USRE31616E - Cathodic electrodeposition coating compositions containing diels-alder adducts - Google Patents

Cathodic electrodeposition coating compositions containing diels-alder adducts Download PDF

Info

Publication number
USRE31616E
USRE31616E US06/343,040 US34304082A USRE31616E US RE31616 E USRE31616 E US RE31616E US 34304082 A US34304082 A US 34304082A US RE31616 E USRE31616 E US RE31616E
Authority
US
United States
Prior art keywords
carbon atoms
composition
fatty acid
coating composition
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/343,040
Inventor
Ivan H. Tsou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyandotte Paint Products Co
Original Assignee
Wyandotte Paint Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/859,296 external-priority patent/US4148704A/en
Application filed by Wyandotte Paint Products Co filed Critical Wyandotte Paint Products Co
Priority to US06/343,040 priority Critical patent/USRE31616E/en
Application granted granted Critical
Publication of USRE31616E publication Critical patent/USRE31616E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4407Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained by polymerisation reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/675Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates

Definitions

  • U.S. Pat. No. 4,001,101 teaches the electrodeposition of epoxy compositions which contain boron in the form of boric acid and like compounds.
  • U.S. Pat. No. 4,001,156 teaches a method of producing epoxy group containing quaternary ammonium salt containing resins.
  • An object of the present invention is coating compositions of improved corrosion resistance particularly when employed in the cathodic electrodeposition coating process. Additionally the compositions when cured have improved weather durability, particularly on exposure to sunlight and ultraviolet light. There is an improvement over prior art compositions in chaulking resistance, weather exposure and lower bake temperatures.
  • the coating compositions of the present invention are prepared by reacting through the double bonds of the reactants an acrylic material containing an oxirane ring with a conjugated fatty acid ester. Without being bound to any particular theory, it is believed that this reaction is a Diels-Alder adduct reaction. The product of that reaction is in turn reacted with an amine to introduce the nitrogen moiety into the molecule.
  • the first step is the Diels-Alder reaction between the conjugated fatty acid esters and monomeric materials containing oxirane ring.
  • the reaction can be said to proceed along the following lines: ##STR1## wherein
  • R and R 1 are residue of fatty acid ester molecule
  • R 2 and R 3 are residue of acrylic containing monomer.
  • Catalysts may be used to accelerate the adduct reaction such as peroxides.
  • the reactants that are employed for the conjugated fatty acid component may be exemplified by the following materials: alkyl esters wherein the alkyl group ranges from 1 to 12 carbon atoms and the fatty acid that may be employed are long chain fatty acids having from 8 to 24 carbon atoms.
  • a preferred fatty acid is one having high conjugated diene concentrations such as products available under the name Pamolyn (trademark of Hercules) especially Pamolyn 380 which has a high concentration of unsaturation at positions 9 and 11 of C 18 fatty acid.
  • Suitable fatty acids are caprylic, capric, lauric, myristic, palmitic palmitoleic, stearic, oleic, ricinoleic, linoleic, linolenic, eleostearic, licanic, arachidic, arachidonic, behenic, clupanodonic, lignoceric, nisinic, and the like.
  • a preferred alcohol is an alkanol of from 1 to 8 carbon atoms, such as methanol, butanol, hexanol, and the like.
  • esters of the conjugated fatty acids may be employed by using the reaction products resulting from reacting conjugated fatty acids with polyols.
  • polystyrene resin examples include the following: ethylene glycol, propylene glycol, butylene glycol, glycerol, trimethylolpropane, hexanetriol, pentaerythritol, neopentylglycol, trimethylolethane and the like.
  • the amount of alchol added is sufficient to react all of the fatty acid so that the number of equivalents of hydroxyl groups exceeds the number of equivalents of carboxyl groups in a range of 1:1-1:1.3--carboxyl:hydroxyl groups.
  • the monomeric reactants that may be employed for the Diels-Alder reaction may be exemplified by the following materials: acrylic or methacrylic materials alone or together with other monomeric materials.
  • acrylic is meant a material containing therein the monomer of the formula:
  • acrylic materials that may be employed are acrylic or methacrylic acids, the alkylesters of hydroxyalkylesters thereof where the alkyl group has from one to 18 carbon atoms, such as isobornyl acrylate, methyl(meth)acrylate, butyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, steryl acrylate, steryl methacrylate, and the like, acrylamides, methacrylamides, and the like. It is to be appreciated that other copolymerizable monomers may also be reacted with the acrylic material.
  • Exemplary ethylenically unsaturated materials are styrene, vinyl toluene; 3,5-dimethyl styrene, p-tert-butyl styrene, alpha methyl styrene, and the like, unsaturated dicarboxylic acids or anhydrides and the alkylesters thereof from 1 to 18 carbon atoms (such as maleic anhydride, fumaric acid and the like.
  • a preferred class of acrylic reactants are those that contain the acrylic moiety together with an oxirane ring in the same molecule, such as glycidyl acrylate and methacrylate and other similar type materials such as those taught in U.S. Pat. No.
  • the reaction parameters for Reaction No. 1 are to produce the reaction in the liquid state with or without a presence of an organic solvent which is non-reactive with the reactants at a temperature ranging from about 150° C. to 250° C.
  • the second step in the reaction scheme is to react the Diels-Alder adduct which contains an oxirane ring with an amine containing an active hydrogen in order to open the oxirane ring present in the adduct.
  • the reaction scheme can be shown as follows: ##STR2## wherein R 4 is the residue of the Diels-Alder adduct; and HNR 5 R 6 represents the amine reactants.
  • the polymer contains Formula A which is of the structure:
  • Z is independently selected from the group consisting of hydrogen, hydroxyl, alkyl ether or acyloxy wherein the alkyl and acyl group have from 1 to 6 carbon atoms; ( ⁇ O, as in a ketone, --OR'] n H; --OR'] n OH; and --OR'(CH 2 OH)] n OH; wherein R' is a saturated alkylene group of from 2 to 4 carbon atoms and n is a number of from 1 to 6.
  • Exemplary amines that may be used in Reaction No. 2 are the amines that contain a replaceable hydrogen, such as primary or secondary amines such as mono- or dialkylamine, mono- or di-alkanol amines and polyamines such as polyalkylene polyamines, etc.
  • Useful amines are mono- or di-alkylamines having about 1 to 18 carbon atoms, such as propylamine, butylamine, diethylamine, dipropylamine, etc.
  • Examples of mono- or di-alkanol monoamines are ethanolamine, propanolamine, diethanolamine, dipropanolamine, etc.
  • Useful examples of other monoamines are piperidine, cyclohexylamine, pyrrolidine, morpholine, etc.
  • polyamines are ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, propylenediamine, dipropylenetriamine, butylenediamine, N-aminoethanolamine, monoethylethylenediamine, diethylaminopropylamine, hydroxyethylaminopropylamine, monomethylaminopropylamine, piperazine, N-methylpiperazine, N-aminoethylpiperazine, etc.
  • aromatic amine can be used in combination with the aliphatic or alicyclic amine in such amount that the reaction product of epoxy resin and basic amine, when neutralized with acid, will still remain dispersible in water.
  • aromatic amines are aniline, N-methylaniline, toluidine, benzylamine, m-xylylenediamine, m-phenylenediamine, 4,4'-diaminodiphenylmethane, etc. Use of such aromatic amine achieves the effect of increasing resistances to water and to corrosion of the coating film.
  • diethanol amine is the most preferred.
  • the conditions for Reaction No. 2 are with or without an organic solvent that is non-reactive with each of the reactants and the product at a temperature ranging from 100° C. to 150° C. for a period of time ranging from about 1 to 3 hours. In general, one is interested in obtaining a product having all oxirane rings reacted.
  • reaction sequences 1 and 2 may be reversed whereby the amine is reacted first with the oxirane rings and then the remaining rings are reacted with the fatty acid. Care must be taken in this reaction sequence to prevent gellation due to the presence of the tertiary amine which is the reaction product between the hydrogen containing amine and the oxirane ring.
  • the tertiary amines promotes the reaction between an oxirane ring and the hydroxyl group which may be present in the polymer reactants as well as the reaction products if the amine contains a hydroxyl group thereon.
  • the fatty acid may be reacted with a polyol as mentioned above.
  • the fatty acid may also be reacted with glycidyl containing materials prior to reaction sequence No. 1, including glycidyl acrylate or methacrylate.
  • Other epoxy or glycidyl containing materials are mono- or polyepoxides, preferrably a polyepoxide having an epxoy equivalent greater than 1, such as polyglycidyl ethers of polyphenols, such as bisphenol A. These can be prepared by etherification of a polyphenol with epichlorohydrin in the presence of alkali.
  • Another quite useful class of polyepoxides are produced similarly from novolak resins or similar polyphenol resins.
  • polyglycidyl ethers of polyhydric alcohols which may be derived from such polyhydric alcohols as ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,4-propylene glycol, 1,5-pentanediol, 1,2,6-hexanetriol, glycerol, bis(4-hydroxycyclohexyl) 2,2-propane and the like.
  • polyglycidyl esters of polycarboxylic acids which are produced by the reaction of epichlorohydrin or similar epoxy compounds with an aliphatic or aromatic polycarboxylic acid such as oxalic acid, succinic acid, glutaric acid, terephthalic acid, 2,6-naphthylene dicarboxylic acid, dimerized linolenic acid and the like.
  • polyepoxides derived from the epoxidation of an olefinically unsaturated alicyclic compound. Included are diepoxides comprising in part one or more monoepoxides.
  • polyepoxides are non-phenolic and are obtained by the epxoidation of alicyclic olefins; for example, by oxygen and selected metal catalysts, by perbenzoic acids, by acetaldehyde monoperacetate, or by peracetic acid, and/or hydrogen peroxide.
  • alicyclic olefins for example, by oxygen and selected metal catalysts, by perbenzoic acids, by acetaldehyde monoperacetate, or by peracetic acid, and/or hydrogen peroxide.
  • epoxy alicyclic ethers and esters which are well known in the art.
  • a particularly preferred class of products that may be used in the present case is the reaction product of reacting a fatty acid, conjugated or not conjugated, with compounds containing nitrogen heterocyclic rings of 5 or 6 members, said compounds also containing one or more epoxy rings.
  • the reaction product can be characterized as an epoxy fatty acid ester.
  • Preferred classes of compounds are: ##STR3## wherein R 7 is hydrogen or ##STR4##
  • R 8 and R 9 are independently selected from the group hydrogen, alkyl of 1 to 5 carbon atoms, phenyl, a saturated aliphatic ring of 5 to 7 carbon atoms or together form a 5 to 7 member saturated carbocyclic ring; or ##STR5##
  • the amine reactant shown in reaction No. 2 is used in an amount such that all oxirane rings are reacted and that the coating composition as used in the electrodeposition process has no oxirane rings.
  • nitrogenous containing cross-linking agents be employed in an effective curing amount.
  • the amount of nitrogen containing material that is employed is sufficient to react with some or all of the hydroxyl groups present on the polymeric material or the number of hydroxyl groups present on Formula A contained in the polymeric material. If desired, the amount of fatty acid containing unsaturation may be increased to produce an air dried composition.
  • cross-linking agent When a cross-linking agent is employed, it is preferred that a blocked isocyanate or a melamine type containing composition be used as the cross-linking agent.
  • Other cross-linking agents may also be used such as urea formaldehyde, phenol formaldehyde, benzoguanamine, amideimide, polyamide, polybenzimidazole, and the like.
  • Suitable isocyanates that may be used in the present invention are as follows:
  • dialkyl benzene diisocyanate such as methylpropylbenzene diisocyanate, methylethylbenzene diisocyanate, and the like
  • dichloro-biphenylene diisocyanate bis-(4-isocyanophenyl) ethyl phosphine oxide
  • polymethylene polyphenyl isocyanate polymethylene polyphenyl isocyanate; biurets of the formula ##STR6## where R 10 is an alkylene group having 1-6 carbon atoms, especially preferred is the biuret of hexamethylene diisocyanate; ##STR7##
  • a number of blocking agents may also be used to produce a blocked isocyanate which could be used as the cross-linking agent.
  • Such blocking agents as the phenol type, lactone type, active methylene type, alcohol type, mercaptan type, acid amide type, the imide, the amine type, the urea type, carbamate type, oxime type, sulfate type and the like.
  • a ketoxime type is preferred, and even more preferrably a dialkyl ketoxime of from 1 to 4 carbon atoms per alkyl group. Most preferably the ketoxime would be methylethyl ketoxime, methyl-isobutyl ketoxime, and the like.
  • Suitable melamine type cross-linking agents are hexamethoxymethyl melamine, alkylated (melamine-formaldehyde), butylated melamines, and the like.
  • the coating compositions of the present invention are useful in the cathodic electrodeposition of substrates.
  • the bath pH ranges from about 3-9.
  • the substrate may be any conductive substrate, preferably iron, zinc or aluminum containing substrates such as steel, with or without protective coatings, such as phosphate corrosion resistant coatings.
  • Most preferably the coatings of the present invention are applied to metallic substrates, such as steel.
  • the conductive metallic substrate would be the cathode in the electrical process and an anode would be placed in the electrodeposition bath, with the electrodeposition coating of the present invention being incorporated in the aqueous electrolyte between the anode and the cathode.
  • the electrodeposition process is one that would be conducted at a temperature ranging from about 50° F. to 150° F., preferably room temperature.
  • the voltage may vary greatly, although normally it will operate between 50 and 500 volts.
  • the current density ranges from about 1 amp to about 15 amps per square foot.
  • the nitrogen containing coating compositions of the present invention are solubilized, dispersed or suspended by means of an acid, such as an organic acid, such as acetic acid, lactic acid, citric acid and the like, although any water solubilizing agent may be used as boric or hydrochloric acid, etc.
  • an acid such as an organic acid, such as acetic acid, lactic acid, citric acid and the like, although any water solubilizing agent may be used as boric or hydrochloric acid, etc.
  • the composition may be air cured.
  • the coating compositions are cured by means of subjecting the coated substrate to a high temperature or a bank of infrared lamps having a temperature ranging from about 250° F. (121° C.) to about 500° F. (260° C.), preferrably between about 300° F. (149° C.) and about 390° F. (199° C.) from a time ranging from about 1 minute to 1 hour, preferably 10 minutes to 45 minutes.
  • a curing catalyst may also be added to the coating composition, such as tin compounds as dibutyl tin dilaurate, dibutyl in diacetate, dibutyl tin oxide, metallic dryers as cobalt and zirconium, naphthenate or octoate.
  • the blocking agent will decompose at temperatures greater than 50° C. which will permit the remaining isocyanate moiety to react with the film forming composition. At less than about 50° C., the blocked isocyanate is substantially stable and is nonreactive with the hydroxyl groups present on the acrylic polymer, or the hydroxyl groups present on Formula A moiety.
  • catalysts, pigments, anti-oxidants, surfactants or fillers may be added to the coating composition to improve the appearance, texture, gloss and other properties of the cured film.
  • Pigments such as carbon black, titanium dioxide, metal oxides, chromates, sulfate and the like may be used.
  • the components of the coating composition (on a pigment, filler and catalyst free basis) of the present invention are generally present as follows:
  • a coating composition was formulated from the above product as follows:
  • a zinc phosphate treated panel was used as a cathode and a carbon anode with the coating composition described above (10% solids) as the electrolyte.
  • the voltage employed was 200 volts with the coating thickness on the cathode ranging from 0.50-0.65 mils.
  • the panel was washed and baked at a temperature of 400° F. for 20 minutes. Smooth glossy films with good adherence to the metal substrates were obtained with satisfactory salt spray (5% sodium chloride in water) results. (Scribe pull of 2-6 mm. after 276 hours)
  • Pamolyn 380 (trademark of Hercules for a conjugated fatty acid being characterized as containing 70% conjugated unsaturation of linoleic acid, an acid number of 197, an iodine value of 102 and an oleic acid content of 22%; 224 parts; 0.8 equivalents); n-butanol (59 parts, 0.8 equivalents).
  • the mixture was heated under a nitrogen blanket to a temperature of 130° for about 6 hours, removing water to produce an acid number of zero to produce the butyl ester of Pamolyn 380.

Abstract

Described herein is an organic coating composition particularly useful in cathodic electrodeposition comprising a dispersion, solution or suspension of a coating composition characterized by (a) a reaction product of a conjugated fatty acid ester and an acrylic containing monomer, preferably containing oxirane rings; and (b) Formula A within the molecule, being the reaction product of reacting an oxirane ring and an amine; wherein Formula A is:
--CH.sub.2 --C(Z)--CH.sub.2 --N═
wherein Z is hydrogen, hydroxyl, alkoxy of 1 to 6 carbon atoms; acyloxy of from 1 to 6 carbon atoms; (═O, as in a ketone),
--OR'].sub.n H; --OR'].sub.n OH, and --OR'(CH.sub.2 OH)].sub.n OH,
wherein R' is a saturated alkylene group of from 2 to 4 carbon atoms and n is a number from 1 to 6.
Also described is a method of electrodepositing coating compositions containing said adducts onto a cathode.

Description

This is a division of application Ser. No. 859,296, filed Dec. 12, 1977, now U.S. Pat. No. 4,148,704, issued Apr. 10, 1979.
BACKGROUND OF THE INVENTION
It has become commercially of significance to employ cathodic electrodeposition coating compositions for improved corrosion resistance can be obtained employing said composition
U.S. Pat. No. 4,001,101 teaches the electrodeposition of epoxy compositions which contain boron in the form of boric acid and like compounds. U.S. Pat. No. 4,001,156 teaches a method of producing epoxy group containing quaternary ammonium salt containing resins.
SUMMARY OF THE INVENTION
An object of the present invention is coating compositions of improved corrosion resistance particularly when employed in the cathodic electrodeposition coating process. Additionally the compositions when cured have improved weather durability, particularly on exposure to sunlight and ultraviolet light. There is an improvement over prior art compositions in chaulking resistance, weather exposure and lower bake temperatures.
The coating compositions of the present invention are prepared by reacting through the double bonds of the reactants an acrylic material containing an oxirane ring with a conjugated fatty acid ester. Without being bound to any particular theory, it is believed that this reaction is a Diels-Alder adduct reaction. The product of that reaction is in turn reacted with an amine to introduce the nitrogen moiety into the molecule.
DESCRIPTION OF PREFERRED EMBODIMENTS
In the preparation of the products to be used in the process of the present invention, the first step is the Diels-Alder reaction between the conjugated fatty acid esters and monomeric materials containing oxirane ring. The reaction can be said to proceed along the following lines: ##STR1## wherein
R and R1 are residue of fatty acid ester molecule;
R2 and R3 are residue of acrylic containing monomer.
Catalysts may be used to accelerate the adduct reaction such as peroxides.
Reference may be made to applicant's concurrently filed case U.S. Pat. No. 859,295, filed Dec. 12, 1977, CATHODIC ELECTRODEPOSITION COMPOSITIONS EMPLOYING FATTY ACID DERIVATIVES.
The reactants that are employed for the conjugated fatty acid component may be exemplified by the following materials: alkyl esters wherein the alkyl group ranges from 1 to 12 carbon atoms and the fatty acid that may be employed are long chain fatty acids having from 8 to 24 carbon atoms. A preferred fatty acid is one having high conjugated diene concentrations such as products available under the name Pamolyn (trademark of Hercules) especially Pamolyn 380 which has a high concentration of unsaturation at positions 9 and 11 of C18 fatty acid. Suitable fatty acids are caprylic, capric, lauric, myristic, palmitic palmitoleic, stearic, oleic, ricinoleic, linoleic, linolenic, eleostearic, licanic, arachidic, arachidonic, behenic, clupanodonic, lignoceric, nisinic, and the like. A preferred alcohol is an alkanol of from 1 to 8 carbon atoms, such as methanol, butanol, hexanol, and the like.
It is to be appreciated that the esters of the conjugated fatty acids may be employed by using the reaction products resulting from reacting conjugated fatty acids with polyols.
Exemplary among the polyols are the following: ethylene glycol, propylene glycol, butylene glycol, glycerol, trimethylolpropane, hexanetriol, pentaerythritol, neopentylglycol, trimethylolethane and the like. In general the amount of alchol added is sufficient to react all of the fatty acid so that the number of equivalents of hydroxyl groups exceeds the number of equivalents of carboxyl groups in a range of 1:1-1:1.3--carboxyl:hydroxyl groups.
The monomeric reactants that may be employed for the Diels-Alder reaction may be exemplified by the following materials: acrylic or methacrylic materials alone or together with other monomeric materials.
By "acrylic" is meant a material containing therein the monomer of the formula:
CH.sub.2 ═C(B)C(O)--
wherein B═hydrogen, methyl or ethyl.
Exemplary acrylic materials that may be employed are acrylic or methacrylic acids, the alkylesters of hydroxyalkylesters thereof where the alkyl group has from one to 18 carbon atoms, such as isobornyl acrylate, methyl(meth)acrylate, butyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, steryl acrylate, steryl methacrylate, and the like, acrylamides, methacrylamides, and the like. It is to be appreciated that other copolymerizable monomers may also be reacted with the acrylic material. Exemplary ethylenically unsaturated materials are styrene, vinyl toluene; 3,5-dimethyl styrene, p-tert-butyl styrene, alpha methyl styrene, and the like, unsaturated dicarboxylic acids or anhydrides and the alkylesters thereof from 1 to 18 carbon atoms (such as maleic anhydride, fumaric acid and the like.
A preferred class of acrylic reactants are those that contain the acrylic moiety together with an oxirane ring in the same molecule, such as glycidyl acrylate and methacrylate and other similar type materials such as those taught in U.S. Pat. No. 3,773,855, which is hereby incorporated by reference, such as acrylic and methacrylic esters of the monoglycidyl ether of sulfonyl bisphenol, the monoglycidyl ether of a C1 to C10 alkylene bisphenol, the monoglycidyl ether of oxybisphenol, the monoglycidyl ether of thiobisphenol, the monoglycidyl ether of aminobisphenol and the monoglycidyl ether of α,α-bis(p-hydroxyphenyl) tolylethane; the acrylic and methacrylic esters of 3-oxy-6,7-epoxyheptanol, 3-aza-6,7-epoxyheptanol, or 3-thia-6,7-epoxyheptanol; the reaction products of one mole of acrylic or methacrylic acid with one mole of polyphenylenesulfide diglicidyl ether, polyphenyleneamine diglicidyl ether, or polyphenyleneoxide diglycidyl ether; the reaction products of one mole of acrylic acid or methacrylic acid with one mole of the polycondensation product of epichlorohydrin with sulfonyl bis(phenylmercaptan) or sulfonyl bisphenol; the reaction products of one mole of acrylic acid or methacrylic acid with one mole of the polycondensation product of epichlorohydrin with α,α-bis(p-hydroxyphenyl) tolylenthane or α,α-bis(p-thiophenyl)tolylethane; the acrylic and methacrylic esters of poly (C1 -C4 alkyleneoxide glycol) monoglycidyl ether; and the like.
The reaction parameters for Reaction No. 1 are to produce the reaction in the liquid state with or without a presence of an organic solvent which is non-reactive with the reactants at a temperature ranging from about 150° C. to 250° C.
The second step in the reaction scheme is to react the Diels-Alder adduct which contains an oxirane ring with an amine containing an active hydrogen in order to open the oxirane ring present in the adduct. The reaction scheme can be shown as follows: ##STR2## wherein R4 is the residue of the Diels-Alder adduct; and HNR5 R6 represents the amine reactants.
The product shown in Reaction No. 2 contains the moiety: --CH2 --CH(OH)--CH2 --N> which is the expected result of reacting the secondary amine with the oxirane ring. For further modification of the polymer the hydroxyl group may be converted:
(a) to a ketone by reacting the product shown in reaction No. 2 with an oxidizing agent, such as permanganate, a chromic acid and the like, or
(b) to a hydrogen atom by means of a Grignard type reaction such as by reacting the product shown in reaction No. 2 with HBr to convert the hydroxyl group beta to the nitrogen atom to the bromide form; then converting the bromide to a Grignard reagent by reaction with magnesium and then reacting that product with an alkanol such as methanol or propanol; or
(c) to the alkoxy group by reaction with an alkyl halide; or
(d) to the acyloxy form by esterification with a carboxylic acid; or
(e) to the product containing --OR']n H by reaction with an alkylene oxide of from two to four carbon atoms; or
(f) to --OR'(CH2 OH)]n OH by reacting with epihalohydrin and the like and then converting to the hydroxyl form by hydrolysis; or
(g) to --OR']n OH by reaction with a glycol, and the like.
Therefore it can be said that the polymer contains Formula A which is of the structure:
--CH.sub.2 --C(Z)--CH.sub.2 --N>
wherein Z is independently selected from the group consisting of hydrogen, hydroxyl, alkyl ether or acyloxy wherein the alkyl and acyl group have from 1 to 6 carbon atoms; (═O, as in a ketone, --OR']n H; --OR']n OH; and --OR'(CH2 OH)]n OH; wherein R' is a saturated alkylene group of from 2 to 4 carbon atoms and n is a number of from 1 to 6.
Exemplary amines that may be used in Reaction No. 2 are the amines that contain a replaceable hydrogen, such as primary or secondary amines such as mono- or dialkylamine, mono- or di-alkanol amines and polyamines such as polyalkylene polyamines, etc. Useful amines are mono- or di-alkylamines having about 1 to 18 carbon atoms, such as propylamine, butylamine, diethylamine, dipropylamine, etc. Examples of mono- or di-alkanol monoamines are ethanolamine, propanolamine, diethanolamine, dipropanolamine, etc. Useful examples of other monoamines are piperidine, cyclohexylamine, pyrrolidine, morpholine, etc. Examples of polyamines are ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, propylenediamine, dipropylenetriamine, butylenediamine, N-aminoethanolamine, monoethylethylenediamine, diethylaminopropylamine, hydroxyethylaminopropylamine, monomethylaminopropylamine, piperazine, N-methylpiperazine, N-aminoethylpiperazine, etc. Particularly preferrable are aliphatic mono- or polyamines having one secondary amino group, such as diethylamine, diethanolamine, diethylenetriamine, monoethylethylenediamine, hydroxyethylaminopropylamine, etc. According to this invention, an aromatic amine can be used in combination with the aliphatic or alicyclic amine in such amount that the reaction product of epoxy resin and basic amine, when neutralized with acid, will still remain dispersible in water. Examples of useful aromatic amines are aniline, N-methylaniline, toluidine, benzylamine, m-xylylenediamine, m-phenylenediamine, 4,4'-diaminodiphenylmethane, etc. Use of such aromatic amine achieves the effect of increasing resistances to water and to corrosion of the coating film.
Of the above enumerated amines, diethanol amine is the most preferred.
The conditions for Reaction No. 2 are with or without an organic solvent that is non-reactive with each of the reactants and the product at a temperature ranging from 100° C. to 150° C. for a period of time ranging from about 1 to 3 hours. In general, one is interested in obtaining a product having all oxirane rings reacted.
It should also be appreciated that reaction sequences 1 and 2 may be reversed whereby the amine is reacted first with the oxirane rings and then the remaining rings are reacted with the fatty acid. Care must be taken in this reaction sequence to prevent gellation due to the presence of the tertiary amine which is the reaction product between the hydrogen containing amine and the oxirane ring. The tertiary amines promotes the reaction between an oxirane ring and the hydroxyl group which may be present in the polymer reactants as well as the reaction products if the amine contains a hydroxyl group thereon.
There are a number of other configurations of the conjugated fatty acid ester. The fatty acid may be reacted with a polyol as mentioned above. The fatty acid may also be reacted with glycidyl containing materials prior to reaction sequence No. 1, including glycidyl acrylate or methacrylate. Other epoxy or glycidyl containing materials are mono- or polyepoxides, preferrably a polyepoxide having an epxoy equivalent greater than 1, such as polyglycidyl ethers of polyphenols, such as bisphenol A. These can be prepared by etherification of a polyphenol with epichlorohydrin in the presence of alkali.
Another quite useful class of polyepoxides are produced similarly from novolak resins or similar polyphenol resins.
Also suitable are the similar polyglycidyl ethers of polyhydric alcohols which may be derived from such polyhydric alcohols as ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,4-propylene glycol, 1,5-pentanediol, 1,2,6-hexanetriol, glycerol, bis(4-hydroxycyclohexyl) 2,2-propane and the like. There can also be used polyglycidyl esters of polycarboxylic acids, which are produced by the reaction of epichlorohydrin or similar epoxy compounds with an aliphatic or aromatic polycarboxylic acid such as oxalic acid, succinic acid, glutaric acid, terephthalic acid, 2,6-naphthylene dicarboxylic acid, dimerized linolenic acid and the like. Examples are glycidyl adipate and glycidyl phthalate. Also useful are polyepoxides derived from the epoxidation of an olefinically unsaturated alicyclic compound. Included are diepoxides comprising in part one or more monoepoxides. These polyepoxides are non-phenolic and are obtained by the epxoidation of alicyclic olefins; for example, by oxygen and selected metal catalysts, by perbenzoic acids, by acetaldehyde monoperacetate, or by peracetic acid, and/or hydrogen peroxide. Among such polyepoxides are the epoxy alicyclic ethers and esters which are well known in the art.
A particularly preferred class of products that may be used in the present case is the reaction product of reacting a fatty acid, conjugated or not conjugated, with compounds containing nitrogen heterocyclic rings of 5 or 6 members, said compounds also containing one or more epoxy rings. The reaction product can be characterized as an epoxy fatty acid ester.
The nitrogen heterocyclic materials are generally available in the trade and have been described in a number of patents as:
U.S. Pat. No. 3,391,097--EPOXY RESINS FROM 1,1'-METHYLENE BIS(5-SUBSTITUTED HYDANTOIN)
U.S. Pat. No. 3,814,7753-GLYSIDYL-HYDANTOIN ISOCYANATES
U.S. Pat. No. 3,846,442---GLYCIDYL HYDANTOIN COMPOUNDS
U.S. Pat. No. 3,449,353--N,N'-DIGLYCIDYL HYDANTOINS
U.S. Pat. No. 3,542,803---N,N'-DIGLYCIDYL COMPOUNDS
U.S. Pat. No. 3,592,823---N,N'-DIGLYCIDYL COMPOUNDS
U.S. Pat. No. 3,620,983--β-METHYLGLYCIDYLISOCYANURATES
U.S. Pat. No. 3,679,681--DIGLYCIDYL ETHERS
U.S. Pat. No. 3,726,895--DIGLYCIDYL DERIVATIVES OR COMPOUNDS CONTAINING TWO N-HETEROCYCLIC RINGS
U.S. Pat. No. 3,772,326--DIGLYCIDYL COMPOUNDS OF MONOHYDROXALKYLHYDANTOINS
U.S. Pat. No. 3,778,439--BINUCLEAR-HETEROCYCLIC POLYCLYCIDYL COMPOUNDS
U.S. Pat. No. 3,780,057--PYRAZOLONE PIGMENTS
U.S. Pat. No. 3,787,405--DIGLYCIDYL COMPOUNDS CONTAINING A N-DETEROCYCLIC RING
U.S. Pat. No. 3,808,226--POLYACRYLATES OF N-HETEROCYCLIC COMPOUNDS
U.S. Pat. No. 3,809,660--EPOXIDE RESIN MIXTURES OF HETEROCYCLIC N,N'-DIGLYCIDYL COMPOUNTS
U.S. Pat. No. 3,809,696--DIGLYCIDYL COMPOUNDS CONTAINING TWO N-HETEROCYCLIC RINGS
U.S. Pat. No. 3,821,242--DIGLYCIDYL ETHERS
U.S. Pat. No. 3,821,243--HETEROCYCLIC TRIGLYCIDYL COMPOUNDS
U.S. Pat. No. 3,828,045--DIGLYCIDYL ETHERS OF FIVE AND SIX MEMBERED N-HETEROCYCLIC COMPOUNDS
U.S. Pat. No. 3,828,066--DIGLYCIDYLIMIDAZOLIDONES
U.S. Pat. No. 3,843,675--N-HETEROCYCLIC POLYGLYCIDYL COMPOUNDS CONTAINING ESTER GROUPS
U.S. Pat. No. 3,864,358--EPOXY-ACRYLIC ACID ESTERS
all of which are hereby incorporated by reference.
Preferred classes of compounds are: ##STR3## wherein R7 is hydrogen or ##STR4##
R8 and R9 are independently selected from the group hydrogen, alkyl of 1 to 5 carbon atoms, phenyl, a saturated aliphatic ring of 5 to 7 carbon atoms or together form a 5 to 7 member saturated carbocyclic ring; or ##STR5##
Regardless of the manner of introducing the oxirane ring into the coating resin, the amine reactant shown in reaction No. 2 is used in an amount such that all oxirane rings are reacted and that the coating composition as used in the electrodeposition process has no oxirane rings.
In curing the coating composition of the present invention, it has been found highly desirable that nitrogenous containing cross-linking agents be employed in an effective curing amount. Generally the amount of nitrogen containing material that is employed is sufficient to react with some or all of the hydroxyl groups present on the polymeric material or the number of hydroxyl groups present on Formula A contained in the polymeric material. If desired, the amount of fatty acid containing unsaturation may be increased to produce an air dried composition.
When a cross-linking agent is employed, it is preferred that a blocked isocyanate or a melamine type containing composition be used as the cross-linking agent. Other cross-linking agents may also be used such as urea formaldehyde, phenol formaldehyde, benzoguanamine, amideimide, polyamide, polybenzimidazole, and the like.
Suitable isocyanates that may be used in the present invention are as follows:
propylene-1,2-diisocyanate,
butylene-1,2-diisocyanate,
butylene-1,3-diisocyanate
hexamethylene diisocyanate,
octamethylene diisocyanate,
nonamethylene diisocyanate,
decamethylene diisocyanate,
2,11-diisocyano-dodecane and the like,
meta-phenylene diisocyanate,
para-phenylene diisocyanate,
toluene-2,4-diisocyanate,
toluene-2,6-diisocyanate,
xylene-2,4-diisocyanate,
xylene-2,6-diisocyanate,
dialkyl benzene diisocyanate, such as methylpropylbenzene diisocyanate, methylethylbenzene diisocyanate, and the like,
2--2'-biphenylene diisocyanate,
3,3'-biphenylene diisocyanate,
4,4'-biphenylene diisocyanate,
3,3'-dimethyl-4,4'-biphenylene diisocyanate, and the like,
methylene-bis-(4-phenyl isocyanate),
ethylene-bis-(4-phenyl isocyanate),
isopropylidene-bis-(4-phenyl isocyanate),
butylene-bis-(4-phenyl isocyanate),
hexafluoroisopropylidene-bis-(4-phenyl isocyanate), and the like,
2,2'-oxydiphenyl diisocyanate,
3,3'-oxydiphenyl diisocyanate,
4,4'-oxydiphenyl diisocyanate, and the like,
2,2'-ketodiphenyl diisocyanate,
3,3'-ketodiphenyl diisocyanate,
4,4'-ketodiphenyl diisocyanate,
2,2'-thiodiphenyl diisocyanate,
3,3'-thiodiphenyl diisocyanate,
4,4'-thiodiphenyl diisocyanate, and the like,
2,2'-sulfonediphenyl diisocyanate,
3,3'-sulfonediphenyl diisocyanate,
4,4'-sulfonediphenyl diisocyanate, and the like,
2,2'-methylene-bis-(cyclohexyl isocyanate),
3,3'-methylene-bis-(cyclohexyl isocyanate),
4,4'-methylene-bis(cyclohexyl isocyanate),
4,4'-ethylene-bis-(cyclohexyl isocyanate),
4,4'-propylene-bis-cyclohexyl isocyanate),
bis-(para-isocyano-cyclohexyl) sulfide,
bis-(para-isocyano-cyclohexyl) sulfone,
bis-(para-isocyano-cyclohexyl) ether,
bis-(para-isocyano-cyclohexyl) diethyl silane,
bis-(para-isocyano-cyclohexyl) diphenyl silane,
bis(para-isocyano-cyclohexyl) ethyl phosphine oxide,
bis-(para-isocyano-cyclohexyl) phenyl phosphine oxide,
bis-(para-isocycano-cyclohexyl) N-phenyl amine,
bis-(para-isocyano-cyclohexyl) N-methyl amine, 2,6-diisocyano-pyridine,
bis-(4-isocyano-phenyl) diethyl silane,
bis-(4-isocyano-phenyl) diphenyl silane,
dichloro-biphenylene diisocyanate, bis-(4-isocyanophenyl) ethyl phosphine oxide,
bis-(4-isocyano-phenyl) phenyl phosphine oxide,
bis-(4-isocyano-phenyl)-N-phenyl amine,
bis-(4-isocyano-phenyl)-N-methyl amine,
3,3'-dimethyl-4,4'-diisocyano biphenyl,
3,3'-dimethoxy-biphenylene diisocyanate,
2,4-bis(β-isocyano-t-butyl) toluene,
bis-(para-β-isocyano-t-butyl-phenyl) ether,
para-bis-(2-methyl-4-isocyano-phenyl) benzene,
para-bis-(1,1-dimethyl-5-amino-pentyl)benzene,
3,3'-diisocyano adamantane,
3,3'-diisocyano biadamantane,
3,3'-diisocyanoethyl-1,1'-biadamantane,
1,2-bis-(3-isocyano-propoxy) ethane,
1,2-dimethyl propylene diisocyanate,
3-methoxy-hexamethylene diisocyanate,
2,5-dimethyl heptamethylene diisocyanate,
5-methyl-nonamethylene diisocyanate,
1,4-diisocyano-cyclohexane,
1,2-diisocyano-octadecane,
2,5-diisocyano-1,3,4-oxadiazole,
OCN(CH2)3 O(Ch2)2 O(CH2)3 NCO,
OCN(CH2)3 S(CH2)3 NCO,
OCN(CH2)3 N(CH2)3 NCO,
polymethylene polyphenyl isocyanate; biurets of the formula ##STR6## where R10 is an alkylene group having 1-6 carbon atoms, especially preferred is the biuret of hexamethylene diisocyanate; ##STR7##
A number of blocking agents may also be used to produce a blocked isocyanate which could be used as the cross-linking agent. Such blocking agents as the phenol type, lactone type, active methylene type, alcohol type, mercaptan type, acid amide type, the imide, the amine type, the urea type, carbamate type, oxime type, sulfate type and the like. Most preferrably a ketoxime type is preferred, and even more preferrably a dialkyl ketoxime of from 1 to 4 carbon atoms per alkyl group. Most preferably the ketoxime would be methylethyl ketoxime, methyl-isobutyl ketoxime, and the like.
Suitable melamine type cross-linking agents are hexamethoxymethyl melamine, alkylated (melamine-formaldehyde), butylated melamines, and the like.
The coating compositions of the present invention are useful in the cathodic electrodeposition of substrates. Generally the bath pH ranges from about 3-9. The substrate may be any conductive substrate, preferably iron, zinc or aluminum containing substrates such as steel, with or without protective coatings, such as phosphate corrosion resistant coatings. Most preferably the coatings of the present invention are applied to metallic substrates, such as steel.
In the electrodeposition process, the conductive metallic substrate would be the cathode in the electrical process and an anode would be placed in the electrodeposition bath, with the electrodeposition coating of the present invention being incorporated in the aqueous electrolyte between the anode and the cathode. The electrodeposition process is one that would be conducted at a temperature ranging from about 50° F. to 150° F., preferably room temperature. The voltage may vary greatly, although normally it will operate between 50 and 500 volts. The current density ranges from about 1 amp to about 15 amps per square foot.
The nitrogen containing coating compositions of the present invention are solubilized, dispersed or suspended by means of an acid, such as an organic acid, such as acetic acid, lactic acid, citric acid and the like, although any water solubilizing agent may be used as boric or hydrochloric acid, etc.
As has been mentioned above, if a high concentration of unsaturated fatty acids are employed, the composition may be air cured. Preferably, however, the coating compositions are cured by means of subjecting the coated substrate to a high temperature or a bank of infrared lamps having a temperature ranging from about 250° F. (121° C.) to about 500° F. (260° C.), preferrably between about 300° F. (149° C.) and about 390° F. (199° C.) from a time ranging from about 1 minute to 1 hour, preferably 10 minutes to 45 minutes.
It is to be appreciated that a curing catalyst may also be added to the coating composition, such as tin compounds as dibutyl tin dilaurate, dibutyl in diacetate, dibutyl tin oxide, metallic dryers as cobalt and zirconium, naphthenate or octoate.
When a blocked isocyanate is employed as described above, it is to be appreciated that the blocking agent will decompose at temperatures greater than 50° C. which will permit the remaining isocyanate moiety to react with the film forming composition. At less than about 50° C., the blocked isocyanate is substantially stable and is nonreactive with the hydroxyl groups present on the acrylic polymer, or the hydroxyl groups present on Formula A moiety.
In known manner, catalysts, pigments, anti-oxidants, surfactants or fillers may be added to the coating composition to improve the appearance, texture, gloss and other properties of the cured film. Pigments such as carbon black, titanium dioxide, metal oxides, chromates, sulfate and the like may be used.
The components of the coating composition (on a pigment, filler and catalyst free basis) of the present invention are generally present as follows:
______________________________________                                    
Resin         Range            Preferred                                  
______________________________________                                    
Monomer (total)                                                           
              about 30 to about 60                                        
                               49                                         
acrylic portion                                                           
              about 10 to about 40                                        
                               20                                         
Fatty acid ester                                                          
              about 30 to about 50                                        
                               36                                         
Formula A producing                                                       
              balance          15                                         
amine                                                                     
TOTAL (parts by                                                           
              100              100                                        
weight)                                                                   
Cross-linking Agent                                                       
              about 10 to about 50                                        
                               about 20 to                                
                               about 30                                   
TOTAL (resin + cross-                                                     
              100              100                                        
linking agent)                                                            
(parts by weight)                                                         
______________________________________                                    
Having described the invention in general, listed below are embodiments wherein all parts are in parts by weight and all temperatures in degrees centigrade, unless otherwise indicated.
EXAMPLE NO. 1
Into a beaker equipped with a thermometer, stirrer and reflux condenser was placed dehydrated castor oil fatty acid (contains 30% conjugated double bonds; 329.4 parts), n-butyl glycidyl ether (132.6 parts) and zirconium octoate (0.5 parts) and heated under a nitrogen environment to 150° and allowed to exotherm. The heat was held at 190° until an acid number of about 33. Then LSU 549 (trademark of Ciba Geigy for a product of the structure ##STR8## having a melting point of 90°-95° C. and an epoxy equivalent (Kg of 6.8; 55.9 parts) was added and temperature held to an acid number of zero was reached. The mixture was cooled to 165° C. and over 13/4 hours was added styrene (413 parts), glycidyl methacrylate (GMA) (287 parts) and dicumene peroxide catalyst (31 parts) and then heated for an additional hour at 180°. The solution was cooked to 140° and di-tert-butyl peroxide (2.7 parts) was added. The product was held to 96% theoretical solids content, cooled to 95° and diethanolamine (202 parts) added. The mixture exothermed to 120° and temperature held there for one hour. Thereafter n-butanol was added (254 parts). The product had an amine value of 75.3 and a viscosity (25° C.; 50% theoretical solids in n-butanol) of P (hereinafter product A).
A coating composition was formulated from the above product as follows:
Into a pebble mill was added carbon black (8 parts), product A (40 parts) and n-butanol (32 parts) and ground for 40 hours until carbon black is dispersed and has a Hegman reading of 7+. (hereinafter product B-pigment dispersion). Product A (311.3 parts), Cymel 1116 (trademark of American Cyanamid for a melamine cross-linking agent) - (71.8 parts) and zirconium octoate (1.8 parts) was placed in a Cowles mixer and mixed with barytes (40 parts) to a reading of Hegman 7+. Thereafter product B (80 parts) and acetic acid (12.3 parts) was mixed with product A and the cross-linking agent and emulsified with deionized water until an inversion occurs.
A zinc phosphate treated panel was used as a cathode and a carbon anode with the coating composition described above (10% solids) as the electrolyte. The voltage employed was 200 volts with the coating thickness on the cathode ranging from 0.50-0.65 mils. The panel was washed and baked at a temperature of 400° F. for 20 minutes. Smooth glossy films with good adherence to the metal substrates were obtained with satisfactory salt spray (5% sodium chloride in water) results. (Scribe pull of 2-6 mm. after 276 hours)
EXAMPLE NO. 2
Into a beaker equipped with a stirrer, thermometer and a reflux condenser was placed Pamolyn 380 (trademark of Hercules for a conjugated fatty acid being characterized as containing 70% conjugated unsaturation of linoleic acid, an acid number of 197, an iodine value of 102 and an oleic acid content of 22%; 224 parts; 0.8 equivalents); n-butanol (59 parts, 0.8 equivalents). The mixture was heated under a nitrogen blanket to a temperature of 130° for about 6 hours, removing water to produce an acid number of zero to produce the butyl ester of Pamolyn 380.
In a separate equivalently equipped beaker was placed butyl ester of Pamolyn 380 (517.9 parts) and heated to 165° C. Over a one-hour-and-forty-five-minute period was added styrene (413 parts). GMA (287 parts) and dicumene peroxide (31 parts). Thereafter the mixture was heated at about 180° C. for another hour. The mixture was cooled to 140° C. and di-tert-butyl peroxide (2.7 parts) was added and mixture held for less than an hour at same temperature until theoretical solids reached 96%. The mixture was cooled to 95° and diethanol amine (202 parts) was added, the temperature heated to 125° C. for 2 hours. Thereafter n-butanol (254 parts) was added. The product had an amine value of 90.9 and a viscosity of m (25° C. in 50% theoretical solids in n-butanol).

Claims (8)

What is claimed is:
1. An organic coating composition comprising a dispersion, solution or suspension of a coating composition characterized by:
(a) the reaction product of a conjugated fatty acid ester and an acrylic containing monomer; and
(b) Formula A within the molecule, being the reaction product of reacting an amine with an oxirane ring;
wherein Formula A is: ##STR9## wherein Z is independently selected from the group consisting of hydrogen, hydroxyl, alkoxy of from one to 6 carbon atoms; acyloxy of from one to 6 carbon atoms; (═O), --OR']n H, --OR']n OH, and --OR'(CH2 OH)]n OH; wherein R' is a saturated alkylene of from 2 to 4 carbon atoms and n is a number from 1 to 6.
2. Composition of claim 1 wherein the fatty acid ester is obtained by the reaction between a fatty acid and an alkanol of from 1 to 12 carbon atoms.
3. The composition of claim 1 wherein the composition is substantially free of oxirane rings.
4. The composition of claim 1 further comprising an effective amount of a nitrogenous cross-linking composition.
5. The composition of claim 1 wherein the coating composition is comprised of a resin portion characterized as follows:
______________________________________                                    
Components           Parts by Weight                                      
______________________________________                                    
(a)   total monomer portion used                                          
                         about 30 to about 60                             
      to produce polymer                                                  
(b)   fatty acid ester portion                                            
                         about 30 to about 50                             
(c)   Formula A producing amine                                           
                         balance                                          
      portion                                                             
______________________________________                                    
wherein the total resin components equals 100 parts (on a pigment, catalyst and filler free basis).
6. The composition of claim 5 wherein the acrylic monomer comprises about 10 to about 40% of the total resin portion of the coating composition.
7. The composition of claim 1 wherein Z is hydroxyl. .Iadd.
8. An organic coating composition comprising a dispersion, solution or suspension of a coating composition characterized by:
(a) the reaction product of a conjugated fatty acid ester and an acrylic containing monomer; and
(b) Formula A' within the molecule, being the reaction product of reacting an amine with an oxirane ring; wherein Formula A' is: ##STR10## wherein Z is independently selected from the group consisting of hydrogen, hydroxyl, alkoxy of from 1 to 6 carbon atoms; acyloxy of from 1 to 6 carbon atoms; (═O), --OR']n H, --OR']n OH and --OR'(CH2 OH)]n OH; wherein R' is a saturated alkylene group of from 2 to 4 carbon atoms and n is a number from 1 to 6; and wherein X is H or --C-- provided that when X is --C--, then C-X is part of an alicyclic ring structure.
US06/343,040 1977-12-12 1982-01-27 Cathodic electrodeposition coating compositions containing diels-alder adducts Expired - Lifetime USRE31616E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/343,040 USRE31616E (en) 1977-12-12 1982-01-27 Cathodic electrodeposition coating compositions containing diels-alder adducts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/859,296 US4148704A (en) 1977-12-12 1977-12-12 Method for cathodic electrodeposition of coating compositions containing Diels-Alder adducts
US06/343,040 USRE31616E (en) 1977-12-12 1982-01-27 Cathodic electrodeposition coating compositions containing diels-alder adducts

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US05/859,296 Division US4148704A (en) 1977-12-12 1977-12-12 Method for cathodic electrodeposition of coating compositions containing Diels-Alder adducts
US05/948,397 Reissue US4186117A (en) 1977-12-12 1978-10-04 Cathodic electrodeposition coating compositions containing diels-alder adducts

Publications (1)

Publication Number Publication Date
USRE31616E true USRE31616E (en) 1984-06-26

Family

ID=26993305

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/343,040 Expired - Lifetime USRE31616E (en) 1977-12-12 1982-01-27 Cathodic electrodeposition coating compositions containing diels-alder adducts

Country Status (1)

Country Link
US (1) USRE31616E (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565838A (en) 1984-10-01 1986-01-21 Vianova Kunstharz, A.G. Cathodically depositable electrodeposition paint binders based on epoxy resin-amino adducts reacted with phenol and formaldehyde modified with an unsaturated, substantially water-insoluble component
US4568709A (en) 1984-03-16 1986-02-04 Vianova Kunstharz, A.G. Cathodically depositable electrodeposition paint binders based on reaction products of epoxy resin-amino adduct with formaldehyde and phenols

Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2910459A (en) * 1955-04-01 1959-10-27 Du Pont Addition-type copolymers having extralinear glycidyl and amino groups and process for their preparation
US3290417A (en) * 1965-06-01 1966-12-06 Pittsburgh Plate Glass Co Thermosetting coating compositions modified with an alkylenimine
US3446723A (en) * 1965-07-09 1969-05-27 Basf Ag Electrodeposition of a copolymer containing basic nitrogen atoms
US3455806A (en) * 1965-02-27 1969-07-15 Basf Ag Cataphoretic deposition of nitrogen basic copolymers
US3458420A (en) * 1965-12-03 1969-07-29 Basf Ag Cataphoretic deposition of nitrogen basic copolymers
US3468779A (en) * 1965-03-19 1969-09-23 Celanese Coatings Co Electrocoating process
GB1235975A (en) * 1969-08-28 1971-06-16 Coates Brothers & Co Electrodeposition of cationic resinous compositions
US3617458A (en) * 1967-12-12 1971-11-02 Canadian Ind Cationic electrodeposition system
US3666710A (en) * 1969-09-08 1972-05-30 Ppg Industries Inc Non-aqueous dispersions
US3703596A (en) * 1970-01-22 1972-11-21 Basf Ag Coating compositions for electrodeposition
US3730926A (en) * 1966-10-21 1973-05-01 Reichhold Albert Chemie Ag Epoxy resin ester based water-soluble or water-dilutable coating compositions
US3755093A (en) * 1971-03-31 1973-08-28 Shinto Paint Co Ltd Method for the anodization and resin-coating of aluminous articles
US3793278A (en) * 1972-03-10 1974-02-19 Ppg Industries Inc Method of preparing sulfonium group containing compositions
DE2339398A1 (en) * 1972-08-04 1974-02-28 Ppg Industries Inc ELECTRICALLY STORABLE COMPOSITIONS
US3799854A (en) * 1970-06-19 1974-03-26 Ppg Industries Inc Method of electrodepositing cationic compositions
US3804786A (en) * 1971-07-14 1974-04-16 Desoto Inc Water-dispersible cationic polyurethane resins
US3817898A (en) * 1971-11-15 1974-06-18 Owens Corning Fiberglass Corp Sizing composition and glass fibers treated therewith
US3839252A (en) * 1968-10-31 1974-10-01 Ppg Industries Inc Quaternary ammonium epoxy resin dispersion with boric acid for cationic electro-deposition
US3869366A (en) * 1971-10-06 1975-03-04 Shinto Paint Co Ltd Method for electrocoating
US3922212A (en) * 1967-08-24 1975-11-25 Scm Corp Cathodic electrodeposition of surface coatings and compositions therefor
US3925181A (en) * 1974-10-31 1975-12-09 Scm Corp Cathodic electrocoating process
US3928157A (en) * 1972-05-15 1975-12-23 Shinto Paint Co Ltd Cathodic treatment of chromium-plated surfaces
US3928156A (en) * 1969-07-10 1975-12-23 Ppg Industries Inc Process for the electrodeposition of zwitterion-containing compositions
US3935087A (en) * 1972-12-22 1976-01-27 Ppg Industries, Inc. Method for electrodeposition of self-crosslinking cationic compositions
US3947338A (en) * 1971-10-28 1976-03-30 Ppg Industries, Inc. Method of electrodepositing self-crosslinking cationic compositions
US3953391A (en) * 1970-06-19 1976-04-27 Ppg Industries, Inc. Cationic acrylic electrodepositable compositions
DE2531960A1 (en) * 1975-03-26 1976-09-30 Ppg Industries Inc AQUATIC BATH FOR ELECTRIC DEPOSITION OF A CATIONIC RESIN
US3984299A (en) * 1970-06-19 1976-10-05 Ppg Industries, Inc. Process for electrodepositing cationic compositions
US3988281A (en) * 1972-05-19 1976-10-26 Shinto Paint Co., Ltd. Water-dispersible thermosetting coating composition
US4001101A (en) * 1969-07-10 1977-01-04 Ppg Industries, Inc. Electrodeposition of epoxy compositions
US4001156A (en) * 1972-08-03 1977-01-04 Ppg Industries, Inc. Method of producing epoxy group-containing, quaternary ammonium salt-containing resins
US4007154A (en) * 1975-08-01 1977-02-08 Ppg Industries, Inc. Novel pigment paste for cationic electrodeposition
US4009133A (en) * 1975-08-01 1977-02-22 Ppg Industries, Inc. Electrodepositable epoxy resins having quaternary groups carrying blocked NCO, and aqueous dispersions
US4017438A (en) * 1974-12-16 1977-04-12 Ppg Industries, Inc. Ketimine-blocked primary amine group-containing cationic electrodepositable resins
US4033917A (en) * 1975-05-12 1977-07-05 Desoto, Inc. Electrodeposition of aqueous dispersions of copolymers of polyethylenically unsaturated epoxy-amine adducts
US4036795A (en) * 1974-09-20 1977-07-19 Kansai Paint Co., Ltd. Aqueous cationic coating from amine-epoxy adduct, polyamide, and semiblocked polyisocyanate, acid salt
US4053329A (en) * 1976-04-02 1977-10-11 Ppg Industries, Inc. Method of improving corrosion resistance of metal substrates by passivating with an onium salt-containing material
DE2715259A1 (en) * 1976-04-06 1977-10-13 Kansai Paint Co Ltd CATIONIC ELECTROPHORETIC PAINTING COMPOUNDS
US4055527A (en) * 1975-07-28 1977-10-25 Ppg Industries, Inc. Method and resinous vehicles for electrodeposition
US4066525A (en) * 1975-12-22 1978-01-03 Scm Corporation Cathodic electrocoating process
US4066592A (en) * 1971-07-29 1978-01-03 Ppg Industries, Inc. Zwitterion-containing compositions
US4069210A (en) * 1976-09-30 1978-01-17 Ppg Industries, Inc. Polymeric products
US4070258A (en) * 1976-05-24 1978-01-24 Scm Corporation Dual cure cathodic electrocoating compositions
US4071428A (en) * 1976-11-24 1978-01-31 Ppg Industries, Inc. Process for electrodeposition of quaternary ammonium salt group-containing resins
US4075148A (en) * 1974-07-12 1978-02-21 Ppg Industries, Inc. Water-based coating compositions
US4081341A (en) * 1976-11-24 1978-03-28 Ppg Industries, Inc. Use of polymeric quaternary ammonium hydroxides in electrodeposition
US4085161A (en) * 1976-11-01 1978-04-18 Desoto, Inc. Electrodeposition of aqueous dispersions of copolymers of polyethylenically unsaturated epoxy adducts including blocked isocyanate monomer
US4093594A (en) * 1976-08-18 1978-06-06 Celanese Polymer Specialties Company Process for preparing cathodically depositable coating compositions
US4136070A (en) * 1977-10-31 1979-01-23 E. I. Du Pont De Nemours And Company Cathodic electrodeposition of paints

Patent Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2910459A (en) * 1955-04-01 1959-10-27 Du Pont Addition-type copolymers having extralinear glycidyl and amino groups and process for their preparation
US3455806A (en) * 1965-02-27 1969-07-15 Basf Ag Cataphoretic deposition of nitrogen basic copolymers
US3468779A (en) * 1965-03-19 1969-09-23 Celanese Coatings Co Electrocoating process
US3290417A (en) * 1965-06-01 1966-12-06 Pittsburgh Plate Glass Co Thermosetting coating compositions modified with an alkylenimine
US3446723A (en) * 1965-07-09 1969-05-27 Basf Ag Electrodeposition of a copolymer containing basic nitrogen atoms
US3458420A (en) * 1965-12-03 1969-07-29 Basf Ag Cataphoretic deposition of nitrogen basic copolymers
US3730926A (en) * 1966-10-21 1973-05-01 Reichhold Albert Chemie Ag Epoxy resin ester based water-soluble or water-dilutable coating compositions
US3922212A (en) * 1967-08-24 1975-11-25 Scm Corp Cathodic electrodeposition of surface coatings and compositions therefor
US3617458A (en) * 1967-12-12 1971-11-02 Canadian Ind Cationic electrodeposition system
US3839252A (en) * 1968-10-31 1974-10-01 Ppg Industries Inc Quaternary ammonium epoxy resin dispersion with boric acid for cationic electro-deposition
US3928156A (en) * 1969-07-10 1975-12-23 Ppg Industries Inc Process for the electrodeposition of zwitterion-containing compositions
US4001101A (en) * 1969-07-10 1977-01-04 Ppg Industries, Inc. Electrodeposition of epoxy compositions
GB1235975A (en) * 1969-08-28 1971-06-16 Coates Brothers & Co Electrodeposition of cationic resinous compositions
US3666710A (en) * 1969-09-08 1972-05-30 Ppg Industries Inc Non-aqueous dispersions
US3703596A (en) * 1970-01-22 1972-11-21 Basf Ag Coating compositions for electrodeposition
US3799854A (en) * 1970-06-19 1974-03-26 Ppg Industries Inc Method of electrodepositing cationic compositions
US3984299A (en) * 1970-06-19 1976-10-05 Ppg Industries, Inc. Process for electrodepositing cationic compositions
US3953391A (en) * 1970-06-19 1976-04-27 Ppg Industries, Inc. Cationic acrylic electrodepositable compositions
US3755093A (en) * 1971-03-31 1973-08-28 Shinto Paint Co Ltd Method for the anodization and resin-coating of aluminous articles
US3804786A (en) * 1971-07-14 1974-04-16 Desoto Inc Water-dispersible cationic polyurethane resins
US4066592A (en) * 1971-07-29 1978-01-03 Ppg Industries, Inc. Zwitterion-containing compositions
US3869366A (en) * 1971-10-06 1975-03-04 Shinto Paint Co Ltd Method for electrocoating
US3947338A (en) * 1971-10-28 1976-03-30 Ppg Industries, Inc. Method of electrodepositing self-crosslinking cationic compositions
US3817898A (en) * 1971-11-15 1974-06-18 Owens Corning Fiberglass Corp Sizing composition and glass fibers treated therewith
US3793278A (en) * 1972-03-10 1974-02-19 Ppg Industries Inc Method of preparing sulfonium group containing compositions
US3928157A (en) * 1972-05-15 1975-12-23 Shinto Paint Co Ltd Cathodic treatment of chromium-plated surfaces
US3988281A (en) * 1972-05-19 1976-10-26 Shinto Paint Co., Ltd. Water-dispersible thermosetting coating composition
US4001156A (en) * 1972-08-03 1977-01-04 Ppg Industries, Inc. Method of producing epoxy group-containing, quaternary ammonium salt-containing resins
DE2339398A1 (en) * 1972-08-04 1974-02-28 Ppg Industries Inc ELECTRICALLY STORABLE COMPOSITIONS
US3935087A (en) * 1972-12-22 1976-01-27 Ppg Industries, Inc. Method for electrodeposition of self-crosslinking cationic compositions
US4075148A (en) * 1974-07-12 1978-02-21 Ppg Industries, Inc. Water-based coating compositions
US4036795A (en) * 1974-09-20 1977-07-19 Kansai Paint Co., Ltd. Aqueous cationic coating from amine-epoxy adduct, polyamide, and semiblocked polyisocyanate, acid salt
US3925181A (en) * 1974-10-31 1975-12-09 Scm Corp Cathodic electrocoating process
US4017438A (en) * 1974-12-16 1977-04-12 Ppg Industries, Inc. Ketimine-blocked primary amine group-containing cationic electrodepositable resins
DE2531960A1 (en) * 1975-03-26 1976-09-30 Ppg Industries Inc AQUATIC BATH FOR ELECTRIC DEPOSITION OF A CATIONIC RESIN
US4033917A (en) * 1975-05-12 1977-07-05 Desoto, Inc. Electrodeposition of aqueous dispersions of copolymers of polyethylenically unsaturated epoxy-amine adducts
US4055527A (en) * 1975-07-28 1977-10-25 Ppg Industries, Inc. Method and resinous vehicles for electrodeposition
US4009133A (en) * 1975-08-01 1977-02-22 Ppg Industries, Inc. Electrodepositable epoxy resins having quaternary groups carrying blocked NCO, and aqueous dispersions
US4007154A (en) * 1975-08-01 1977-02-08 Ppg Industries, Inc. Novel pigment paste for cationic electrodeposition
US4066525A (en) * 1975-12-22 1978-01-03 Scm Corporation Cathodic electrocoating process
US4053329A (en) * 1976-04-02 1977-10-11 Ppg Industries, Inc. Method of improving corrosion resistance of metal substrates by passivating with an onium salt-containing material
DE2715259A1 (en) * 1976-04-06 1977-10-13 Kansai Paint Co Ltd CATIONIC ELECTROPHORETIC PAINTING COMPOUNDS
US4070258A (en) * 1976-05-24 1978-01-24 Scm Corporation Dual cure cathodic electrocoating compositions
US4093594A (en) * 1976-08-18 1978-06-06 Celanese Polymer Specialties Company Process for preparing cathodically depositable coating compositions
US4069210A (en) * 1976-09-30 1978-01-17 Ppg Industries, Inc. Polymeric products
US4085161A (en) * 1976-11-01 1978-04-18 Desoto, Inc. Electrodeposition of aqueous dispersions of copolymers of polyethylenically unsaturated epoxy adducts including blocked isocyanate monomer
US4071428A (en) * 1976-11-24 1978-01-31 Ppg Industries, Inc. Process for electrodeposition of quaternary ammonium salt group-containing resins
US4081341A (en) * 1976-11-24 1978-03-28 Ppg Industries, Inc. Use of polymeric quaternary ammonium hydroxides in electrodeposition
US4136070A (en) * 1977-10-31 1979-01-23 E. I. Du Pont De Nemours And Company Cathodic electrodeposition of paints

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568709A (en) 1984-03-16 1986-02-04 Vianova Kunstharz, A.G. Cathodically depositable electrodeposition paint binders based on reaction products of epoxy resin-amino adduct with formaldehyde and phenols
US4565838A (en) 1984-10-01 1986-01-21 Vianova Kunstharz, A.G. Cathodically depositable electrodeposition paint binders based on epoxy resin-amino adducts reacted with phenol and formaldehyde modified with an unsaturated, substantially water-insoluble component

Similar Documents

Publication Publication Date Title
US3975346A (en) Boron-containing, quaternary ammonium salt-containing resin compositions
US4017438A (en) Ketimine-blocked primary amine group-containing cationic electrodepositable resins
US4031050A (en) Cationic electrodepositable compositions of blocked NCO and acid salt of adduct of amine and polyepoxide
US5856382A (en) Cyclic carbonate-curable coating composition
US4761337A (en) Cationic electrodepositable resin compositions containing polyurethane resin dispersions
US4557976A (en) Heat-hardenable binder mixture
US4686249A (en) Heat-hardenable binder mixture of amino resin and hydroxy epoxides
US4038232A (en) Electrodepositable compositions containing sulfonium resins and capped polyisocyanates
US4246087A (en) Process for cationic electrodeposition
JP3529418B2 (en) Electrodeposition coating composition comprising crosslinked microparticles
US5185065A (en) Low temperature coring cathodic electrocoating composition
US4339368A (en) Cationic coating compositions containing nitrogen heterocyclic materials
EP0301293A1 (en) Aqueous electrodeposition baths containing cathodically separable synthetic resins and method of coating electrically conductive substrates
DE2936356A1 (en) PRE-CONDENSED, HEAT-CURABLE AQUEOUS LACQUER COATING AGENT AND THE USE THEREOF FOR CATHODICAL DEPOSITION ON ELECTRICALLY CONDUCTING SURFACES
US4148704A (en) Method for cathodic electrodeposition of coating compositions containing Diels-Alder adducts
US5057556A (en) Coating compositions comprising non-gelled amine-epoxide reaction products
US4155824A (en) Cathodic electrodeposition process employing fatty acid derivatives
USRE31616E (en) Cathodic electrodeposition coating compositions containing diels-alder adducts
US4191674A (en) Zwitterion-containing compositions
JP3494724B2 (en) Cathodic electrodeposition coating method using cyclic carbonate crosslinkable coating composition
US4186117A (en) Cathodic electrodeposition coating compositions containing diels-alder adducts
USRE31803E (en) Method for cathodic electrodeposition of coating compositions containing diels-alder adducts
US4231907A (en) Cathodic electrodeposition compositions employing fatty acid derivatives
US4097352A (en) Electrodeposition of compositions containing sulfonium resins and capped polyisocyanates
CA1118542A (en) Cathodic electrodeposition of coating compositions containing diels-alder adducts