USRE33221E - Dental restorative cement pastes - Google Patents

Dental restorative cement pastes Download PDF

Info

Publication number
USRE33221E
USRE33221E US07/051,739 US5173987A USRE33221E US RE33221 E USRE33221 E US RE33221E US 5173987 A US5173987 A US 5173987A US RE33221 E USRE33221 E US RE33221E
Authority
US
United States
Prior art keywords
paste
iadd
iaddend
sub
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/051,739
Inventor
Walter E. Brown
Laurence C. Chow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Dental Association Health Foundation
Howmedica Osteonics Corp
Original Assignee
American Dental Association Health Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Dental Association Health Foundation filed Critical American Dental Association Health Foundation
Priority to US07/051,739 priority Critical patent/USRE33221E/en
Application granted granted Critical
Publication of USRE33221E publication Critical patent/USRE33221E/en
Assigned to STRYKER TECHNOLOGIES CORPORATION reassignment STRYKER TECHNOLOGIES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOWMEDICA INC.
Assigned to BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION reassignment BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION SECURITY AGREEMENT Assignors: STRYKER CORPORATION, STRYKER FAR EAST, INC.
Assigned to BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION reassignment BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOWMEDICA CORPORATION, HOWMEDICA LEIBINGER, INC., SMD CORPORATION, STRYKER CORPORATION, STRYKER FAR EAST, INC., STRYKER FOREIGN HOLDCO INC., STRYKER IMPLANTS INC., STRYKER INTERNATIONAL INC., STRYKER PUERTO RICO INC., STRYKER SALES CORPORATION, STRYKER TECHNOLOGIES CORPORATION
Assigned to STRYKER CORPORATION, STRYKER TECHNOLOGIES CORPORATION, HOWMEDICA OSTEONICS CORPORATION, STRYKER SALES CORPORATION, HOWMEDICAL LEIBINGER, INC., PHYSIOTHERAPY ASSOCIATES, INC., SMD CORPORATION, STRYKER FAR EAST, INC., STRYKER FOREIGN HOLDCO, INC., STRYKER INTERNATIONAL, INC., STRYKER PUERTO RICO INC. reassignment STRYKER CORPORATION RELEASE OF SECURITY INTEREST Assignors: BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/17Particle size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • A61K6/74Fillers comprising phosphorus-containing compounds
    • A61K6/75Apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/864Phosphate cements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/24Phosphorous; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/02Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses

Definitions

  • This invention relates to certain combinations of sparingly soluble calcium phosphates that are unique in their application as remineralizers of caries lesions in dental enamel and partially demineralized dentin and cementum and in their application as dental cements.
  • the present invention When used as a remineralizer the present invention not only prevents tooth decay, but can also restore the lesions caused by dental caries.
  • the dental cements of the present invention have a variety of dental applications, but are most useful where contact between the cement and living tissue is required.
  • the supersaturated solutions or slurries used for remineralization experiments have been prepared from a single form of calcium phosphate.
  • the calcium and phosphate ions in the form of precipitated hydroxyapatite remineralize the lesion.
  • these solutions are impractical for use on patients for several reasons.
  • the amount of calcium and phosphate ions available for remineralization in these supersaturated solutions is too low. It takes approximately 10,000 unit volumes of the usual supersaturated solution to product one unit volume of mineral.
  • remineralization by this method requires both an excessive volume of fluid and an excessive number of applications.
  • remineralization may stop before the lesion is completely remineralized due to build up of the remineralized tooth material in or on the outer layer of the tooth's surface. This build up occurs when the rate of remineralization is too fast and prevents the diffusion of the mineral into the deeper regions of the lesion, thus thwarting the full remineralization of the tooth.
  • the potential for application of dental remineralization is vast. Approximately 5 ⁇ 10 8 cavities are filled each year. If these half billion caries lesions were remineralized rather than being filled as cavities, the general dental health would be increased substantially, since remineralization results in a whole tooth.
  • the present invention seeks to provide remineralization compositions and methods that can be practically applied under a dentist's care and thereby replace the need for filling of cavities.
  • the present invention relates to compositions for remineralizing caries lesions.
  • the invention concerns a combination of Ca 4 (PO 4 ) 2 O (tetracalcium phosphate) and at least one other sparingly soluble calcium phosphate solid in equilibrium or quasi equilibrium with a dilute aqueous solution such that both calcium phosphates are present in excess and form a slurry.
  • the other calcium phosphates that may be used are CaHPO 4 .2H 2 O (dicalcium phosphate dihydrate or brushite), CaHPO 4 (monetite), Ca 8 H 2 (PO 4 ) 6 .5H 2 O (octacalcium phosphate), ⁇ -Ca 3 (PO 4 ) 2 , ⁇ -Ca 3 (PO 4 ) 2 (tricalcium phosphates), and tricalcium phosphates modified by the addition of protons or up to approximately 10% magnesium by weight (whitlockite). All combinations of these calcium phosphates can precipitate hydroxyapatite according to the present invention.
  • the two calcium phosphates must be in near equilibrium with the same saturated solution; furthermore, the saturated solution just be supersaturated with respect to hydroxyapatite. If these conditions are met, the above combinations of calcium phosphates will react to form hydroxyapatite. Since the two calcium phosphates are present in excess, the solution will remain supersaturated with respect to hydroxyapatite and will continue to precipitate this basic constituent of tooth and bone.
  • Another significant advantage of the present invention is that the combination of sparingly soluble calcium phosphates stabilizes the pH of the system near the point of equilibrium. This prevents wide swings in pH that might injure the dental enamel or other tissue. A stable pH also permits hydroxyapatite to continue precipitating, since hydroxyapatite will not precipitate at a low pH. Furthermore, the pH of the singular point may be altered by the addition of calcium or phosphate containing compounds to the slurry. This allows the dentist to select the most beneficial pH for remineralization.
  • Another advantage of the present invention is that the rate of mineralization may be adjusted to the needs of the particular lesion.
  • the addition of simple fuoride compounds will increase the rate of mineralization.
  • high molecular weight crystal growth inhibitors may be added to slow mineralization. These latter compounds facilitate the remineralization of the subsurface of a caries lesion by inhibiting the remineralization of the outside surface of the tooth. This allows the hydroxyapatite ions to diffuse into the lesion's subsurface and completely remineralize the cavity.
  • the present invention provides compositions for the remineralization of caries lesions that are practical for clinical use due to their large remineralization capacities and stable pH's.
  • the rate and depth of remineralization may be selected by the dentist, thereby giving substantial flexiblity to the remineralization process.
  • the present invention also concerns compounds useful as dental cements.
  • the same combinations of calcium phosphates described above may be combined in a paste, rather than a slurry, and allowed to harden.
  • the resulting cements are similar in composition to tooth and bone material and, therefore, are fully compatible with dental tissue.
  • the cements of the present invention may be used in any application for which conventional dental cements are suitable, the cements of the present invention are particularly helpful where contact with living tissue is required.
  • these cements provide the unique combination of remineralizing properties and hardening characteristics that would be especially desirable for a root canal or root surface cement because they are compatible with, protect and remineralize the sensitive surfaces of exposed roots.
  • FIG. 1 is a plot of the solubility isotherms of Ca 4 (PO 4 ) 2 O; CaHPO 4 .2H 2 O; CaHPO 4 ; Ca 8 H 2 (PO 4 ) 6 .5H 2 O; ⁇ -Ca 3 (PO 4 ) 2 ; and Ca 5 (PO 4 ) 3 OH at 25° C. in the ternary system of Ca(OH) 2 ; H 3 PO 4 ; and H 2 O.
  • the sparingly soluble calcium phosphates that are relatively stable at ambient temperatures and are, therefore, available for use in the inventive remineralizing slurries and cements include CaHPO 4 .2H 2 O; CaHPO 4 ; Ca 8 H 2 (PO 4 ) 6 .5H 2 O; ⁇ -Ca 3 (PO 4 ) 2 ; ⁇ -Ca 3 (PO 4 ) 2 ; tricalcium phosphates modified by protons or up to approximately 10% magnesium by weight; and Ca 4 (PO 4 ) 2 O.
  • Each of these calcium phosphates has a characteristic solubility behavior that may be represented by a plot of the total concentration of calcium ions at the point of saturation versus the pH of the solution at a constant temperature. (A plot of the total concentration of phosphate ions versus pH would be equivalent for the purposes of the present invention because the concentrations of phosphate and calcium ions in solution are linked.) The resulting curve is called an isotherm.
  • FIG. 1 is a plot of the solubility isotherms for six calcium phosphates in the ternary system comprising Ca(OH) 2 , H 3 PO 4 and H 2 O at 25° C.
  • the y-axis of FIG. 1 represents the total concentration of calcium ions in solution in moles per liter, while the x-axis represents pH.
  • the isotherm for Ca 8 H 2 (PO 4 ) 6 .5H 2 O is based on the solubility product disclosed in Moreno et al, "Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octacalcium Phosphate," Soil Sci. Soc. Am. Proc. 21: 99-102 (1960), while the isotherm of Ca 4 (PO 4 ) 2 O is based on the approximate value of the solubility product calculated by the inventors.
  • the singular point of the two calcium phosphates must lie above the isotherm for hydroxyapatite. This insures that a solution that is saturated with respect to the two calcium phosphates at their singular point will also be supersaturated with respect to hydroxyapatite. Thus, hydroxyapatite can precipitate out of the solution and be available for remineralization.
  • the singular point for the pair of calcium phosphates should preferably not lie too far above the isotherm for CaHPO 4 .2H 2 O, since the singular point of such a combination might be too unstable for use as a remineralizer or cement.
  • the circles in FIG. 1 define singular point compositions for the various pairs of solids in solution.
  • the following combinations of calcium phosphates are definitely available as remineralizers and cements according to the present invention: CaHPO 4 .2H 2 O with ⁇ -Ca 3 (PO 4 ) 2 , Ca 8 H 2 (PO 4 ) 6 .5H 2 O, or Ca 4 (PO 4 ) 2 O; CaHPO 4 with ⁇ -Ca 3 (PO 4 ) 2 , Ca 8 H 2 (PO 4 ) 6 .5H 2 O, or Ca 4 (PO 4 ) 2 O; and Ca 4 (PO 4 ) 2 O with Ca 8 H 2 (PO 4 ) 6 .5H 2 O or ⁇ -Ca 3 (PO 4 ) 2 .
  • the isotherms of the modified tricalcium phosphates may define additional inventive compositions.
  • a singular point composition has such desirable properties as a remineralizer and cement is that it resists changes in the pH or composition of the solution by driving itself back to the singular point whenever the composition or pH changes. For example, if two calcium phosphates that possess a singular point were present in excess in a solution that was more acidic than the pH of the singular point, the more basic phosphate would dissolve and cause the more acidic phosphate to precipitate. This process would continue until the pH and the composition were forced back to the singular point, where the two calcium phosphates present in excess would both be in equilibrium with the solution and neither would precipitate out of solution. The reverse process would occur if the composition started at a point more basic than the singular point pH.
  • the composition of the solution cannot rise above the isotherm of the more soluble salt or fall below the isotherm of the less soluble salt. Furthermore, the solution will only be in equilibrium at the singular point. However, the precipitation of a third salt, such as hydroxyapatite, may drive the composition in the direction of the third salt's isotherm. The degree of deviation depends upon the relative rates of dissolution and precipitation of the three salts.
  • the more acidic salt provides a template that removes the acidic phosphate ions by crystallizing the acid salt.
  • the removal of the acidic ions holds the pH of the solution near the singular point and maintains the supersaturated state of the solution with respect to hydroxyapatite that is necessary for remineralization.
  • these latter reactions are not as advantageous as the combinations including Ca 4 (PO 4 ) 2 O since one of the calcium phosphates must serve as reaction product. This is less efficient in producing Ca 5 (PO 4 ) 3 OH than the Ca 4 (PO 4 ) 2 O containing compositions.
  • the more acidic calcium phosphates that serve as reaction products are not removed from the slurry as the remineralization progresses. Therefore, these combinations are more detrimental to living tissue than are the Ca 4 (PO 4 ) 2 O containing combinations.
  • the pH range of the inventive system may be predetermined by choosing a pair of calcium phosphates with an appropriate singular point pH. For example, if a pH around 7.5 is desired, one could use the combination of CaHPO 4 .2H 2 O and Ca 4 (PO 4 ) 2 O.
  • the pH of any slurry or paste may be further altered by the addition of up to approximately 10% by weight of simple calcium or phosphate containing compounds. These compounds change the pH of the singular point by altering the Ca/P ratio of the solution.
  • an acidic compound such as HCl, CaCl 2 , or Ca(C 2 H 3 O 2 ) 2
  • an acidic compound such as HCl, CaCl 2 , or Ca(C 2 H 3 O 2 ) 2
  • HCl, CaCl 2 , or Ca(C 2 H 3 O 2 ) 2 will increase the ionic activity of Ca 2+ , increase the Ca/P ratio of the singular point and cause the singular point to move to a lower pH.
  • suitable base and phosphate containing compounds are NaH 2 PO 4 and (NH 4 )H 2 PO 4 .
  • the rate of remineralization may also be adjusted.
  • the addition of simple or complex fluoride compounds such that the fluoride content of the slurry or paste is up to approximately 3.8% by weight will increase the rate of precipitation of hydroxyapatite and decrease solubility, thereby providing a control on the body's ability to resorb the material.
  • Examples of possible fluoride additives are CaF 2 , SrF 2 , NaF, Na 2 SiF 6 , and Na 2 PO 3 F.
  • a moderately slow remineralization rate would allow all parts of the lesion to be healed.
  • the particular calcium phosphates used will affect the rate of remineralization.
  • particle size is a factor since as particle size increases, the rate of mineralization decreases.
  • the particle size for remineralization slurries should be greater than 5 ⁇ m.
  • a slow remineralizing slurry could be applied to the tooth by means of a bite block sponge, periodontal pack, cement or rigid gel.
  • All of the combinations of calcium phosphates described above containing Ca 4 (PO 4 ) 2 O may be used as dental cements.
  • the two main differences between the inventive remineralizers and the inventive cements are particle size and solid-to-liquid ratio.
  • the selected calcium phosphates should be ground to a finer particle size, preferably less than 5 ⁇ m. Additionally, calcium phosphate particles are combined with much less solution so that a paste is formed rather than a slurry. The paste then hardens to a bonelike consistency.
  • Porous cements that are especially useful as bone implants or protheses may be prepared by combining the calcium phosphates with a highly water soluble material, such as granular sugar, and subjecting this mixture to pressure sufficient to form a compact mass.
  • the water necessary for the inventive reaction is usually contained in the calcium phosphates themselves. However, a small amount of water may be added to the mixture before pressure is applied in order to facilitate the setting of the cement. The resulting mass is then placed into hot water such that the highly water soluble material is removed.
  • a porous cement remains that is readily permeated by organic bone tissue.
  • the cements of the present invention may be used in place of any of the cements known in the prior art as: (i) cavity bases and liners to protect the pulp, (ii) materials for capping exposed pulps, (iii) materials to replace or promote regeneration of bone mineral lost due to periodontal disease, (iv) direct filling materials that have physical properties similar to enamel and are adhesiveto enamel and dentin, (v) a cement to build up alveolar ridges in edentulous patients, (vi) an endodontic filling material for root canals, (vii) a material to cement retention pins, (viii) a material for filling sockets after a tooth extraction, (ix) a replacement of bone that has been removed surgically or lost due to trauma, (x) a cement for implanting or replanting teeth, (xi) a luting cement in dentistry and orthopaedic surgery, (xii) an investment mold material, (xiii) a material which will promote bone mineral growth in its vicinity, (xiv
  • inventive cements are fully compatible with living tissue, they are especially advantageous where contact with dental tissue is necessary.
  • the cements possess remineralization capabilities.
  • inventive compositions as remineralizers is fully applicable to their use as cements.
  • the strength and hardness of the present cements can be controlled by the particle size of the calcium phosphates, the presence of hydroxyapatite or Ca 5 (PO 4 ) 3 F (fluorapatite) as seed or matrix crystals, and by the use of crystal habit modifiers. These last compounds promote the growth of more needle-like apatitic crystals in the cement. It is believed that a particle size of 1 ⁇ m would result in a very strong cement.
  • the setting time of the present cements may be reduced by adding a sizable amount of hydroxyapatite or fluorapatite seed crystals to the paste as these compounds facilitate crystal formation. This may also increase the hardness of the cement and minimize shrinkage or expansion during set.
  • Such expansion may be achieved by the addition of ⁇ -Ca 3 (PO 4 ) 2 or up to 1% by weight of crystal habit modifiers, such as Mg 2+ , Sr 2+ , citrate, phosphonates, carbonate, polyphosphates, sucrose phosphate and phosphocitrate. These modifiers absorb onto the specific sites of the crystal surfaces during growth, thereby affecting the morphology of the crystals. Additionally, appropriate combinations of varying or "gap-graded" particle sizes would promote setting expansion.
  • the calcium phosphates selected may be prepared by the methods described in McDowell et al, "Solubility Study of Calcium Hydrogen Phosphate. Ion-Pair Formation,” Inorg. Chem. 10: 1638-1643 (1971); Gregory et al, "Solubility of ⁇ -Ca 3 (PO 4 ) 2 in the System Ca(OH 2 )-H 3 PO 4 -H 2 O at 5°, 15°, 25° and 37° C.," J. Res. Nat. Bur. Stand.
  • the calcium phosphates may be in crystalline, cryptocrystalline, finely divided, or amorphous form.
  • each of the selected, solid calcium phosphates is then ground to the desired particle size.
  • the particle size should be greater than 5 ⁇ m, since this size prolongs the remineralization potential of the slurry by slowing the remineralization rate. Larger particle size both slows the reaction rate and retards the setting or hardening of the slurry.
  • the ground calcium phosphates are then mixed in excess in a dilute aqueous solution that is either slightly acidic or slightly basic to form a slurry.
  • appropriate acidic solutions are water and H 3 PO 4 or HCl
  • whle examples of appropriate basic solutions are water and Ca(OH) 2 or KOH.
  • the slurry may be applied to the affected area by means of a bite block sponge, periodontal pack, cement, or rigid gel. Also the slurry may be applied by burnishing, spatulation or packing and covering by various mechanical means. Additionally, the slurry may be allowed to harden and thereby act as its own cement for holding the remineralizer against the afflicted area.
  • the above remineralizing combinations may be incorporated into chewing gum formulations by blending the solid and liquid phases with a chewing gum base in the manner practiced in the industry.
  • the solid and liquid phases may be combined with the common ingredients of toothpaste.
  • the particle size of the calcium phosphates should be such as to avoid grittiness.
  • fluoride compounds such as CaF 2 , SrF 2 , NaF, Na 2 SiF 6 , or Na 2 PO 3 F
  • fluoride compounds such as CaF 2 , SrF 2 , NaF, Na 2 SiF 6 , or Na 2 PO 3 F
  • calcium and phosphate containing compounds such as CaCl 2 , Ca(C 2 H 3 O 2 ) 2 , NaH 2 PO 4 , or (NH 4 )H 2 PO 4 , may be added to modify the Ca/P ratio and pH of the solution'singular point.
  • high molecular weight crystal growth inhibitors may be added to facilitate the complete remineralization of the subsurface caries lesions.
  • Ca 4 (PO 4 ) 2 O and CaHPO 4 .2H 2 O are ground to an approximate mean particle size of 40 ⁇ m.
  • Two grams of an equimolar mixture of the two solids is combined with 20 ml of a 5mM H 3 PO 4 solution and mixed to form a slurry.
  • the slurry is then placed on a caries lesion by means of a bite block sponge. This slurry will maintain a pH in the vicinity of 7.4 and precipitate hydroxyapatite for almost one week.
  • Ca 4 (PO 4 ) 2 O and at least one other calcium phosphate selected from the group consisting of CaHPO 4 .2H 2 O, CaHPO 4 , Ca 8 H 2 (PO 4 ) 6 .5H 2 O, ⁇ -Ca 3 (PO 4 ) 2 , ⁇ -Ca 3 (PO 4 ) 2 , and modified Ca 3 (PO 4 ) 2 are ground to a uniform particle size of less than 5 ⁇ m so that the setting time will be reasonable. If some setting expansion is required, "gap-graded" particle sizes may be used.
  • the calcium phosphates are then combined with the dilute aqueous solutions of Example 1 to form a paste. This paste is then applied by an appropriate means to the affected area. For example, if the cement is to be used as an endodontic filling material, the paste may be applied by injection or packed with a plugger.
  • Example 1 To modify the remineralization properties of the cement, the additives described in Example 1 may be added to the liquid phase.
  • crystal habit modifiers may be added to induce more needle-like growth of apatitic crystals.
  • the setting time for a given cement may be reduced by adding hydroxyapatite or fluorapatite seed crystals. The inclusion of fluoride compounds will further reduce the setting time.
  • Setting expansion and shrinkage may be reduced by adding a sizable amount of hydroxyapatite to the paste. Conversely, some setting expansion may be encouraged by the addition of ⁇ -Ca 3 (PO 4 ) 2 or crystal habit modifiers.
  • Specimens 1-5 shown in Table I were prepared as follows. The two calcium phosphates and hydroxyapatite seed were all ground to a mean particle size of 5 ⁇ m. One gram of a mixture containing equimolar amounts of the two calcium phosphates and the appropriate weight percent of Ca 5 (PO 4 ) 3 OH was mixed with 0.5 ml of the appropriate H 3 PO 4 solution. All of the specimens were stirred into pastes, allowed to harden, and were soaked in H 2 O at 37° C. for twenty-four hours. The compressive strengths in pounds per square inch were then determined as shown in Table I.
  • Specimens 6-9 shown in Table II were prepared by grinding Ca 4 (PO 4 ) 2 O, CaHPO 4 .2H 2 O, and Ca 5 (PO 4 ) 3 OH to a mean particle size of 5 ⁇ m.
  • One gram of a mixture containing equimolar amounts of Ca 4 (PO 4 ) 2 O and CaHPO 4 .2H 2 O and the appropriate weight percent of Ca 5 (PO 4 ) 3 OH was mixed with 0.5 ml of 20mM H 3 PO 4 to form a paste. This paste was then allowed to harden.
  • the setting times as a function of apatite seed content are shown in Table II.
  • Ca 4 (PO 4 ) 2 O and CaHPO 4 .2H 2 O are ground to a mean particle size of 5 ⁇ m.
  • Two grams of a mixture containing equimolar amounts of the two calcium phosphates and 0.5 gram of granular sugar (or another highly water soluble material) are mixed and placed in a mold.

Abstract

Compositions that are useful and unique as dental remineralizers and dental cements, as well as methods for their use, are disclosed. The compositions are mixtures of at least two sparingly soluble calcium phosphates that are present in excess and a dilute aqueous solution approximately saturated with
The invention described herein was made in the course of research partially supported by a grant from the National Institute of Dental Research.

Description

The invention described herein was made in the course of research partially supported by a grant from the National Institute of Dental Research.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This application is a continuation-in-part of the copending application, Ser. No. 373,157, filed on Apr. 29, 1982 .Iadd.now abandoned.Iaddend..
This invention relates to certain combinations of sparingly soluble calcium phosphates that are unique in their application as remineralizers of caries lesions in dental enamel and partially demineralized dentin and cementum and in their application as dental cements. When used as a remineralizer the present invention not only prevents tooth decay, but can also restore the lesions caused by dental caries. The dental cements of the present invention have a variety of dental applications, but are most useful where contact between the cement and living tissue is required.
BACKGROUND OF THE INVENTION
When an incipient lesion or cavity develops on the surface of a tooth, the dentist traditionally fills the cavity that forms. This procedure may prevent the decay from spreading further, but does not restore the tooth to its original state. A considerable amount of research, however, has recently been directed to the remineralization of incipient dental lesions. The object of remineralization is to deposit Ca5 (PO4)3 OH, known as hydroxyapatite, on the caries lesion such that the dental enamel incorporates the hydroxyapatite into its structure at the point of lesion. (Tooth and bone minerals are impure forms of hydroxyapatite.) Thus, remineralization prevents further tooth decay and restores the tooth.
Remineralization of tooth enamel has been carried out experimentally both in vivo and in vitro. These studies have concentrated on the remineralizing properties of saliva and synthetic solutions supersaturated with respect to hydroxyapatite. Two recent articles that give a good overview of this research are Briner et al, "Significance of Enamel Remineralization," J. Dent. Res. 53: 239-243 (1974); and Silverstone, "Remineralization Phenomena," Caries Res. II (Supp. 1): 59-84 (1977). Additional experimental work in the areas of remineralization of calcium phosphate biomaterials may be found in Gelhard et al, "Rehardening of Artificial Enamel Lesions in vivo," Caries Res. 13: 80-83 (1979); Hiatt et al, "Root Preparation I. Obduration of Dentinal Tubles in Treatment of Root Hypersensitivity," J. Periodontal. 43: 373-380 (1972); LeGeros et al, "Apatitic Calcium Phosphates: Possible Dental Restorative Materials," IADR Abstract No. 1482 (1982); Pickel et al, "The Effect of a Chewing Gum Containing Dicalcium Phosphate on Salivary Calcium and Phosphate," Ala. J. Med. Sci. 2: 286-287 (1965); Zimmerman et al, "The Effect of Remineralization Fluids on Carious Lesions in vitro," IADR Abstract No. 282 (1979); and U.S. Pat. Nos. 3,679,360 (Rubin) and 4,097,935 (Jarcho).
Generally, the supersaturated solutions or slurries used for remineralization experiments have been prepared from a single form of calcium phosphate. When a caries lesion is flooded with one of these supersaturated solutions, the calcium and phosphate ions in the form of precipitated hydroxyapatite remineralize the lesion. However, these solutions are impractical for use on patients for several reasons. First, the amount of calcium and phosphate ions available for remineralization in these supersaturated solutions is too low. It takes approximately 10,000 unit volumes of the usual supersaturated solution to product one unit volume of mineral. Thus, remineralization by this method requires both an excessive volume of fluid and an excessive number of applications. The supersaturated solutions are inherently limited in this respect because they cannot maintain their supersaturated state. When the hydroxyapatite precipitates out to the point where the solution is no longer supersaturated, new supersaturated solution must be introduced or the remineralization process stops.
An example of another kind of problem is described in Levine, "Remineralisation of Natural Carious Lesions of Enamel in vitro," Brit. Dent. J., 137: 132-134 (1974), where a phosphate buffer solution saturated with respect to CaHPO4.2H2 O (dicalcium phosphate dihydrate or brushite) and containing some fluoride was applied to dental enamel. To effect complete mineralization, exposure to the solution for three minutes every hour for 24 hours was necessary. Though the article suggested that this exposure could be achieved by use of two minute mouth rinses twice daily over the course of a year, this was admitted by the author to be an impractical procedure.
Another problem with single calcium phosphate slurries is that as the hydroxyapatite precipitates out of solution, the pH of the solution changes. Unless the old solution is removed from contact with the tooth material, the solution may become too acidic or alkaline and damage the dental tissue.
Another problem with known remineralization techniques is that the remineralization may stop before the lesion is completely remineralized due to build up of the remineralized tooth material in or on the outer layer of the tooth's surface. This build up occurs when the rate of remineralization is too fast and prevents the diffusion of the mineral into the deeper regions of the lesion, thus thwarting the full remineralization of the tooth.
There is a need for a method of remineralizing dental enamel that does not require excessive amounts of solution and inordinately long or frequent exposure times. Furthermore there is a need for a remineralization solution or slurry that can maintain a relatively constant pH and remain in a supersaturated state so that hydroxyapatite may be precipitated for a substantial period of time.
In the area of dental cements, the prior art shows an array of compounds. Some cements, however, irritate the pulp and are unsuitable for applications where the cement must come in contact with exposed pulp. Guide to Dental Materials and Devices, 7th Ed. (ADA 1974) p. 49. One solution to this problem is a cement made of materials similar in composition to tooth and bone mineral, since this would not irritate the living tissue.
The use of β-Ca3 (PO4)2 was suggested for pulp capping in Driskell et al, "Development of Ceramic and Ceramic Composite Devices for Maxillofacial Application," J. Biomed. Mat. Res. 6: 345-361 (1972); and the use of Ca4 (PO4)2 O was suggested by the inventors in IADR Abstract No. 120, J. Dent. Res. 54: 74 (1975) as a possible pulp capping agent. As described in the latter, Ca4 (PO4)2 O hydrolyzes to hydroxyapatite. Therefore, use of a calcium phosphate dental cement should provide a non-irritating cement capable of setting to a hard consistency and, when desired, remineralizing the dental tissue it contacts. Such a cement would be of great benefit, for example, as a root canal or root surface cement.
Single calcium phosphate cements, are incapable of setting to a hard consistency, however, and would suffer from the same drawbacks described above for single calcium phosphate remineralizers. They cannot maintain a relatively constant pH and do not have sufficient remineralization capacity. Though U.S. Pat. No. 3,913,229 (Driskell et al.) discloses putty-like pastes containing α-Ca3 (PO4)2,β-Ca3 (PO4)2, CaHPO4 and mixtures thereof as pulp capping, root canal, and tooth replanting materials, it is believed that none of these pastes harden into cements. Furthermore, no remineralization properties are disclosed. Thus, there is a need for a dental cement that is non-irritating, yet has good remineralizing capacity coupled with a stable pH.
SUMMARY OF THE INVENTION
The potential for application of dental remineralization is vast. Approximately 5×108 cavities are filled each year. If these half billion caries lesions were remineralized rather than being filled as cavities, the general dental health would be increased substantially, since remineralization results in a whole tooth. The present invention seeks to provide remineralization compositions and methods that can be practically applied under a dentist's care and thereby replace the need for filling of cavities.
Briefly, the present invention relates to compositions for remineralizing caries lesions. The invention concerns a combination of Ca4 (PO4)2 O (tetracalcium phosphate) and at least one other sparingly soluble calcium phosphate solid in equilibrium or quasi equilibrium with a dilute aqueous solution such that both calcium phosphates are present in excess and form a slurry. The other calcium phosphates that may be used are CaHPO4.2H2 O (dicalcium phosphate dihydrate or brushite), CaHPO4 (monetite), Ca8 H2 (PO4)6.5H2 O (octacalcium phosphate), α-Ca3 (PO4)2,β-Ca3 (PO4)2 (tricalcium phosphates), and tricalcium phosphates modified by the addition of protons or up to approximately 10% magnesium by weight (whitlockite). All combinations of these calcium phosphates can precipitate hydroxyapatite according to the present invention. To do so, however, the two calcium phosphates must be in near equilibrium with the same saturated solution; furthermore, the saturated solution just be supersaturated with respect to hydroxyapatite. If these conditions are met, the above combinations of calcium phosphates will react to form hydroxyapatite. Since the two calcium phosphates are present in excess, the solution will remain supersaturated with respect to hydroxyapatite and will continue to precipitate this basic constituent of tooth and bone.
The advantages of a combination of calcium phosphates according to the present invention as compared with solutions or slurries of a single calcium phosphate are many. Most importantly, the inventive combination of calcium phosphates in a slurry will remain supersaturated with respect to hydroxyapatite for a significant period of time. For example, a combination of tetracalcium phosphate and brushite can remain active as a remineralizer for as long as a week. Thus, a single application of this inventive slurry to a caries lesion would suffice for complete remineralization of the afflicted area. This obviates the need for repeated and lengthy exposures required by previously proposed remineralization systems.
Another significant advantage of the present invention is that the combination of sparingly soluble calcium phosphates stabilizes the pH of the system near the point of equilibrium. This prevents wide swings in pH that might injure the dental enamel or other tissue. A stable pH also permits hydroxyapatite to continue precipitating, since hydroxyapatite will not precipitate at a low pH. Furthermore, the pH of the singular point may be altered by the addition of calcium or phosphate containing compounds to the slurry. This allows the dentist to select the most beneficial pH for remineralization.
Another advantage of the present invention is that the rate of mineralization may be adjusted to the needs of the particular lesion. The addition of simple fuoride compounds will increase the rate of mineralization. Conversely, high molecular weight crystal growth inhibitors may be added to slow mineralization. These latter compounds facilitate the remineralization of the subsurface of a caries lesion by inhibiting the remineralization of the outside surface of the tooth. This allows the hydroxyapatite ions to diffuse into the lesion's subsurface and completely remineralize the cavity.
Thus, the present invention provides compositions for the remineralization of caries lesions that are practical for clinical use due to their large remineralization capacities and stable pH's. The rate and depth of remineralization may be selected by the dentist, thereby giving substantial flexiblity to the remineralization process.
The present invention also concerns compounds useful as dental cements. The same combinations of calcium phosphates described above may be combined in a paste, rather than a slurry, and allowed to harden. The resulting cements are similar in composition to tooth and bone material and, therefore, are fully compatible with dental tissue. Though the cements of the present invention may be used in any application for which conventional dental cements are suitable, the cements of the present invention are particularly helpful where contact with living tissue is required. In addition, these cements provide the unique combination of remineralizing properties and hardening characteristics that would be especially desirable for a root canal or root surface cement because they are compatible with, protect and remineralize the sensitive surfaces of exposed roots.
Further objects and features of the invention will become apparent from the following description of the preferred embodiments and claims.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a plot of the solubility isotherms of Ca4 (PO4)2 O; CaHPO4.2H2 O; CaHPO4 ; Ca8 H2 (PO4)6.5H2 O; β-Ca3 (PO4)2 ; and Ca5 (PO4)3 OH at 25° C. in the ternary system of Ca(OH)2 ; H3 PO4 ; and H2 O.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The sparingly soluble calcium phosphates that are relatively stable at ambient temperatures and are, therefore, available for use in the inventive remineralizing slurries and cements include CaHPO4.2H2 O; CaHPO4 ; Ca8 H2 (PO4)6.5H2 O; α-Ca3 (PO4)2 ; β-Ca3 (PO4)2 ; tricalcium phosphates modified by protons or up to approximately 10% magnesium by weight; and Ca4 (PO4)2 O. Each of these calcium phosphates has a characteristic solubility behavior that may be represented by a plot of the total concentration of calcium ions at the point of saturation versus the pH of the solution at a constant temperature. (A plot of the total concentration of phosphate ions versus pH would be equivalent for the purposes of the present invention because the concentrations of phosphate and calcium ions in solution are linked.) The resulting curve is called an isotherm.
When the isotherms for various calcium phosphates are plotted on the same axes, their solubility behavior relative to each other may be determined. Specifically, a calcium phosphate whose isotherm lies above the isotherm of another calcium phosphate at a given pH is metastable with respect to the latter. The point where the isotherms of two calcium phosphates intersect is known as a singular point. In a solution that is saturated with respect to the two calcium phosphates, both calcium phosphates will be in equilibrium with the saturated solution at the singular point. This means that neither calcium phosphate will precipitate out of solution, but another calcium phosphate whose isotherm lies below the singular point can precipitate. The present invention relates to combinations of calcium phosphates that form singular point solutions that are supersaturated with respect to hydroxyapatite.
FIG. 1 is a plot of the solubility isotherms for six calcium phosphates in the ternary system comprising Ca(OH)2, H3 PO4 and H2 O at 25° C. The y-axis of FIG. 1 represents the total concentration of calcium ions in solution in moles per liter, while the x-axis represents pH. The isotherms for CaHPO4.2H2 O, CaHPO4, β-Ca3 (PO4)2 and Ca5 (PO4)3 OH are based, respectively, on the following articles: Gregory et al, "Solubility of CaHPO4.2H2 O in the System Ca(OH)2 -H3 PO4 -H2 O at 5°, 15°, 25°, and 37.5° C.," J. Res. Nat. Bur. Stand. 74A: 461-475 (1970); McDowell et al, "Solubility Study of Calcium Hydrogen Phosphate. Ion Pair Formation," Inorg. Chem. 10: 1638-1643 (1971); Gregory et al, "Solubility of β-Ca3 (PO4)2 in the System Ca(OH)2 -H3 PO4 -H2 O at 5°, 15°, 25° and 37° C.," J. Res. Nat. Bur. Stand. 78A: 667-674 (1974); and McDowell et al, "Solubility of Ca5 (PO4)3 OH in the System Ca(OH)2 -H3 PO4 -H2 O at 5°, 15°, 25° and 37.5° C.," J. Res. Nat. Bur. Stand. 81A: 273-281 (1977). The isotherm for Ca8 H2 (PO4)6.5H2 O is based on the solubility product disclosed in Moreno et al, "Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octacalcium Phosphate," Soil Sci. Soc. Am. Proc. 21: 99-102 (1960), while the isotherm of Ca4 (PO4)2 O is based on the approximate value of the solubility product calculated by the inventors.
As can be seen from FIG. 1, not all combinations of calcium phosphates have singular points. For example, the isotherms of CaHPO4.2H2 O and CaHPO4 never cross at ambient temperature. Therefore, this pair of calcium phosphates does not embody the inventive concept of combinations of calcium phosphates that may each be in equilibrium with the same saturated solution at their singular point.
There are two additional considerations that limit the choice of calcium phosphates for the present invention. First, the singular point of the two calcium phosphates must lie above the isotherm for hydroxyapatite. This insures that a solution that is saturated with respect to the two calcium phosphates at their singular point will also be supersaturated with respect to hydroxyapatite. Thus, hydroxyapatite can precipitate out of the solution and be available for remineralization. Second, the singular point for the pair of calcium phosphates should preferably not lie too far above the isotherm for CaHPO4.2H2 O, since the singular point of such a combination might be too unstable for use as a remineralizer or cement. Therefore, although β-Ca3 (PO4)2 and Ca8 H2 (PO4)6.5H2 O have intersecting isotherms, their singular point lies far above the isotherm for CaHPO4.2H2 O and is probably unsuitable.
The circles in FIG. 1 define singular point compositions for the various pairs of solids in solution. As can be seen from FIG. 1, the following combinations of calcium phosphates are definitely available as remineralizers and cements according to the present invention: CaHPO4.2H2 O with β-Ca3 (PO4)2, Ca8 H2 (PO4)6.5H2 O, or Ca4 (PO4)2 O; CaHPO4 with β-Ca3 (PO4)2, Ca8 H2 (PO4)6.5H2 O, or Ca4 (PO4)2 O; and Ca4 (PO4)2 O with Ca8 H2 (PO4)6.5H2 O or β-Ca3 (PO4)2. Additionally, there are potentially three or four singular point compositions containing α-Ca3 (PO4)2. Likewise, the isotherms of the modified tricalcium phosphates may define additional inventive compositions.
The reason that a singular point composition has such desirable properties as a remineralizer and cement is that it resists changes in the pH or composition of the solution by driving itself back to the singular point whenever the composition or pH changes. For example, if two calcium phosphates that possess a singular point were present in excess in a solution that was more acidic than the pH of the singular point, the more basic phosphate would dissolve and cause the more acidic phosphate to precipitate. This process would continue until the pH and the composition were forced back to the singular point, where the two calcium phosphates present in excess would both be in equilibrium with the solution and neither would precipitate out of solution. The reverse process would occur if the composition started at a point more basic than the singular point pH.
When only two salts are present in the solution, the composition of the solution cannot rise above the isotherm of the more soluble salt or fall below the isotherm of the less soluble salt. Furthermore, the solution will only be in equilibrium at the singular point. However, the precipitation of a third salt, such as hydroxyapatite, may drive the composition in the direction of the third salt's isotherm. The degree of deviation depends upon the relative rates of dissolution and precipitation of the three salts.
For the purposes of remineralization, it would be undesirable if the solution's composition deviated too close to the isotherm of hydroxyapatite since this would lower the rate of precipitation of hydroxyapatite. However, since the two calcium phosphates are present in excess, the relative rate of precipitation for hydroxyapatite is likely to be small when compared to the dissolution and precipitation rates of the other two calcium phosphates, and the composition will remain in the vicinity of the singular point. Thus, a slurry containing excessive amounts of two calcium phosphates having a singular point can remain approximately at the pH and composition of the singular point despite the constant production and precipitation of hydroxyapatite. It is this feature of the present invention that permits a remineralizing slurry or paste to remain active as a remineralizer for a substantial period of time without great shifts in pH or composition.
The combinations of calcium phosphates listed above that have singular points all react to form hydroxyapatite. However, these combinations fall into two distinct classes: those containing Ca4 (PO4)2 O and those that do not. Ca4 (PO4)2 O is the most basic calcium phosphate of the present invention. Therefore, any of the remaining calcium phosphates that are more acidic than hydroxyapatite can react directly with tetracalcium phosphate to form hydroxyapatite. For example,
Ca.sub.4 (PO.sub.4).sub.2 O+CaHPO.sub.4.2H.sub.2 O=Ca.sub.5 (PO.sub.4).sub.3 OH+2H.sub.2 O;
Ca.sub.4 (PO.sub.4).sub.2 O+CaHPO.sub.4 =Ca.sub.5 (PO.sub.4).sub.3 OH;
3Ca.sub.4 (PO.sub.4).sub.2 O+Ca.sub.8 H.sub.2 (PO.sub.4).sub.6.5H.sub.2 O=4Ca.sub.5 (PO.sub.4).sub.3 OH+4H.sub.2 O; and
Ca.sub.4 (PO.sub.4).sub.2 O+2Ca.sub.3 (PO.sub.4).sub.2 [α,β, or modified]+H.sub.2 O=2Ca.sub.5 (PO.sub.4).sub.3 OH.
However, when both salts are more acidic than hydroxyapatite, the more acidic salt is a reaction product along with hydroxyapatite. Thus,
2Ca.sub.3 (PO.sub.4).sub.2 [α,β, or modified]+3H.sub.2 O=Ca.sub.5 (PO.sub.4).sub.3 OH+CaHPO.sub.4.2H.sub.2 O;
2Ca.sub.3 (PO.sub.4).sub.2 [α,β, or modified]+H.sub.2 O=Ca.sub.5 (PO.sub.4).sub.3 OH+CaHPO.sub.4 ;
Ca.sub.8 H.sub.2 (PO.sub.4).sub.6.5H.sub.2 O+2H.sub.2 O=Ca.sub.5 (PO.sub.4).sub.3 OH+3CaHPO.sub.4.2H.sub.2 O; and
Ca.sub.8 H.sub.2 (PO.sub.4).sub.6.5H.sub.2 O=Ca.sub.5 (PO.sub.4).sub.3 OH+3CaHPO.sub.4.
In such cases, the more acidic salt provides a template that removes the acidic phosphate ions by crystallizing the acid salt. The removal of the acidic ions holds the pH of the solution near the singular point and maintains the supersaturated state of the solution with respect to hydroxyapatite that is necessary for remineralization. However, these latter reactions are not as advantageous as the combinations including Ca4 (PO4)2 O since one of the calcium phosphates must serve as reaction product. This is less efficient in producing Ca5 (PO4)3 OH than the Ca4 (PO4)2 O containing compositions. Additionally, the more acidic calcium phosphates that serve as reaction products are not removed from the slurry as the remineralization progresses. Therefore, these combinations are more detrimental to living tissue than are the Ca4 (PO4)2 O containing combinations.
The reaction approximated by 5Ca8 H2 (PO4)6.5H2 O=8Ca5 (PO4)3 OH+6H3 PO4 +17H2 O, is of particular interest for remineralization, because under many conditions the rate of formation of octacalcium phosphate appears to be much greater than the rate of formation of hydroxyapatite. Since octacalcium phosphate can hydrolyze in situ to hydroxyapatite, the formation of Ca8 H2 (PO4)6.5H2 O followed by hydrolysis to hydroxyapatite may be a particularly efficacious method for the production of hydroxyapatite in remineralizing solutions. The only known combinations of calcium phosphates that definitely can form octacalcium phosphate as a precursor to hydroxyapatite are Ca4 (PO4)2 O with CaHPO4.2H2 O and CaHPO4 since their singular points both lie above the isotherm for Ca8 H2 (PO4)6.5H2 O. However, the singular points of α-Ca3 (PO4)2 with CaHPO4.2H2 O and CaHPO4 might also form octacalcium phosphate as a precursor to hydroxyapatite.
The pH range of the inventive system may be predetermined by choosing a pair of calcium phosphates with an appropriate singular point pH. For example, if a pH around 7.5 is desired, one could use the combination of CaHPO4.2H2 O and Ca4 (PO4)2 O. The pH of any slurry or paste may be further altered by the addition of up to approximately 10% by weight of simple calcium or phosphate containing compounds. These compounds change the pH of the singular point by altering the Ca/P ratio of the solution. Since the chemical potentials of Ca(OH)2 and H3 PO4 have been shown to be invariant in the presence of additional components at a given singular point [See Brown, "Solubilities of Phosphates and Other Sparingly Soluble Compounds," from Griffith et al, Environmental Phosphorous Handbook (John Wiley & Sons, New York 1973)], the ratio (Ca2+)/(H+)2 is constant at a given singular point, where the parentheses denote ion activities. Thus, the addition of an acidic compound, such as HCl, CaCl2, or Ca(C2 H3 O2)2, will increase the ionic activity of Ca2+, increase the Ca/P ratio of the singular point and cause the singular point to move to a lower pH. Similar considerations hold for the addition of basic compounds. Examples of suitable base and phosphate containing compounds are NaH2 PO4 and (NH4)H2 PO4.
The rate of remineralization may also be adjusted. The addition of simple or complex fluoride compounds such that the fluoride content of the slurry or paste is up to approximately 3.8% by weight will increase the rate of precipitation of hydroxyapatite and decrease solubility, thereby providing a control on the body's ability to resorb the material. Examples of possible fluoride additives are CaF2, SrF2, NaF, Na2 SiF6, and Na2 PO3 F. Through rapid mineralization is beneficial under some circumstances, it may cause the remineralization of the outside surface of an incipient caries lesion and prevent the remineralization of the subsurface region of the lesion. A moderately slow remineralization rate would allow all parts of the lesion to be healed. The particular calcium phosphates used will affect the rate of remineralization. In addition, particle size is a factor since as particle size increases, the rate of mineralization decreases. Generally the particle size for remineralization slurries should be greater than 5 μm. Thus, to remineralize a deep lesion, a slow remineralizing slurry could be applied to the tooth by means of a bite block sponge, periodontal pack, cement or rigid gel.
It is also possible to facilitate internal remineralization by etching the surface of the tooth such that the remineralizing slurry can contact more of the lesion's surface at once. Another solution to the problem of incomplete internal remineralization is the application of high molecular weight crystal growth poisons or inhibitors onto the tooth surface. Examples of such growth inhibitors are proteoglycans, glycoproteins, polylysine, and protamine. Concentrations of up to approximately 5% by weight may be added to the remineralizing slurry. These inhibitors prevent the growth of hydroxyapatite crystals at the surface of the tooth but do not tend to diffuse into the interior of the tooth. Accordingly, they inhibit the remineralization of the caries lesion's surface and prevent the blockage of the channels necessary for the diffusion of calcium and phosphate ions into the subsurface lesion.
All of the combinations of calcium phosphates described above containing Ca4 (PO4)2 O may be used as dental cements. The two main differences between the inventive remineralizers and the inventive cements are particle size and solid-to-liquid ratio. For use as cements, the selected calcium phosphates should be ground to a finer particle size, preferably less than 5 μm. Additionally, calcium phosphate particles are combined with much less solution so that a paste is formed rather than a slurry. The paste then hardens to a bonelike consistency.
Porous cements that are especially useful as bone implants or protheses may be prepared by combining the calcium phosphates with a highly water soluble material, such as granular sugar, and subjecting this mixture to pressure sufficient to form a compact mass. The water necessary for the inventive reaction is usually contained in the calcium phosphates themselves. However, a small amount of water may be added to the mixture before pressure is applied in order to facilitate the setting of the cement. The resulting mass is then placed into hot water such that the highly water soluble material is removed. A porous cement remains that is readily permeated by organic bone tissue.
The cements of the present invention may be used in place of any of the cements known in the prior art as: (i) cavity bases and liners to protect the pulp, (ii) materials for capping exposed pulps, (iii) materials to replace or promote regeneration of bone mineral lost due to periodontal disease, (iv) direct filling materials that have physical properties similar to enamel and are adhesiveto enamel and dentin, (v) a cement to build up alveolar ridges in edentulous patients, (vi) an endodontic filling material for root canals, (vii) a material to cement retention pins, (viii) a material for filling sockets after a tooth extraction, (ix) a replacement of bone that has been removed surgically or lost due to trauma, (x) a cement for implanting or replanting teeth, (xi) a luting cement in dentistry and orthopaedic surgery, (xii) an investment mold material, (xiii) a material which will promote bone mineral growth in its vicinity, (xiv) a remineralizing polish for use in place of pumice, and (xv) a root cement for remineralizing and desensitizing of exposed root surfaces. Since the inventive cements are fully compatible with living tissue, they are especially advantageous where contact with dental tissue is necessary. In addition, the cements possess remineralization capabilities. Thus, the discussion above with respect to the use of the inventive compositions as remineralizers is fully applicable to their use as cements.
The strength and hardness of the present cements can be controlled by the particle size of the calcium phosphates, the presence of hydroxyapatite or Ca5 (PO4)3 F (fluorapatite) as seed or matrix crystals, and by the use of crystal habit modifiers. These last compounds promote the growth of more needle-like apatitic crystals in the cement. It is believed that a particle size of 1 μm would result in a very strong cement.
The setting time of the present cements may be reduced by adding a sizable amount of hydroxyapatite or fluorapatite seed crystals to the paste as these compounds facilitate crystal formation. This may also increase the hardness of the cement and minimize shrinkage or expansion during set. Of course, it may be desirable to have some setting expansion when the paste is used in a cavity preparation in order to promote adhesion to the cavity wall. Such expansion may be achieved by the addition of β-Ca3 (PO4)2 or up to 1% by weight of crystal habit modifiers, such as Mg2+, Sr2+, citrate, phosphonates, carbonate, polyphosphates, sucrose phosphate and phosphocitrate. These modifiers absorb onto the specific sites of the crystal surfaces during growth, thereby affecting the morphology of the crystals. Additionally, appropriate combinations of varying or "gap-graded" particle sizes would promote setting expansion.
It has also been determined that when fluoride compounds are added to the liquid or solid phase, the setting time may be reduced further for the same seed crystal content.
EXAMPLE 1
Two calcium phosphates having a singular point with an appropriate pH are selected. Their singular point should not lie too far above the isotherm for CaHPO4.2H2 O and must lie above the isotherm for hydroxyapatite. The calcium phosphates selected may be prepared by the methods described in McDowell et al, "Solubility Study of Calcium Hydrogen Phosphate. Ion-Pair Formation," Inorg. Chem. 10: 1638-1643 (1971); Gregory et al, "Solubility of β-Ca3 (PO4)2 in the System Ca(OH2)-H3 PO4 -H2 O at 5°, 15°, 25° and 37° C.," J. Res. Nat. Bur. Stand. 78A: 667-674 (1974); Moreno et al, "Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octacalcium Phosphate," Soil Sci. Soc. Am. Proc. 21: 99-102 (1960); Brown et al, "Crystallography of Tetracalcium Phosphate." J. Res. Nat. Bur. Stands. 69A: 547-551 (1965); and Patel et al, "Solubility of CaHPO4.2H2 O in the Quaternary System Ca(OH)2 -H3 PO4 NaCl-H2 O at 25° C.," J. Rest. Nat. Bur. Stands. 78A: 675-681 (1974). The calcium phosphates may be in crystalline, cryptocrystalline, finely divided, or amorphous form.
Each of the selected, solid calcium phosphates is then ground to the desired particle size. Generally for remineralization slurries, the particle size should be greater than 5 μm, since this size prolongs the remineralization potential of the slurry by slowing the remineralization rate. Larger particle size both slows the reaction rate and retards the setting or hardening of the slurry.
The ground calcium phosphates are then mixed in excess in a dilute aqueous solution that is either slightly acidic or slightly basic to form a slurry. Examples of appropriate acidic solutions are water and H3 PO4 or HCl, whle examples of appropriate basic solutions are water and Ca(OH)2 or KOH. The slurry may be applied to the affected area by means of a bite block sponge, periodontal pack, cement, or rigid gel. Also the slurry may be applied by burnishing, spatulation or packing and covering by various mechanical means. Additionally, the slurry may be allowed to harden and thereby act as its own cement for holding the remineralizer against the afflicted area.
Alternatively, the above remineralizing combinations may be incorporated into chewing gum formulations by blending the solid and liquid phases with a chewing gum base in the manner practiced in the industry. Similarly, the solid and liquid phases may be combined with the common ingredients of toothpaste. In these cases the particle size of the calcium phosphates should be such as to avoid grittiness.
In addition, three groups of compounds may be added to the liquid phase of the remineralization slury. First, fluoride compounds, such as CaF2, SrF2, NaF, Na2 SiF6, or Na2 PO3 F, may be added to increase the rate of mineralization. Second, calcium and phosphate containing compounds, such as CaCl2, Ca(C2 H3 O2)2, NaH2 PO4, or (NH4)H2 PO4, may be added to modify the Ca/P ratio and pH of the solution'singular point. Third, high molecular weight crystal growth inhibitors may be added to facilitate the complete remineralization of the subsurface caries lesions.
EXAMPLE 2
Ca4 (PO4)2 O and CaHPO4.2H2 O are ground to an approximate mean particle size of 40 μm. Two grams of an equimolar mixture of the two solids is combined with 20 ml of a 5mM H3 PO4 solution and mixed to form a slurry. The slurry is then placed on a caries lesion by means of a bite block sponge. This slurry will maintain a pH in the vicinity of 7.4 and precipitate hydroxyapatite for almost one week.
EXAMPLE 3
To form a dental cement, Ca4 (PO4)2 O and at least one other calcium phosphate selected from the group consisting of CaHPO4.2H2 O, CaHPO4, Ca8 H2 (PO4)6.5H2 O, α-Ca3 (PO4)2, β-Ca3 (PO4)2, and modified Ca3 (PO4)2 are ground to a uniform particle size of less than 5 μm so that the setting time will be reasonable. If some setting expansion is required, "gap-graded" particle sizes may be used. The calcium phosphates are then combined with the dilute aqueous solutions of Example 1 to form a paste. This paste is then applied by an appropriate means to the affected area. For example, if the cement is to be used as an endodontic filling material, the paste may be applied by injection or packed with a plugger.
To modify the remineralization properties of the cement, the additives described in Example 1 may be added to the liquid phase. In addition, crystal habit modifiers may be added to induce more needle-like growth of apatitic crystals. The setting time for a given cement may be reduced by adding hydroxyapatite or fluorapatite seed crystals. The inclusion of fluoride compounds will further reduce the setting time.
Setting expansion and shrinkage may be reduced by adding a sizable amount of hydroxyapatite to the paste. Conversely, some setting expansion may be encouraged by the addition of β-Ca3 (PO4)2 or crystal habit modifiers.
EXAMPLE 4
Specimens 1-5 shown in Table I were prepared as follows. The two calcium phosphates and hydroxyapatite seed were all ground to a mean particle size of 5 μm. One gram of a mixture containing equimolar amounts of the two calcium phosphates and the appropriate weight percent of Ca5 (PO4)3 OH was mixed with 0.5 ml of the appropriate H3 PO4 solution. All of the specimens were stirred into pastes, allowed to harden, and were soaked in H2 O at 37° C. for twenty-four hours. The compressive strengths in pounds per square inch were then determined as shown in Table I.
EXAMPLE 5
Specimens 6-9 shown in Table II were prepared by grinding Ca4 (PO4)2 O, CaHPO4.2H2 O, and Ca5 (PO4)3 OH to a mean particle size of 5 μm. One gram of a mixture containing equimolar amounts of Ca4 (PO4)2 O and CaHPO4.2H2 O and the appropriate weight percent of Ca5 (PO4)3 OH was mixed with 0.5 ml of 20mM H3 PO4 to form a paste. This paste was then allowed to harden. The setting times as a function of apatite seed content are shown in Table II.
EXAMPLE 6
To form a porous cement of increased strength, Ca4 (PO4)2 O and CaHPO4.2H2 O are ground to a mean particle size of 5 μm. Two grams of a mixture containing equimolar amounts of the two calcium phosphates and 0.5 gram of granular sugar (or another highly water soluble material) are mixed and placed in a mold.
                                  TABLE I                                 
__________________________________________________________________________
COMPRESSIVE STRENGTHS OF EXPERIMENTAL CEMENTS                             
                    Ca.sub.5 (PO.sub.4).sub.3 OH, Wt %                    
                                       Compressive Strength               
Specimen                                                                  
     Calcium Phosphates                                                   
                    Seed Content                                          
                               Solution                                   
                                       (PSI).sup.1                        
__________________________________________________________________________
1    CaHPO.sub.4.2H.sub.2 O + Ca.sub.4 (PO.sub.42)O                       
                    0           5 mM H.sub.3 PO.sub.4                     
                                       4390 ± 860 (3)                  
2    CaHPO.sub.4.2H.sub.2 O +Ca.sub.4 (PO.sub.4).sub.2 O                  
                    0          20 mM H.sub.3 PO.sub.4                     
                                       4560 ± 520 (3)                  
3    CaHPO.sub.4 + Ca.sub.4 (PO.sub.4).sub.2 O                            
                    0          20 mM H.sub.3 PO.sub.4                     
                                       4960 ± 650 (3)                  
4    CaHPO.sub.4 + Ca.sub.4 (PO.sub.4).sub.2 O                            
                    2.7        20 mM H.sub.3 PO.sub.4                     
                                       4280 ± 940 (2)                  
5    CaHPO.sub.4 + Ca.sub.4 (PO.sub.4).sub.2 O                            
                    9.6        20 mM H.sub.3 PO.sub.4                     
                                        4578 ± 1010 (2)                
__________________________________________________________________________
 .sup.1 Compressive strengths are shown as mean value ± standard       
 deviation. The number of samples is shown in parentheses.                
              TABLE II                                                    
______________________________________                                    
SETTING TIME AS A FUNCTION OF                                             
HYDROXYAPATITIC SEED CONTENT                                              
FOR EXPERIMENTAL CEMENTS                                                  
                            Setting Time.sup.1                            
Specimen Ca.sub.5 (PO.sub.4).sub.3 OH Content, Wt %                       
                            Min.                                          
______________________________________                                    
6         0                 22                                            
7        24                 11                                            
8        34                 9                                             
9        43                 8                                             
______________________________________                                    
 .sup.1 The setting times were measured according to American Dental      
 Association Specification No. 9.                                         
Usually addition of water to the mixture is not needed but a small amount may be added in some instances to facilitate the setting reaction. Up to 80,000 pounds per square inch of pressure is applied to the cement mixture using a press for two minutes. The specimen, which is made into a compact mass by the process, is placed in boiling water to extract the water soluble granules and to complete the setting process. The resulting porous materials can be used as protheses which can be invaded more readily by organic bone tissue.
It should be understood that the foregoing disclosure emphasizes certain specific embodiments of the invention and that all modifications of alternatives equivalent thereto are within the spirit or scope of the invention.

Claims (13)

We claim as our invention:
1. A .[.dental restorative.]. paste .Iadd.consisting essentially of .Iaddend..[.comprising.]. an aqueous mixture of Ca4 (PO4)O and at least one other calcium phosphate selected from the group consisting of CaHPO4.2H2 O .[.,.]. .Iadd.and .Iaddend.CaHPO4, .[.Ca8 H2 (PO4)6.5H2 O, β-Ca3 (PO4)2, β-Ca3 (PO4)2, and modified Ca3 (PO4)2, the paste being capable of hardening.]. .Iadd.which aqueous mixture hardens .Iaddend.into a cement .Iadd.at an ambient temperature.
2. The paste of claim 1 wherein the other calcium phosphate is CaHPO4.2H2 O.
3. The paste of claim 1 wherein the other calcium phosphate is CaHPO4. .[.4. The paste of claim 1 wherein the other calcium phosphate is Ca8 H2 (PO4)6.5H2 O..]. .[.5. The paste of claim 1 wherein
the other calcium phosphate is β-Ca3 (PO4)2..]. 6. The paste of claim 1 wherein both calcium phosphates are in crystalline,
cryptocrystalline, or amorphous form. 7. The paste of claim 1 further .[.comprising.]. .Iadd.including .Iaddend.up to approximately 10% by weight of additional calcium or phosphate containing compounds .Iadd.in an
amount sufficient to alter the pH of the paste.Iaddend.. 8. The paste of claim 7 wherein the additional calcium containing compounds .[.comprise.]. .Iadd.are selected from the group consisting of .Iaddend.CaCl2
.[.or.]. .Iadd.and .Iaddend.Ca(C2 H3 O2)2. 9. The paste of claim 7 wherein the additional phosphate containing compounds .[.comprise.]. .Iadd.are selected from the group consisting of .Iaddend.NaH2 PO4 .[.or.]. .Iadd.and .Iaddend.(NH4)H2
PO4. 10. The paste of claim 1 further .[.comprising.]. .Iadd.including .Iaddend.fluoride containing compounds such that the fluoride content of the paste is up to approximately 3.8% by weight .Iadd.in an amount sufficient to increase the rate of precipitation of
hydroxyapatite from the paste.Iaddend.. 11. The paste of claim 10 wherein the fluoride containing compounds .[.comprise.]. .Iadd.are selected from the group consisting of .Iaddend.CaF2, SrF2, NaF, Na2
SiF6 .[.or.]. .Iadd.and .Iaddend.NaPO3 F. 12. A paste .[.comprising.]. .Iadd.consisting essentially of .Iaddend.CaHPO4 and Ca4 (PO4)2 O having a particle size of approximately 1 μm and a 20mM solution of H3 PO4 .Iadd., the paste hardening
into a cement at an ambient temperature.Iaddend.. 13. The paste of claim 1 additionally .[.comprising.]. .Iadd.including .Iaddend.a seed crystal compound selected from the group consisting of hydroxyapatite and fluorapatite .Iadd.in an amount sufficient to reduce the setting time of the cement.Iaddend.. .Iadd.14. The paste of claim 13 wherein the seed crystal compound is hydroxyapatite, the hydroxyapatite being present in an amount up to 43% by weight and in an amount sufficient to reduce the setting time of the cement. .Iaddend. .Iadd.15. The paste of claim 1 additionally including up to approximately 5% by weight of a high molecular weight crystal growth inhibitor selected from the group consisting of proteoglycans, glycoproteins, polylysine and protamine in an amount sufficient to inhibit the growth of hydroxyapatite crystals. .Iaddend. .Iadd.16. The paste of claim 1 additionally including β-Ca3 (PO4)2 in an amount sufficient to achieve setting expansion of the cement. .Iaddend. .Iadd.17. The paste of claim 1 additionally including up to 1% by weight of a crystal habit modifier selected from the group consisting of Mg2+, Sr2+, citrate, phosphonates, carbonate, polyphosphates, sucrose phosphate, and phosphocitrate in an amount sufficient to achieve setting expansion of the
cement. .Iaddend. .Iadd.18. The paste of claim 1 wherein the paste is slightly acidic. .Iaddend. .Iadd.19. The paste of claim 1 where in the
paste is slightly basic. .Iaddend. .Iadd.20. The paste of claim 1 additionally including granular sugar, the sugar being present in an amount up to 20% by weight and in an amount sufficient to form a porous cement upon removal of the sugar by application of hot water to the cement. .Iaddend.
US07/051,739 1982-04-29 1987-05-18 Dental restorative cement pastes Expired - Lifetime USRE33221E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/051,739 USRE33221E (en) 1982-04-29 1987-05-18 Dental restorative cement pastes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37315782A 1982-04-29 1982-04-29
US07/051,739 USRE33221E (en) 1982-04-29 1987-05-18 Dental restorative cement pastes

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US37315782A Continuation-In-Part 1982-04-29 1982-04-29
US06/539,740 Reissue US4518430A (en) 1982-04-29 1983-10-06 Dental resptorative cement pastes

Publications (1)

Publication Number Publication Date
USRE33221E true USRE33221E (en) 1990-05-22

Family

ID=26729779

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/051,739 Expired - Lifetime USRE33221E (en) 1982-04-29 1987-05-18 Dental restorative cement pastes

Country Status (1)

Country Link
US (1) USRE33221E (en)

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068100A (en) * 1989-03-09 1991-11-26 The Procter & Gamble Company Anticalculus compositions
US5258044A (en) * 1992-01-30 1993-11-02 Etex Corporation Electrophoretic deposition of calcium phosphate material on implants
US5427768A (en) * 1993-06-23 1995-06-27 American Dental Association Health Foundation Carbonated solutions for treating, mineralizing and fluoridating calcified tissues and methods for their use
US5437857A (en) * 1989-05-24 1995-08-01 American Dental Association Health Foundation Methods and compositions for mineralizing and fluoridating calcified tissues
US5460803A (en) * 1989-05-24 1995-10-24 American Dental Association Health Foundation Methods and compositions for mineralizing and fluoridating calcified tissues
US5476647A (en) * 1993-09-13 1995-12-19 American Dental Association Health Foundation Complex calcium and fluoride containing mouth rinses, dentifrices, and chewable tablets
US5496399A (en) * 1994-08-23 1996-03-05 Norian Corporation Storage stable calcium phosphate cements
US5522893A (en) * 1993-03-12 1996-06-04 American Dental Association Health Foundation Calcium phosphate hydroxyapatite precursor and methods for making and using the same
US5525148A (en) * 1993-09-24 1996-06-11 American Dental Association Health Foundation Self-setting calcium phosphate cements and methods for preparing and using them
US5534244A (en) * 1989-05-24 1996-07-09 Tung; Ming S. Methods and compositions for mineralizing and/or fluoridating calcified tissues with amorphous strontium compounds
US5550172A (en) * 1995-02-07 1996-08-27 Ethicon, Inc. Utilization of biocompatible adhesive/sealant materials for securing surgical devices
WO1996036562A1 (en) * 1995-05-19 1996-11-21 Etex Corporation Bone substitution material and a method of its manufacture
WO1996039202A1 (en) * 1995-06-06 1996-12-12 Osteogenics Inc. Biocompatible hydroxyapatite formulations and uses therefor
US5783217A (en) * 1995-11-07 1998-07-21 Etex Corporation Low temperature calcium phosphate apatite and a method of its manufacture
US5782971A (en) * 1991-06-28 1998-07-21 Norian Corporation Calcium phosphate cements comprising amorophous calcium phosphate
US5900254A (en) 1988-04-20 1999-05-04 Norian Corporation Carbonated hydroxyapatite compositions and uses
US6002065A (en) 1988-04-20 1999-12-14 Norian Corporation Kits for preparing calcium phosphate minerals
US6005162A (en) 1988-04-20 1999-12-21 Norian Corporation Methods of repairing bone
US6027742A (en) 1995-05-19 2000-02-22 Etex Corporation Bioresorbable ceramic composites
US6083518A (en) 1995-06-20 2000-07-04 Bioglan Ab Composition comprising an active agent dissolved in a glass-forming carrier and a process for the preparation thereof
US6117456A (en) 1995-05-19 2000-09-12 Etex Corporation Methods and products related to the physical conversion of reactive amorphous calcium phosphate
US6139578A (en) 1995-05-19 2000-10-31 Etex Corporation Preparation of cell seeded ceramic compositions
US6287341B1 (en) 1995-05-19 2001-09-11 Etex Corporation Orthopedic and dental ceramic implants
US6312467B1 (en) 1995-07-18 2001-11-06 Iowa State University Research Foundation, Inc. Method of restructuring bone
US6364909B1 (en) 1995-07-18 2002-04-02 Iowa State University Research Foundation, Inc. Method of restructuring bone
WO2002058835A1 (en) * 2001-01-26 2002-08-01 Howmedica Osteonics Corp. Apparatus for mixing a liquid and dry powered components
US20020136696A1 (en) * 1995-05-19 2002-09-26 Dosuk D. Lee Orthopedic and dental ceramic implants
WO2002100331A2 (en) 2001-06-08 2002-12-19 Wyeth Calcium phosphate delivery vehicles for osteoinductive proteins
US6521264B1 (en) * 1998-03-20 2003-02-18 Teknimed Method for preparing a biomaterial based on hydroxyapatite, resulting biomaterial and surgical or dental use
US6541037B1 (en) 1995-05-19 2003-04-01 Etex Corporation Delivery vehicle
US20030065400A1 (en) * 2001-04-12 2003-04-03 Beam Heather Ann Method and apparatus for engineered regenrative biostructures such as hydroxyapatite substrates for bone healing applications
US6547866B1 (en) 2000-10-30 2003-04-15 Howmedica Osteonics Corp. Porous calcium phosphate cement
US6558709B2 (en) 2001-01-05 2003-05-06 Howmedica Osteonics Corp. Calcium phosphate composition and method of preparing same
US20030120351A1 (en) * 2001-12-21 2003-06-26 Etex Corporation Synthesis of calcium phosphates by mechano-chemical process
US6592251B2 (en) 2001-01-26 2003-07-15 Howmedica Osteonics Corp. Cement mixing and dispensing device
US6626912B2 (en) 2000-11-21 2003-09-30 Stryker Trauma Gmbh Process for mixing and dispensing a flowable substance
US20030216777A1 (en) * 2002-05-16 2003-11-20 Yin-Chun Tien Method of enhancing healing of interfacial gap between bone and tendon or ligament
EP1439153A1 (en) * 2003-01-17 2004-07-21 Howmedica Osteonics Corp. Calcium phosphate cement precursors
US20040146543A1 (en) * 2002-08-12 2004-07-29 Shimp Lawrence A. Synthesis of a bone-polymer composite material
US20040175320A1 (en) * 1999-07-14 2004-09-09 Calcitec, Inc. Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface and process for preparing the same
US6793725B2 (en) 2001-01-24 2004-09-21 Ada Foundation Premixed calcium phosphate cement pastes
US20040250729A1 (en) * 2003-06-16 2004-12-16 Jang Bor Z. Fast-setting carbonated hydroxyapatite compositions and uses
US20050027033A1 (en) * 2003-02-04 2005-02-03 David Knaack Polyurethanes for osteoimplants
US20050029701A1 (en) * 2003-08-05 2005-02-10 Cana Lab Corporation Method for making a molded calcium phosphate article
US20050069479A1 (en) * 1999-07-14 2005-03-31 Calcitec, Inc. Method of increasing working time of tetracalcium phosphate cement paste
US20050074415A1 (en) * 2001-01-24 2005-04-07 Ada Foundation Rapid-hardening calcium phosphate cement compositions
US20050076813A1 (en) * 1999-07-14 2005-04-14 Calcitec, Inc. Process for producing fast-setting, bioresorbable calcium phosphate cements
US20050084542A1 (en) * 2003-04-11 2005-04-21 Rosenberg Aron D. Osteoinductive bone material
US20050085922A1 (en) * 2003-10-17 2005-04-21 Shappley Ben R. Shaped filler for implantation into a bone void and methods of manufacture and use thereof
US20050184418A1 (en) * 2004-02-19 2005-08-25 Calcitec, Inc. Method for making a porous calcium phosphate article
US20050209696A1 (en) * 2004-01-16 2005-09-22 Jo-Wen Lin Implant frames for use with settable materials and related methods of use
US6953594B2 (en) 1996-10-10 2005-10-11 Etex Corporation Method of preparing a poorly crystalline calcium phosphate and methods of its use
US20050251267A1 (en) * 2004-05-04 2005-11-10 John Winterbottom Cell permeable structural implant
US20050263928A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US6972130B1 (en) 1996-10-16 2005-12-06 Etex Corporation Bioceramic compositions
US20050268820A1 (en) * 2000-07-13 2005-12-08 Calcitec, Inc. Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface
US20050271742A1 (en) * 1999-07-14 2005-12-08 Calcitec, Inc. Injectable calcium phosphate cements and the preparation and use thereof
US20050268821A1 (en) * 2000-07-13 2005-12-08 Cana Lab Corporation Tetracalcium phosphate (TTCP) with surface whiskers and method of making same
US20050274286A1 (en) * 2000-07-13 2005-12-15 Lin Jiin-Huey C Calcium phosphate cements made from (TTCP) with surface whiskers and process for preparing same
US20050283255A1 (en) * 2001-06-04 2005-12-22 Perry Geremakis Tissue-derived mesh for orthopedic regeneration
US20060015184A1 (en) * 2004-01-30 2006-01-19 John Winterbottom Stacking implants for spinal fusion
WO2006030054A1 (en) 2004-08-12 2006-03-23 Universitat Politècnica De Catalunya Injectable, self-setting calcium phosphate foam
US20060084602A1 (en) * 2004-10-14 2006-04-20 Lynch Samuel E Platelet-derived growth factor compositions and methods of use thereof
US20060086287A1 (en) * 2002-06-20 2006-04-27 Hakan Engqvist System for a dental filling material or implant material, and powdered material, hydration liquid, implant material and method of achieving bonding
US20060216323A1 (en) * 2003-02-04 2006-09-28 David Knaack Polyurethanes for osteoimplants
US20060225621A1 (en) * 2005-04-08 2006-10-12 Howmedica Leibinger Inc. Injectable calcium phosphate cement
US20060225620A1 (en) * 2005-04-08 2006-10-12 Howmedical Leibinger, Inc. D/B/A A Corporation Of Stryker Leibinger Micro Implants Calcium phosphate cement
US20060240121A1 (en) * 1996-10-16 2006-10-26 Lee Dosuk D Chemotherapeutic composition using nanocrystalline calcium phosphate paste
US7150879B1 (en) 1995-05-19 2006-12-19 Etex Corporation Neutral self-setting calcium phosphate paste
US20070160958A1 (en) * 2004-09-29 2007-07-12 Belikov Andrei V Method and apparatus for tooth rejuvenation and hard tissue modification
US20070183984A1 (en) * 2006-02-03 2007-08-09 Wm. Wrigley Jr. Company Calcium phosphate salts in oral compositions suitable as a tooth remineralizing agent
US20070191963A1 (en) * 2002-12-12 2007-08-16 John Winterbottom Injectable and moldable bone substitute materials
US20080028992A1 (en) * 2004-04-15 2008-02-07 Lee Dosuk D Delayed-Setting Calcium Phosphate Pastes
US20080069852A1 (en) * 2006-01-19 2008-03-20 Shimp Lawrence A Porous osteoimplant
US20080109003A1 (en) * 2006-11-08 2008-05-08 Peckham Steven M Methods of employing calcium phosphate cement compositions and osteoinductive proteins to effect vertebrae interbody fusion absent an interbody device
US20080280260A1 (en) * 2004-09-29 2008-11-13 Belikov Andrei V Method and Apparatus for Tooth Rejuvenation and Hard Tissue Modification
US20090061002A1 (en) * 2007-09-05 2009-03-05 Venbrocks Rudolf A Calcium phospate based delivery of growth and differentiation factors to compromised bone
US7517539B1 (en) 1996-10-16 2009-04-14 Etex Corporation Method of preparing a poorly crystalline calcium phosphate and methods of its use
US20100112032A1 (en) * 2008-10-30 2010-05-06 Guelcher Scott A Bone/Polyurethane Composites and Methods Thereof
US20100121459A1 (en) * 2008-11-12 2010-05-13 Garigapati Venkat R Tetra Calcium Phosphate Based Organophosphorus Compositions and Methods
US20100212545A1 (en) * 2001-01-24 2010-08-26 Ada Foundation Calcium-containing restoration materials
EP2374471A1 (en) 2003-09-12 2011-10-12 Wyeth LLC Injectable hardenable calcium phosphate pastes for delivery of osteogenic proteins
US8147860B2 (en) 2005-12-06 2012-04-03 Etex Corporation Porous calcium phosphate bone material
WO2012129234A1 (en) 2011-03-21 2012-09-27 Endo Pharmaceuticals Inc. Urethral anastomosis device and method
US20130260341A1 (en) * 2010-10-08 2013-10-03 Wilson Sibbett Composition
US20140046454A1 (en) * 2008-07-25 2014-02-13 Smith & Nephew, Inc. Fracture fixation systems
WO2014047061A1 (en) 2012-09-18 2014-03-27 Endo Pharmaceuticals Inc. Urethral anastomosis device
US8765189B2 (en) 2011-05-13 2014-07-01 Howmedica Osteonic Corp. Organophosphorous and multivalent metal compound compositions and methods
WO2014159186A1 (en) 2013-03-14 2014-10-02 Endo Pharmaceuticals Inc. Urethral anastomosis device
US9265857B2 (en) 2010-05-11 2016-02-23 Howmedica Osteonics Corp. Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods
WO2016140782A1 (en) 2015-03-04 2016-09-09 Modern Ideas LLC Stabilized calcium phosphate and methods of forming same
US9801946B2 (en) 2008-10-30 2017-10-31 Vanderbilt University Synthetic polyurethane composite
WO2018022553A1 (en) 2016-07-25 2018-02-01 Cerapedics, Inc. Peptide-coated calcium phosphate particles
US9956314B2 (en) 2016-01-26 2018-05-01 Modern Ideas LLC Adhesive for use with bone and bone-like structures
US10182973B2 (en) 2010-11-10 2019-01-22 Stryker European Holdings I, Llc Polymeric bone foam composition and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2008010A1 (en) * 1970-02-20 1971-08-26 Schneider, & Co , 5020 Frechen Bone and teeth substitutes
US3679360A (en) * 1970-06-26 1972-07-25 Nasa Process for the preparation of brushite crystals
US3787900A (en) * 1971-06-09 1974-01-29 Univ Iowa State Res Found Artificial bone or tooth prosthesis material
US3913229A (en) * 1974-02-25 1975-10-21 Miter Inc Dental treatments
US3929971A (en) * 1973-03-30 1975-12-30 Research Corp Porous biomaterials and method of making same
US4097935A (en) * 1976-07-21 1978-07-04 Sterling Drug Inc. Hydroxylapatite ceramic
US4497075A (en) * 1979-10-08 1985-02-05 Mitsubishi Mining & Cement Co., Ltd. Filler for filling in defects or hollow portions of bones
US4599085A (en) * 1979-07-11 1986-07-08 Neodontics, Inc. Bone implant member for prostheses and bone connecting elements and process for the production thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2008010A1 (en) * 1970-02-20 1971-08-26 Schneider, & Co , 5020 Frechen Bone and teeth substitutes
US3679360A (en) * 1970-06-26 1972-07-25 Nasa Process for the preparation of brushite crystals
US3787900A (en) * 1971-06-09 1974-01-29 Univ Iowa State Res Found Artificial bone or tooth prosthesis material
US3929971A (en) * 1973-03-30 1975-12-30 Research Corp Porous biomaterials and method of making same
US3913229A (en) * 1974-02-25 1975-10-21 Miter Inc Dental treatments
US4097935A (en) * 1976-07-21 1978-07-04 Sterling Drug Inc. Hydroxylapatite ceramic
US4599085A (en) * 1979-07-11 1986-07-08 Neodontics, Inc. Bone implant member for prostheses and bone connecting elements and process for the production thereof
US4497075A (en) * 1979-10-08 1985-02-05 Mitsubishi Mining & Cement Co., Ltd. Filler for filling in defects or hollow portions of bones

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
Briner et al., "Significance of Enamel Remineralization," J. Dent. Res. 11 (Supp. 1): 59-84 (1974).
Briner et al., Significance of Enamel Remineralization, J. Dent. Res. 11 (Supp. 1): 59 84 (1974). *
Brown and Chow, Singular Points in the Chemistry of Teeth, IADR Abstract No. 120 (1975). *
Brown et al., "Crystallography of Tetracalcium Phosphate," J. Res. Nat. Bur. Stands. 69A: 547-551 (1965).
Brown et al., Crystallography of Tetracalcium Phosphate, J. Res. Nat. Bur. Stands. 69A: 547 551 (1965). *
Brown, Solubilities of Phosphates and Other Sparingly Soluble Compounds, from Griffith et al., Environmental Phosphorous Handbook (John Wiley & Sons, New York 1973). *
Driskell et al., "Development of Ceramic and Ceramic Composite Devices for Maxillofacial Application," J. Biomed. Mat. Res. 6: 345-361 (1972).
Driskell et al., Development of Ceramic and Ceramic Composite Devices for Maxillofacial Application, J. Biomed. Mat. Res. 6: 345 361 (1972). *
Gelhard et al., "Rehardening of Artificial Enamel Lesions in Vvvo," Caries Res. 13: 80-83 (1979).
Gelhard et al., Rehardening of Artificial Enamel Lesions in Vvvo, Caries Res. 13: 80 83 (1979). *
Gregory et al., "Solubility of --Ca3 (PO4)2 in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25 and 37[C," J. Res. Nat. Bur. Stand. 78A: 667-674 (1974).
Gregory et al., "Solubility of CaHPO4.2H2 O in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25, and 37.5[C.," J. Res. Nat. Bur. Stand. 74A: 461-475 (1970).
Gregory et al., Solubility of Ca 3 (PO 4 ) 2 in the System Ca(OH) 2 H 3 PO 4 H 2 O at 5, 15, 25 and 37 C, J. Res. Nat. Bur. Stand. 78A: 667 674 (1974). *
Gregory et al., Solubility of CaHPO 4 .2H 2 O in the System Ca(OH) 2 H 3 PO 4 H 2 O at 5, 15, 25, and 37.5 C., J. Res. Nat. Bur. Stand. 74A: 461 475 (1970). *
Guide to Dental Materials and Devices, 7th Ed. (ADA 1974), pp. 49 66. *
Guide to Dental Materials and Devices, 7th Ed. (ADA 1974), pp. 49-66.
Hiatt et al., "Root Preparation I. Obturation of Dentinal Tubules in Treatment of Root Hyper-sensitivity," J. Periodontal. 43: 373-380 (1972).
Hiatt et al., Root Preparation I. Obturation of Dentinal Tubules in Treatment of Root Hyper sensitivity, J. Periodontal. 43: 373 380 (1972). *
LeGeros et al., Apatitic Calcium Phosphates: Possible Dental Restorative Materials, IADR Abstract No. 1482 (1982). *
Levine, "Remineralisation of Natural Carious Lesions of Enamel in vitro," Brit. Dent. J., 137: 132-134 (1974).
Levine, Remineralisation of Natural Carious Lesions of Enamel in vitro, Brit. Dent. J., 137: 132 134 (1974). *
McDowell et al., "Solubility of Ca5 (PO4)3 OH in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25 and 37.5[C," J. Res. Nat. Bur. Stand. 81A: 273-281 (1977).
McDowell et al., "Solubility Study of Calcium Hydrogen Phosphate. Ion Pair Formation," Inorg. Chem. 10: 1638-1643 (1971).
McDowell et al., Solubility of Ca 5 (PO 4 ) 3 OH in the System Ca(OH) 2 H 3 PO 4 H 2 O at 5, 15, 25 and 37.5 C, J. Res. Nat. Bur. Stand. 81A: 273 281 (1977). *
McDowell et al., Solubility Study of Calcium Hydrogen Phosphate. Ion Pair Formation, Inorg. Chem. 10: 1638 1643 (1971). *
Moreno et al., "Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octacalcium Phosphate," Soil Sci. Soc. Am. Proc. 21: 99-102 (1960).
Moreno et al., Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octacalcium Phosphate, Soil Sci. Soc. Am. Proc. 21: 99 102 (1960). *
Patel et al., "Solubility of CaHPO4.2H2 O in the Quaternary System Ca(OH)2 --H3 PO4 --NaCl--H2 O at 25[C," J. Rest. Nat. Bur. Stands. 78A: 675-681 (1974).
Patel et al., Solubility of CaHPO 4 .2H 2 O in the Quaternary System Ca(OH) 2 H 3 PO 4 NaCl H 2 O at 25 C, J. Rest. Nat. Bur. Stands. 78A: 675 681 (1974). *
Pickel et al., "The Effect of a Chewing Gum Containing Dicalcium Phosphate on Salivary Calcium and Phosphate," Ala J. Med. Sci. 2: 286-287 (1965).
Pickel et al., The Effect of a Chewing Gum Containing Dicalcium Phosphate on Salivary Calcium and Phosphate, Ala J. Med. Sci. 2: 286 287 (1965). *
Silverstone, "Remineralization Phenomena," Caries Res. 11 (Supp. 1): 59-84 (1977).
Silverstone, Remineralization Phenomena, Caries Res. 11 (Supp. 1): 59 84 (1977). *
Zimmerman et al., The Effect of Remineralization Fluids on Carious Lesions in vitro, IADR Abstract No. 282 (1979). *

Cited By (226)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900254A (en) 1988-04-20 1999-05-04 Norian Corporation Carbonated hydroxyapatite compositions and uses
US6002065A (en) 1988-04-20 1999-12-14 Norian Corporation Kits for preparing calcium phosphate minerals
US6005162A (en) 1988-04-20 1999-12-21 Norian Corporation Methods of repairing bone
US5068100A (en) * 1989-03-09 1991-11-26 The Procter & Gamble Company Anticalculus compositions
US5437857A (en) * 1989-05-24 1995-08-01 American Dental Association Health Foundation Methods and compositions for mineralizing and fluoridating calcified tissues
US5460803A (en) * 1989-05-24 1995-10-24 American Dental Association Health Foundation Methods and compositions for mineralizing and fluoridating calcified tissues
US5534244A (en) * 1989-05-24 1996-07-09 Tung; Ming S. Methods and compositions for mineralizing and/or fluoridating calcified tissues with amorphous strontium compounds
US5782971A (en) * 1991-06-28 1998-07-21 Norian Corporation Calcium phosphate cements comprising amorophous calcium phosphate
US5258044A (en) * 1992-01-30 1993-11-02 Etex Corporation Electrophoretic deposition of calcium phosphate material on implants
US6334891B1 (en) 1992-10-16 2002-01-01 Norian Corporation Paste compositions capable of setting into carbonated apatite
US5542973A (en) * 1993-03-12 1996-08-06 The American Dental Association Health Foundation Calcium phosphate hydroxyapatite precursor and methods for making and using the same
US5545254A (en) * 1993-03-12 1996-08-13 The American Dental Association Health Foundation Calcium phosphate hydroxyapatite precursor and methods for making and using the same
US5522893A (en) * 1993-03-12 1996-06-04 American Dental Association Health Foundation Calcium phosphate hydroxyapatite precursor and methods for making and using the same
US5427768A (en) * 1993-06-23 1995-06-27 American Dental Association Health Foundation Carbonated solutions for treating, mineralizing and fluoridating calcified tissues and methods for their use
US5476647A (en) * 1993-09-13 1995-12-19 American Dental Association Health Foundation Complex calcium and fluoride containing mouth rinses, dentifrices, and chewable tablets
US5525148A (en) * 1993-09-24 1996-06-11 American Dental Association Health Foundation Self-setting calcium phosphate cements and methods for preparing and using them
US5997624A (en) 1993-09-24 1999-12-07 American Dental Association Health Foundation Self-setting calcium phosphate cements and methods for preparing and using them
US5954867A (en) 1993-09-24 1999-09-21 American Dental Health Foundation Association Self setting calcium phosphate cements and methods for preparing and using them
US5496399A (en) * 1994-08-23 1996-03-05 Norian Corporation Storage stable calcium phosphate cements
US5550172A (en) * 1995-02-07 1996-08-27 Ethicon, Inc. Utilization of biocompatible adhesive/sealant materials for securing surgical devices
US6331312B1 (en) 1995-05-19 2001-12-18 Etex Corporation Bioresorbable ceramic composites
US6214368B1 (en) 1995-05-19 2001-04-10 Etex Corporation Bone substitution material and a method of its manufacture
US5683461A (en) * 1995-05-19 1997-11-04 Etex Corporation Synthesis of reactive amorphous calcium phosphates
US5676976A (en) * 1995-05-19 1997-10-14 Etex Corporation Synthesis of reactive amorphous calcium phosphates
US5650176A (en) * 1995-05-19 1997-07-22 Etex Corporation Synthesis of reactive amorphous calcium phosphates
US6027742A (en) 1995-05-19 2000-02-22 Etex Corporation Bioresorbable ceramic composites
US20020136696A1 (en) * 1995-05-19 2002-09-26 Dosuk D. Lee Orthopedic and dental ceramic implants
US6117456A (en) 1995-05-19 2000-09-12 Etex Corporation Methods and products related to the physical conversion of reactive amorphous calcium phosphate
US6139578A (en) 1995-05-19 2000-10-31 Etex Corporation Preparation of cell seeded ceramic compositions
US6541037B1 (en) 1995-05-19 2003-04-01 Etex Corporation Delivery vehicle
US6277151B1 (en) 1995-05-19 2001-08-21 Etex Corporation Cartilage growth from cell seeded ceramic compositions
US6287341B1 (en) 1995-05-19 2001-09-11 Etex Corporation Orthopedic and dental ceramic implants
EP1787954A3 (en) * 1995-05-19 2011-02-23 Etex Corporation Bone substitution material and a method of the manufacture
WO1996036562A1 (en) * 1995-05-19 1996-11-21 Etex Corporation Bone substitution material and a method of its manufacture
US7150879B1 (en) 1995-05-19 2006-12-19 Etex Corporation Neutral self-setting calcium phosphate paste
US6544290B1 (en) 1995-05-19 2003-04-08 Etex Corporation Cell seeding of ceramic compositions
WO1996039202A1 (en) * 1995-06-06 1996-12-12 Osteogenics Inc. Biocompatible hydroxyapatite formulations and uses therefor
US6083518A (en) 1995-06-20 2000-07-04 Bioglan Ab Composition comprising an active agent dissolved in a glass-forming carrier and a process for the preparation thereof
US6312467B1 (en) 1995-07-18 2001-11-06 Iowa State University Research Foundation, Inc. Method of restructuring bone
US6364909B1 (en) 1995-07-18 2002-04-02 Iowa State University Research Foundation, Inc. Method of restructuring bone
US6719793B2 (en) 1995-07-18 2004-04-13 Iowa State University Research Foundation, Inc. Method of restructuring bone
US5783217A (en) * 1995-11-07 1998-07-21 Etex Corporation Low temperature calcium phosphate apatite and a method of its manufacture
US6953594B2 (en) 1996-10-10 2005-10-11 Etex Corporation Method of preparing a poorly crystalline calcium phosphate and methods of its use
US7517539B1 (en) 1996-10-16 2009-04-14 Etex Corporation Method of preparing a poorly crystalline calcium phosphate and methods of its use
US8728536B2 (en) 1996-10-16 2014-05-20 Etex Corporation Chemotherapeutic composition using nanocrystalline calcium phosphate paste
US6972130B1 (en) 1996-10-16 2005-12-06 Etex Corporation Bioceramic compositions
US20060240121A1 (en) * 1996-10-16 2006-10-26 Lee Dosuk D Chemotherapeutic composition using nanocrystalline calcium phosphate paste
US6521264B1 (en) * 1998-03-20 2003-02-18 Teknimed Method for preparing a biomaterial based on hydroxyapatite, resulting biomaterial and surgical or dental use
US20030108589A1 (en) * 1998-03-20 2003-06-12 Teknimed Method for preparing a biomaterial based on hydroxyapatite, resulting biomaterial and surgical or dental use
US7258735B2 (en) 1999-07-14 2007-08-21 Calcitec, Inc. Process for affecting the setting and working time of bioresorbable calcium phosphate cements
US20050274289A1 (en) * 1999-07-14 2005-12-15 Lin Jiin-Huey C Process for affecting the setting and working time of, bioresorbable calcium phosphate cements
US7279038B2 (en) 1999-07-14 2007-10-09 Calcitec, Inc. Process for affecting the setting and working time of bioresorbable calcium phosphate cements
US7270705B2 (en) 1999-07-14 2007-09-18 Jiin-Huey Chern Lin Method of increasing working time of tetracalcium phosphate cement paste
US20060011099A1 (en) * 1999-07-14 2006-01-19 Lin Jiin-Huey C Process for affecting the setting and working time of bioresorbable calcium phosphate cements
US20060011100A1 (en) * 1999-07-14 2006-01-19 Lin Jiin-Huey C Process for affecting the setting and working time of bioresorbable calcium phosphate cements
US20040175320A1 (en) * 1999-07-14 2004-09-09 Calcitec, Inc. Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface and process for preparing the same
US20050279256A1 (en) * 1999-07-14 2005-12-22 Lin Jiin-Huey C Process for affecting the setting and working time of bioresorbable calcium phosphate cements
US7169373B2 (en) 1999-07-14 2007-01-30 Calcitec, Inc. Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface and process for preparing the same
US7066999B2 (en) 1999-07-14 2006-06-27 Calcitec, Inc. Process for producing fast-setting, bioresorbable calcium phosphate cements
US20050268819A1 (en) * 1999-07-14 2005-12-08 Cana Lab Corporation Injectable calcium phosphate cements and the preparation and use thereof
US20050271742A1 (en) * 1999-07-14 2005-12-08 Calcitec, Inc. Injectable calcium phosphate cements and the preparation and use thereof
US20050069479A1 (en) * 1999-07-14 2005-03-31 Calcitec, Inc. Method of increasing working time of tetracalcium phosphate cement paste
US7258734B2 (en) 1999-07-14 2007-08-21 Calcitec, Inc. Injectable calcium phosphate cements and the preparation and use thereof
US20050076813A1 (en) * 1999-07-14 2005-04-14 Calcitec, Inc. Process for producing fast-setting, bioresorbable calcium phosphate cements
US7201797B2 (en) 1999-07-14 2007-04-10 Calcitec, Inc. Process for affecting the setting and working time of, bioresorbable calcium phosphate cements
US7186294B2 (en) 1999-07-14 2007-03-06 Calcitec, Inc. Process for affecting the setting and working time of bioresorbable calcium phosphate cements
US20050279252A1 (en) * 2000-07-13 2005-12-22 Cana Lab Corporation Tetracalcium phosphate (TTCP) with surface whiskers and method of making same
US7976874B2 (en) 2000-07-13 2011-07-12 Jiin-Huey Chern Lin Injectable calcium phosphate cements and the preparation and use thereof
US20050271740A1 (en) * 2000-07-13 2005-12-08 Cana Lab Corporation Injectable calcium phosphate cements and the preparation and use thereof
US7160382B2 (en) 2000-07-13 2007-01-09 Calcitec, Inc. Calcium phosphate cements made from (TTCP) with surface whiskers and process for preparing same
US7160381B2 (en) 2000-07-13 2007-01-09 Calcitec, Inc. Tetracalcium phosphate (TTCP) with surface whiskers and method of making same
US20050268821A1 (en) * 2000-07-13 2005-12-08 Cana Lab Corporation Tetracalcium phosphate (TTCP) with surface whiskers and method of making same
US7182928B2 (en) 2000-07-13 2007-02-27 Calcitec, Inc. Calcium phosphate cements made from (TTCP) with surface whiskers and process for preparing same
US20050268820A1 (en) * 2000-07-13 2005-12-08 Calcitec, Inc. Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface
US20050271741A1 (en) * 2000-07-13 2005-12-08 Cana Lab Corporation Injectable calcium phosphate cements and the preparation and use thereof
US7214265B2 (en) 2000-07-13 2007-05-08 Calcitec, Inc. Injectable calcium phosphate cements and the preparation and use thereof
US7204876B2 (en) 2000-07-13 2007-04-17 Calcitec, Inc. Calcium phosphate cements made from (TTCP) with surface whiskers and process for preparing same
US7156915B2 (en) 2000-07-13 2007-01-02 Calcitec, Inc. Tetracalcium phosphate (TTCP) with surface whiskers and method of making same
US20050274282A1 (en) * 2000-07-13 2005-12-15 Lin Jiin-Huey C Calcium phosphate cements made from (TTCP) with surface whiskers and process for preparing same
US20050274287A1 (en) * 2000-07-13 2005-12-15 Lin Jiin-Huey C Calcium phosphate cements made from (TTCP) with surface whiskers and process for preparing same
US20050274286A1 (en) * 2000-07-13 2005-12-15 Lin Jiin-Huey C Calcium phosphate cements made from (TTCP) with surface whiskers and process for preparing same
US6547866B1 (en) 2000-10-30 2003-04-15 Howmedica Osteonics Corp. Porous calcium phosphate cement
US6670293B2 (en) 2000-10-30 2003-12-30 Howmedica Osteonics Corp. Porous calcium phosphate cement
US6626912B2 (en) 2000-11-21 2003-09-30 Stryker Trauma Gmbh Process for mixing and dispensing a flowable substance
US6849275B2 (en) 2001-01-05 2005-02-01 Howmedica Osteonics Corp. Calcium phosphate composition and method of preparing same
US6558709B2 (en) 2001-01-05 2003-05-06 Howmedica Osteonics Corp. Calcium phosphate composition and method of preparing same
US8282396B2 (en) 2001-01-24 2012-10-09 Ada Foundation Calcium-containing restoration materials
US6793725B2 (en) 2001-01-24 2004-09-21 Ada Foundation Premixed calcium phosphate cement pastes
US20050074415A1 (en) * 2001-01-24 2005-04-07 Ada Foundation Rapid-hardening calcium phosphate cement compositions
US20100212545A1 (en) * 2001-01-24 2010-08-26 Ada Foundation Calcium-containing restoration materials
US7294187B2 (en) * 2001-01-24 2007-11-13 Ada Foundation Rapid-hardening calcium phosphate cement compositions
WO2002058835A1 (en) * 2001-01-26 2002-08-01 Howmedica Osteonics Corp. Apparatus for mixing a liquid and dry powered components
US6494611B2 (en) 2001-01-26 2002-12-17 Howmedica Osteonics Corp. Apparatus for mixing a liquid and dry powdered components
US6592251B2 (en) 2001-01-26 2003-07-15 Howmedica Osteonics Corp. Cement mixing and dispensing device
US7122057B2 (en) 2001-04-12 2006-10-17 Therics, Llc Method and apparatus for engineered regenerative biostructures such as hydroxyapatite substrates for bone healing applications
US20030065400A1 (en) * 2001-04-12 2003-04-03 Beam Heather Ann Method and apparatus for engineered regenrative biostructures such as hydroxyapatite substrates for bone healing applications
US8740987B2 (en) 2001-06-04 2014-06-03 Warsaw Orthopedic, Inc. Tissue-derived mesh for orthopedic regeneration
US20050283255A1 (en) * 2001-06-04 2005-12-22 Perry Geremakis Tissue-derived mesh for orthopedic regeneration
EP2260860A1 (en) 2001-06-08 2010-12-15 Wyeth LLC Calcium phosphate delivery vehicles for osteoinduktive proteins
WO2002100331A2 (en) 2001-06-08 2002-12-19 Wyeth Calcium phosphate delivery vehicles for osteoinductive proteins
US7686239B2 (en) 2001-12-21 2010-03-30 Etex Corportation Synthesis of calcium phosphates by mechano-chemical process
US7318841B2 (en) * 2001-12-21 2008-01-15 Etex Corporation Synthesis of calcium phosphates by mechano-chemical process
US20030120351A1 (en) * 2001-12-21 2003-06-26 Etex Corporation Synthesis of calcium phosphates by mechano-chemical process
US20050147551A1 (en) * 2001-12-21 2005-07-07 Etex Corporation Synthesis of calcium phosphates by mechano-chemical process
US20030216777A1 (en) * 2002-05-16 2003-11-20 Yin-Chun Tien Method of enhancing healing of interfacial gap between bone and tendon or ligament
US7699925B2 (en) * 2002-06-20 2010-04-20 Doxa Ab System for a dental filling material or implant material, and powdered material, hydration liquid, implant material and method of achieving bonding
US20060086287A1 (en) * 2002-06-20 2006-04-27 Hakan Engqvist System for a dental filling material or implant material, and powdered material, hydration liquid, implant material and method of achieving bonding
US8771719B2 (en) 2002-08-12 2014-07-08 Warsaw Orthopedic, Inc. Synthesis of a bone-polymer composite material
US20040146543A1 (en) * 2002-08-12 2004-07-29 Shimp Lawrence A. Synthesis of a bone-polymer composite material
US20070191963A1 (en) * 2002-12-12 2007-08-16 John Winterbottom Injectable and moldable bone substitute materials
US9333080B2 (en) 2002-12-12 2016-05-10 Warsaw Orthopedic, Inc. Injectable and moldable bone substitute materials
US9107751B2 (en) 2002-12-12 2015-08-18 Warsaw Orthopedic, Inc. Injectable and moldable bone substitute materials
US10080661B2 (en) 2002-12-12 2018-09-25 Warsaw Orthopedic, Inc. Injectable and moldable bone substitute materials
EP1439153A1 (en) * 2003-01-17 2004-07-21 Howmedica Osteonics Corp. Calcium phosphate cement precursors
US7985414B2 (en) 2003-02-04 2011-07-26 Warsaw Orthopedic, Inc. Polyurethanes for osteoimplants
US8002843B2 (en) 2003-02-04 2011-08-23 Warsaw Orthopedic, Inc. Polyurethanes for osteoimplants
US9993579B2 (en) 2003-02-04 2018-06-12 Warsaw Orthopedic, Inc. Polyurethanes for osteoimplants
US9789223B2 (en) 2003-02-04 2017-10-17 Warsaw Orthopedic, Inc. Polyurethanes for osteoimplants
US9327052B2 (en) 2003-02-04 2016-05-03 Warsaw Orthopedic, Inc. Polyurethanes for osteoimplants
US20050027033A1 (en) * 2003-02-04 2005-02-03 David Knaack Polyurethanes for osteoimplants
US8425893B2 (en) 2003-02-04 2013-04-23 Warsaw Orthopedic, Inc. Polyurethanes for osteoimplants
US20060216323A1 (en) * 2003-02-04 2006-09-28 David Knaack Polyurethanes for osteoimplants
US10322209B2 (en) 2003-02-04 2019-06-18 Warsaw Orthopedic, Inc. Polyurethanes for osteoimplants
US20050084542A1 (en) * 2003-04-11 2005-04-21 Rosenberg Aron D. Osteoinductive bone material
US8221781B2 (en) 2003-04-11 2012-07-17 Etex Corporation Osteoinductive bone material
US8454988B2 (en) 2003-04-11 2013-06-04 Etex Corporation Osteoinductive bone material
US20080188946A1 (en) * 2003-04-11 2008-08-07 Etex Corporation Osteoinductive bone material
US20040250729A1 (en) * 2003-06-16 2004-12-16 Jang Bor Z. Fast-setting carbonated hydroxyapatite compositions and uses
US20050029701A1 (en) * 2003-08-05 2005-02-10 Cana Lab Corporation Method for making a molded calcium phosphate article
US7118705B2 (en) 2003-08-05 2006-10-10 Calcitec, Inc. Method for making a molded calcium phosphate article
EP2374471A1 (en) 2003-09-12 2011-10-12 Wyeth LLC Injectable hardenable calcium phosphate pastes for delivery of osteogenic proteins
US20050085922A1 (en) * 2003-10-17 2005-04-21 Shappley Ben R. Shaped filler for implantation into a bone void and methods of manufacture and use thereof
EP2266634A2 (en) 2004-01-16 2010-12-29 Ada Foundation Rapid-hardening calcium phosphate cement compositions
US20050209696A1 (en) * 2004-01-16 2005-09-22 Jo-Wen Lin Implant frames for use with settable materials and related methods of use
US8012210B2 (en) 2004-01-16 2011-09-06 Warsaw Orthopedic, Inc. Implant frames for use with settable materials and related methods of use
US20060015184A1 (en) * 2004-01-30 2006-01-19 John Winterbottom Stacking implants for spinal fusion
US20050184417A1 (en) * 2004-02-19 2005-08-25 Cana Lab Corporation Method for making a porous calcium phosphate article
US7097793B2 (en) 2004-02-19 2006-08-29 Calcitec, Inc. Method for making a porous calcium phosphate article
US20050186449A1 (en) * 2004-02-19 2005-08-25 Calcitec, Inc. Method for making a porous calcium phosphate article
US7163651B2 (en) 2004-02-19 2007-01-16 Calcitec, Inc. Method for making a porous calcium phosphate article
US20050186353A1 (en) * 2004-02-19 2005-08-25 Calcitec, Inc. Method for making a porous calcium phosphate article
US7083750B2 (en) 2004-02-19 2006-08-01 Calcitec, Inc. Method for making a porous calcium phosphate article
US20050186354A1 (en) * 2004-02-19 2005-08-25 Lin Jiin-Huey C. Method for making a porous calcium phosphate article
US7119038B2 (en) 2004-02-19 2006-10-10 Calcitec, Inc. Method for making a porous calcium phosphate article
US20050184418A1 (en) * 2004-02-19 2005-08-25 Calcitec, Inc. Method for making a porous calcium phosphate article
US8216359B2 (en) 2004-04-15 2012-07-10 Etex Corporation Delayed-setting calcium phosphate pastes
US20080028992A1 (en) * 2004-04-15 2008-02-07 Lee Dosuk D Delayed-Setting Calcium Phosphate Pastes
US20050251267A1 (en) * 2004-05-04 2005-11-10 John Winterbottom Cell permeable structural implant
US20050263930A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050267588A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7115222B2 (en) 2004-05-25 2006-10-03 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7118695B2 (en) 2004-05-25 2006-10-10 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050263927A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050263922A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050263931A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050267592A1 (en) * 2004-05-25 2005-12-01 Jiin-Huey Chern Lin Dual function prosthetic bone implant and method for preparing the same
US7182895B2 (en) 2004-05-25 2007-02-27 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050267587A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7097792B2 (en) 2004-05-25 2006-08-29 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7083749B2 (en) 2004-05-25 2006-08-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050263921A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050263920A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7157027B2 (en) 2004-05-25 2007-01-02 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7122140B2 (en) 2004-05-25 2006-10-17 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7122138B2 (en) 2004-05-25 2006-10-17 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7122139B2 (en) 2004-05-25 2006-10-17 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050263929A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050267604A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US6994726B2 (en) 2004-05-25 2006-02-07 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7128856B2 (en) 2004-05-25 2006-10-31 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US20050263928A1 (en) * 2004-05-25 2005-12-01 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
WO2006030054A1 (en) 2004-08-12 2006-03-23 Universitat Politècnica De Catalunya Injectable, self-setting calcium phosphate foam
US20070160958A1 (en) * 2004-09-29 2007-07-12 Belikov Andrei V Method and apparatus for tooth rejuvenation and hard tissue modification
US7985072B2 (en) 2004-09-29 2011-07-26 Rejuvedent Llc Method and apparatus for tooth rejuvenation and hard tissue modification
US20080280260A1 (en) * 2004-09-29 2008-11-13 Belikov Andrei V Method and Apparatus for Tooth Rejuvenation and Hard Tissue Modification
EP3170505A1 (en) 2004-10-14 2017-05-24 BioMimetic Therapeutics, LLC Platelet-derived growth factor compositions and method of use thereof
EP2308500A1 (en) 2004-10-14 2011-04-13 Biomimetic Therapeutics, Inc. Platelet-derived growth factor compositions and methods of use thereof
EP2308501A1 (en) 2004-10-14 2011-04-13 Biomimetic Therapeutics, Inc. Platelet-derived growth factor compositions and methods of use thereof
EP2223698A1 (en) 2004-10-14 2010-09-01 Biomimetic Therapeutics, Inc. Platelet-derived growth factor compositions and method of use thereof
US20060084602A1 (en) * 2004-10-14 2006-04-20 Lynch Samuel E Platelet-derived growth factor compositions and methods of use thereof
WO2006044334A2 (en) 2004-10-14 2006-04-27 Biomimetic Therapeutics, Inc. Platelet-derived growth factor compositions and methods of use thereof
US9545377B2 (en) 2004-10-14 2017-01-17 Biomimetic Therapeutics, Llc Platelet-derived growth factor compositions and methods of use thereof
US7473678B2 (en) 2004-10-14 2009-01-06 Biomimetic Therapeutics, Inc. Platelet-derived growth factor compositions and methods of use thereof
US11571497B2 (en) 2004-10-14 2023-02-07 Biomimetic Therapeutics, Llc Platelet-derived growth factor compositions and methods of use thereof
US11364325B2 (en) 2004-10-14 2022-06-21 Biomimetic Therapeutics, Llc Platelet-derived growth factor compositions and methods of use thereof
US11318230B2 (en) 2004-10-14 2022-05-03 Biomimetic Therapeutics, Llc Platelet-derived growth factor compositions and methods of use thereof
US7459018B2 (en) 2005-04-08 2008-12-02 Howmedica Leibinger Inc. Injectable calcium phosphate cement
US7892346B2 (en) 2005-04-08 2011-02-22 Howmedica Osteonics Corp. Injectable calcium phosphate cement
US20090158964A1 (en) * 2005-04-08 2009-06-25 Howmedica Leibinger Inc. Injectable calcium phosphate cement
US7416602B2 (en) 2005-04-08 2008-08-26 Howmedica Leibinger, Inc. Calcium phosphate cement
US20060225620A1 (en) * 2005-04-08 2006-10-12 Howmedical Leibinger, Inc. D/B/A A Corporation Of Stryker Leibinger Micro Implants Calcium phosphate cement
US20100095870A1 (en) * 2005-04-08 2010-04-22 Insley Gerard M Injectable calcium phosphate cement
US20060225621A1 (en) * 2005-04-08 2006-10-12 Howmedica Leibinger Inc. Injectable calcium phosphate cement
US7892347B2 (en) 2005-04-08 2011-02-22 Howmedica Osteonics Corp. Injectable calcium phosphate cement
US8545858B2 (en) 2005-12-06 2013-10-01 Etex Corporation Porous calcium phosphate bone material
US8147860B2 (en) 2005-12-06 2012-04-03 Etex Corporation Porous calcium phosphate bone material
US20080069852A1 (en) * 2006-01-19 2008-03-20 Shimp Lawrence A Porous osteoimplant
US9034356B2 (en) 2006-01-19 2015-05-19 Warsaw Orthopedic, Inc. Porous osteoimplant
US20070183984A1 (en) * 2006-02-03 2007-08-09 Wm. Wrigley Jr. Company Calcium phosphate salts in oral compositions suitable as a tooth remineralizing agent
US20080109003A1 (en) * 2006-11-08 2008-05-08 Peckham Steven M Methods of employing calcium phosphate cement compositions and osteoinductive proteins to effect vertebrae interbody fusion absent an interbody device
US8388626B2 (en) 2006-11-08 2013-03-05 Warsaw Orthopedic, Inc. Methods of employing calcium phosphate cement compositions and osteoinductive proteins to effect vertebrae interbody fusion absent an interbody device
US20090061002A1 (en) * 2007-09-05 2009-03-05 Venbrocks Rudolf A Calcium phospate based delivery of growth and differentiation factors to compromised bone
EP2033598A1 (en) 2007-09-05 2009-03-11 DePuy-Biotech Gmbh Calcium phosphate based delivery of growth and differentiation factors to compromised bone
US20140046454A1 (en) * 2008-07-25 2014-02-13 Smith & Nephew, Inc. Fracture fixation systems
US9333276B2 (en) 2008-10-30 2016-05-10 Vanderbilt University Bone/polyurethane composites and methods thereof
US9801946B2 (en) 2008-10-30 2017-10-31 Vanderbilt University Synthetic polyurethane composite
US20100112032A1 (en) * 2008-10-30 2010-05-06 Guelcher Scott A Bone/Polyurethane Composites and Methods Thereof
US8273803B2 (en) 2008-11-12 2012-09-25 Howmedica Osteonics Corp. Tetra calcium phosphate based organophosphorus compositions and methods
US20100121459A1 (en) * 2008-11-12 2010-05-13 Garigapati Venkat R Tetra Calcium Phosphate Based Organophosphorus Compositions and Methods
US8232327B2 (en) 2008-11-12 2012-07-31 Howmedia Osteonics Corp Tetra calcium phosphate based organophosphorus compositions and methods
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods
US9265857B2 (en) 2010-05-11 2016-02-23 Howmedica Osteonics Corp. Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods
US20130260341A1 (en) * 2010-10-08 2013-10-03 Wilson Sibbett Composition
US9439837B2 (en) * 2010-10-08 2016-09-13 University Of Leeds Composition
US11185475B2 (en) 2010-11-10 2021-11-30 Stryker European Operations Holdings Llc Polymeric bone foam composition and method
US10182973B2 (en) 2010-11-10 2019-01-22 Stryker European Holdings I, Llc Polymeric bone foam composition and method
US9050163B2 (en) 2011-03-21 2015-06-09 Endo Pharmaceuticals Inc. Urethral anastomosis device and method
WO2012129234A1 (en) 2011-03-21 2012-09-27 Endo Pharmaceuticals Inc. Urethral anastomosis device and method
US8765189B2 (en) 2011-05-13 2014-07-01 Howmedica Osteonic Corp. Organophosphorous and multivalent metal compound compositions and methods
WO2014047061A1 (en) 2012-09-18 2014-03-27 Endo Pharmaceuticals Inc. Urethral anastomosis device
WO2014159186A1 (en) 2013-03-14 2014-10-02 Endo Pharmaceuticals Inc. Urethral anastomosis device
US10219986B2 (en) 2015-03-04 2019-03-05 Modern Ideas LLC Stabilized calcium phosphate and methods of forming same
US11116701B2 (en) 2015-03-04 2021-09-14 Modern Ideas LLC Stabilized calcium phosphate
WO2016140782A1 (en) 2015-03-04 2016-09-09 Modern Ideas LLC Stabilized calcium phosphate and methods of forming same
US9956314B2 (en) 2016-01-26 2018-05-01 Modern Ideas LLC Adhesive for use with bone and bone-like structures
WO2018022553A1 (en) 2016-07-25 2018-02-01 Cerapedics, Inc. Peptide-coated calcium phosphate particles

Similar Documents

Publication Publication Date Title
USRE33221E (en) Dental restorative cement pastes
US4518430A (en) Dental resptorative cement pastes
USRE33161E (en) Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements
US4612053A (en) Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements
US5460803A (en) Methods and compositions for mineralizing and fluoridating calcified tissues
US5268167A (en) Methods and compositions for mineralizing and fluoridating calcified tissues
US6056930A (en) Methods and compositions for mineralizing and fluoridating calcified tissues
US5525148A (en) Self-setting calcium phosphate cements and methods for preparing and using them
US5534244A (en) Methods and compositions for mineralizing and/or fluoridating calcified tissues with amorphous strontium compounds
US5427768A (en) Carbonated solutions for treating, mineralizing and fluoridating calcified tissues and methods for their use
JP3017536B2 (en) Calcium phosphate / hydroxyapatite precursor and method for producing and using the same
US6000341A (en) Methods and composition for mineralizing and fluoridating calcified tissues
Chow Calcium phosphate cements: chemistry, properties, and applications
EP2626058B1 (en) Dentinal tubule sealant and method for producing the same
Xie et al. Calcium phosphate dental cements
EP1392229B1 (en) Remineralizing dental hygiene products
Soni et al. Remineralizing agents in paediatric dentistry
EP0871427A1 (en) Carbonated solutions for treating, mineralizing and fluoridating calcified tissues and methods for their use
Abbas Enamel remineralisation and efficacy of remineralising agents: A Review
KR20230091121A (en) Acceleration of tooth remineralization and bone regeneration using self-assembling peptides and amorphous calcium phosphate
CA2213689A1 (en) Carbonated solutions for treating, mineralizing and fluoridating calcified tissues and methods for their use

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

Year of fee payment: 8

SULP Surcharge for late payment
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: STRYKER TECHNOLOGIES CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOWMEDICA INC.;REEL/FRAME:009781/0191

Effective date: 19981202

AS Assignment

Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA

Free format text: SECURITY INTEREST;ASSIGNORS:STRYKER CORPORATION;STRYKER FAR EAST, INC.;STRYKER INTERNATIONAL INC.;AND OTHERS;REEL/FRAME:009817/0001

Effective date: 19981204

Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA

Free format text: SECURITY AGREEMENT;ASSIGNORS:STRYKER CORPORATION;STRYKER FAR EAST, INC.;REEL/FRAME:014137/0212

Effective date: 19981204

AS Assignment

Owner name: STRYKER CORPORATION, MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: STRYKER FAR EAST, INC., MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: STRYKER INTERNATIONAL, INC., MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: HOWMEDICA OSTEONICS CORPORATION, MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: PHYSIOTHERAPY ASSOCIATES, INC., MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: STRYKER PUERTO RICO INC., MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: STRYKER SALES CORPORATION, MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: STRYKER TECHNOLOGIES CORPORATION, MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: STRYKER FOREIGN HOLDCO, INC., MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: SMD CORPORATION, MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124

Owner name: HOWMEDICAL LEIBINGER, INC., MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557

Effective date: 20020124