that has a continuous transverse wall which overlaps and receives the upper and lower arms of the stent.
  • the annular cloth member 60 does not extend over the stent apexes.
  • a ring 58 will be utilized in conjunction with an assembly that embodies the annular cloth element 60.
  • This cloth covering of the inner and outer stent surfaces which can be applied to either the aortic or the mitral stent, provides a means by which the tissue is more easily attached to the stent. It results also in a matrix for ingrowth and subsequent fixation of the donor valve by the host tissue.
  • FIG. 11 there is illustrated a heart valve 51 on the stent 32 for use in the mitral position similar to the arrangement of FIG. 6 but with a cloth layer 62 added over the periphery of the stent and inwardly of the outer ring 50.
  • the layer of cloth 62 follows the contour of the stent and is fixed in place by sutures.
  • the cloth layer 62 adds a matrix for fibrous ingrowth, facilitating the binding of the host tissue to the graft tissue. It also covers the sutures and the ragged edges of the margins of the heart valve that overlap the framework of the stent, providing an assembly of an improved neat appearance.
  • the stent is intended for use in the mitral position, but is constructed without the metal ring 50 around its periphery. Instead, a cloth ring is provided, which serves a similar purpose, providing a means for attachment to the heart.
  • the stent 63 shown in FIG. 12 is similar to the stent 32 in that it is provided with a comparable grouping of apexes and support arms, and larger and heavier than the stents for use in the aortic position.
  • a cloth ring 73 Extending around the bottom periphery of the stent is a cloth ring 73. This is of doubled-over construction, with the lower arms 70, 71 and 72 received inside it. The outer edge, where the attachment is made to complete the double-walled cloth construction, is inwardly folded, as seen in FIG. 13. At the locations of the posts 75, 76 and 77, where the lower arms are connected to the upper portion of the stent, it is necessary to omit the outer layer of the cloth ring 73, as shown in FIG. 12.
  • the heart has four primary valves: two of which carry the blood away from the heart, the aortic and pulmonary valves; and two atrioventricular valves, the mitral and tricuspid valves. Since the aortic and pulmonary valves are similar in configuration as are the mitral and tricuspid valves, and since the device referred to herein as an aortic valve stent is equally suited to the pulmonary location, it is to be understood that the terms aortic and mitral are descriptive of the type of application and are not restrictive to a particular anatomic location.
  • the present invention also comprehends a device in which the spacings between the various apical portions are all unequal (each space being different from each other space). Using one space as the reference the second is approximately 4-10% less than said reference (space), and the third space is 17% to 33% less than said reference (space).
  • cloth may be used to cover the frame in any one of a number of configurations.
  • the cloth may be a seamless cylinder, or flat stock cut, formed and seamed, or specially preformed material.
  • the methods described previously in this specification are by way of specific illustration.

Abstract

A heart valve stent that includes an annular framework, preferably of bendable material, having three rounded apexes interconnected by support arms curved to incline away from the apexes. Additional support arms are included parallel to and axially beyond the first support arms. For use in the mitral position, the framework is circumscribed by an outer ring, which receives an annular element of felt or other suitable material. The heart valve is positioned on the stent, with its marginal portions overlapping it and affixed to it by sutures.

Description

BACKGROUND OF THE INVENTION Field of the Invention
This invention relates to a supporting framework, or stent, for a natural or synthetic heart valve.
The prior art
At the present time, surgical techniques allow the transplanting of aortic valves in the hearts of human patients, where they are located in either the aortic or mitral position. In such an operation, a natural valve from an animal or human, or alternatively a synthetic valve, is implanted in the heart. There exists, however, the need for an improved means for securing and supporting the valve in the heart to assure its proper functioning and to avoid clotting or other difficulties. In addition, there has been lacking a suitable means for preparing natural heart valves in advance for implantation so that they may be stored until the requirement for use arises.
SUMMARY OF THE INVENTION
The present invention provides a stent for natural or synthetic heart valves that results in an improved means for supporting and grafting the heart valve in the patient. This invention makes possible the preparation of natural heart valves, such as those from animals or from humans, which are applied to the stents under controlled conditions and may be stored suitably so that an adequate supply of the heart valves may be maintained.
The stent is usable for valves to be used in both the aortic and mitral positions. It comprises a frame of generally tubular configuration that includes three arcuate apexes interconnected by support arms. The apexes are positioned at the approximate locations of the aortic commissures. By having an arcuate contour, they have a finite dimension in a direction circumferential of the stent, so that dimension variations in the valves may be accommodated. Upper and lower support arms interconnect the apexes, being scalloped to extend downwardly intermediate the apexes. Both serve as a means for securing the perimeter of the valve cusps to the stent by suturing or other appropriate means. Preferably, the stent is of deflectable material, such as stainless steel having some malleability, so that the upper support arms may be bent upwardly. By virtus of their scalloped shape, this increases the spacing of the arms from the central axis of the stent, so that the stent may be increased in width to fit individual valves of different configurations. The scalloped shape of the upper arms also allows placement of the valve in the aortic position without obstructing the coronary ostia.
When the stent is used for valves that are to be installed in the mitral position, it may be provided with a ring outwardly of the lower support arms. This ring provides a means for affixing the stent to the heart. A felt ring is secured to the stent at the location of the attaching ring, providing a hemodynamic seal and a suitable bed over which tissue can be attached. The mitral leaflet and endocardium are brought over the atrial aspect of the attaching ring and affixed to the felt ring.
Thus, as either version of the stent is used, there is no exposure of metal to the portions of the heart where clotting is a problem, and with only tissue exposed to the blood in the critical areas tendencies toward clotting are minimized.
An object of this invention is to provide an improved stent for natural or synthetic heart valves.
Another object of this invention is to provide a heart valve stent that can accommodate valves of different dimensions.
A further object of this invention is to provide an arrangement by which a heart valve is supported on a stent and secured so that only tissue or other material that does not promote the formation of clots will be exposed in critical areas of the heart when clotting might occur.
An additional object of this invention is to provide a stent that permits advance preparation under controlled conditions of heart valves which may be stored under suitable conditions until required.
A still further object of this invention is to provide a stent contoured to accommodate animal heart valves for use in xenografts.
These and other objects will become apparent from the following detailed description taken in connection with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a perspective view of the stent of this invention constructed for use in the aortic position;
FIG. 2 is an enlarged fragmentary sectional view taken along line 2--2 of FIG. 1, illustrating the rounded cross-sectional contour of the elements of the stent;
FIG. 3 is a perspective view, partialy broken away, showing the stent of FIG. 1 with an aortic valve affixed thereto;
FIG. 4 is a side elevational view of the stent, showing how the support arms may be deflected for increasing the transverse dimension;
FIG. 5 is a perspective view of the stent constructed for use in the mitral position;
FIG. 6 is a perspective view, partially broken away, of an assembly of the stent of FIG. 5 and a heart valve;
FIG. 7 is a perspective view, partially broken away, illustrating a modified attachment of the heart valve to the stent;
FIG. 8 is an enlarged sectional view taken along line 8--8 of FIG. 7;
FIG. 9 is a sectional view similar to FIG. 8 with the addition of a ring around the outer perimeter of the assembly;
FIG. 10 is a view similar to FIG. 9, but in which a cloth member has been applied over the stent prior to attachment of the heart valve;
FIG. 11 is a perspective view, partially broken away, of a heart valve assembly for use in the mitral position in which a cloth covering is provided over certain marginal portions;
FIG. 12 is a perspective view of a heart valve for use in the mitral position in which there is a cloth attaching ring instead of a metal ring; and
FIG. 13 is an enlarged sectional view taken along line 13--13 of FIG. 12.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The stent 10, shown in FIGS. 1, 2 and 3, is for use in the aortic or pulmonary location. It constitutes an annular framework, circular in plan, that may be constructed of noncorrosive metal, such as stainless steel, or of plastic. When made of metal, it should have some malleability which permits the device to be deflected to alter its shape slightly from that illustrated. This has the advantage of allowing it to accommodate valves of different dimensions, as will be explained below. Preferably, the metal stent is produced from a single piece of material. This avoids any welded, brazed or other connections, eliminating the likelihood of galvanic corrosion after it has been implanted. All portions of the stent are rounded at their edges so that no sharp corners are presented (see FIG. 2).
The stent 10 includes three apical portions 11, 12 and 13, which are of generally oval shape including rounded upper portions. The central areas 14, 15 and 16 of the apical portions 11, 12 and 13 are cut away. Particularly when the stent is intended for use with animal valves, the apical portions are not distributed evenly around the perimeter of the stent 10. There is an equal angular spacing between the apical portions 11 and 12, and between the apical portions 12 and 13. However, the spacing between the apical portions 11 and 13 is less than that between the other two adjoining apexes. Usually, the spacing between the apexes 11 and 13 is within the range of approximately 17% to 33% under the spacing of the other apexes, preferably around 20% to 25% less. This is in order that the stent will conform to the spacing of the commissures of the valve to be applied to it, which, for animals, is very close to this proportioning.
Interconnecting the lower sides of the apical portions 11, 12 and 13 are upper support bars 18, 19 and 20. These are scalloped, being curved away from the apical portions 11, 12 and 13 so that they are concave toward the end of the stent where the apical parts are located.
Beneath the apexes 11, 12 and 13, as the device is illustrated, are short depending posts 22, 23 and 24 which extend parallel to the axis of the stent 10. To these posts are attached lower support arms 25, 26 and 27. The latter elements are shaped generally the same as the upper support arms 18, 19 and 20 and are spaced an equivalent distance from the stent axis. Again, therefore, the lower support arms are of scalloped configuration, being inclined downwardly intermediate the support posts. However, the lower support arms 25, 26 and 27 are not scalloped as deeply as are the upper arms.
As shown in FIG. 3, an animal aortic valve 28 is associated with the stent 10 for use in a xenograft. The valve 28 is secured to the stent by appropriate means, such as sutures 29. The valve commissures are positioned at the apexes, while the margins of the cusps conform to the scalloped configuration of the support arms. The marginal portions 30 and 31 of the valve cusps are extended over the support arms of the stent and overlap them, being doubled over the stent where the attachments are made. Consequently, the stent 10 is covered after the valve 28 is affixed.
The presence of the various apexes and support arms assures that there is a portion of the stent conforming to the shape of the valve 28 that is available for secure attachment of all peripheral parts of the valve. The arcuate upper portions of the apexes 11, 12 and 13 allow latitude in positioning of the commissures of the valve. There are some dimensional differences among all natural valves, and the spacing of the commissures may vary to some degree. With the upper portions of the apexes 11, 12 and 13 being arcuate, valves of different proportions may be accommodated and allowed to assume their natural contour while still being afforded ready and appropriate locations for attachment. In other words, if the spacing of the commissures does not correspond exactly to the distances between the centers of the apexes, the commissures nevertheless may be affixed to side portions of the apexes and thereby supported properly and in conformance with the natural valve contour.
Another advantage lies in the scalloped configuration and deflectable characteristics of the upper support arms 18, 19 and 20. By bending the support arm upwardly, as indicated in phantom in FIG. 4, the spacing of the arm from the central axis of the stent 10 becomes increased. Therefore, for valves of larger dimensions or those of irregular proportions, the arms may be deflected as required to assure that the stent provides the precise fit needed for the valve. Accordingly, the stent may be given an exact configuration to conform to the individual valve being assoicated with it. The upper arms 18, 19 and 20 are scalloped more deeply than are the lower support arms to provide for a maximum amount of dimensional variation upon deflection of the upper arms.
This advantage is realized with stents of metal construction in which the upper support arms may be deflected. This does not hold true, however, for stents made of plastic, as suitable plastics cannot be bent to assume different shapes permanently. The scalloped configuration of the upper support arms not only makes dimensional changes possible, but also allows placement of the valve in the aortic position without obstructing the coronary ostia.
The stent 32 shown in FIG. 5, for mitral or tricuspid location, has the same general configuration as the aortic stent, but is of larger and slightly heavier construction. Additionally, it includes an outer ring, which is used in securing the stent to the heart.
The stent 32, as illustrated, includes rounded apexes 33, 34 and 35, each being cut away interiorly so as to be of annular and generally oval configuration. Downwardly scalloped upper support arms 36, 37 and 38 interconnect the apexes. Beneath the upper arms are similarly shaped but more shallowly scalloped lower support arms 40, 41 and 42. These connect at their ends to posts 43, 44 and 45 that extend below the apexes 33, 34 and 35, respectively.
Additional short posts 46, 47 and 48 extend downwardly, as the device is shown, from the junctures between the adjacent lower support arms 40, 41 and 42. At their upper ends, the posts 46, 47 and 48 are generally parallel to the axis. The bottom portions of the posts 46, 47 and 48, however, are bent substantially at right angles to extend generally radially to an outer attaching ring 50. The latter element is circular and of greater diameter than the annulus defined by the support arms.
The attachment of the valve 51 to the stent 32 for the mitral position is essentially the same as that of the valve 28 to the aortic stent 10. Again, suturing 52 normally is employed to effect the attachment of the marginal portions of the valve 51. In addition, however, an annular member 53 of felt or other suitable material is positioned around the stent 32 between the outer ring 50 and the annular structure provided by the posts 46, 47 and 48 and the lower arms 40, 41 and 42. The felt ring 53 provides a hemodynamic seal and a suitable bed over which tissue can be affixed. The mitral leaflet and the endocardium 54 are brought over the atrial aspect of the outer ring 50 (i.e., the end remote from the apexes) and affixed by sutures to the felt ring 53. This serves an important function in the prevention of blood clots. The ring 50 and other parts of the stent 32 are completely covered in the portions of the assembly that are positioned in localities of the heart where clotting is likely to take place. Therefore, in the critical zones of the heart where a thrombus may occur, any exposure of material that might promote clotting is minimized. The ring 50 provides a stable and secure means for affixing the stent and associated mitral valve to the heart. This is accomplished normally by sutures to attach the valve in the mitral position between the left atrium and ventricle.
Various modifications may be made in the manner in which the heart valve is mounted on the stent. For example, as shown in FIGS. 7 and 8, the heart valve 55 attached to the aortic stent 10 is not doubled over the upper perimeter of the stent. In other words, the upper margin of the heart valve is not arranged as illustrated in FIG. 3, where the margin 31 is shown doubled over the upper arms 18, 19 and 20 and the apexes 11, 12 and 13. Instead, the margin 56 of the heart valve 55 of FIGS. 7 and 8 is allowed to project beyond the stent to provide a free edge portion of tissue. Inwardly of this, sutures 57 secure the upper part of the heart valve to the stent. The marginal edge portion 56 provides a flap of material which may be used in attaching the heart valve 55 to the heart wall. This technique is preferred in some instances.
The arrangement of FIG. 9 is similar to that of FIG. 8 except that a ring has been added around the perimeter of the stent. This is an annular member, normally of a suitable cloth such as felt, or of sponge, held in place by sutures and extending around the exterior of the support arms below the apexes of the stent. This ring provides a suitable bed for fibrous ingrowth after the grafting of the valve in the heart. This also provides a compliant member capable of conforming to an irregular aortic root to assure a snug fit and a hemodynamic seal. Moreover, the annulus of the valve supported on the stent often is irregular, further adding to the desirability of the exteriorly applied member in such instances.
While illustrated in FIG. 9 in conjunction with an attachment of the heart valve to leave a free marginal flap 56, the ring 58 also is applicable when the heart valve is attached upon a doubling over of the tissue as indicated in FIG. 3. The ring 58 may be used on either the stent 10 for the aortic position or the stent 32 for the mitral position.
FIG. 10 illustrates a further modification in which an annular cloth element 60 is provided on the stent prior to attachment of the heart valve. The cloth 60 is, in effect, tubular in shape, providing a sleeve that has a continuous transverse wall which overlaps and receives the upper and lower arms of the stent. However, the annular cloth member 60 does not extend over the stent apexes. Normally, a ring 58 will be utilized in conjunction with an assembly that embodies the annular cloth element 60. This cloth covering of the inner and outer stent surfaces, which can be applied to either the aortic or the mitral stent, provides a means by which the tissue is more easily attached to the stent. It results also in a matrix for ingrowth and subsequent fixation of the donor valve by the host tissue.
In FIG. 11, there is illustrated a heart valve 51 on the stent 32 for use in the mitral position similar to the arrangement of FIG. 6 but with a cloth layer 62 added over the periphery of the stent and inwardly of the outer ring 50. The layer of cloth 62 follows the contour of the stent and is fixed in place by sutures. The cloth layer 62 adds a matrix for fibrous ingrowth, facilitating the binding of the host tissue to the graft tissue. It also covers the sutures and the ragged edges of the margins of the heart valve that overlap the framework of the stent, providing an assembly of an improved neat appearance.
In the arrangement of FIGS. 12 and 13, the stent is intended for use in the mitral position, but is constructed without the metal ring 50 around its periphery. Instead, a cloth ring is provided, which serves a similar purpose, providing a means for attachment to the heart. The stent 63 shown in FIG. 12 is similar to the stent 32 in that it is provided with a comparable grouping of apexes and support arms, and larger and heavier than the stents for use in the aortic position. Thus, there are apexes 64, 65 and 66 interconnected by downwardly scalloped upper arms 67, 68 and 69 beneath which are lower arms 70, 71 and 72. Extending around the bottom periphery of the stent is a cloth ring 73. This is of doubled-over construction, with the lower arms 70, 71 and 72 received inside it. The outer edge, where the attachment is made to complete the double-walled cloth construction, is inwardly folded, as seen in FIG. 13. At the locations of the posts 75, 76 and 77, where the lower arms are connected to the upper portion of the stent, it is necessary to omit the outer layer of the cloth ring 73, as shown in FIG. 12.
It is to be remembered that the heart has four primary valves: two of which carry the blood away from the heart, the aortic and pulmonary valves; and two atrioventricular valves, the mitral and tricuspid valves. Since the aortic and pulmonary valves are similar in configuration as are the mitral and tricuspid valves, and since the device referred to herein as an aortic valve stent is equally suited to the pulmonary location, it is to be understood that the terms aortic and mitral are descriptive of the type of application and are not restrictive to a particular anatomic location.
The present invention also comprehends a device in which the spacings between the various apical portions are all unequal (each space being different from each other space). Using one space as the reference the second is approximately 4-10% less than said reference (space), and the third space is 17% to 33% less than said reference (space).
It is to be understood that cloth may be used to cover the frame in any one of a number of configurations. The cloth may be a seamless cylinder, or flat stock cut, formed and seamed, or specially preformed material. The methods described previously in this specification are by way of specific illustration.

Claims (17)

I claim:
1. A stent for .[.a.]. .Iadd.an animal .Iaddend.heart valve .Iadd.for supporting such a heart valve in its natural contour .Iaddend.comprising a framework of annular configuration,
said framework including .[.spaced.]. .Iadd.three rounded .Iaddend.apical portions .Iadd.at one end thereof, said apical portions being rounded convexly as viewed from said one end and being spaced apart unequal angular distances, .Iaddend.and arms interconnecting said apical portions,
.Iadd.each of said apical portions having a substantial circumferential dimension for permitting said apical portions to accommodate heart valves of different dimensions, .Iaddend.for thereby providing an attachment for the commissures and cusps of a heart valve, said arms being in two sets .Iadd.spaced apart axially.Iaddend.,
one of said sets being adjacent said apical portions and the other of said sets being remote from said apical portions.[...]..Iadd.,
all of said arms in at least the one of said sets adjacent said apical portions being curved in a scalloped configuration so as to incline away from said apical portions intermediate said apical portions, for conforming to the shape of and supporting the margins of the cusps of an animal heart valve such that the peripheral parts of said heart valve can be attached to said arms while preserving the natural contour of said heart valve,
said arms of said set remote from said apical portions being more nearly flat than are said arms of said set adjacent said apical portions. .Iaddend.
2. A device as recited in claim 1 in which said arms in both of said sets incline axially away from said apical portions intermediate said apical portions. .[.3. A device as recited in claim 2 in which at least some of said arms are deflectable for varying the distances thereof from the axis
of said framework..]. 4. A device as recited in claim 2 in which said sets of said arms .[.are spaced apart axially and.]. are generally equally spaced from the axis of said framework,
thereby providing said set of said arms adjacent said apical portions and
said set of said arms remote from said apical portions. 5. A device as recited in claim 4 including, in addition, a cloth member extending over
and receiving said arms. 6. A device as recited in claim 4 including, in addition, a cloth ring attached to and extending outwardly from said remote set of said arms for providing a means for attachment to a heart. .[.7. A device as recited in claim 4 including in addition
a ring circumscribing said framework adjacent said remote set of arms,
and including means projecting radially outwardly from said framework for securing said ring thereto..]. .[.8. A device as recited in claim 4 in which said arms in said one set are deflectable toward said apical portions for thereby increasing the radial spacing of said adjacent arms from the axis of said framework..]. .[.9. A device as recited in claim 4 in which said arms are curved in a scalloped configuration to so incline away from said apical portions intermediate said apical portions,
said arms in said one set being deflectable and having a greater inclination away from said apical portions than that of said arms in said other set,
for providing a relatively large increase in the spacing of said arms in said one set from the longitudinal axis of said framework upon deflection
of said arms in said one set toward said apical portions..]. 10. A device as recited in claim 1 including in addition a ring attached to said framework for providing a means for attachment of said framework in a heart in the mitral position, said ring circumscribing said framework adjacent said arms. .[.11. A device as recited in claim 10 in which said
ring is a rigid member integral with said framework..]. 12. A device as recited in claim 10 in which said ring is a cloth member secured to said arms. .[.13. A device as recited in claim 1 in which each of said apical portions is rounded and has a substantial circumferential dimension for permitting said apical portions to accommodate heart valves of different dimensions..]. .[.14. A device as recited in claim 1 in which
said arms are arcuate and concave on the sides thereof adjacent said apical portions,
said arms in said one set being bendable toward said apical portions for
thereby increasing their spacing from the axis of said framework..]. 15. A device as recited in claim 1 in which the spacing between two adjacent apical portions is less than the spacing between either of said two
adjacent apical portions and the third of said apical portions. 16. A device as recited in claim 15 in which said spacing between said two adjacent apical portions is within the range of 17% to 33% less than said spacing between either of said two adjacent apical portions and the third
of said apical portions. 17. A device as recited in claim 15 in which said spacing between said two adjacent apical portions is within the range of 20% to 25% less than said spacing between either of said two adjacent apical portions and the third of said apical portions. .[.18. A device as recited in claim 1 in which said framework is an integral member of substantially noncorrosive metal..]. .[.19. A device as recited in claim 18 in which said metal is malleable..]. .[.20. A device as recited in claim 1 in which said framework is an integral member of plastic
material..]. 21. The invention as claimed in claim 1 in which there are three apical portions spaced unequal angular distances from each other, one space between two adjacent apical portions being a reference space, another space between two adjacent apical portions being 4-10% less than said reference space, another space between two adjacent apical portions
being 17-33% less than said reference space. .[.22. A heart valve assembly comprising a stent,
said stent including a generally tubular framework having spaced apexes at one end,
a first seet of arms adjacent and interconnecting said apexes,
and a second set of arms spaced from said first set of arms and remote from said apexes,
said arms being inclined away from said apexes at locations intermediate said apexes,
a heart valve on said framework,
said heart valve having commissures substantially at said apexes and cusps having marginal portions adjacent said arms, the marginal portions of said heart valve overlapping said framework so that the interior of said framework is covered by said marginal portions of said heart valve,
and means for attaching said heart valve to said framework..]. 23. A device as recited in claim .[.22.]. .Iadd.37 .Iaddend.in which said marginal portions of said heart valve are doubled over said framework. .[.24. A device as recited in claim 22 in which said heart valve includes a free marginal edge extending from said one end for providing a means for attachment to a heart..]. .[.25. A device as recited in claim 22 including in addition a ring of clothlike or spongelike material circumscribing said
framework inwardly of said one end of said framework..]. 26. A device as recited in claim .[.22.]. .Iadd.37 .Iaddend.including in addition a sleeve .Iadd.of cloth material .Iaddend.receiving said arms, portions of said heart valve extending over said sleeve. .[.27. A device as recited in claim 26 in which said sleeve is of cloth material..]. .[.28. A heart valve assembly for use in the mitral position comprising
a stent,
said stent including a generally tubular framework having spaced apexes at one end and arms interconnecting said apexes,
said arms being inclined away from said apexes at locations intermediate said apexes,
a ring extending outwardly of said arms adjacent the opposite end of said framework,
an annular member circumscribing said arms,
means attaching said annular member to said framework,
a heart valve on said framework,
said heart valve having cusps having marginal portions overlapping said framework,
means attaching said marginal portions to said framework,
said heart valve having additional portions extending over the end of said ring remote from said apexes and toward said annular member,
and means attaching said additional portion of said heart valve to said annular member..]. .[.29. A device as recited in claim 28 in which said annular member is constructed of felt..]. .[.30. A device as recited in claim 28 including in addition a layer of cloth over said overlapping marginal portions for covering the same and providing for fibrous ingrowth upon being grafted in a heart..]. .[.31. A device as recited in claim 28 in which said ring is integral with said framework..]. .[.32. A device as recited in claim 28 in which said ring is a cloth member attached to said arms..]. .[.33. A stent for a heart valve comprising
a framework of annular configuration,
said framework including spaced apical portions and arms interconnecting said apical portions,
for thereby providing an attachment for the commissures and cusps of a heart valve,
a ring attached to said framework for providing a means for attachment of said framework in a heart in the mitral position,
said ring circumscribing said framework adjacent said arms,
and an annular member interposed between said ring and said framework for providing a bed for the attachment of portions of the valve extended over the atrial aspect of said ring, and for providing a hemodynamic seal upon grafting in a heart..]. .[.34. A device as recited in claim 33 in which
said annular member is constructed of felt..]. 35. A stent for .[.a.]. .Iadd.an animal .Iaddend.heart valve .Iadd.for supporting such a heart valve in its natural contour .Iaddend.comprising
a framework of annular configuration,
said framework including .Iadd.three .Iaddend.spaced apical portions .Iadd.at one end thereof .Iaddend.and arms interconnecting said apical portions,
for thereby providing an attachment for the commissures and cusps of a heart valve, .Iadd.said arms being in two sets spaced apart axially, one of said sets being adjacent said apical portions and the other of said sets being remote from said apical portions, said arms in at least the one of said sets adjacent said apical portions being curved in a scalloped configuration so as to incline away from said apical portions intermediate said apical portions for conforming to the shape of and supporting the margins of the cusps of an animal heart valve such that the peripheral parts of said heart valve can be attached to said arms while preserving the natural contour of said heart valve, .Iaddend.
each of said apical portions being rounded .Iadd.convexly as viewed from said one end, .Iaddend.and having a substantial circumferential dimension for permitting said apical portions to accommodate heart valves of different dimensions, said apical portions being annular and of generally
oval shape. .[.36. A stent for a heart valve comprising
a framework of annular configuration,
said framework including spaced apical portions,
arms interconnecting said apical portions, for thereby providing an attachment for the commissures and cusps of a heart valve, said arms inclining away from said apical portions intermediate said apical portions, said arms including a set of at least two of said arms intermediate each adjacent pair of apical portions,
said arms in each set being spaced apart axially and generally equally spaced from the axis of said framework, thereby providing arms adjacent said apical portions and arms remote from said apical portions,
a ring circumscribing said framework adjacent said remote arms,
and a relatively short post extending axially away from said apical portions at the junctures of said remote arms,
said posts including portions bent outwardly to provide a radially
projecting means for securing said ring to said framework..]. .Iadd.37. A heart valve assembly comprising
a stent, said stent including
a generally tubular framework having three apexes at one end thereof,
said apexes being rounded convexly as viewed from said one end and being spaced apart unequal angular distances,
each of said apexes having a substantial circumferential dimension,
a first set of arms adjacent and interconnecting said apexes, and a second set of arms spaced from said first set of arms and remote from said apexes,
all of said arms of at least said first set being arcuate so as to incline away from said apexes at locations intermediate said apexes,
an animal heart valve on said framework,
said heart valve having commissures substantially at said apexes and cusps having marginal portions substantially conforming to said arms of said first set, the marginal portions of said heart valve overlapping said framework so that the interior of said framework is covered by said marginal portions of said heart valve,
sutures attaching said heart valve to said framework so that said commissures are secured to said apexes and said marginal portions of said cusps are secured to said arms, and said heart valve is supported in substantially its natural contour with all its peripheral parts securely attached to said framework,
and a ring of clothlike or spongelike material circumscribing said framework inwardly of said one end of said framework for conforming to and providing a hemodynamic seal at the aortic root of a heart upon implantation. .Iaddend.
US05/915,451 1968-09-16 1978-06-14 Stent for heart valve Expired - Lifetime USRE30912E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/915,451 USRE30912E (en) 1968-09-16 1978-06-14 Stent for heart valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75985868A 1968-09-16 1968-09-16
US05/915,451 USRE30912E (en) 1968-09-16 1978-06-14 Stent for heart valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US75985868A Reissue 1968-09-16 1968-09-16

Publications (1)

Publication Number Publication Date
USRE30912E true USRE30912E (en) 1982-04-27

Family

ID=27116747

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/915,451 Expired - Lifetime USRE30912E (en) 1968-09-16 1978-06-14 Stent for heart valve

Country Status (1)

Country Link
US (1) USRE30912E (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116564A (en) * 1988-10-11 1992-05-26 Josef Jansen Method of producing a closing member having flexible closing elements, especially a heart valve
US5928281A (en) * 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US6761735B2 (en) 2002-04-25 2004-07-13 Medtronic, Inc. Heart valve fixation process and apparatus
US20040138741A1 (en) * 2000-07-27 2004-07-15 Robert Stobie Heart valve holders and handling clips therefor
US20050228494A1 (en) * 2004-03-29 2005-10-13 Salvador Marquez Controlled separation heart valve frame
US7018403B1 (en) 2004-09-14 2006-03-28 Advanced Cardiovascular Systems, Inc. Inclined stent pattern for vulnerable plaque
US20060271172A1 (en) * 2005-05-16 2006-11-30 Hassan Tehrani Minimally Invasive Aortic Valve Replacement
US20070254273A1 (en) * 2006-05-01 2007-11-01 Hugues Lafrance Simulated heart valve root for training and testing
US20090157175A1 (en) * 2007-12-14 2009-06-18 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US20100063363A1 (en) * 2005-02-10 2010-03-11 Hamman Baron L System, device, and method for providing access in a cardiovascular environment
US20100152840A1 (en) * 1999-11-17 2010-06-17 Jacques Seguin Prosthetic Valve for Transluminal Delivery
US20100161036A1 (en) * 2008-12-19 2010-06-24 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US20100249894A1 (en) * 2009-03-31 2010-09-30 Edwards Lifesciences Corporation Prosthetic heart valve system
US20100331972A1 (en) * 2009-06-26 2010-12-30 Edwards Lifesciences Corporation Unitary Quick Connect Prosthetic Heart Valve and Deployment System and Methods
US20110054598A1 (en) * 2005-07-13 2011-03-03 Edwards Lifesciences Corporation Contoured Sewing Ring for a Prosthetic Mitral Heart Valve
US20110098602A1 (en) * 2009-10-27 2011-04-28 Edwards Lifesciences Corporation Apparatus and Method for Measuring Body Orifice
US7951197B2 (en) 2005-04-08 2011-05-31 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US7972377B2 (en) 2001-12-27 2011-07-05 Medtronic, Inc. Bioprosthetic heart valve
US7981153B2 (en) 2002-12-20 2011-07-19 Medtronic, Inc. Biologically implantable prosthesis methods of using
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US8603161B2 (en) 2003-10-08 2013-12-10 Medtronic, Inc. Attachment device and methods of using the same
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US20140236289A1 (en) * 2007-08-24 2014-08-21 St. Jude Medical, Inc. Prosthetic aortic heart valves
US8821569B2 (en) 2006-04-29 2014-09-02 Medtronic, Inc. Multiple component prosthetic heart valve assemblies and methods for delivering them
USRE45130E1 (en) * 2000-02-28 2014-09-09 Jenavalve Technology Gmbh Device for fastening and anchoring cardiac valve prostheses
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US8986374B2 (en) 2010-05-10 2015-03-24 Edwards Lifesciences Corporation Prosthetic heart valve
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US9155617B2 (en) 2004-01-23 2015-10-13 Edwards Lifesciences Corporation Prosthetic mitral valve
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US9439762B2 (en) 2000-06-01 2016-09-13 Edwards Lifesciences Corporation Methods of implant of a heart valve with a convertible sewing ring
US9504566B2 (en) 2014-06-20 2016-11-29 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
US10058425B2 (en) 2013-03-15 2018-08-28 Edwards Lifesciences Corporation Methods of assembling a valved aortic conduit
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
US10292817B2 (en) 2008-06-06 2019-05-21 Edwards Lifesciences Corporation Low profile transcatheter heart valve
CN110025405A (en) * 2019-05-02 2019-07-19 武汉唯柯医疗科技有限公司 Balloon-expandable is through conduit valve
US10433958B2 (en) 2010-10-05 2019-10-08 Edwards Lifesciences Corporation Prosthetic heart valve
US10441415B2 (en) 2013-09-20 2019-10-15 Edwards Lifesciences Corporation Heart valves with increased effective orifice area
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
US10517722B2 (en) 2016-03-24 2019-12-31 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US10543080B2 (en) 2011-05-20 2020-01-28 Edwards Lifesciences Corporation Methods of making encapsulated heart valves
US10561494B2 (en) 2011-02-25 2020-02-18 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US10595993B2 (en) 2013-12-05 2020-03-24 Edwards Lifesciences Corporation Method of making an introducer sheath with an inner liner
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
US10722353B2 (en) 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10722316B2 (en) 2013-11-06 2020-07-28 Edwards Lifesciences Corporation Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage
US10799353B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US10898319B2 (en) 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
US10945837B2 (en) 2013-08-12 2021-03-16 Mitral Valve Technologies Sarl Apparatus and methods for implanting a replacement heart valve
US10973631B2 (en) 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11007058B2 (en) 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013595B2 (en) 2017-08-11 2021-05-25 Edwards Lifesciences Corporation Sealing element for prosthetic heart valve
US11026781B2 (en) 2017-05-22 2021-06-08 Edwards Lifesciences Corporation Valve anchor and installation method
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US11135057B2 (en) 2017-06-21 2021-10-05 Edwards Lifesciences Corporation Dual-wireform limited expansion heart valves
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11399932B2 (en) 2019-03-26 2022-08-02 Edwards Lifesciences Corporation Prosthetic heart valve
US11406493B2 (en) 2014-09-12 2022-08-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US11446141B2 (en) 2018-10-19 2022-09-20 Edwards Lifesciences Corporation Prosthetic heart valve having non-cylindrical frame
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11554012B2 (en) 2019-12-16 2023-01-17 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11730589B2 (en) 2010-03-05 2023-08-22 Edwards Lifesciences Corporation Prosthetic heart valve having an inner frame and an outer frame
US11951006B2 (en) 2023-01-04 2024-04-09 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU158988A1 (en) *
US3365728A (en) * 1964-12-18 1968-01-30 Edwards Lab Inc Upholstered heart valve having a sealing ring adapted for dispensing medicaments
US3445916A (en) * 1967-04-19 1969-05-27 Rudolf R Schulte Method for making an anatomical check valve
US3466671A (en) * 1966-10-19 1969-09-16 Edwards Lab Inc Heart valve prosthesis having a cloth covered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU158988A1 (en) *
US3365728A (en) * 1964-12-18 1968-01-30 Edwards Lab Inc Upholstered heart valve having a sealing ring adapted for dispensing medicaments
US3466671A (en) * 1966-10-19 1969-09-16 Edwards Lab Inc Heart valve prosthesis having a cloth covered body
US3445916A (en) * 1967-04-19 1969-05-27 Rudolf R Schulte Method for making an anatomical check valve

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"A Method for Placing a Total Homologous Aortic Valve in Subcoronary Position" by Duran and Gunning, The Lancet, Sep. 8, 1962, pp. 488 and 489. *
"A Method for Preparing and Inserting a Homograft Aortic Valve" by B. G. Barratt-Boyes, British Journal of Surgery, vol. 52, No. 11, Nov. 1965, pp. 847-856. *
"A Prefabricated Semirigid Tricusp Aortic Valve Prosthesis" by E. Hessel et al., Journal of Thoracic & Cardiovascular Surgery, vol. 54, No. 2, Aug. 1967, pp. 227-245. *
"A Prosthetic Stented Aortic Homograft for Mitral Valve Replacement" by C. Weldon et al., Journal of Surgical Research, vol. 6, No. 12, Dec. 1966, pp. 548-553. *
"Fixation of Aortic Valve Homografts with Metal Rings" by A. S. Geha et al., The Journal of Thoracic & Cardiovascular Surgery, vol. 54, No. 5, pp. 605-615, Nov. 1967. *
"Homograft Aortic Valve Replacement in Aortic Incompetence and Stenosis" by B. G. Barratt-Boyes, Thorax (1964), 19, pp. 131-150. *
"Memoires de l'Academie de Chirurgie" published Jun. 1967, vol. 93, No. 19-20-21, pp. 617-622, by A. Carpentier et al. *
"Mitral Valve Replacement with Aortic Heterografts in Humans" by M. I. Ionescu et al., Thorax, vol. 22, No. 4, Jul. 1967, pp. 305-313. *
"Replacement of the Mitral Valvular Apparatus by Hetertopic Heterografts" by A. Carpentier et al., La Presse Medicale, Jun. 24, 1967, 75-No. 31, pp. 1603-1606. *
"Simplified Insertion of Aortic Homograft Valves with _Nonthrombogenic Frames" by N. Braunwald et al., Transactions, American Society for Artificial Internal Organs, vol. XIII, Jun. 16, 1967, pp. 111-115. *

Cited By (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376113A (en) * 1988-10-11 1994-12-27 Jansen; Josef Closing member having flexible closing elements, especially a heart valve
US5116564A (en) * 1988-10-11 1992-05-26 Josef Jansen Method of producing a closing member having flexible closing elements, especially a heart valve
US5928281A (en) * 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US6585766B1 (en) 1997-03-27 2003-07-01 Edwards Lifesciences Corporation Cloth-covered stents for tissue heart valves
US8518108B2 (en) 1997-03-27 2013-08-27 Edwards Lifesciences Corporation Contoured heart valve suture rings
US20100152840A1 (en) * 1999-11-17 2010-06-17 Jacques Seguin Prosthetic Valve for Transluminal Delivery
US8603159B2 (en) * 1999-11-17 2013-12-10 Medtronic Corevalve, Llc Prosthetic valve for transluminal delivery
US8801779B2 (en) 1999-11-17 2014-08-12 Medtronic Corevalve, Llc Prosthetic valve for transluminal delivery
US10219901B2 (en) 1999-11-17 2019-03-05 Medtronic CV Luxembourg S.a.r.l. Prosthetic valve for transluminal delivery
USRE45130E1 (en) * 2000-02-28 2014-09-09 Jenavalve Technology Gmbh Device for fastening and anchoring cardiac valve prostheses
US9439762B2 (en) 2000-06-01 2016-09-13 Edwards Lifesciences Corporation Methods of implant of a heart valve with a convertible sewing ring
US10238486B2 (en) 2000-06-01 2019-03-26 Edwards Lifesciences Corporation Heart valve with integrated stent and sewing ring
US7819915B2 (en) 2000-07-27 2010-10-26 Edwards Lifesciences Corporation Heart valve holders and handling clips therefor
US20040138741A1 (en) * 2000-07-27 2004-07-15 Robert Stobie Heart valve holders and handling clips therefor
US7972377B2 (en) 2001-12-27 2011-07-05 Medtronic, Inc. Bioprosthetic heart valve
US6761735B2 (en) 2002-04-25 2004-07-13 Medtronic, Inc. Heart valve fixation process and apparatus
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US8349003B2 (en) 2002-07-16 2013-01-08 Medtronic, Inc. Suture locking assembly and method of use
US8025695B2 (en) 2002-12-20 2011-09-27 Medtronic, Inc. Biologically implantable heart valve system
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US10595991B2 (en) 2002-12-20 2020-03-24 Medtronic, Inc. Heart valve assemblies
US9333078B2 (en) 2002-12-20 2016-05-10 Medtronic, Inc. Heart valve assemblies
US7981153B2 (en) 2002-12-20 2011-07-19 Medtronic, Inc. Biologically implantable prosthesis methods of using
US8623080B2 (en) 2002-12-20 2014-01-07 Medtronic, Inc. Biologically implantable prosthesis and methods of using the same
US8460373B2 (en) 2002-12-20 2013-06-11 Medtronic, Inc. Method for implanting a heart valve within an annulus of a patient
US8747463B2 (en) 2003-08-22 2014-06-10 Medtronic, Inc. Methods of using a prosthesis fixturing device
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US8603161B2 (en) 2003-10-08 2013-12-10 Medtronic, Inc. Attachment device and methods of using the same
US10085836B2 (en) 2004-01-23 2018-10-02 Edwards Lifesciences Corporation Prosthetic mitral valve
US10342661B2 (en) 2004-01-23 2019-07-09 Edwards Lifesciences Corporation Prosthetic mitral valve
US9155617B2 (en) 2004-01-23 2015-10-13 Edwards Lifesciences Corporation Prosthetic mitral valve
US9730794B2 (en) 2004-01-23 2017-08-15 Edwards Lifesciences Corporation Prosthetic mitral valve
US20050228494A1 (en) * 2004-03-29 2005-10-13 Salvador Marquez Controlled separation heart valve frame
US7018403B1 (en) 2004-09-14 2006-03-28 Advanced Cardiovascular Systems, Inc. Inclined stent pattern for vulnerable plaque
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US8574257B2 (en) 2005-02-10 2013-11-05 Edwards Lifesciences Corporation System, device, and method for providing access in a cardiovascular environment
US20100063363A1 (en) * 2005-02-10 2010-03-11 Hamman Baron L System, device, and method for providing access in a cardiovascular environment
US8500802B2 (en) 2005-04-08 2013-08-06 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US20110190877A1 (en) * 2005-04-08 2011-08-04 Medtronic, Inc. Two-Piece Prosthetic Valves with Snap-In Connection and Methods for Use
US7951197B2 (en) 2005-04-08 2011-05-31 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US20060271172A1 (en) * 2005-05-16 2006-11-30 Hassan Tehrani Minimally Invasive Aortic Valve Replacement
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US20110054598A1 (en) * 2005-07-13 2011-03-03 Edwards Lifesciences Corporation Contoured Sewing Ring for a Prosthetic Mitral Heart Valve
US8506625B2 (en) 2005-07-13 2013-08-13 Edwards Lifesciences Corporation Contoured sewing ring for a prosthetic mitral heart valve
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US8821569B2 (en) 2006-04-29 2014-09-02 Medtronic, Inc. Multiple component prosthetic heart valve assemblies and methods for delivering them
US20070254273A1 (en) * 2006-05-01 2007-11-01 Hugues Lafrance Simulated heart valve root for training and testing
US8021161B2 (en) 2006-05-01 2011-09-20 Edwards Lifesciences Corporation Simulated heart valve root for training and testing
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US20140236289A1 (en) * 2007-08-24 2014-08-21 St. Jude Medical, Inc. Prosthetic aortic heart valves
US9421097B2 (en) * 2007-08-24 2016-08-23 St. Jude Medical, Inc. Prosthetic aortic heart valves
US9949826B2 (en) 2007-08-24 2018-04-24 St. Jude Medical, Llc Prosthetic aortic heart valves
US11141267B2 (en) 2007-08-24 2021-10-12 St. Jude Medical, Llc Prosthetic aortic heart valves
US10485662B2 (en) 2007-08-24 2019-11-26 St. Jude Medical, Llc Prosthetic aortic heart valves
US11382740B2 (en) 2007-09-28 2022-07-12 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US11534294B2 (en) 2007-09-28 2022-12-27 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US9820851B2 (en) 2007-09-28 2017-11-21 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US11660187B2 (en) 2007-09-28 2023-05-30 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US10426604B2 (en) 2007-09-28 2019-10-01 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US10413405B2 (en) 2007-12-14 2019-09-17 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US20090157175A1 (en) * 2007-12-14 2009-06-18 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US9510942B2 (en) * 2007-12-14 2016-12-06 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US10413404B2 (en) 2007-12-14 2019-09-17 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US10413406B2 (en) 2007-12-14 2019-09-17 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US10646336B2 (en) 2007-12-14 2020-05-12 Edwards Lifesciences Corporation Leaflet attachment frame for prosthetic valve
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10426611B2 (en) 2008-06-06 2019-10-01 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US10292817B2 (en) 2008-06-06 2019-05-21 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US10413407B2 (en) 2008-06-06 2019-09-17 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US20100161036A1 (en) * 2008-12-19 2010-06-24 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US9005278B2 (en) 2008-12-19 2015-04-14 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US10799346B2 (en) 2008-12-19 2020-10-13 Edwards Lifesciences Corporation Methods for quickly implanting a prosthetic heart valve
US9561100B2 (en) 2008-12-19 2017-02-07 Edwards Lifesciences Corporation Systems for quickly delivering a prosthetic heart valve
US11504232B2 (en) 2008-12-19 2022-11-22 Edwards Lifesciences Corporation Rapid implant prosthetic heart valve system
US10182909B2 (en) 2008-12-19 2019-01-22 Edwards Lifesciences Corporation Methods for quickly implanting a prosthetic heart valve
US10842623B2 (en) 2009-03-31 2020-11-24 Edwards Lifesciences Corporation Methods of implanting prosthetic heart valve using position markers
US9931207B2 (en) 2009-03-31 2018-04-03 Edwards Lifesciences Corporation Methods of implanting a heart valve at an aortic annulus
US20100249894A1 (en) * 2009-03-31 2010-09-30 Edwards Lifesciences Corporation Prosthetic heart valve system
US9248016B2 (en) 2009-03-31 2016-02-02 Edwards Lifesciences Corporation Prosthetic heart valve system
US20100249908A1 (en) * 2009-03-31 2010-09-30 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US9005277B2 (en) 2009-06-26 2015-04-14 Edwards Lifesciences Corporation Unitary quick-connect prosthetic heart valve deployment system
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
US20100331972A1 (en) * 2009-06-26 2010-12-30 Edwards Lifesciences Corporation Unitary Quick Connect Prosthetic Heart Valve and Deployment System and Methods
US8696742B2 (en) 2009-06-26 2014-04-15 Edwards Lifesciences Corporation Unitary quick-connect prosthetic heart valve deployment methods
US10555810B2 (en) 2009-06-26 2020-02-11 Edwards Lifesciences Corporation Prosthetic heart valve deployment systems
US11412954B2 (en) 2009-10-27 2022-08-16 Edwards Lifesciences Corporation Device for measuring an aortic valve annulus in an expanded condition
US9603553B2 (en) 2009-10-27 2017-03-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
US8449625B2 (en) 2009-10-27 2013-05-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
US20110098602A1 (en) * 2009-10-27 2011-04-28 Edwards Lifesciences Corporation Apparatus and Method for Measuring Body Orifice
US10231646B2 (en) 2009-10-27 2019-03-19 Edwards Lifesciences Corporation Device for measuring an aortic valve annulus in an expanded condition
US11730589B2 (en) 2010-03-05 2023-08-22 Edwards Lifesciences Corporation Prosthetic heart valve having an inner frame and an outer frame
US8986374B2 (en) 2010-05-10 2015-03-24 Edwards Lifesciences Corporation Prosthetic heart valve
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
US11266497B2 (en) 2010-05-12 2022-03-08 Edwards Lifesciences Corporation Low gradient prosthetic heart valves
US10463480B2 (en) 2010-05-12 2019-11-05 Edwards Lifesciences Corporation Leaflet for low gradient prosthetic heart valve
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US10039641B2 (en) 2010-09-10 2018-08-07 Edwards Lifesciences Corporation Methods of rapidly deployable surgical heart valves
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US11197757B2 (en) 2010-09-10 2021-12-14 Edwards Lifesciences Corporation Methods of safely expanding prosthetic heart valves
US11471279B2 (en) 2010-09-10 2022-10-18 Edwards Lifesciences Corporation Systems for rapidly deployable surgical heart valves
US10722358B2 (en) 2010-09-10 2020-07-28 Edwards Lifesciences Corporation Systems for rapidly deployable surgical heart valves
US10548728B2 (en) 2010-09-10 2020-02-04 Edwards Lifesciences Corporation Safety systems for expansion of prosthetic heart valves
US9968450B2 (en) 2010-09-10 2018-05-15 Edwards Lifesciences Corporation Methods for ensuring safe and rapid deployment of prosthetic heart valves
US9504563B2 (en) 2010-09-10 2016-11-29 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US10433958B2 (en) 2010-10-05 2019-10-08 Edwards Lifesciences Corporation Prosthetic heart valve
US10478292B2 (en) 2010-10-05 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
US10537423B2 (en) 2010-10-05 2020-01-21 Edwards Lifesciences Corporation Prosthetic heart valve
US10433959B2 (en) 2010-10-05 2019-10-08 Edwards Lifesciences Corporation Prosthetic heart valve
US10561494B2 (en) 2011-02-25 2020-02-18 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US11399934B2 (en) 2011-02-25 2022-08-02 Edwards Lifesciences Corporation Prosthetic heart valve
US11737868B2 (en) 2011-02-25 2023-08-29 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US11129713B2 (en) 2011-02-25 2021-09-28 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US11517426B2 (en) 2011-05-20 2022-12-06 Edwards Lifesciences Corporation Encapsulated heart valves
US10543080B2 (en) 2011-05-20 2020-01-28 Edwards Lifesciences Corporation Methods of making encapsulated heart valves
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
US11452602B2 (en) 2011-12-21 2022-09-27 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a native heart valve annulus
US10849752B2 (en) 2011-12-21 2020-12-01 Edwards Lifesciences Corporation Methods for anchoring a device at a native heart valve annulus
US10238489B2 (en) 2011-12-21 2019-03-26 Edwards Lifesciences Corporation Anchoring device and method for replacing or repairing a heart valve
US11007058B2 (en) 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
US10058425B2 (en) 2013-03-15 2018-08-28 Edwards Lifesciences Corporation Methods of assembling a valved aortic conduit
US11648116B2 (en) 2013-03-15 2023-05-16 Edwards Lifesciences Corporation Methods of assembling valved aortic conduits
US10945837B2 (en) 2013-08-12 2021-03-16 Mitral Valve Technologies Sarl Apparatus and methods for implanting a replacement heart valve
US11793630B2 (en) 2013-08-12 2023-10-24 Mitral Valve Technologies Sarl Apparatus and methods for implanting a replacement heart valve
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US10441415B2 (en) 2013-09-20 2019-10-15 Edwards Lifesciences Corporation Heart valves with increased effective orifice area
US11266499B2 (en) 2013-09-20 2022-03-08 Edwards Lifesciences Corporation Heart valves with increased effective orifice area
US10722316B2 (en) 2013-11-06 2020-07-28 Edwards Lifesciences Corporation Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage
US10595993B2 (en) 2013-12-05 2020-03-24 Edwards Lifesciences Corporation Method of making an introducer sheath with an inner liner
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
US9504566B2 (en) 2014-06-20 2016-11-29 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
US11154394B2 (en) 2014-06-20 2021-10-26 Edwards Lifesciences Corporation Methods of identifying and replacing implanted heart valves
US10130469B2 (en) 2014-06-20 2018-11-20 Edwards Lifesciences Corporation Expandable surgical heart valve indicators
US11406493B2 (en) 2014-09-12 2022-08-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
USD893031S1 (en) 2015-06-19 2020-08-11 Edwards Lifesciences Corporation Prosthetic heart valve
US10751174B2 (en) 2015-09-10 2020-08-25 Edwards Lifesciences Corporation Limited expansion heart valve
US11806232B2 (en) 2015-09-10 2023-11-07 Edwards Lifesciences Corporation Limited expansion valve-in-valve procedures
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
US11471275B2 (en) 2016-03-08 2022-10-18 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
US10517722B2 (en) 2016-03-24 2019-12-31 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US11116629B2 (en) 2016-03-24 2021-09-14 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11484406B2 (en) 2016-11-17 2022-11-01 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US10973631B2 (en) 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US11344408B2 (en) 2016-12-06 2022-05-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
US11376125B2 (en) 2017-04-06 2022-07-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
US11911273B2 (en) 2017-04-28 2024-02-27 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US10799353B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US11026781B2 (en) 2017-05-22 2021-06-08 Edwards Lifesciences Corporation Valve anchor and installation method
US11135057B2 (en) 2017-06-21 2021-10-05 Edwards Lifesciences Corporation Dual-wireform limited expansion heart valves
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
US11547544B2 (en) 2017-07-18 2023-01-10 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
US11013595B2 (en) 2017-08-11 2021-05-25 Edwards Lifesciences Corporation Sealing element for prosthetic heart valve
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
US10898319B2 (en) 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10722353B2 (en) 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11850148B2 (en) 2017-08-21 2023-12-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
US11446141B2 (en) 2018-10-19 2022-09-20 Edwards Lifesciences Corporation Prosthetic heart valve having non-cylindrical frame
US11399932B2 (en) 2019-03-26 2022-08-02 Edwards Lifesciences Corporation Prosthetic heart valve
CN110025405A (en) * 2019-05-02 2019-07-19 武汉唯柯医疗科技有限公司 Balloon-expandable is through conduit valve
US11554012B2 (en) 2019-12-16 2023-01-17 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
US11951006B2 (en) 2023-01-04 2024-04-09 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection

Similar Documents

Publication Publication Date Title
USRE30912E (en) Stent for heart valve
US3570014A (en) Stent for heart valve
US20220175519A1 (en) Transcatheter valve having reduced seam exposure
US3755823A (en) Flexible stent for heart valve
EP0930857B1 (en) Prosthetic heart valve with suturing member having non-uniform radial width
US10226336B2 (en) Stented prosthetic heart valve
CN105263445B (en) Heart valve with increased effective orifice area
JP6563394B2 (en) Radially foldable frame for an artificial valve and method for manufacturing the frame
CA3041455A1 (en) Stent of aortic valve implanted transcatheterly
EP3528749A1 (en) Stent of aortic valve implanted transcatheterly
US6090140A (en) Extra-anatomic heart valve apparatus
US6749630B2 (en) Tricuspid ring and template
US6350282B1 (en) Stented bioprosthetic heart valve
US6254636B1 (en) Single suture biological tissue aortic stentless valve
EP1328215B1 (en) Flexible heart valve having moveable commissures
US7455689B2 (en) Four-leaflet stented mitral heart valve
US5549665A (en) Bioprostethic valve
US7854763B2 (en) Intraparietal aortic valve reinforcement device and reinforced aortic valve
JP4230118B2 (en) Flexible heart valve
US6908482B2 (en) Three-dimensional annuloplasty ring and template
US20170065409A1 (en) Cardiac Stent-Valve and Delivery Device for such a Valve
CN105578991A (en) Cardiac valve support device fitted with valve leaflets
JPS595299B2 (en) Supported bioprosthetic heart valve
JPS59135055A (en) Low profile biological two peak valves
JP2016504154A (en) Flexible stent frame stiffener for surgical heart valves

Legal Events

Date Code Title Description
AS Assignment

Owner name: VASCOR INC.

Free format text: CHANGE OF NAME;ASSIGNOR:HANCOCK LABORATORIES INCORPORATED;REEL/FRAME:004202/0026

Effective date: 19800901

Owner name: EXTRACORPOREAL MEDICAL SPECIALTIES, INC. A PA. COR

Free format text: MERGER;ASSIGNOR:VASCOR INC., A CORP OF CA (INTO);REEL/FRAME:004202/0030

Effective date: 19820104

AS Assignment

Owner name: MCNEILAB, INC., 123 S. BROAD STREET, C/O CT CORPOR

Free format text: CHANGE OF NAME;ASSIGNOR:EXTRACORPOREAL MEDICAL SPECIALTIES, INC.;REEL/FRAME:004487/0401

Effective date: 19840920

AS Assignment

Owner name: MEDTRONIC, INC., 7000 CENTRAL AVENUE, N.E., MINNEA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MCNEILAB, INC.;REEL/FRAME:004809/0919

Effective date: 19871207