USRE30995E - High integrity CoCrAl(Y) coated nickel-base superalloys - Google Patents

High integrity CoCrAl(Y) coated nickel-base superalloys Download PDF

Info

Publication number
USRE30995E
USRE30995E US06/166,126 US16612680A USRE30995E US RE30995 E USRE30995 E US RE30995E US 16612680 A US16612680 A US 16612680A US RE30995 E USRE30995 E US RE30995E
Authority
US
United States
Prior art keywords
coating
iaddend
iadd
nickel
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/166,126
Inventor
John R. Rairden, III
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/804,936 external-priority patent/US4101715A/en
Application filed by General Electric Co filed Critical General Electric Co
Priority to US06/166,126 priority Critical patent/USRE30995E/en
Application granted granted Critical
Publication of USRE30995E publication Critical patent/USRE30995E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • This invention relates to a high temperature oxidation and corrosion resistant coated nickel-base superalloy article comprising (a) a nickel-base superalloy article, and .[.(b) a first.]. .Iadd.adjacent thereto (b) a .Iaddend.CoCrAl(Y) coating .Iadd.having a substantially uniform .Iaddend.composition .[.consisting essentially.]. .Iadd.composed .Iaddend.of, on a weight basis, approximately 26-32% chromium, 3-9% aluminum, 0-1% yttrium, the rare earth elements, platinum or rhodium, and the balance .[.nickel.].
  • An aluminide overcoating can be applied to the CoCrAl(Y) coated superalloys and constitute another embodiment of my invention.
  • Evans et al. in U.S. Pat. No. 3,676,085 describe coated nickel-base superalloys wherein the coating composition consists essentially of, on a weight basis, 15-40% chromium, 10-25% aluminum, 0.01-5% yttrium or the rare earth elements and the balance cobalt. Evans et al. .[.teache.]. .Iadd.teach .Iaddend.that when the aluminum content of the CoCrAl(Y) coating is below about 10% there is insufficient aluminum present in the coating system to provide the desired long term durability in the coating.
  • nickel-base superalloys when coated with CoCrAl(Y) coatings having an aluminum content of less than 10% have outstanding physical and chemical properties, i.e. significant oxidation and corrosion resistance and high coating-substrate interface integrity. These outstanding properties are not associated with nickel-base superalloys when coated with the coating systems described by Evans et al. referenced above.
  • This invention embodies a high temperature oxidation and corrosion resistant coated nickel-base superalloy article comprising (a) a nickel-base superalloy article of manufacture, and .[.(b) a first.]. .Iadd.adjacent thereto (b) a .Iaddend.CoCrAl(Y) coating .Iadd.having a substantially uniform .Iaddend.composition .[.consisting essentially.]. .Iadd.composed .Iaddend.of, on a weight basis, approximately 26-32% chromium, 3-9% aluminum, and 0-1% yttrium, the rare earth elements, platinum or rhodium, and the balance .[.nickel.]. .Iadd.cobalt and impurities ordinarily associated with the aforementioned constituents.Iaddend..
  • FIG. 1 is a photomicrograph (500X) of a CoCrAl(Y) coated nickel-base IN-738 superalloy having a coating composition of Evans et al. U.S. Pat. No. 3,676,085, i.e. Co-22Cr-13Al-1Y.
  • This figure illustrates the low integrity of a CoCrAl(Y) coated nickel-base superalloy of the prior art, i.e. a coating which has a significant and a substantial tendency to separate from a superalloy substrate thereby failing to give the oxidation and corrosion resistant coating integrity desired for nickel-base superalloys.
  • FIG. 2 is a photomicrograph (500X) of a CoCrAl(Y) coated nickel-base IN-738 superalloy having a coating composition of my invention, i.e. Co-29Cr-6Al-1Y.
  • This figure illustrates the high integrity of a CoCrAl(Y) coated nickel-base superalloy of my invention, i.e. a coating .Iadd.of substantially uniform composition .Iaddend.which does not have a significant or substantial tendency to separate from a superalloy substrate thereby giving the oxidation and corrosion resistance coating integrity desired for nickel-base superalloys.
  • the coated nickel-base superalloys of my invention have a thermal expansion coefficient value ⁇ as measured in inches .Iadd.10 -6 .Iaddend.per inch per °F. (in./in./°F.) over a temperature range of (i) 100°-1200° F. of 8.45 to 9.05 in./in./°F. and (ii) 100° to 1740° F. of 9.45 to .Badd..[.10.5.]..Baddend. .Iadd.10.05 .Iaddend.in./in./°F.
  • a presently preferred nickel-base superalloy employed in my invention "IN-738" is of the following general composition:
  • This superalloy has a thermal expansion coefficient value ⁇ measured in .Iadd.10 -6 .Iaddend. in./in./°F. over the temperature ranges set out above of 8.7 ⁇ 0.1 and 9.7 ⁇ 0.1, respectively.
  • a presently preferred CoCrAl(Y) coating employed in my invention "GT-29” is of the following general composition: Co-29Cr-6Al-1Y. This coating has a thermal expansion coefficient ⁇ measured in .Iadd.10 -6 .Iaddend. in./in./°F. over the temperature ranges set out above of 8.8 ⁇ 0.1 and 9.9 ⁇ 0.1, respectively.
  • the nickel-base superalloys and CoCrAl(Y) alloys employed in my invention can be prepared by any method well-known to those skilled.
  • CoCrAl(Y) coatings can be applied to the nickel-base superalloys by means, such as physical or chemical vapor deposition, or any other means well-known to those skilled in the art for the application of CoCrAl(Y) coatings to superalloys.
  • coating techniques that can be used are those described in
  • the CoCrAl(Y) coated nickel-base superalloys can have any coating thickness sufficient to give a desired oxidation and corrosion resistance.
  • Generally economic and effective coating thicknesses are 1-20 mils for most commercial applications.
  • electron-beam techniques are employed the coating thicknesses range from 1-5 mils and where plasma flame spray techniques are employed the coating thicknesses range from 3-10 mils.
  • the aluminide overcoating--including any duplex heat treatment where the aluminide overcoating is heated for periods of time from 30 or 60 to 120 minutes at elevated temperatures of 850° to 1200° F.
  • Test specimen pins of IN-738 were prepared which had been lightly abraded with a No. 3 alumina powder. The resulting pins were 4.4 centimeters long and 0.25 cm. in diameter.
  • a series of CoCrAl(Y) ingots having the compositions set out hereafter in Table I were electron-beam deposited on the abraded IN-738 pin substrates at a deposition rate of approximately 0.1 mils per minute while the pins were rotated at approximately 10 revolutions per minute.
  • the coatings were deposited at various pins substrate temperatures, e.g. 1022° F., 1292° F., 1562° F. and 1832° F.
  • the CoCrAl(Y) coated pins were thermal cycled during deposition over a temperature range of from approximately 1832° F. to 70° F. (room temperature).
  • CoCrAl(Y) coated IN-738 pin samples were prepared as described in Example I above--having the coating compositions set out hereafter in Table II--were subjected to a burner rig test which simulated conditions used in a marine gas turbine engine under highly corrosive conditions. The test was run to coating failure using a diesel fuel containing 1% by weight of sulfur and 467 parts per million sea salt at a temperature 1600° F. coupled with thermocycling to room temperature 3 to 5 times per week. The CoCrAl(Y) coated IN-738 samples were evaluated and characterized according to hours to failure, failure being defined as a condition wherein the results of the burner rig corrosion test conditions set out in Table II hereafter:

Abstract

A high temperature oxidation and corrosion resistant coated nickel-base superalloy article comprising (a) a nickel-base superalloy article, and .[.(b) a first.]. .Iadd.adjacent thereto (b) a .Iaddend.CoCrAl(Y) coating .Iadd.having a substantially uniform .Iaddend.composition .[.consisting essentially.]. .Iadd.composed .Iaddend.of, on a weight basis, approximately 26-32% chromium, 3-9% aluminum, 0-1% yttrium, the rare earth elements, platinum or rhodium, and the balance .[.nickel.]. .Iadd.cobalt and impurities ordinarily associated with the aforementioned constituents. .Iaddend.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a high temperature oxidation and corrosion resistant coated nickel-base superalloy article comprising (a) a nickel-base superalloy article, and .[.(b) a first.]. .Iadd.adjacent thereto (b) a .Iaddend.CoCrAl(Y) coating .Iadd.having a substantially uniform .Iaddend.composition .[.consisting essentially.]. .Iadd.composed .Iaddend.of, on a weight basis, approximately 26-32% chromium, 3-9% aluminum, 0-1% yttrium, the rare earth elements, platinum or rhodium, and the balance .[.nickel.]. .Iadd.cobalt and impurities ordinarily associated with the aforementioned constituents.Iaddend.. An aluminide overcoating can be applied to the CoCrAl(Y) coated superalloys and constitute another embodiment of my invention.
2. Description of the Prior Art
Evans et al. in U.S. Pat. No. 3,676,085 describe coated nickel-base superalloys wherein the coating composition consists essentially of, on a weight basis, 15-40% chromium, 10-25% aluminum, 0.01-5% yttrium or the rare earth elements and the balance cobalt. Evans et al. .[.teache.]. .Iadd.teach .Iaddend.that when the aluminum content of the CoCrAl(Y) coating is below about 10% there is insufficient aluminum present in the coating system to provide the desired long term durability in the coating.
Unexpectedly, I have found that nickel-base superalloys when coated with CoCrAl(Y) coatings having an aluminum content of less than 10% have outstanding physical and chemical properties, i.e. significant oxidation and corrosion resistance and high coating-substrate interface integrity. These outstanding properties are not associated with nickel-base superalloys when coated with the coating systems described by Evans et al. referenced above.
DESCRIPTION OF THE INVENTION
This invention embodies a high temperature oxidation and corrosion resistant coated nickel-base superalloy article comprising (a) a nickel-base superalloy article of manufacture, and .[.(b) a first.]. .Iadd.adjacent thereto (b) a .Iaddend.CoCrAl(Y) coating .Iadd.having a substantially uniform .Iaddend.composition .[.consisting essentially.]. .Iadd.composed .Iaddend.of, on a weight basis, approximately 26-32% chromium, 3-9% aluminum, and 0-1% yttrium, the rare earth elements, platinum or rhodium, and the balance .[.nickel.]. .Iadd.cobalt and impurities ordinarily associated with the aforementioned constituents.Iaddend..
My invention is more clearly understood from the following description taken in conjunction with the accompanying drawings, where:
FIG. 1 is a photomicrograph (500X) of a CoCrAl(Y) coated nickel-base IN-738 superalloy having a coating composition of Evans et al. U.S. Pat. No. 3,676,085, i.e. Co-22Cr-13Al-1Y. This figure illustrates the low integrity of a CoCrAl(Y) coated nickel-base superalloy of the prior art, i.e. a coating which has a significant and a substantial tendency to separate from a superalloy substrate thereby failing to give the oxidation and corrosion resistant coating integrity desired for nickel-base superalloys.
FIG. 2 is a photomicrograph (500X) of a CoCrAl(Y) coated nickel-base IN-738 superalloy having a coating composition of my invention, i.e. Co-29Cr-6Al-1Y.
This figure illustrates the high integrity of a CoCrAl(Y) coated nickel-base superalloy of my invention, i.e. a coating .Iadd.of substantially uniform composition .Iaddend.which does not have a significant or substantial tendency to separate from a superalloy substrate thereby giving the oxidation and corrosion resistance coating integrity desired for nickel-base superalloys. The coated nickel-base superalloys of my invention have a thermal expansion coefficient value α as measured in inches .Iadd.10-6 .Iaddend.per inch per °F. (in./in./°F.) over a temperature range of (i) 100°-1200° F. of 8.45 to 9.05 in./in./°F. and (ii) 100° to 1740° F. of 9.45 to .Badd..[.10.5.]..Baddend. .Iadd.10.05 .Iaddend.in./in./°F.
A presently preferred nickel-base superalloy employed in my invention "IN-738" is of the following general composition:
______________________________________                                    
Ingredient           IN-738                                               
______________________________________                                    
C                    0.17                                                 
Mn                   0.10                                                 
Si                   0.30                                                 
Cr                   16.0                                                 
Ni                   Bal.                                                 
Co                   8.5                                                  
Mo                   1.75                                                 
W                    2.6                                                  
Cb                   0.9                                                  
Ti                   3.4                                                  
Al                   3.4                                                  
B                    0.01                                                 
Zr                   0.10                                                 
Fe                   0.50                                                 
Other                1.75 Ta                                              
______________________________________                                    
This superalloy has a thermal expansion coefficient value α measured in .Iadd.10-6 .Iaddend. in./in./°F. over the temperature ranges set out above of 8.7±0.1 and 9.7±0.1, respectively.
A presently preferred CoCrAl(Y) coating employed in my invention "GT-29" is of the following general composition: Co-29Cr-6Al-1Y. This coating has a thermal expansion coefficient α measured in .Iadd.10-6 .Iaddend. in./in./°F. over the temperature ranges set out above of 8.8±0.1 and 9.9±0.1, respectively.
.Iadd.As is established hereinbelow, a successful substrate/coating combination within the teachings of this invention employs IN-738 as the nickel-base superalloy and Co-29Cr-6Al-1Y as the coating composition. The approximate percent difference in coefficients of thermal expansion successfully tolerated in the tests described are calculated from the data set forth above as follows:
__________________________________________________________________________
TEC*            MAX. TEC  %                                               
IN-738                                                                    
      Co-29Cr-6Al-1Y                                                      
                DIFFERENCE                                                
                          DIFFERENCE                                      
__________________________________________________________________________
8.7 ± 0.1                                                              
      8.8 ± 0.1                                                        
                 8.9 - 8.6 = 0.3                                          
                           ##STR1##                                       
9.7 ± 0.1                                                              
      9.9 ± 0.1                                                        
                10.0 - 9.6 = 0.4                                          
                           ##STR2##                                       
__________________________________________________________________________
 *Thermal Expansion Coefficient 10.sup.-6 in./in./°F.              
Thus, in sum, this set of calculations shows that the combination of these materials had a maximum TEC difference of about 4 percent. .Iaddend.
The nickel-base superalloys and CoCrAl(Y) alloys employed in my invention can be prepared by any method well-known to those skilled.
The CoCrAl(Y) coatings can be applied to the nickel-base superalloys by means, such as physical or chemical vapor deposition, or any other means well-known to those skilled in the art for the application of CoCrAl(Y) coatings to superalloys. Among the coating techniques that can be used are those described in
Flame Spray Handbook, Volume III, by H. S. Ingham and A. P. Shepard, published by Metco, Inc., Westbury, Long Island, New York (1965),
Vapor Deposition, edited by C. F. Powell, J. H. Oxley and J. M. Blocher, Jr., published by John Wiley & Sons, Inc., New York (1966), etc.
In general, the CoCrAl(Y) coated nickel-base superalloys can have any coating thickness sufficient to give a desired oxidation and corrosion resistance. Generally economic and effective coating thicknesses are 1-20 mils for most commercial applications. In preferred embodiments, where electron-beam techniques are employed the coating thicknesses range from 1-5 mils and where plasma flame spray techniques are employed the coating thicknesses range from 3-10 mils. In another preferred embodiment where an aluminide overcoating is employed, the aluminide overcoating--including any duplex heat treatment where the aluminide overcoating is heated for periods of time from 30 or 60 to 120 minutes at elevated temperatures of 850° to 1200° F. in air, argon, etc., for the purpose of diffusing aluminum into the CoCrAl(Y) coating--the .[.aluminuide.]. .Iadd.aluminide .Iaddend.process is carried out in a manner which limits the aluminum penetration into the CoCrAl(Y) coating to a distance no nearer than a 1/2 mil measured from the interface of the nickel-base superalloy and the CoCrAl(Y) coating. This aluminide diffusion penetration limitation is essential to the integrity of the CoCrAl(Y) nickel-base superalloy interface since as indicated hereinbefore (as illustrated by FIG. 1) an increase in the aluminum content of the CoCrAl(Y) coating to levels of 10% or more deleterious affects the integrity of the coating composition.
My invention is further illustrated by the following examples:
EXAMPLE I
An experimental series was designed to study the expansion match characteristics of nickel-base superalloys and CoCrAl(Y) compositions as well as their oxidative and corrosion resistance.
Test specimen pins of IN-738 were prepared which had been lightly abraded with a No. 3 alumina powder. The resulting pins were 4.4 centimeters long and 0.25 cm. in diameter. A series of CoCrAl(Y) ingots having the compositions set out hereafter in Table I were electron-beam deposited on the abraded IN-738 pin substrates at a deposition rate of approximately 0.1 mils per minute while the pins were rotated at approximately 10 revolutions per minute. The coatings were deposited at various pins substrate temperatures, e.g. 1022° F., 1292° F., 1562° F. and 1832° F. The CoCrAl(Y) coated pins were thermal cycled during deposition over a temperature range of from approximately 1832° F. to 70° F. (room temperature).
.[.Mellographic.]. .Iadd.Metallographic .Iaddend.examination via photomicrographs--illustrated by FIGS. 1 and 2--shows that the CoCrAl(Y) compositions of Evans et al. are not suited to nickel-base superalloys defined herein since high aluminum CoCrAl(Y) coatings as deposited on the nickel-base superalloy IN-738 separate from the substrate during thermal cycling over a temperature range of from 1832°-70° F.
              TABLE I                                                     
______________________________________                                    
                              Associated                                  
                              Photo-                                      
Inventors        Compositions micrographs                                 
______________________________________                                    
Evans et al., Prior Art                                                   
                     Co-18Cr-17Al-1Y                                      
                                  --                                      
Compositions         Co-22Cr-13Al-1Y                                      
                                  FIG. 1                                  
                     Co-26Cr-9Al-1Y                                       
                                  --                                      
Rairden's, This      Co-29Cr-6Al-1Y                                       
                                  FIG. 2                                  
Invention's                                                               
Compositions (RD-7240)                                                    
                     Co-30Cr-9Al-1Y                                       
                                  --                                      
                     Co-32Cr-3Al-1Y                                       
______________________________________                                    
EXAMPLE II
Another series of CoCrAl(Y) coated IN-738 pin samples were prepared as described in Example I above--having the coating compositions set out hereafter in Table II--were subjected to a burner rig test which simulated conditions used in a marine gas turbine engine under highly corrosive conditions. The test was run to coating failure using a diesel fuel containing 1% by weight of sulfur and 467 parts per million sea salt at a temperature 1600° F. coupled with thermocycling to room temperature 3 to 5 times per week. The CoCrAl(Y) coated IN-738 samples were evaluated and characterized according to hours to failure, failure being defined as a condition wherein the results of the burner rig corrosion test conditions set out in Table II hereafter:
              TABLE II                                                    
______________________________________                                    
Inventors    Compositions  Hours to Failure*                              
______________________________________                                    
Evans et al.     Co-22Cr-13Al-1Y                                          
                                605                                       
Rairden's        Co-32Cr-3Al-1Y                                           
                               1235                                       
                 Co-29Cr-6Al-1Y                                           
                               1675                                       
                 Co-30Cr-9Al-1Y                                           
                               2431                                       
                 Co-26Cr-9Al-1Y                                           
                               1594                                       
______________________________________                                    
 *Failure being defined as the approximate number of hours of test prior t
 the formation of an observable bulky, green, nickelbearing oxide which   
 indicates that the coating has been penetrated under the burner rig test 
 conditions.                                                              

Claims (2)

I claim:
1. A high temperature oxidation and corrosion resistant coated nickel-base superalloy article .[.having a thermal expansion coefficient value in inches per inch per °F. measured over a temperature range of
(i) 100°-1200° F. of from 8.45 to 9.05, and
(ii) 100°-1740° F. of from 9.45 to 10.05;.]. .Iadd.characterized by high coating-substrate interface integrity, said article .Iaddend.comprising:
(a) a nickel-base superalloy, and
(b) a .[.first.]. CoCrAl(Y) coating .Iadd.providing the outer surface of said article, said coating having a substantially uniform .Iaddend.composition .[.consisting essentially.]. .Iadd.composed .Iaddend.of, on a weight basis, approximately 26-32 percent chromium, 3-9 percent aluminum, and 0-1 percent yttrium, other rare earth elements, platinum or rhodium, and the balance cobalt .Iadd.and impurities ordinarily associated with the aforementioned constituents.Iaddend..[...]..Iadd., said nickel-base superalloy and said CoCrAl(Y) coating having substantially matching thermal expansion coefficient values with the maximum difference between the thermal expansion coefficient value of said substrate and the thermal expansion coefficient value of said coating being about 4 percent over a temperature range from 100° F. to 1740° F. .Iaddend.
2. A claim 1 article, wherein
.[.(a) said nickel-base superalloy consists essentially of, on a weight basis,.].
______________________________________                                    
Ingredient           IN-738                                               
______________________________________                                    
C                    0.17                                                 
Mn                   0.20                                                 
Si                   0.30                                                 
Cr                   16.0                                                 
Ni                   Bal.                                                 
Co                   8.5                                                  
Mo                   1.75                                                 
W                    2.6                                                  
Cb                   0.9                                                  
Ti                   3.4                                                  
Al                   3.4                                                  
B                    0.01                                                 
Zr                   0.10                                                 
Fe                   0.50                                                 
Other                1.75 Ta                                              
______________________________________                                    
.[.(b) said first.]. .Iadd.the .Iaddend.coating contains 29% chromium, 6% aluminum, 1% yttrium and the balance cobalt. .[.3. A claim 2 article, further comprising
(c) an overcoating of aluminum..]. .[.4. A claim 3 article, wherein
(b) said first coating has a thickness of about 1-20 mils,
(c) said second coating penetrates the first coating to a depth no nearer than 1/2 mil measured from the interface of the nickel-base superalloy and first coating..]. .[.5. A claim 4 article, wherein
(b) said first coating is deposited by physical vapor deposition and the coating thickness is about 1-5 mils,
(c) said second coating is deposited by chemical vapor deposition..]. .[.6. The claim 4 article, wherein
(b) said first coating is deposited by plasma spraying and has a coating thickness of 3-10 mils..].
US06/166,126 1977-06-09 1980-07-07 High integrity CoCrAl(Y) coated nickel-base superalloys Expired - Lifetime USRE30995E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/166,126 USRE30995E (en) 1977-06-09 1980-07-07 High integrity CoCrAl(Y) coated nickel-base superalloys

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/804,936 US4101715A (en) 1977-06-09 1977-06-09 High integrity CoCrAl(Y) coated nickel-base superalloys
US06/166,126 USRE30995E (en) 1977-06-09 1980-07-07 High integrity CoCrAl(Y) coated nickel-base superalloys

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US05/804,936 Reissue US4101715A (en) 1977-06-09 1977-06-09 High integrity CoCrAl(Y) coated nickel-base superalloys

Publications (1)

Publication Number Publication Date
USRE30995E true USRE30995E (en) 1982-07-13

Family

ID=26861986

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/166,126 Expired - Lifetime USRE30995E (en) 1977-06-09 1980-07-07 High integrity CoCrAl(Y) coated nickel-base superalloys

Country Status (1)

Country Link
US (1) USRE30995E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910092A (en) 1986-09-03 1990-03-20 United Technologies Corporation Yttrium enriched aluminide coating for superalloys
US6217668B1 (en) 1991-07-29 2001-04-17 Siemens Aktiengesellschaft Refurbishing of corroded superalloy or heat resistant steel parts
US6635362B2 (en) 2001-02-16 2003-10-21 Xiaoci Maggie Zheng High temperature coatings for gas turbines

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US3873347A (en) * 1973-04-02 1975-03-25 Gen Electric Coating system for superalloys
US3918139A (en) * 1974-07-10 1975-11-11 United Technologies Corp MCrAlY type coating alloy
US3928026A (en) * 1974-05-13 1975-12-23 United Technologies Corp High temperature nicocraly coatings
US3957454A (en) * 1973-04-23 1976-05-18 General Electric Company Coated article
US3976436A (en) * 1975-02-13 1976-08-24 General Electric Company Metal of improved environmental resistance
US3978251A (en) * 1974-06-14 1976-08-31 International Harvester Company Aluminide coatings
US3993454A (en) * 1975-06-23 1976-11-23 United Technologies Corporation Alumina forming coatings containing hafnium for high temperature applications
US3998603A (en) * 1973-08-29 1976-12-21 General Electric Company Protective coatings for superalloys
US4005989A (en) * 1976-01-13 1977-02-01 United Technologies Corporation Coated superalloy article
US4018569A (en) * 1975-02-13 1977-04-19 General Electric Company Metal of improved environmental resistance
US4022587A (en) * 1974-04-24 1977-05-10 Cabot Corporation Protective nickel base alloy coatings
US4034142A (en) * 1975-12-31 1977-07-05 United Technologies Corporation Superalloy base having a coating containing silicon for corrosion/oxidation protection
US4101713A (en) * 1977-01-14 1978-07-18 General Electric Company Flame spray oxidation and corrosion resistant superalloys
US4144380A (en) * 1976-06-03 1979-03-13 General Electric Company Claddings of high-temperature austenitic alloys for use in gas turbine buckets and vanes

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US3873347A (en) * 1973-04-02 1975-03-25 Gen Electric Coating system for superalloys
US3957454A (en) * 1973-04-23 1976-05-18 General Electric Company Coated article
US3998603A (en) * 1973-08-29 1976-12-21 General Electric Company Protective coatings for superalloys
US4022587A (en) * 1974-04-24 1977-05-10 Cabot Corporation Protective nickel base alloy coatings
US3928026A (en) * 1974-05-13 1975-12-23 United Technologies Corp High temperature nicocraly coatings
US3978251A (en) * 1974-06-14 1976-08-31 International Harvester Company Aluminide coatings
US3918139A (en) * 1974-07-10 1975-11-11 United Technologies Corp MCrAlY type coating alloy
US3976436A (en) * 1975-02-13 1976-08-24 General Electric Company Metal of improved environmental resistance
US4018569A (en) * 1975-02-13 1977-04-19 General Electric Company Metal of improved environmental resistance
US3993454A (en) * 1975-06-23 1976-11-23 United Technologies Corporation Alumina forming coatings containing hafnium for high temperature applications
US4034142A (en) * 1975-12-31 1977-07-05 United Technologies Corporation Superalloy base having a coating containing silicon for corrosion/oxidation protection
US4005989A (en) * 1976-01-13 1977-02-01 United Technologies Corporation Coated superalloy article
US4144380A (en) * 1976-06-03 1979-03-13 General Electric Company Claddings of high-temperature austenitic alloys for use in gas turbine buckets and vanes
US4101713A (en) * 1977-01-14 1978-07-18 General Electric Company Flame spray oxidation and corrosion resistant superalloys

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
Boone, D. H., et al., "Electron Beam Evaporation . . . ", Thin Solid Films, vol. 64, pp. 299-304, (1979). *
Boone, D. H., et al., "Some Effects of Structure . . . ", J. Vac. Sci. Technol., vol. 11, pp. 641-646, (1974). *
Foster, J. S., et al., "Vacuum Deposition of Alloys-Theoretical and Practical Considerations", J. Vac. Sci., vol. 9, pp. 1379-1381, 1384, (1972). *
Jackson, M. R., et al., Coatings for Directional Eutectics, NASA SRD-74-047, NASA CR-134665, pp. 1-87, D1-12, (1/74). *
Kennedy, K., "Alloy Deposition from Single and Multiple Electron Beam Evaporation Sources", AVS 1968 Regional Symposia, pp. 1-8. *
Messbacher, A., et al., "Vacuum Plasma Spraying of Protective Hot Gas Corrossion Coatings", Trans. 8th Int. Thermal Spray Conf. Amer. Weld Soc., pp. 25-37, (1976). *
Nimmagadda, R., et al., "Preparation of Alloy by Continuous Electron Beam Evaporation from a Single Rod-Fed Source", J. Vac. Sci. Tech., vol. 9, (1972). *
Powell, C. F., et al., Vapor Deposition, John Wiley & Sons, Inc., pp. 242-246, (1966). *
Rairden, J. R., et al., "Coatings for Protecting Nickel-Base TaC Eutectics Against Oxidation", Thin Solid Films, vol. 40, pp. 291-298, (1977). *
Rairden, J. R., et al., "The 3rd Conference on Gas Turbine Materials in a Marine Environment Coatings for Directional Eutectics", pp. 1-11, (9/76). *
Rairden, J. R., et al., Coatings for Directional Eutectics, NASA CR-135050, NAS 3-17815, pp. 1-73 and D-1 to ll, (7/25/76). *
Rairden, J. R., et al., Coatings for Directional Eutectics, The 3rd Conf. on Gas Turbines in a Marine Environment Paper 4, pp. 1-11, (9/76). *
Smith, R. W., et al., "Low Pressure Plasma Spray Coatings for Hot Corrossion Resistance", Trans. 9th Int. Thermal Spraying Conf., pp. 334-343, (1980). *
Talboom, F. P., et al., Evaluation of Advanced Superalloy Protection Systems, NASA CR-72813 PWA-4055, pp. 1-9, 24, 46-56, (1970). *
Wolf, P. C., "Vacuum Plasma Spray Process and Coatings", Trans. 9th Int. Thermal Spraying Conf., pp. 187-196, (1980). *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910092A (en) 1986-09-03 1990-03-20 United Technologies Corporation Yttrium enriched aluminide coating for superalloys
US6217668B1 (en) 1991-07-29 2001-04-17 Siemens Aktiengesellschaft Refurbishing of corroded superalloy or heat resistant steel parts
US6635362B2 (en) 2001-02-16 2003-10-21 Xiaoci Maggie Zheng High temperature coatings for gas turbines

Similar Documents

Publication Publication Date Title
US4101715A (en) High integrity CoCrAl(Y) coated nickel-base superalloys
CA1069779A (en) Coated superalloy article
US4933239A (en) Aluminide coating for superalloys
US4897315A (en) Yttrium enriched aluminide coating for superalloys
US4080486A (en) Coating system for superalloys
US4419416A (en) Overlay coatings for superalloys
US3999956A (en) Platinum-rhodium-containing high temperature alloy coating
US4714624A (en) High temperature oxidation/corrosion resistant coatings
EP1784517B1 (en) HIGH-TEMPERATURE COATINGS AND BULK -Ni+ '-Ni3Al ALLOYS MODIFIED WITH PT GROUP METALS HAVING HOT-CORROSION RESISTANCE
US4326011A (en) Hot corrosion resistant coatings
US5334462A (en) Ceramic material and insulating coating made thereof
JPH0336899B2 (en)
US4024294A (en) Protective coatings for superalloys
US4910092A (en) Yttrium enriched aluminide coating for superalloys
US4022587A (en) Protective nickel base alloy coatings
SU1505441A3 (en) Coating composition
US4485148A (en) Chromium boron surfaced nickel-iron base alloys
US5126213A (en) Coated near-alpha titanium articles
USRE30995E (en) High integrity CoCrAl(Y) coated nickel-base superalloys
US4071638A (en) Method of applying a metallic coating with improved resistance to high temperature to environmental conditions
EP0096810B1 (en) Coated superalloy gas turbine components
US4214042A (en) Titanium bearing MCrAlY type alloy and composite articles
Van Roode et al. Evaluation of the hot corrosion protection of coatings for turbine hot section components
JPS6140022B2 (en)
GB2152082A (en) Enhancement of superalloy resistance to environmental degradation