USRE32525E - Universal intraocular lens and a method of measuring an eye chamber size - Google Patents

Universal intraocular lens and a method of measuring an eye chamber size Download PDF

Info

Publication number
USRE32525E
USRE32525E US06/797,656 US79765685A USRE32525E US RE32525 E USRE32525 E US RE32525E US 79765685 A US79765685 A US 79765685A US RE32525 E USRE32525 E US RE32525E
Authority
US
United States
Prior art keywords
lens
elements
intraocular lens
snag
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/797,656
Inventor
Jaswant S. Pannu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Surgical Vision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26834152&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE32525(E) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed filed Critical
Priority to US06797656 priority Critical patent/USRE32525F1/en
Application granted granted Critical
Publication of USRE32525E publication Critical patent/USRE32525E/en
Publication of USRE32525F1 publication Critical patent/USRE32525F1/en
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. SECURITY AGREEMENT Assignors: ADVANCED MEDICAL OPTICS, INC., AMO HOLDINGS, LLC
Assigned to ADVANCED MEDICAL OPTICS, INC. reassignment ADVANCED MEDICAL OPTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLERGAN PHARMACEUTICALS, INC., ALLERGAN SALES, LLC, ALLERGAN, INC., AMERICAN HOSPITAL SUPPLY CORPORATION, HEYER-SCHULTE CORPORATION, INNOVATIVE SURGICAL PRODUCTS, INC.
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: ADVANCED MEDICAL OPTICS, INC.
Anticipated expiration legal-status Critical
Assigned to ADVANCED MEDICAL OPTICS, INC. reassignment ADVANCED MEDICAL OPTICS, INC. RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 16386/0001 Assignors: BANK OF AMERICA, N.A.
Assigned to ADVANCED MEDICAL OPTICS, INC., AMO HOLDINGS, INC. (FORMERLY KNOWN AS AMO HOLDINGS, LLC) reassignment ADVANCED MEDICAL OPTICS, INC. RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 13203/0039 Assignors: BANK OF AMERICA, N.A.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/1681Intraocular lenses having supporting structure for lens, e.g. haptics
    • A61F2002/1683Intraocular lenses having supporting structure for lens, e.g. haptics having filiform haptics

Definitions

  • An intraocular lens is normally implanted in the anterior or posterior chamber of an eye following extraction of a cataractous lens. Since replaceable lenses are different for use in a posterior chamber than use in an anterior chamber, two different lenses must be kept in stock. In addition, the eye chamber could vary in size, again requiring additional varied sizes in stock.
  • Shearing type lenses are utilized only for posterior chamber implantation. It is a plastic lens having two opposed flexible strands, one a superior loop and the other an inferior loop, wherein the free ends are arched and end in a point. This makes it extremely difficult for a surgeon to master the implantation of the superior loop during realignment or removal of the lens without injuring the delicate tissue of an eye.
  • One of the main objects of this invention is to avoid this snagging point of the loop by replacing it with a snag resistant disc, ring or closed circular loop.
  • Another object is to provide such a snag resistant strand so that both right and left handed surgeons may be able to use the same lens, thus eliminating the need for a specially designed lens for a left handed surgeon.
  • Another object is to provide a universal lens that can be used in an anterior or posterior chamber of an eye and can be equally used in a small, medium or large eye chamber size, thus avoiding the stocking of a large number of different types and sizes by hospitals and surgeons.
  • Another object is to provide just one type of universal lens for all eye transplants so that all surgeons will become familiar with it and greater safety can be provided for the patients.
  • Another object is to so tangentially shape the flexible strand as to cause the lens to self-center when implanted.
  • a further object is to use the distance between the ring edge and the lens edge to determine the size of an eye chamber.
  • FIG. 1 is an illustration of the intraocular lens of this invention in a front elevational view
  • FIG. 2 is a side elevational view of the lens of FIG. 1;
  • FIG. 3 is another form of the lens in a front elevational view
  • FIG. 4 is a cross-sectional schematic view of a human eye with the lens of this invention implanted in the posterior chamber;
  • FIG. 5 is a similar cross-sectional schematic view of a human eye with the same lens implanted in an anterior chamber;
  • FIG. 6A to D is a schematic cross-sectional view to illustrate how the eye chamber is measured for size.
  • intraocular lens 10 of this invention having a lens body 12 measuring 6 mm in diameter and centration openings 17 that measure 0.25 mm in diameter which may be used for alignment of the lens during implantation of the lens.
  • the lens is formed of clinical quality of polymethymethacrylate and has an overall length of 13.5 mm inclusive of the flexible strands 14 which are tangentially curved towards the lens circumference to the left on the superior strand while the inferior strand is tangentially curved to the right. This enables a surgeon to implant the lens with minimal force and permits the lens to be self-centering.
  • the snag resistant looped disc 16 and strand 14 are integrally molded to the body of the lens.
  • the thickness of the strand is 0.25 mm and the lens thickness is 0.85 mm as shown in FIG. 2.
  • FIG. 3 there is shown another form of the intraocular lens 10' of this invention.
  • the body 21 of the lens and the resilient strands 25 supporting the snag resistant rings 23 are integrally molded to the lens body, however to provide a sturdier base 24, the shape is molded into a triangular design which supports the flexible strand and said strand is shaped to be tangential to the lens circumference.
  • this lens is an actual commercial model and upon implantation, it automatically becomes self centered.
  • this ring be at least three times greater than the width of the flexible strand and at least one-fifth as great as the width of the lens to result in smoothly guiding the snag resistant ring across the iris or other eye tissue when implanting the lens in either an anterior or posterior chamber which is small, medium or large.
  • this lens is implanted into a posterior chamber as shown in FIG. 4, the snag resistant free end rings will snugly fit into the pocket found near the stationary zone of the iris 26.
  • the lens when so implanted is self-centering and the rings lie in a plane sufficiently close to the plane of the lens so that the rings and the lens can snugly fit into the eye chamber without causing any spring back or buldging forward which would injure delicate eye tissue.
  • the lens of this invention can dispense with such holes because with the ring structure and the tangentially shaped resilient strands, the .[.right.]. .Iadd.ring .Iaddend.is self centerable.
  • FIG. 5 there is shown the implantation of this novel lens into an anterior chamber of an eye.
  • the snag resistant free end of the tangential strand fits snugly in the corners between the mobile zone of the iris 26 and the cornea 27.
  • the lens is again self centering because of the same factors present in the posterior implantation.
  • FIG. 6 there is shown a schematic illustration of how to measure the size of an eye chamber.
  • the lens of this invention having a lens body whose diameter is 6 mm and whose ring diameter is 2.5 mm.
  • such a lens is implanted in an eye chamber 33. The distance between the loop and the lens edge is measured to be 1 mm. When added together, it measures a 13 mm eye chamber size which is a large chamber size.
  • a 12 mm eye chamber is measured which is a medium chamber size.
  • the eye chamber measures 11 mm which is a small chamber size. To aid in sighting for measuring, it is helpful to slightly tint the snag resistant rings, however they could also be clear.
  • the most important advantage is the provision of a snag resistant loop which prevents injury to delicate eye tissue during implantation, centration, or removal of the lens.
  • the lens of the Shearing type requires more maneuvers, skill and a longer learning process for surgeons to master when inserting the superior loop of the lens, thus resulting in increasing the chance for injuring delicate eye tissue. These objections are eliminated when the snag resistant lens of this invention is used. It would be relatively easy for a surgeon to master the implantation, centration or removal of this lens without injury to delicate eye tissue.
  • Another advantage is that only a small force is needed by the surgeon to position the superior snag resistant ring during implantation.
  • the tangentially curved resilient strands and the snag free loose end of the strand transfers this force into a circular movement of the lens body resulting in self centering of the lens with avoidance of undue pressure on the zonules below.
  • the lens of the invention is one that is a universal lens, a surgeon who is a novitiate will find this lens especially helpful because this lens is not only self-centering but also needs only minimal manipulation during implantation in an eye chamber.
  • Implantation of this new lens avoids the spring back which is present in the Shearing type lens which results in decentration.
  • This lens because of its tangentially formed strands, changes the downward force into a circular motion, thus avoiding any spring back landing to cause decentration.
  • All conventional posterior lenses are more easily implanted through a dilated pupil.
  • the new snag free lens can be implanted through a dilated or a miotic pupil with equal ease.
  • the surgeon may decide to use this lens in the anterior chamber to avoid aborting the implantation procedure. This cannot be done with any of the prior art lenses. However, it can be done if the surgeon is using the lens of this invention.
  • the lens of this invention is the first universal lens implant since it can be implanted in any size of eye chamber, in a posterior chamber or in an anterior chamber. A tremendous saving in the stocking of an unduly large supply of lenses for surgeons and hospitals. Only the snag resistant lens of this invention need be stocked. No necessity now to stock many different sizes, a posterior lens and an anterior lens. All the different lenses have now been replaced with only one lens, a universally useful lens.
  • this novel lens can be used to determine the size of an eye chamber. This has never been possible before this lens. By merely measuring the distance between the edge of the loop and the edge of the lens with a microscopic chronometer and adding thereto the diameter of the ring and lens, the size of an eye chamber can be determined. No lens in the prior art is capable of effecting this result.
  • the ring which is approximately circular, could also be elliptical and would thus be equally useful with all the accompanying advantages so long as it is snag resistant.

Abstract

A universal intraocular lens that may be implanted in an eye, in an anterior chamber, in a posterior chamber and in any size eye chamber wherein a tangential flexible strand is attached to a lens at one end and the other free end is formed into a snag resistant ring, or disc which is approximately circular to avoid injury to delicate eye tissue during implantation, centration or removal of said lens.

Description

BACKGROUND OF THE INVENTION
This application is a continuation-in-part of application Ser. No. 136,243 which was filed on Apr. 1, 1980 and now abandoned by applicant. The content of said application is incorporated in this application.
An intraocular lens is normally implanted in the anterior or posterior chamber of an eye following extraction of a cataractous lens. Since replaceable lenses are different for use in a posterior chamber than use in an anterior chamber, two different lenses must be kept in stock. In addition, the eye chamber could vary in size, again requiring additional varied sizes in stock.
The most widely used Shearing type lenses are utilized only for posterior chamber implantation. It is a plastic lens having two opposed flexible strands, one a superior loop and the other an inferior loop, wherein the free ends are arched and end in a point. This makes it extremely difficult for a surgeon to master the implantation of the superior loop during realignment or removal of the lens without injuring the delicate tissue of an eye.
One of the main objects of this invention is to avoid this snagging point of the loop by replacing it with a snag resistant disc, ring or closed circular loop.
Another object is to provide such a snag resistant strand so that both right and left handed surgeons may be able to use the same lens, thus eliminating the need for a specially designed lens for a left handed surgeon.
Another object is to provide a universal lens that can be used in an anterior or posterior chamber of an eye and can be equally used in a small, medium or large eye chamber size, thus avoiding the stocking of a large number of different types and sizes by hospitals and surgeons.
Another object is to provide just one type of universal lens for all eye transplants so that all surgeons will become familiar with it and greater safety can be provided for the patients.
Another object is to so tangentially shape the flexible strand as to cause the lens to self-center when implanted.
A further object is to use the distance between the ring edge and the lens edge to determine the size of an eye chamber.
Details of this invention will become more readily apparent from the following description when taken in conjunction with the accompanying drawings:
IN THE DRAWINGS
FIG. 1 is an illustration of the intraocular lens of this invention in a front elevational view;
FIG. 2 is a side elevational view of the lens of FIG. 1;
FIG. 3 is another form of the lens in a front elevational view;
FIG. 4 is a cross-sectional schematic view of a human eye with the lens of this invention implanted in the posterior chamber;
FIG. 5 is a similar cross-sectional schematic view of a human eye with the same lens implanted in an anterior chamber; and
FIG. 6A to D is a schematic cross-sectional view to illustrate how the eye chamber is measured for size.
In FIG. 1, there is shown intraocular lens 10 of this invention, having a lens body 12 measuring 6 mm in diameter and centration openings 17 that measure 0.25 mm in diameter which may be used for alignment of the lens during implantation of the lens. The lens is formed of clinical quality of polymethymethacrylate and has an overall length of 13.5 mm inclusive of the flexible strands 14 which are tangentially curved towards the lens circumference to the left on the superior strand while the inferior strand is tangentially curved to the right. This enables a surgeon to implant the lens with minimal force and permits the lens to be self-centering. The snag resistant looped disc 16 and strand 14 are integrally molded to the body of the lens. The thickness of the strand is 0.25 mm and the lens thickness is 0.85 mm as shown in FIG. 2.
In FIG. 3, there is shown another form of the intraocular lens 10' of this invention. The body 21 of the lens and the resilient strands 25 supporting the snag resistant rings 23 are integrally molded to the lens body, however to provide a sturdier base 24, the shape is molded into a triangular design which supports the flexible strand and said strand is shaped to be tangential to the lens circumference. In use, this lens is an actual commercial model and upon implantation, it automatically becomes self centered. It is essential that this ring be at least three times greater than the width of the flexible strand and at least one-fifth as great as the width of the lens to result in smoothly guiding the snag resistant ring across the iris or other eye tissue when implanting the lens in either an anterior or posterior chamber which is small, medium or large. When this lens is implanted into a posterior chamber as shown in FIG. 4, the snag resistant free end rings will snugly fit into the pocket found near the stationary zone of the iris 26. The lens when so implanted is self-centering and the rings lie in a plane sufficiently close to the plane of the lens so that the rings and the lens can snugly fit into the eye chamber without causing any spring back or buldging forward which would injure delicate eye tissue.
Although centration holes are normally provided on such lenses, the lens of this invention can dispense with such holes because with the ring structure and the tangentially shaped resilient strands, the .[.right.]. .Iadd.ring .Iaddend.is self centerable.
In FIG. 5, there is shown the implantation of this novel lens into an anterior chamber of an eye. The snag resistant free end of the tangential strand fits snugly in the corners between the mobile zone of the iris 26 and the cornea 27. In this instance, the lens is again self centering because of the same factors present in the posterior implantation.
Because of the ring shaped free end it is possible to use this lens for the first time to measure the size of the eye chamber.
In FIG. 6, there is shown a schematic illustration of how to measure the size of an eye chamber. In (a) there is shown the lens of this invention having a lens body whose diameter is 6 mm and whose ring diameter is 2.5 mm. In (b) such a lens is implanted in an eye chamber 33. The distance between the loop and the lens edge is measured to be 1 mm. When added together, it measures a 13 mm eye chamber size which is a large chamber size. In (c), wherein the ring to lens distance is less, a 12 mm eye chamber is measured which is a medium chamber size. In (d), wherein the ring and lens edges meet, the eye chamber measures 11 mm which is a small chamber size. To aid in sighting for measuring, it is helpful to slightly tint the snag resistant rings, however they could also be clear.
To sum up, there are many advantages in using the lens of this invention over any of the prior art lenses.
The most important advantage is the provision of a snag resistant loop which prevents injury to delicate eye tissue during implantation, centration, or removal of the lens.
The lens of the Shearing type requires more maneuvers, skill and a longer learning process for surgeons to master when inserting the superior loop of the lens, thus resulting in increasing the chance for injuring delicate eye tissue. These objections are eliminated when the snag resistant lens of this invention is used. It would be relatively easy for a surgeon to master the implantation, centration or removal of this lens without injury to delicate eye tissue.
Another advantage is that only a small force is needed by the surgeon to position the superior snag resistant ring during implantation. The tangentially curved resilient strands and the snag free loose end of the strand transfers this force into a circular movement of the lens body resulting in self centering of the lens with avoidance of undue pressure on the zonules below.
Since the lens of the invention is one that is a universal lens, a surgeon who is a novitiate will find this lens especially helpful because this lens is not only self-centering but also needs only minimal manipulation during implantation in an eye chamber.
Implantation of this new lens avoids the spring back which is present in the Shearing type lens which results in decentration. This lens, because of its tangentially formed strands, changes the downward force into a circular motion, thus avoiding any spring back landing to cause decentration.
All conventional posterior lenses are more easily implanted through a dilated pupil. The new snag free lens can be implanted through a dilated or a miotic pupil with equal ease.
If during a cataract operation, the delicate tissue of an eye is ruptured, use of the Shearing type lens with its free pointed end presents added danger of extending the tear because the free pointed end can slide further into the vitreous cavity. The snag resistant ring of this new lens avoids this difficulty.
In addition, while operating to be safe, the surgeon may decide to use this lens in the anterior chamber to avoid aborting the implantation procedure. This cannot be done with any of the prior art lenses. However, it can be done if the surgeon is using the lens of this invention.
The lens of this invention is the first universal lens implant since it can be implanted in any size of eye chamber, in a posterior chamber or in an anterior chamber. A tremendous saving in the stocking of an unduly large supply of lenses for surgeons and hospitals. Only the snag resistant lens of this invention need be stocked. No necessity now to stock many different sizes, a posterior lens and an anterior lens. All the different lenses have now been replaced with only one lens, a universally useful lens.
Finally, this novel lens can be used to determine the size of an eye chamber. This has never been possible before this lens. By merely measuring the distance between the edge of the loop and the edge of the lens with a microscopic chronometer and adding thereto the diameter of the ring and lens, the size of an eye chamber can be determined. No lens in the prior art is capable of effecting this result.
Those skilled in the art will also readily appreciate that there are various other modifications and adaptations of the precise form of the lens herein shown. For example, the ring which is approximately circular, could also be elliptical and would thus be equally useful with all the accompanying advantages so long as it is snag resistant.

Claims (10)

What is claimed is:
1. An intraocular lens comprising:
a lens body;
at least two spaced flexible positioning and supporting elements integrally formed with said lens body as a one-piece construction and extending radially, outwardly from the periphery of said lens body;
said elements .[.defining a continuous, substantially circular arc having a diameter greater than the diameter of said lens body, said arc curved toward said lens circumference and.]. terminating in a free end spaced from said periphery; and
snag-resistant means integrally formed on the free end of .Iadd.each of .Iaddend.said elements for smoothly guiding and positioning the lens across contacted eye tissue when implanting the lens, said snag resistant means having an uninterrupted, continuously, smoothly curved outer periphery which merges with said free end and is .[.substantially.]. .Iadd.at least three times .Iaddend.greater in .[.size.]. .Iadd.width .Iaddend.than the width of said flexible elements.Iadd., said snag resistant elements and said positioning and supporting elements being substantially coplanar. .Iaddend.
2. An intraocular lens as recited in claim 1 wherein there are two of said flexible positioning and supporting elements and said elements are positioned opposite one another.
3. An intraocular lens as recited in claim 1 wherein said snag-resistant means comprise a circular disc.
4. An intraocular lens as recited in claim 3 wherein said disc has an opening therethrough.
5. An intraocular lens as recited in claim 3 wherein said disc has a diameter which is at least three times greater than the width of said flexible elements and at least one-fifth as great as the width of said lens body.
6. An intraocular lens as recited in claim 1 wherein said flexible elements contain a support member integrally formed with said flexible elements and the periphery of said lens body, said support member joined to said flexible element at a position remote from the point where said flexible element contacts the periphery of said lens body, thus defining a substantially triangular support base for said flexible element.
7. An intraocular lens as recited in claim 3 wherein said circular disc and said lens body lie in substantially the same vertical plane.
8. An intraocular lens as set forth in claim 1 wherein said flexible elements and said snag-resistant means are made from a clear material.
9. An intraocular lens as set forth in claim 1 wherein said flexible elements and said snag-resistant means are made from a colored material.
10. A method of measuring the size of an eye chamber by implanting a lens having tangentially resilient strands on opposed sides of an intraocular lens attached to the body of said lens; wherein the free end is connected to a snag resistant ring, adding the diameter sizes of said ring and said lens to the distance between the edge of said ring and the edge of said lens in mm. to determine the size of said eye chamber in mm. .Iadd.11. An intraocular lens as recited in claim 1 wherein said elements define a continuously curved arc, said arc curved toward said lens circumference. .Iaddend.
US06797656 1980-04-01 1985-11-13 Universal intraocular lens and a method of measuring an eye chamber size Expired - Lifetime USRE32525F1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06797656 USRE32525F1 (en) 1980-04-01 1985-11-13 Universal intraocular lens and a method of measuring an eye chamber size

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13624380A 1980-04-01 1980-04-01
US06797656 USRE32525F1 (en) 1980-04-01 1985-11-13 Universal intraocular lens and a method of measuring an eye chamber size

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13624380A Continuation-In-Part 1980-04-01 1980-04-01
US06/261,953 Reissue US4435855A (en) 1980-04-01 1981-05-08 Universal intraocular lens and a method of measuring an eye chamber size

Publications (2)

Publication Number Publication Date
USRE32525E true USRE32525E (en) 1987-10-20
USRE32525F1 USRE32525F1 (en) 1989-05-09

Family

ID=26834152

Family Applications (1)

Application Number Title Priority Date Filing Date
US06797656 Expired - Lifetime USRE32525F1 (en) 1980-04-01 1985-11-13 Universal intraocular lens and a method of measuring an eye chamber size

Country Status (1)

Country Link
US (1) USRE32525F1 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413057A1 (en) * 1989-08-18 1991-02-20 Chiron Adatomed Pharmazeutische und Medizintechnische Gesellschaft mbH Posterior chamber intraocular lens
US5928282A (en) * 1997-06-13 1999-07-27 Bausch & Lomb Surgical, Inc. Intraocular lens
WO2000069370A1 (en) * 1999-05-14 2000-11-23 Portney Valdemar Iris fixated intraocular lens and instrument for attaching same to an iris
US6190410B1 (en) 1999-04-29 2001-02-20 Bausch & Lomb Surgical, Inc. Intraocular lenses
US6200344B1 (en) 1999-04-29 2001-03-13 Bausch & Lomb Surgical, Inc. Inraocular lenses
US6228115B1 (en) 1998-11-05 2001-05-08 Bausch & Lomb Surgical, Inc. Intraocular lenses with improved axial stability
US6342058B1 (en) 1999-05-14 2002-01-29 Valdemar Portney Iris fixated intraocular lens and instrument for attaching same to an iris
US6398809B1 (en) 2000-04-12 2002-06-04 Bausch & Lomb Incorporated Intraocular lens
US6406494B1 (en) 1999-04-30 2002-06-18 Allergan Sales, Inc. Moveable intraocular lens
US20020116062A1 (en) * 1999-05-14 2002-08-22 Valdemar Portney Iris fixated intraocular lens suitable for use with attaching instrument
US6461384B1 (en) 1999-06-17 2002-10-08 Bausch & Lomb Incorporated Intraocular lenses
US6475240B1 (en) 2000-02-02 2002-11-05 Advanced Medical Optics, Inc. Anterior chamber intraocular lens and methods for reducing pupil ovalling
US6478821B1 (en) 2000-01-12 2002-11-12 Advanced Medical Optics, Inc. Iris fixated intraocular lens and method of implantation
US6537317B1 (en) 2000-05-03 2003-03-25 Advanced Medical Optics, Inc. Binocular lens systems
US6547822B1 (en) 2000-05-03 2003-04-15 Advanced Medical Optics, Inc. Opthalmic lens systems
US6551354B1 (en) 2000-03-09 2003-04-22 Advanced Medical Optics, Inc. Accommodating intraocular lens
US6554859B1 (en) 2000-05-03 2003-04-29 Advanced Medical Optics, Inc. Accommodating, reduced ADD power multifocal intraocular lenses
US6576012B2 (en) 2001-03-28 2003-06-10 Advanced Medical Optics, Inc. Binocular lens systems
US6599317B1 (en) 1999-09-17 2003-07-29 Advanced Medical Optics, Inc. Intraocular lens with a translational zone
US6616693B1 (en) 2000-05-03 2003-09-09 Advanced Medical Optics, Inc. Flexible fixation members for angle-supported anterior chamber intraocular lenses
US6616692B1 (en) 1999-04-30 2003-09-09 Advanced Medical Optics, Inc. Intraocular lens combinations
US6638305B2 (en) 2001-05-15 2003-10-28 Advanced Medical Optics, Inc. Monofocal intraocular lens convertible to multifocal intraocular lens
US6645246B1 (en) 1999-09-17 2003-11-11 Advanced Medical Optics, Inc. Intraocular lens with surrounded lens zone
US6660035B1 (en) 2000-08-02 2003-12-09 Advanced Medical Optics, Inc. Accommodating intraocular lens with suspension structure
US20040068317A1 (en) * 2002-10-07 2004-04-08 Knight Patricia M. Anterior chamber intraocular lens with size and position indicators
US20040116937A1 (en) * 2002-12-12 2004-06-17 Valdemar Portney IOL insertion tool with forceps
US6755859B2 (en) 2000-12-11 2004-06-29 Bausch & Lomb Incorporated Iris fixated intraocular lenses
US6790232B1 (en) 1999-04-30 2004-09-14 Advanced Medical Optics, Inc. Multifocal phakic intraocular lens
US20040186568A1 (en) * 2003-03-21 2004-09-23 Advanced Medical Optics, Inc. Foldable angle-fixated intraocular lens
US6972033B2 (en) 2002-08-26 2005-12-06 Advanced Medical Optics, Inc. Accommodating intraocular lens assembly with multi-functional capsular bag ring
US20050283163A1 (en) * 2004-06-04 2005-12-22 Valdemar Portney Intraocular lens implanting instrument
US7025783B2 (en) 2002-01-14 2006-04-11 Advanced Medical Optics, Inc. Accommodating intraocular lens with integral capsular bag ring
US20060271187A1 (en) * 2001-01-25 2006-11-30 Gholam-Reza Zadno-Azizi Materials for use in accommodating intraocular lens system
US7326246B2 (en) 2002-01-14 2008-02-05 Advanced Medical Optics, Inc. Accommodating intraocular lens with elongated suspension structure
US20080269642A1 (en) * 2007-04-24 2008-10-30 Advanced Medical Optics, Inc. Angle indicator for capsular bag size measurement
US7713299B2 (en) 2006-12-29 2010-05-11 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US7763069B2 (en) 2002-01-14 2010-07-27 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US7780729B2 (en) 2004-04-16 2010-08-24 Visiogen, Inc. Intraocular lens
US7871437B2 (en) 2006-12-22 2011-01-18 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US8002827B2 (en) 2007-04-24 2011-08-23 Abbott Medical Optics Inc. Systems and methods for ocular measurements
US8025823B2 (en) 2001-01-25 2011-09-27 Visiogen, Inc. Single-piece accommodating intraocular lens system
US8034108B2 (en) 2008-03-28 2011-10-11 Abbott Medical Optics Inc. Intraocular lens having a haptic that includes a cap
US8048156B2 (en) 2006-12-29 2011-11-01 Abbott Medical Optics Inc. Multifocal accommodating intraocular lens
US8052752B2 (en) 2002-10-25 2011-11-08 Abbott Medical Optics Inc. Capsular intraocular lens implant having a refractive liquid therein
US8062361B2 (en) 2001-01-25 2011-11-22 Visiogen, Inc. Accommodating intraocular lens system with aberration-enhanced performance
US8425597B2 (en) 1999-04-30 2013-04-23 Abbott Medical Optics Inc. Accommodating intraocular lenses
USD702346S1 (en) * 2007-03-05 2014-04-08 Nulens Ltd. Haptic end plate for use in an intraocular assembly
US8862447B2 (en) 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
US8926092B2 (en) 2009-12-18 2015-01-06 Amo Groningen B.V. Single microstructure lens, systems and methods
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
US9011532B2 (en) 2009-06-26 2015-04-21 Abbott Medical Optics Inc. Accommodating intraocular lenses
US9039760B2 (en) 2006-12-29 2015-05-26 Abbott Medical Optics Inc. Pre-stressed haptic for accommodating intraocular lens
US9198752B2 (en) 2003-12-15 2015-12-01 Abbott Medical Optics Inc. Intraocular lens implant having posterior bendable optic
US9216080B2 (en) 2007-08-27 2015-12-22 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US9271830B2 (en) 2002-12-05 2016-03-01 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US9421089B2 (en) 2007-07-05 2016-08-23 Visiogen, Inc. Intraocular lens with post-implantation adjustment capabilities
US9454018B2 (en) 2008-02-15 2016-09-27 Amo Groningen B.V. System, ophthalmic lens, and method for extending depth of focus
US9456894B2 (en) 2008-02-21 2016-10-04 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
US9603703B2 (en) 2009-08-03 2017-03-28 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US9814570B2 (en) 1999-04-30 2017-11-14 Abbott Medical Optics Inc. Ophthalmic lens combinations
US9987125B2 (en) 2012-05-02 2018-06-05 Johnson & Johnson Surgical Vision, Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US10624735B2 (en) 2016-02-09 2020-04-21 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US10649234B2 (en) 2016-03-23 2020-05-12 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
US10646329B2 (en) 2016-03-23 2020-05-12 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
US10653556B2 (en) 2012-12-04 2020-05-19 Amo Groningen B.V. Lenses, systems and methods for providing binocular customized treatments to correct presbyopia
US10722400B2 (en) 2011-09-12 2020-07-28 Amo Development, Llc Hybrid ophthalmic interface apparatus and method of interfacing a surgical laser with an eye
US10739227B2 (en) 2017-03-23 2020-08-11 Johnson & Johnson Surgical Vision, Inc. Methods and systems for measuring image quality
US11013594B2 (en) 2016-10-25 2021-05-25 Amo Groningen B.V. Realistic eye models to design and evaluate intraocular lenses for a large field of view
US11282605B2 (en) 2017-11-30 2022-03-22 Amo Groningen B.V. Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof
US11506914B2 (en) 2010-12-01 2022-11-22 Amo Groningen B.V. Multifocal lens having an optical add power progression, and a system and method of providing same
US11707354B2 (en) 2017-09-11 2023-07-25 Amo Groningen B.V. Methods and apparatuses to increase intraocular lenses positional stability
US11886046B2 (en) 2019-12-30 2024-01-30 Amo Groningen B.V. Multi-region refractive lenses for vision treatment

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971073A (en) * 1975-04-09 1976-07-27 American Optical Corporation Artificial intraocular lens
US4073014A (en) * 1976-05-28 1978-02-14 Stanley Poler Intra-ocular lens
US4092743A (en) * 1976-10-04 1978-06-06 Kelman Charles D Intraocular lenses
US4110848A (en) * 1977-05-06 1978-09-05 Ronald P. Jensen Intraocular lens for implantation into the posterior chamber of a human eye
DE2717706A1 (en) * 1977-04-21 1978-10-26 Leonhard Klein Eye implant lens after cataract operation - has three equally spaced synthetic rubber centering rings around periphery
US4159546A (en) * 1977-06-15 1979-07-03 Shearing Steven P Intraocular lens
US4174543A (en) * 1978-06-01 1979-11-20 Kelman Charles D Intraocular lenses
US4249271A (en) * 1979-07-13 1981-02-10 Stanley Poler Intraocular lens
US4253200A (en) * 1979-11-16 1981-03-03 Kelman Charles D Intraocular lenses
US4254510A (en) * 1979-06-18 1981-03-10 Tennant Jerald L Implant lens with biarcuate fixation
US4304012A (en) * 1979-10-05 1981-12-08 Iolab Corporation Intraocular lens assembly with improved mounting to the iris
US4319564A (en) * 1980-01-03 1982-03-16 Karickhoff John R Instrument for measurement of the diameter of the anterior chamber of the eye
US4363143A (en) * 1981-09-09 1982-12-14 Callahan Wayne B Intraocular lens

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971073A (en) * 1975-04-09 1976-07-27 American Optical Corporation Artificial intraocular lens
US4073014A (en) * 1976-05-28 1978-02-14 Stanley Poler Intra-ocular lens
US4092743A (en) * 1976-10-04 1978-06-06 Kelman Charles D Intraocular lenses
DE2717706A1 (en) * 1977-04-21 1978-10-26 Leonhard Klein Eye implant lens after cataract operation - has three equally spaced synthetic rubber centering rings around periphery
US4110848A (en) * 1977-05-06 1978-09-05 Ronald P. Jensen Intraocular lens for implantation into the posterior chamber of a human eye
US4159546A (en) * 1977-06-15 1979-07-03 Shearing Steven P Intraocular lens
US4174543A (en) * 1978-06-01 1979-11-20 Kelman Charles D Intraocular lenses
US4254510A (en) * 1979-06-18 1981-03-10 Tennant Jerald L Implant lens with biarcuate fixation
US4249271A (en) * 1979-07-13 1981-02-10 Stanley Poler Intraocular lens
US4304012A (en) * 1979-10-05 1981-12-08 Iolab Corporation Intraocular lens assembly with improved mounting to the iris
US4253200A (en) * 1979-11-16 1981-03-03 Kelman Charles D Intraocular lenses
US4319564A (en) * 1980-01-03 1982-03-16 Karickhoff John R Instrument for measurement of the diameter of the anterior chamber of the eye
US4363143A (en) * 1981-09-09 1982-12-14 Callahan Wayne B Intraocular lens

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Nuevos Modelos de Lentes Plasticas de Camara Anterior" by Joaquin Barraquer et al, Anales del Instituto Barraquer, Sep. 1961, pp. 345-351, (FIG. 9 on p. 348).
Nuevos Modelos de Lentes Plasticas de Camara Anterior by Joaquin Barraquer et al, Anales del Instituto Barraquer, Sep. 1961, pp. 345 351, (FIG. 9 on p. 348). *
The Intraocular Implant Lens Development and Results with Special Reference to the Binkhorst Lens, by Marcel E. Nordlohne, The Williams & Wilkins Co., 1975 (Book) pp. 14 20. *
The Intraocular Implant Lens Development and Results with Special Reference to the Binkhorst Lens, by Marcel E. Nordlohne, The Williams & Wilkins Co., 1975 (Book) pp. 14-20.
The Linstrom Centrex Style 20 Posterior Chamber Lens, Surgidev Corp., Santa Barbara, Calif. *
The Rayner Choyce Mark VIII Anterior Chamber Implant Catalogue No. 469, Rayner & Keeler Limited (3 pages). *

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015254A (en) * 1989-08-18 1991-05-14 Adatomed Pharmazeutische Und Medizintechnische Gesellschaft Mbh Intraocular posterior chamber lens
EP0413057A1 (en) * 1989-08-18 1991-02-20 Chiron Adatomed Pharmazeutische und Medizintechnische Gesellschaft mbH Posterior chamber intraocular lens
US5928282A (en) * 1997-06-13 1999-07-27 Bausch & Lomb Surgical, Inc. Intraocular lens
US6228115B1 (en) 1998-11-05 2001-05-08 Bausch & Lomb Surgical, Inc. Intraocular lenses with improved axial stability
US6190410B1 (en) 1999-04-29 2001-02-20 Bausch & Lomb Surgical, Inc. Intraocular lenses
US6200344B1 (en) 1999-04-29 2001-03-13 Bausch & Lomb Surgical, Inc. Inraocular lenses
US9814570B2 (en) 1999-04-30 2017-11-14 Abbott Medical Optics Inc. Ophthalmic lens combinations
US8425597B2 (en) 1999-04-30 2013-04-23 Abbott Medical Optics Inc. Accommodating intraocular lenses
US6406494B1 (en) 1999-04-30 2002-06-18 Allergan Sales, Inc. Moveable intraocular lens
US6616692B1 (en) 1999-04-30 2003-09-09 Advanced Medical Optics, Inc. Intraocular lens combinations
US6790232B1 (en) 1999-04-30 2004-09-14 Advanced Medical Optics, Inc. Multifocal phakic intraocular lens
US6918930B2 (en) 1999-05-14 2005-07-19 Valdemar Portney Iris fixated intraocular lens suitable for use with attaching instrument
US20020116062A1 (en) * 1999-05-14 2002-08-22 Valdemar Portney Iris fixated intraocular lens suitable for use with attaching instrument
US6342058B1 (en) 1999-05-14 2002-01-29 Valdemar Portney Iris fixated intraocular lens and instrument for attaching same to an iris
WO2000069370A1 (en) * 1999-05-14 2000-11-23 Portney Valdemar Iris fixated intraocular lens and instrument for attaching same to an iris
US6461384B1 (en) 1999-06-17 2002-10-08 Bausch & Lomb Incorporated Intraocular lenses
US6645246B1 (en) 1999-09-17 2003-11-11 Advanced Medical Optics, Inc. Intraocular lens with surrounded lens zone
US6599317B1 (en) 1999-09-17 2003-07-29 Advanced Medical Optics, Inc. Intraocular lens with a translational zone
US6478821B1 (en) 2000-01-12 2002-11-12 Advanced Medical Optics, Inc. Iris fixated intraocular lens and method of implantation
US6475240B1 (en) 2000-02-02 2002-11-05 Advanced Medical Optics, Inc. Anterior chamber intraocular lens and methods for reducing pupil ovalling
US6551354B1 (en) 2000-03-09 2003-04-22 Advanced Medical Optics, Inc. Accommodating intraocular lens
US6398809B1 (en) 2000-04-12 2002-06-04 Bausch & Lomb Incorporated Intraocular lens
US6616693B1 (en) 2000-05-03 2003-09-09 Advanced Medical Optics, Inc. Flexible fixation members for angle-supported anterior chamber intraocular lenses
US6554859B1 (en) 2000-05-03 2003-04-29 Advanced Medical Optics, Inc. Accommodating, reduced ADD power multifocal intraocular lenses
US6547822B1 (en) 2000-05-03 2003-04-15 Advanced Medical Optics, Inc. Opthalmic lens systems
US6537317B1 (en) 2000-05-03 2003-03-25 Advanced Medical Optics, Inc. Binocular lens systems
US6660035B1 (en) 2000-08-02 2003-12-09 Advanced Medical Optics, Inc. Accommodating intraocular lens with suspension structure
US6755859B2 (en) 2000-12-11 2004-06-29 Bausch & Lomb Incorporated Iris fixated intraocular lenses
US8187325B2 (en) 2001-01-25 2012-05-29 Visiogen, Inc. Materials for use in accommodating intraocular lens system
US8062361B2 (en) 2001-01-25 2011-11-22 Visiogen, Inc. Accommodating intraocular lens system with aberration-enhanced performance
US8025823B2 (en) 2001-01-25 2011-09-27 Visiogen, Inc. Single-piece accommodating intraocular lens system
US20060271187A1 (en) * 2001-01-25 2006-11-30 Gholam-Reza Zadno-Azizi Materials for use in accommodating intraocular lens system
US6824563B2 (en) 2001-03-28 2004-11-30 Advanced Medical Optics, Inc. Binocular lens systems
US6576012B2 (en) 2001-03-28 2003-06-10 Advanced Medical Optics, Inc. Binocular lens systems
US6638305B2 (en) 2001-05-15 2003-10-28 Advanced Medical Optics, Inc. Monofocal intraocular lens convertible to multifocal intraocular lens
US7763069B2 (en) 2002-01-14 2010-07-27 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US7025783B2 (en) 2002-01-14 2006-04-11 Advanced Medical Optics, Inc. Accommodating intraocular lens with integral capsular bag ring
US8343216B2 (en) 2002-01-14 2013-01-01 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US7326246B2 (en) 2002-01-14 2008-02-05 Advanced Medical Optics, Inc. Accommodating intraocular lens with elongated suspension structure
US9504560B2 (en) 2002-01-14 2016-11-29 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US6972033B2 (en) 2002-08-26 2005-12-06 Advanced Medical Optics, Inc. Accommodating intraocular lens assembly with multi-functional capsular bag ring
US20040068317A1 (en) * 2002-10-07 2004-04-08 Knight Patricia M. Anterior chamber intraocular lens with size and position indicators
US8052752B2 (en) 2002-10-25 2011-11-08 Abbott Medical Optics Inc. Capsular intraocular lens implant having a refractive liquid therein
US8585758B2 (en) 2002-10-25 2013-11-19 Abbott Medical Optics Inc. Accommodating intraocular lenses
US8545556B2 (en) 2002-10-25 2013-10-01 Abbott Medical Optics Inc. Capsular intraocular lens implant
US9271830B2 (en) 2002-12-05 2016-03-01 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US10206773B2 (en) 2002-12-05 2019-02-19 Johnson & Johnson Surgical Vision, Inc. Accommodating intraocular lens and method of manufacture thereof
US7074227B2 (en) 2002-12-12 2006-07-11 Valdemar Portney IOL insertion tool with forceps
US20040116937A1 (en) * 2002-12-12 2004-06-17 Valdemar Portney IOL insertion tool with forceps
US7794497B2 (en) * 2003-03-21 2010-09-14 Abbott Medical Optics Inc. Ophthalmic sizing devices and methods
US7303582B2 (en) 2003-03-21 2007-12-04 Advanced Medical Optics, Inc. Foldable angle-fixated intraocular lens
US20040186568A1 (en) * 2003-03-21 2004-09-23 Advanced Medical Optics, Inc. Foldable angle-fixated intraocular lens
US8500804B2 (en) 2003-03-21 2013-08-06 Abbott Medical Optics Inc. Ophthalmic sizing devices and methods
US20060020268A1 (en) * 2003-03-21 2006-01-26 Brady Daniel G Ophthalmic sizing devices and methods
US9198752B2 (en) 2003-12-15 2015-12-01 Abbott Medical Optics Inc. Intraocular lens implant having posterior bendable optic
US9005283B2 (en) 2004-04-16 2015-04-14 Visiogen Inc. Intraocular lens
US8246679B2 (en) 2004-04-16 2012-08-21 Visiogen, Inc. Intraocular lens
US7780729B2 (en) 2004-04-16 2010-08-24 Visiogen, Inc. Intraocular lens
US20050283163A1 (en) * 2004-06-04 2005-12-22 Valdemar Portney Intraocular lens implanting instrument
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US8496701B2 (en) 2006-12-22 2013-07-30 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US8182531B2 (en) 2006-12-22 2012-05-22 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US7871437B2 (en) 2006-12-22 2011-01-18 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US8048156B2 (en) 2006-12-29 2011-11-01 Abbott Medical Optics Inc. Multifocal accommodating intraocular lens
US7713299B2 (en) 2006-12-29 2010-05-11 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US8465544B2 (en) 2006-12-29 2013-06-18 Abbott Medical Optics Inc. Accommodating intraocular lens
US8814934B2 (en) 2006-12-29 2014-08-26 Abbott Medical Optics Inc. Multifocal accommodating intraocular lens
US9039760B2 (en) 2006-12-29 2015-05-26 Abbott Medical Optics Inc. Pre-stressed haptic for accommodating intraocular lens
USD702346S1 (en) * 2007-03-05 2014-04-08 Nulens Ltd. Haptic end plate for use in an intraocular assembly
US8696601B2 (en) 2007-04-24 2014-04-15 Abbott Medical Optics Inc. Systems and methods for ocular measurements
US20080269642A1 (en) * 2007-04-24 2008-10-30 Advanced Medical Optics, Inc. Angle indicator for capsular bag size measurement
US8231672B2 (en) 2007-04-24 2012-07-31 Abbott Medical Optics Inc. Systems and methods for ocular measurements
US8002827B2 (en) 2007-04-24 2011-08-23 Abbott Medical Optics Inc. Systems and methods for ocular measurements
US8241353B2 (en) 2007-04-24 2012-08-14 Abbott Medical Optics Inc. Angle indicator for ocular measurements
US7993398B2 (en) 2007-04-24 2011-08-09 Abbott Medical Optics Inc. Angle indicator for capsular bag size measurement
US9421089B2 (en) 2007-07-05 2016-08-23 Visiogen, Inc. Intraocular lens with post-implantation adjustment capabilities
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
US10265162B2 (en) 2007-08-27 2019-04-23 Amo Groningen B.V. Multizonal lens with enhanced performance
US11452595B2 (en) 2007-08-27 2022-09-27 Amo Groningen B.V. Multizonal lens with enhanced performance
US9216080B2 (en) 2007-08-27 2015-12-22 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US9987127B2 (en) 2007-08-27 2018-06-05 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US10034745B2 (en) 2008-02-15 2018-07-31 Amo Groningen B.V. System, ophthalmic lens, and method for extending depth of focus
US9454018B2 (en) 2008-02-15 2016-09-27 Amo Groningen B.V. System, ophthalmic lens, and method for extending depth of focus
US9456894B2 (en) 2008-02-21 2016-10-04 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
US9968441B2 (en) 2008-03-28 2018-05-15 Johnson & Johnson Surgical Vision, Inc. Intraocular lens having a haptic that includes a cap
US8034108B2 (en) 2008-03-28 2011-10-11 Abbott Medical Optics Inc. Intraocular lens having a haptic that includes a cap
US9557580B2 (en) 2008-05-13 2017-01-31 Amo Groningen B.V. Limited echelette lens, systems and methods
US9581834B2 (en) 2008-05-13 2017-02-28 Amo Groningen B.V. Single microstructure lens, systems and methods
US10180585B2 (en) 2008-05-13 2019-01-15 Amo Groningen B.V. Single microstructure lens, systems and methods
US10288901B2 (en) 2008-05-13 2019-05-14 Amo Groningen B.V. Limited echellette lens, systems and methods
US10052194B2 (en) 2009-06-26 2018-08-21 Johnson & Johnson Surgical Vision, Inc. Accommodating intraocular lenses
US9011532B2 (en) 2009-06-26 2015-04-21 Abbott Medical Optics Inc. Accommodating intraocular lenses
US9603703B2 (en) 2009-08-03 2017-03-28 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US10105215B2 (en) 2009-08-03 2018-10-23 Johnson & Johnson Surgical Vision, Inc. Intraocular lens and methods for providing accommodative vision
US8926092B2 (en) 2009-12-18 2015-01-06 Amo Groningen B.V. Single microstructure lens, systems and methods
US8862447B2 (en) 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
US11506914B2 (en) 2010-12-01 2022-11-22 Amo Groningen B.V. Multifocal lens having an optical add power progression, and a system and method of providing same
US10722400B2 (en) 2011-09-12 2020-07-28 Amo Development, Llc Hybrid ophthalmic interface apparatus and method of interfacing a surgical laser with an eye
US9987125B2 (en) 2012-05-02 2018-06-05 Johnson & Johnson Surgical Vision, Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US10653556B2 (en) 2012-12-04 2020-05-19 Amo Groningen B.V. Lenses, systems and methods for providing binocular customized treatments to correct presbyopia
US11389329B2 (en) 2012-12-04 2022-07-19 Amo Groningen B.V. Lenses, systems and methods for providing binocular customized treatments to correct presbyopia
US11116624B2 (en) 2016-02-09 2021-09-14 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US10624735B2 (en) 2016-02-09 2020-04-21 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US10709550B2 (en) 2016-02-09 2020-07-14 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US10670885B2 (en) 2016-03-23 2020-06-02 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band with freeform refractive surfaces
US10712589B2 (en) 2016-03-23 2020-07-14 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band by modifying refractive powers in uniform meridian distribution
US10649234B2 (en) 2016-03-23 2020-05-12 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
US11123178B2 (en) 2016-03-23 2021-09-21 Johnson & Johnson Surgical Vision, Inc. Power calculator for an ophthalmic apparatus with corrective meridians having extended tolerance or operation band
US11231600B2 (en) 2016-03-23 2022-01-25 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band with freeform refractive surfaces
US11249326B2 (en) 2016-03-23 2022-02-15 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
US11281025B2 (en) 2016-03-23 2022-03-22 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band by modifying refractive powers in uniform meridian distribution
US10646329B2 (en) 2016-03-23 2020-05-12 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
US11291538B2 (en) 2016-03-23 2022-04-05 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
US11013594B2 (en) 2016-10-25 2021-05-25 Amo Groningen B.V. Realistic eye models to design and evaluate intraocular lenses for a large field of view
US11385126B2 (en) 2017-03-23 2022-07-12 Johnson & Johnson Surgical Vision, Inc. Methods and systems for measuring image quality
US10739227B2 (en) 2017-03-23 2020-08-11 Johnson & Johnson Surgical Vision, Inc. Methods and systems for measuring image quality
US11707354B2 (en) 2017-09-11 2023-07-25 Amo Groningen B.V. Methods and apparatuses to increase intraocular lenses positional stability
US11282605B2 (en) 2017-11-30 2022-03-22 Amo Groningen B.V. Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof
US11881310B2 (en) 2017-11-30 2024-01-23 Amo Groningen B.V. Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof
US11886046B2 (en) 2019-12-30 2024-01-30 Amo Groningen B.V. Multi-region refractive lenses for vision treatment

Also Published As

Publication number Publication date
USRE32525F1 (en) 1989-05-09

Similar Documents

Publication Publication Date Title
USRE32525E (en) Universal intraocular lens and a method of measuring an eye chamber size
US4435855A (en) Universal intraocular lens and a method of measuring an eye chamber size
US4738680A (en) Laser edge lens
US4159546A (en) Intraocular lens
US4387706A (en) Iris retractor
EP0336877B1 (en) Intraocular lens
US4725277A (en) Intraocular lens with tapered haptics
US4261065A (en) Artificial intraocular lens with forward-positioned optics
EP0073755B1 (en) Flexible intraocular lens
US4990159A (en) Intraocular lens apparatus with haptics of varying cross-sectional areas
AU654234B2 (en) Intraocular lens having haptic
US5593436A (en) Capsular bag implants with dual 360 ring structures for inhibiting posterior capsular opacification
US4619256A (en) Intraocular lens inserting assembly
EP1176930B1 (en) Intraocular lens combinations
EP1809206B1 (en) Intraocular lens system
US4562600A (en) Intraocular lens
US4366582A (en) Posterior chamber intraocular lens
US4468820A (en) Haptic attachment for intraocular lenses
US4872876A (en) Universal fit intraocular lens
US4480340A (en) Intraocular lens with resilient support means
CA1262803A (en) Intraocular lens with ridges
US4863463A (en) Artificial intra-ocular lens for implantation in the capsular bag
US4542540A (en) Intraocular lens
EP0779063B1 (en) Capsular bag spreading implant
US4871363A (en) Corrective intraocular lens

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYMENT IS IN EXCESS OF AMOUNT REQUIRED. REFUND SCHEDULED (ORIGINAL EVENT CODE: F169); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REFU Refund

Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: R171); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment
AS Assignment

Owner name: BANK OF AMERICA, N.A., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:ADVANCED MEDICAL OPTICS, INC.;AMO HOLDINGS, LLC;REEL/FRAME:013203/0039

Effective date: 20020621

AS Assignment

Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALLERGAN, INC.;ALLERGAN SALES, LLC;ALLERGAN PHARMACEUTICALS, INC.;AND OTHERS;REEL/FRAME:013718/0085

Effective date: 20030127

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO

Free format text: SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:016386/0001

Effective date: 20040625

AS Assignment

Owner name: AMO HOLDINGS, INC. (FORMERLY KNOWN AS AMO HOLDINGS

Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 13203/0039;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019111/0348

Effective date: 20070402

Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 16386/0001;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019116/0124

Effective date: 20070402

Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 13203/0039;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019111/0348

Effective date: 20070402