Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUSRE33590 E
Type de publicationOctroi
Numéro de demandeUS 07/276,431
Date de publication21 mai 1991
Date de dépôt22 nov. 1988
Date de priorité14 déc. 1983
État de paiement des fraisPayé
Numéro de publication07276431, 276431, US RE33590 E, US RE33590E, US-E-RE33590, USRE33590 E, USRE33590E
InventeursJacques Dory
Cessionnaire d'origineEdap International, S.A.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Method for examining, localizing and treating with ultrasound
US RE33590 E
Résumé
A hyperthermia applicator comprises a generator of a focused ultrasonic beam comprising a main high frequency electric wave emitter and a main piezoelectric transducer and an echography device comprising an auxiliary high frequency electric pulse generator associated with an auxiliary piezoelectric transducer which generates an ultrasonic examination beam sweeping the zone to be treated. During a main treatment and checking operating mode, the focused beam is emitted by the main transducer energized by the main emitter during periodic time intervals separated by shorter time intervals. During the shorter time intervals, the examination beam is emitted and echographic images are formed.
Images(3)
Previous page
Next page
Revendications(4)
What is claimed is:
1. Apparatus for ultrasonically heating a subject volume comprising:
(i) a first transducer having a curved transmitting surface for generating a single first ultrasound beam focused in a restricted focal zone and drive means for .[.excitig.]. .Iadd.exciting .Iaddend.ultrasonic vibrations within the first transducer;
(ii) means for displacing the first transducer with respect to predetermined axes of coordinates successively to irradiate subject volume with said ultrasound beam focal zone;
(iii) a second transducer for generating a second ultrasound beam, said second transducer having an active surface which is substantially smaller than that of the transmitting surface of the first transducer, said second transducer having a point which is fixed with the fist transducer during the displacement of the first transducer, and
(iv) an echography device comprising said second transducer, electric pulse generator means coupled to said second transducer, means for effecting a scanning of an examination volume with the second ultrasound beam, receiver means .[.coupled.]. .Iadd.coupled .Iaddend.to said second transducer for receiving the echoes formed through .[.reflexion.]. .Iadd.reflection .Iaddend.of the second ultrasound beam on reflecting surfaces within the examination volume and image forming means coupled to the receiver means for displaying images of the examination volume, said focal zone being located in a predetermined relative position within the examination volume, and said image forming means further displaying a mark which materializes said predetermined position of the focal zone.
2. Apparatus as claimed in claim 1, wherein said first transducer is formed by a mosaic of piezoelectric elements isolated .[.for.]. .Iadd.from .Iaddend.each other and forming a spherical skill cap supported by said displacing means, said skull cap having a top, said displacing means being adapted for controlling the displacement of the first transducer along three orthogonal axes, whereas the second transducer is fixed to the top of said skull cap and said means for effecting a scanning of the second ultrasound beam provide a sectorial sweep of said second beam in a plane which passes through the axis of symmetry of said skull cap.
3. Apparatus for ultrasonically heating a subject volume comprising:
(i) a first transducer having a curved transmitting surface for generating a single first ultrasound beam focused in a restricted focal zone and drive means for exciting ultrasonic vibrations within the first transducer;
(ii) means for displacing the first transducer with respect to predetermined axes of coordinates successively to irradiate subject volume with said ultrasound beam focal zone;
(iii) a second transducer for generating a second ultrasound beam, said second transducer having an active surface which is substantially smaller than that of the transmitting surface of the first transducer, said second transducer having a point which is fixed with the first transducer during the displacement of the first transducer;
(v) an echography device comprising said second transducer, electric pulse generator means coupled to said second transducer, means for effecting a scanning of an examination volume with the second ultrasound beam, receiver means coupled to said second transducer for receiving the echoes formed through .[.reflextion.]. .Iadd.reflection .Iaddend.of the second ultrasound beam on reflecting surfaces within the examination volume and image forming means coupled to the receiver means for displaying images of the examination volume, said focal zone being located in a predetermined relative position within the examination volume, and said image forming means further displaying a mark which materializes said predetermined position of the focal zone;
(v) said drive means exciting ultrasonic vibrations within the first transducer during periodic time intervals which are separated by first blanks of substantially smaller duration;
(vi) said echography device further .[.compirsing.]. .Iadd.comprising .Iaddend.means for controlling the generation of electric pulses by said generator means during second periodic time intervals having the same duration as said first blanks and separated by second blanks, and
(vii) switchable synchronization means having first and second operating modes for effecting coincidence of each of said second blanks with said first time intervals and setting the drive means into operation during the first mode and for effecting coincidence of a plurality of said second time intervals and the associated second blanks with each of the first time intervals and setting the drive means out of operation during the second mode.
4. Apparatus fo ultrasonically heating a subject volume comprising:
(i) a first transducer having a curved transmitting surface for generating a single first ultrasound beam focused in a restricted focal zone and drive means for exciting ultrasonic vibrations within the first transducer;
(ii) means for displacing the first transducer with respect to predetermined axes of coordinates successively to irradiate subject volume with said ultrasound beam focal zone;
(iii) a second transducer for generating a second ultrasound beam, said second transducer having an active surface which is substantially smaller than that of the transmitting surface of the first transducer, said second transducer having a point which is fixed with the first transducer during the displacement of the first transducer;
(iv) an echography device comprising said first and second transducers, electric pulse generator means coupled to said second transducer, means for effecting a scanning of an examination volume with the second ultrasound beam, receiver means coupled to said second transducer for receiving the echoes formed through reflexion of an examination ultrasound beam on reflecting surfaces within the examination volume and image forming means coupled to the receiver means for displaying images of the examination volume, said focal zone being located in a predetermined relative position within the examination volume, and said image forming means further displaying a mark which materializes said predetermined position of the focal zone;
(v) switchable synchronization means having first, second and third operating modes;
(vi) during said first and second operating modes, said drive means exciting ultrasonic vibrations within the first transducer during first periodic time intervals which are separated by first blanks of substantially smaller duration;
(vii) said echography device further comprising means for controlling the generation of electric pulses by said generator means during second periodic time intervals having the same duration as said first blanks and separated by second blanks;
(viii) said synchronization means effecting coincidence of each of said second blanks with said first time intervals and setting the drive means into operation during the first mode and effecting coincidence of a plurality of said second time intervals and the associated second blanks with each of the time intervals and setting the drive means out of operation during the second mode; and
(ix) said synchronization means .[.discoupling.]. .Iadd.decoupling .Iaddend.said electric pulse generator means from the second transducer during said third operating mode and coupling said electric pulse generator means to the first transducer, whereas said electric pulse generator means is synchronized for effecting coincidence of a plurality of said second time intervals and the associated second blanks with each of the first time intervals.
Description
.Iadd.CROSS REFERENCE TO PRIOR APPLICATIONS

This application is a reissue of Ser. No. 06/728,405, filed 04/30/85, now U.S. Pat. No. 4,653,828 which is continuation-in-part of Ser. No. 06/674,884, filed 11/26/84, now U.S. Pat. No. 4,617,931, issued Oct. 21, 1986, on which reexamination certificate No. B1 4,617,931 issued July 12, 1988. .Iaddend.

BACKGROUND OF THE INVENTION

Conventional echography apparatus are obviously used for examining tumours inside the body by forming an image thereof on the screen of a cathode ray tube.

As is known, it is also possible to obtain destruction of the cells--in particular malignant cells--by subjecting them to a more or less extended temperature rise. The cells to be destroyed must for example be brought to about 45° C. in a well controlled way while avoiding reaching excessive temperatures which could cause serious burns around the lesion. The technical problem to be resolved consists then both in controlling the amount of energy and the localization thereof.

With the different prior processes (use of ultrahigh frequencies, infrared radiation, and others) superficial tumours can be treated but deeper tissues cannot be reached.

The invention proposes applying ultra sounds to the examination and hyperthermia treatment and provides an apparatus which combines the three functions of localizing the zone to be treated, of treating by raising the temperature in a well controlled way in a well defined restricted region within this zone and simultaneously checking the results of the treatment.

SUMMARY OF THE INVENTION

The hyperthermia treatment apparatus of the invention combines a generator of a focused ultra sonic beam comprising a main high frequency electric wave emitter and a main piezoelectric transducer whose active surface is focusing, with an echography device comprising an auxiliary high frequency electric pulse generator associated with an auxiliary piezoelectric transducer and with means for causing the zone to be treated to be swept by the ultrasonic examination beam being generated by the auxiliary transducer; and with switching and adjusting means for causing, during main treatment and checking operation, the emission of said focused beam by the main transducer energized by the main emitter during periodic time intervals separated by shorter time intervals during which the emission of the examination beam and the formation of echographic images are carried out.

The apparatus advantageously comprises a first auxiliary locating operation mode during which only the periodic emission of the examination beam by the auxiliary transducer is effected and preferably a second auxiliary operating mode for checking the focal region, during which only the periodic emission of the focused beam is effected, but the main emitter is synchronized by the synchronization circuit of the auxiliary generator for echographic operation, the time intervals which separate the successive emission periods during the two auxiliary operation modes being substantially smaller than the intervals which separate the periods of emission of the focused beam during the main mode.

It follows from the foregoing that, during the auxiliary operating modes for obtaining accurate adjustments, the quality of the echographic image, either of the zone to be treated (locating mode) or of the focal region (mode for checking the restricted region), will be substantially better than during the treatment mode, during which the successive images of the zones to be treated will follow each other for example at intervals of the order of a second, which however allow the position of the focal region to be checked satisfactorily during treatment.

In a preferred embodiment, the auxiliary transducer is fixed to the spherical surface of the main transducer and thus, during movement of this latter for bringing the focal spot into successive restricted regions of the tumour, the auxiliary transducer will at all times supply an image of the treated region and of the zone which surrounds it, thus allowing a permanent check of the treatment to be effected easily and accurately.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the invention will be clear from the following description.

In the accompanying drawings:

FIG. 1 is the general diagram of a hyperthermia apparatus according to a preferred embodiment of the invention;

FIG. 2 shows schematically in perspective the main transducer and its mobile support device;

FIG. 3 shows the wave forms at different points of the circuits of the apparatus; and

FIG. 4 illustrates the image obtained on the display screen which the apparatus comprises.

DESCRIPTION OF THE PREFERRED EMBODIMENT

In FIG. 2 is shown a main transducer 1 in the form of .Iadd.a .Iaddend.spherical skull cap supported by a mount which allows it to move along three orthogonal axes X, Y and Z. This mount has been shown schematically, its construction being within the scope of a man skilled in the art. Along the axis of the spherical skull cap is disposed an auxiliary transducer 2 of a generally cylindrical shape which passes through skull cap 1 and is fixed thereto. A pocket of water P is placed between the skull cap 1 and the surface S of the body of the patient, who is assumed lying flat on a horizontal plane.

The skull cap 1 has for example a diameter of 200 to 300 mm and is formed from a large number (300 or 400) of piezoelectric elements 10, 11, etc. . . . (FIG. 1) isolated from each other and juxtaposed so as to form a mosaic. These elements are metallized on both faces, one of the metallizations being connected to ground and the other to connections for energization by a main emitter 3.

This latter delivers an electric signal A (FIG. 3) formed of high frequency wave trains (500 KHz for example) of a relatively low peak power (about 10 or a 100 watts for example), but of a relatively long duration (for example of the order of a second) separated by time intervals of the order of 1/10 second, the time required for the echography device to form an image. It is then a question of operating conditions using substantially continuous emission for the treatment. Such operating conditions may be obtained by means of emitters using power transistors. Preferably, the elements of transducer 1 will be divided up into groups each energized by a separate emitter (rectangle .[.4.]. .Iadd.3 .Iaddend.symbolizing the assembly of these emitters), the elements of each group being spaced apart in the same circular zone of the spherical surface. By adjusting the relative phases of the emissions, it is possible to modify the energy distribution in the focusing region of the ultra sonic beam.

An input 31 to emitter 3 symbolizes an adjustment of the emitted power and an input 32 symbolizes an adjustment of the wave train duration. The focal spot formed in the center F of the sphere may, with this technique, be very small (diameter of 2 or 3 mm for example) and have a position which is strictly fixed for a given position of the transducer.

In FIG. 1 it can be seen that the auxiliary transducer 2 is itself connected both to a high frequency electric pulse emitter 21 and to a reception amplifier 22 followed by an analog-digital converter 23, itself followed by a memory 24. Emitter 21 is synchronized by a pulse generator 211 which delivers 256 pulses during each of the successive time intervals of 1/10 second. To each of these time intervals .Iadd.there .Iaddend.corresponds a complete sweep of a given angular sector φ (FIG. 1) by the beam emitted by transducer 2 so the formation, in the sweep plane, of an image of the zone observed by the echography device.

Transducer 2 is advantageously of the type described in U.S. Pat. No. 4,418,698 granted on Dec. 31, 1983, for: "Ultrasonic scanning probe with mechanical sector scanning means", that is to say that it comprises an oscillating piezoelectric element 200 controlled by a motor 201, itself controlled by an electronic circuit which is shown symbolically by a rectangle 4. This electronic circuit provides control signals for the motor 201 housed inside the case of the transducer 2 and is adapted so that a complete oscillation of the motor corresponds to the above defined duration for forming an image (1/10 sec.).

In a first operating mode (treatment and checking) switch 210 is in position I as well as switches 212 and 33.

In position I of switches 33 and 212, generator 211 is synchronized by a first output 41 of circuit 4, and this latter is then adjusted, by means not shown, for generating at its output 43 connected to motor 201 signals having the wave form (MT) shown in FIG. .[.4.]. .Iadd.3.Iaddend.. An image is swept then in 1/10 sec. and is followed by a time interval of 1 sec. during which the oscillating element 200 remains immobile, so that transducer 2 receives no echos.

During the intervals between the sweep periods, a circuit 34 generates square waves of 1 sec. which serve for synchronizing emitter 3 whereas, during the sweep periods, a circuit 213 generates square waves of 1/10 sec. which serve for synchronizing the generator 211.

Thus, in this operating mode, transducer 1 generates an ultra-sonic beam under substantially continuous operating conditions whereas the echography device forms an image every second in the intervals between the wave trains. At (BT) has been shown the wave forms of the signals then emitted by generator 211.

In a second operating mode (locating) with switch 210 in position I, switch 33 is in position II, so that emitter 3 is not synchronized and the focused ultrasonic beam is not emitted. Switch 212 is also in position II so that generator 211 is synchronized by a second output 42 of circuit 4 and this latter is adjusted so as to generate at its output 43 signals having the wave forms (MR) shown in FIG. 3. The 1/10 sec. sweeps are then separated by time intervals of 1/100 sec. only and the images are formed from echos coming from the reflection of the pulses generated by transducer 2. Generator 211 delivers the signals (BR).

In a third operating mode (checking the focal region), switch 210 is in position III, so that the emitter 21 and transducer 2 do not emit. Switch 212 is again in position II so that generator 211 is synchronized by the output 42 of circuit 4 and this latter is adjusted as in the second operating mode so that the 1/10 sec. sweeps are again separated by intervals of 1/100 sec. Switch 33 is in position III and consequently emitter 3 is now synchronized by the generator 211 which then delivers the signals (BR).

In this operating mode, the echographic device is therefor formed by emitter 3, transducer 1 operating for emission and transducer 2 operating for reception. The result is that an image of the zone of concentration in the focal region of the energy emitted by the transducer 1 is obtained.

The echographic signals received at 22 in the first or third operating modes are, after analog-digital conversion at 23, stored line by line in memory 24, a writing addressing device 25, controlled by circuit 4, causing the respective deflection angles of the beam emitted and/or received by transducer 2 to correspond with the respective lines of the memory. A device 26 for rapid reading of the memory energizes the X and Y deflection coils of a cathode ray tube 28, so the brightness control electrode receives the corresponding contents from memory 24, transformed into an analog signal by a digital-analog converter 27.

The practical construction of all the circuits described and shown is within the scope of a man skilled in the art. The control circuit 4 may for example comprise a one shot multivibrator delivering square waves of a duration adjustable to 1/100 s or is depending on the operating mode and circuits for generating increasing and decreasing voltages of a 1/10 s duration, triggered off by said square waves.

The apparatus which has just been described operates as follows:

In the locating operating mode, the operator searches for and localizes the zone to be treated. The display device is adapted, in a way known per se, so as to materialize on the screen of the cathode ray tube (for example by means of a cross) the theoretical position of the focal spot in the sectional plane shown, which plane passes through the axis of symmetry of transducer 1. (It is a question of B type echography). The operator begins by moving transducer 1 along X, until the tumour appears clearly on the screen, then he moves it along Y and Z, until the cross coincides with the central region of the image of the tumour (K, FIG. 4). At this moment, the switches may be placed in position for checking the focal region: only this latter is then made visible on the screen, with a luminosity proportional to the corresponding energy concentration. Thus a representation is obtained of what the distribution of the energy of the treatment wave will be, which allows the adjustments to be checked and perfected.

During treatment, the apparatus only supplies one image per second, but this rate is sufficient for substantially permanently checking the position of the focal spot.

It is clear that the apparatus described allows the evolution of the tumour to be checked after each treatment sequence. It is evident that different modifications may be made thereto and even according to other embodiments, without departing from the scope and spirit of the invention.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US2484626 *26 juil. 194611 oct. 1949Bell Telephone Labor IncElectromechanical transducer
US2632634 *23 sept. 195024 mars 1953Brush Dev CoElectroacoustic device
US2645727 *27 janv. 195114 juil. 1953Bell Telephone Labor IncFocusing ultrasonic radiator
US2792829 *6 févr. 195221 mai 1957Raytheon Mfg CoFrequency modulated ultrasonic therapeutic apparatus
US3168659 *11 janv. 19602 févr. 1965Gen Motors CorpVariable focus transducer
US3237623 *1 mai 19631 mars 1966George A D GordonApparatus for destroying limited groups of cells
US3338235 *2 oct. 196429 août 1967Gordon George A DUltrasonic therapeutic device with recording apparatus
US3560913 *9 oct. 19682 févr. 1971Us NavyAcoustic pulse focusing means
US3735755 *28 juin 197129 mai 1973Interscience Research InstNoninvasive surgery method and apparatus
US3756071 *1 mars 19714 sept. 1973Realisations Ultrasoniques SaProcess and apparatus for analyzing materials by means of ultrasonic pulses, employing the transfer function characteristic of each obstacle
US3785382 *12 mai 197215 janv. 1974Wolf Gmbh RichardDevice for destroying stones in the bladder, in the ureter, in the kidneys and the like
US3810174 *28 nov. 19697 mai 1974Hughes Aircraft CoDigital scan converter
US3879698 *26 avr. 197322 avr. 1975Edo CorpUnipolar acoustic pulse generator apparatus
US3911730 *28 juin 197414 oct. 1975Krautkramer BransonUltrasonic transducer probe system
US3924259 *15 mai 19742 déc. 1975Raytheon CoArray of multicellular transducers
US3927557 *30 mai 197423 déc. 1975Gen ElectricAcoustic imaging apparatus with liquid-filled acoustic corrector lens
US3942531 *11 sept. 19749 mars 1976Dornier System GmbhApparatus for breaking-up, without contact, concrements present in the body of a living being
US3958559 *16 oct. 197425 mai 1976New York Institute Of TechnologyUltrasonic transducer
US3974682 *5 mars 197517 août 1976Siemens AktiengesellschaftUltra sound examining device
US4005258 *26 nov. 197425 janv. 1977Realization UltrasoniquesUltrasonic examination
US4046149 *28 janv. 19766 sept. 1977Olympus Optical Co., Ltd.Instrument for removing a foreign substance from the body cavity of human being
US4058114 *10 sept. 197515 nov. 1977Siemens AktiengesellschaftUltrasonic arrangement for puncturing internal body organs, vessels and the like
US4070905 *12 oct. 197631 janv. 1978The Commonwealth Of AustraliaUltrasonic beam scanning
US4084582 *11 mars 197618 avr. 1978New York Institute Of TechnologyUltrasonic imaging system
US4094306 *28 avr. 197613 juin 1978The Commonwealth Of Australia, C/O The Department Of HealthApparatus for ultrasonic examination
US4097835 *20 sept. 197627 juin 1978Sri InternationalDual transducer arrangement for ultrasonic imaging system
US4163394 *10 juin 19767 août 1979Siemens AktiengesellschaftMethod of ultrasonic scanning of bodies
US4174634 *3 janv. 197820 nov. 1979C.G.R. UltrasonicEchographic device for the real-time display of internal discontinuities of a test object
US4181120 *21 avr. 19771 janv. 1980Tokyo Shibaura Electric Co., Ltd.Vessel for ultrasonic scanner
US4199246 *5 janv. 197922 avr. 1980Polaroid CorporationUltrasonic ranging system for a camera
US4204435 *27 avr. 197827 mai 1980Agence Nationale De Valorisation De La Recherche (Anvar)Devices using ultrasounds for forming images, in particular for _the internal examination of the human body
US4205686 *9 sept. 19773 juin 1980Picker CorporationUltrasonic transducer and examination method
US4209022 *13 mai 197724 juin 1980Cgr UltrasonicEchography apparatus for medical diagnosis, using a multiple-element probe
US4218768 *11 nov. 197719 août 1980Siemens AktiengesellschaftApparatus for ultrasonic scanning
US4235111 *31 août 197725 nov. 1980Siemens AktiengesellschaftApparatus for ultrasonic scanning
US4245511 *19 juil. 197920 janv. 1981Siemens AktiengesellschaftUltrasonic applicator for ultrasonic scanning of bodies and method of using the same
US4274421 *1 nov. 197823 juin 1981C. G. R. Ultra SonicEcho sound apparatus including an oscillating mirror for use in medical diagnosis
US4281550 *17 déc. 19794 août 1981North American Philips CorporationCurved array of sequenced ultrasound transducers
US4281661 *1 nov. 19784 août 1981C. G. R.-UltrasonicMedical echo sounding apparatus with a wide sector scanning angle
US4287770 *20 déc. 19798 sept. 1981Siemens AktiengesellschaftMethod for the manufacture of ultrasonic transducers
US4294119 *17 mai 197913 oct. 1981Siemens AktiengesellschaftUltrasonic applicator for ultrasonic scanning of bodies
US4305296 *8 févr. 198015 déc. 1981Sri InternationalUltrasonic imaging method and apparatus with electronic beam focusing and scanning
US4311147 *8 mai 198019 janv. 1982Richard Wolf GmbhApparatus for contact-free disintegration of kidney stones or other calculi
US4315514 *8 mai 198016 févr. 1982William DrewesMethod and apparatus for selective cell destruction
US4340944 *6 mars 198120 juil. 1982Cgr UltrasonicUltrasonic echographic probe having an acoustic lens and an echograph incorporating said probe
US4350917 *9 juin 198021 sept. 1982Riverside Research InstituteFrequency-controlled scanning of ultrasonic beams
US4368410 *14 oct. 198011 janv. 1983Dynawave CorporationUltrasound therapy device
US4373395 *29 sept. 198015 févr. 1983Siemens AktiengesellschaftApparatus for ultrasonic scanning
US4375818 *13 févr. 19808 mars 1983Olympus Optical Company Ltd.Ultrasonic diagnosis system assembled into endoscope
US4385255 *27 oct. 198024 mai 1983Yokogawa Electric Works, Ltd.Linear array ultrasonic transducer
US4412316 *20 mai 198125 oct. 1983Siemens AktiengesellschaftUltrasonic transducer arrangement
US4417582 *5 août 198129 nov. 1983Technicare CorporationResolution measuring device for acoustical imaging systems and method of use
US4434341 *11 déc. 198028 févr. 1984Busby Dennis LSelective, locally defined heating of a body
US4440025 *26 juin 19813 avr. 1984Matsushita Electric Industrial Company, LimitedArc scan transducer array having a diverging lens
US4441486 *27 oct. 198110 avr. 1984Board Of Trustees Of Leland Stanford Jr. UniversityHyperthermia system
US4458533 *21 mai 198110 juil. 1984Siemens AktiengesellschaftApparatus for ultrasonic scanning
US4462092 *14 mai 198124 juil. 1984Matsushita Electric Industrial Company, LimitedArc scan ultrasonic transducer array
US4470308 *3 août 198211 sept. 1984Matsushita Electric Industrial Co., Ltd.Arc scan ultrasonic imaging system having diverging lens and path-length compensator
US4474180 *13 mai 19822 oct. 1984The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationApparatus for disintegrating kidney stones
US4478083 *13 juin 198323 oct. 1984Siemens AktiengesellschaftPlane reconstruction ultrasound tomography device
US4484569 *1 mars 198227 nov. 1984Riverside Research InstituteUltrasonic diagnostic and therapeutic transducer assembly and method for using
US4486680 *4 mars 19834 déc. 1984Richard Wolf GmbhUltrasonic piezoelectric disintegrater
US4501277 *28 sept. 198226 févr. 1985Tokyo Shibaura Denki Kabushiki KaishaSelected beam marking system for rapid ultrasound measurements
US4526168 *26 avr. 19822 juil. 1985Siemens AktiengesellschaftApparatus for destroying calculi in body cavities
US4535771 *14 déc. 198220 août 1985Olympus Optical Co., Ltd.Calculus disintegrating apparatus
US4536673 *9 janv. 198420 août 1985Siemens AktiengesellschaftPiezoelectric ultrasonic converter with polyurethane foam damper
US4545385 *21 mars 19838 oct. 1985Siemens AktiengesellschaftUltrasound examination device for scanning body parts
US4550606 *28 sept. 19825 nov. 1985Cornell Research Foundation, Inc.Ultrasonic transducer array with controlled excitation pattern
US4561019 *16 mai 198324 déc. 1985Riverside Research InstituteFrequency diversity for image enhancement
US4564980 *17 févr. 198321 janv. 1986Siemens AktiengesellschaftUltrasonic transducer system and manufacturing method
US4570634 *25 oct. 198318 févr. 1986Dornier System GmbhShockwave reflector
US4586512 *27 mars 19856 mai 1986Thomson-CsfDevice for localized heating of biological tissues
US4608983 *27 avr. 19842 sept. 1986Dornier System GmbhGeneration for shock waves for contactless destruction of concrements in a living being
US4610249 *8 mai 19849 sept. 1986The Johns Hopkins UniversityMeans and method for the noninvasive fragmentation of body concretions
US4618796 *2 oct. 198521 oct. 1986Richard Wolf GmbhAcoustic diode
US4618887 *14 mars 198421 oct. 1986Siemens AktiengesellschaftMethod and apparatus for representing ultrasonic echo signals arriving in polar coordinates
US4620545 *31 oct. 19844 nov. 1986Trutek Research, Inc.Non-invasive destruction of kidney stones
US4622969 *6 juin 198418 nov. 1986Dornier System GmbhShock wave matching in therapeutic equipment
US4622972 *15 sept. 198218 nov. 1986Varian Associates, Inc.Ultrasound hyperthermia applicator with variable coherence by multi-spiral focusing
US4639904 *29 janv. 198627 janv. 1987Richard Wolf GmbhSonic transmitters
US4646756 *24 oct. 19833 mars 1987The University Of AberdeenUltra sound hyperthermia device
US4671292 *30 avr. 19859 juin 1987Dymax CorporationConcentric biopsy probe
US4674505 *24 juil. 198423 juin 1987Siemens AktiengesellschaftApparatus for the contact-free disintegration of calculi
US4685461 *11 août 198611 août 1987Dornier System GmbhApparatus and method for triggering shock waves in lithotripsy
US4721106 *15 juin 198726 janv. 1988Richard Wolf GmbhPiezoelectric transducer for destruction of concretions inside the body
US4721108 *12 sept. 198326 janv. 1988Dornier System GmbhGenerator for a pulse train of shockwaves
US4858597 *5 oct. 198822 août 1989Richard Wolf GmbhPiezoelectric transducer for the destruction of concretions within an animal body
DE654673C *15 déc. 193524 déc. 1937Siemens Reiniger Werke AgEinrichtung zur Behandlung von Koerpern mit Ultraschallwellen
DE2018468A117 avr. 197029 oct. 1970 Titre non disponible
DE2053982B23 nov. 197013 févr. 1975Eduard KlozUltrasonic disintegrator for calculi - has piezoelectric transducer coupled to cystoscope between different metal discs
DE2202989A121 janv. 197226 juil. 1973Siemens AgFokussierter ultraschallwandler
DE2223319A112 mai 19727 déc. 1972Wolf Gmbh RichardEinrichtung zum Zerstoeren von Steinen in der Harnblase,im Harnleiter,in der Niere u.dgl.
DE2351247B212 oct. 197323 oct. 1975Dornier System Gmbh, 7990 FriedrichshafenTitre non disponible
DE2538960C22 sept. 197511 avr. 1985Dornier System Gmbh, 7990 Friedrichshafen, DeTitre non disponible
DE2635635C37 août 197631 mai 1979Dornier System Gmbh, 7990 FriedrichshafenTitre non disponible
DE2645738A19 oct. 197621 avr. 1977Commw Of AustraliaUltraschallstrahlabtastung
DE2648908A128 oct. 19763 mai 1978Bosch Gmbh RobertTherapeutic deep HF heating - involves cooling body surface over focus to counteract unwanted stray heating nearer surface
DE2712341A121 mars 19773 mai 1978Stanford Research InstUltraschallwandler mit variablem brennpunkt
DE2718847C328 avr. 197711 oct. 1979Eberhard Prof. Dr.Rer.Nat. 6600 Saarbruecken HaeuslerTitre non disponible
DE2722252C317 mai 19776 déc. 1979Dornier System Gmbh, 7990 FriedrichshafenTitre non disponible
DE2826828C219 juin 19786 mars 1980Siemens Ag, 1000 Berlin Und 8000 MuenchenTitre non disponible
DE2904115A13 févr. 19797 août 1980Kurt Prof Dr SemmHooked scissors for surgical section - have mating guide faces for blades urging cutting faces together during last part of movement
DE2913251C23 avr. 19791 août 1985Richard Wolf Gmbh, 7134 Knittlingen, DeTitre non disponible
DE2921444B226 mai 197923 avr. 1981Richard Wolf Gmbh, 7134 Knittlingen, DeTitre non disponible
DE2925933A127 juin 197913 mars 1980Picker CorpTransduktor-sonde fuer ultraschall- diagnosesysteme
DE3119295C214 mai 198127 mai 1987Siemens Ag, 1000 Berlin Und 8000 Muenchen, DeTitre non disponible
DE3120611A123 mai 198116 déc. 1982Battelle Institut E VDevice for radiating and for receiving focused ultrasonic waves
DE3122056C23 juin 19813 nov. 1988Siemens Ag, 1000 Berlin Und 8000 Muenchen, DeTitre non disponible
DE3142639C228 oct. 19816 juil. 1989Battelle-Institut Ev, 6000 Frankfurt, DeTitre non disponible
DE3150513C221 déc. 198111 mai 1989Battelle-Institut Ev, 6000 Frankfurt, DeTitre non disponible
DE3210919C225 mars 198210 juil. 1986Dornier System Gmbh, 7990 Friedrichshafen, DeTitre non disponible
DE3220751A12 juin 19828 déc. 1983Joerg Dr SchuellerDevice for crushing concrements, especially renal calculi, in living human or animal bodies
DE3240691C14 nov. 198223 déc. 1987Dornier System GmbhVorrichtung zur Erzeugung von Stosswellenimpulsfolgen
DE3241026C26 nov. 19824 déc. 1986Dornier System Gmbh, 7990 Friedrichshafen, DeTitre non disponible
DE3316837C27 mai 198326 juin 1986Dornier System Gmbh, 7990 Friedrichshafen, DeTitre non disponible
DE3320998C210 juin 198312 nov. 1987Dornier System Gmbh, 7990 Friedrichshafen, DeTitre non disponible
DE3328068A13 août 198321 févr. 1985Siemens AgEinrichtung zum beruehrungslosen zertruemmern von konkrementen
DE3426398C118 juil. 198412 nov. 1987Dornier System Gmbh, 7990 Friedrichshafen, DeTitre non disponible
EP0000058A1 *6 juin 197820 déc. 1978Bayer AgProcess and apparatus for continuously moulding foamed slabs of rectangular cross-section
EP0036353A1 *4 mars 198123 sept. 1981Cgr UltrasonicUltrasonic imaging probe with acoustic lens and echographic imaging system comprising such a probe
EP0045265A2 *28 juil. 19813 févr. 1982Jacques DoryProbe for echography with sectional mechanical scanning
EP0068961A2 *11 juin 19825 janv. 1983Thomson-CsfApparatus for the local heating of biological tissue
EP0072498A1 *4 août 198223 févr. 1983Kabushiki Kaisha ToshibaUltrasonic imaging apparatus
EP0081639A1 *28 sept. 198222 juin 1983DORNIER SYSTEM GmbHDevice for the harmless coupling and decoupling of shock waves for therapeutic purposes
EP0090138A2 *26 janv. 19835 oct. 1983DORNIER SYSTEM GmbHApparatus for the disintegration of concretions in living bodies
EP0108190A2 *22 juin 198316 mai 1984DORNIER SYSTEM GmbHShock wave reflector
EP0124686A2 *8 févr. 198414 nov. 1984DORNIER SYSTEM GmbHSpark gap for the generation of shock waves for the non-contact disintegration of concrements in living bodies
EP0133946A2 *20 juil. 198413 mars 1985Siemens AktiengesellschaftApparatus for the contactless disintegration of concrements
EP0155028A1 *14 févr. 198518 sept. 1985Dornier Medizintechnik GmbhAn apparatus for the non-contact disintegration of concrements present in a body
FR1215631A Titre non disponible
FR1334210A Titre non disponible
FR2222658B1 Titre non disponible
FR2247195B1 Titre non disponible
FR2275771B1 Titre non disponible
FR2298107B1 Titre non disponible
FR2410276B1 Titre non disponible
FR2477723B1 Titre non disponible
FR2487664B1 Titre non disponible
FR2487665B1 Titre non disponible
FR2546737B1 Titre non disponible
FR2589715B1 Titre non disponible
GB998173A Titre non disponible
GB2113099A Titre non disponible
GB2126901B Titre non disponible
GB2140693B Titre non disponible
JP4418782B2 Titre non disponible
JP4526168B2 Titre non disponible
JP5795795B2 Titre non disponible
NL8400504A Titre non disponible
SU423033A1 Titre non disponible
SU469462A1 Titre non disponible
SU602180A1 Titre non disponible
SU1114409A1 Titre non disponible
Citations hors brevets
Référence
1"Echographic Ultrasonore: Un Circuit CCD Pour Simplifier L'Electronique De Commande", Mesures Regulation Automatisme-Fevrier 1980, pp. 25-27.
2"Ultrasonic Focusing Radiators", pp. 225-285, 306-307.
3 *A Scanning, Focused Ultrasound Hyperthermia Delivery System, D. M. Cooper et al.
4Bartels, "Intraoperative Rontegenuntersuchungen Der Niere Mit Dem Renodorgerat", Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10-11, 1976, pp. 74-81.
5Bartels, "Zur Frage Der Nierenstein-Darstellung Mit Der B-Scan Sonographie", Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10-11, 1976, pp. 70-73.
6 *Bartels, Intraoperative Rontegenuntersuchungen Der Niere Mit Dem Renodorgerat , Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10 11, 1976, pp. 74 81.
7 *Bartels, Zur Frage Der Nierenstein Darstellung Mit Der B Scan Sonographie , Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10 11, 1976, pp. 70 73.
8Bergmann, "Der Ultraschall-und Siene Anwendung in Wissen Schaft und Technik", S. Hirzel Verlag, Stuttgart, 1954, pp. 126-137.
9Berlinicke et al., "Uber Beeineflussung Von Gallensteinen Durch Ultraschall in vitro", Klinitsche Wochenschrift, Dec. 28, 1950, p. 390.
10 *Berlinicke et al., Uber Beeineflussung Von Gallensteinen Durch Ultraschall in vitro , Klinitsche Wochenschrift, Dec. 28, 1950, p. 390.
11Bittner, "Uber Die Moglichkeiten, Nierensteine Mit Hilfe Des Ultraschall-A-Verfahrens Nachzuweisen Und Zu Lokalisieren", Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10-11, 1976, pp. 61-69.
12 *Bittner, Uber Die Moglichkeiten, Nierensteine Mit Hilfe Des Ultraschall A Verfahrens Nachzuweisen Und Zu Lokalisieren , Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10 11, 1976, pp. 61 69.
13Brannen et al., "Ultrasonic Destruction of Kidney Stones", Original Clinical Articles, Mason Clinic, Seattle, Feb. 1984, vol. 140, No. 2, pp. 227-232.
14 *Brannen et al., Ultrasonic Destruction of Kidney Stones , Original Clinical Articles, Mason Clinic, Seattle, Feb. 1984, vol. 140, No. 2, pp. 227 232.
15 *Brinkmeyer et al., Beobachtung Kurzer Kavitationsstosswellen mit Koharent Optischen Methoden, DAGA 76, pp. 461 464.
16Brinkmeyer et al., Beobachtung Kurzer Kavitationsstosswellen mit Koharent-Optischen Methoden, DAGA '76, pp. 461-464.
17Bulman, W., "Applications of the Hall Effect", Solid-State Electronics, vol. 9, 1966, pp. 361-372.
18 *Bulman, W., Applications of the Hall Effect , Solid State Electronics, vol. 9, 1966, pp. 361 372.
19Bulow et al., "Electrohydraulic Lithotripsy with Aspiration of the Fragments Under Vision--304 Consecutive Cases", J. Urol., vol. 126, Oct. 1981, pp. 454-456.
20 *Bulow et al., Electrohydraulic Lithotripsy with Aspiration of the Fragments Under Vision 304 Consecutive Cases , J. Urol., vol. 126, Oct. 1981, pp. 454 456.
21Campbell, J. et al., "Normalization of Ultrasonic Scattering Measurements to Obtain Average Differential Scattering Cross Sections for Tissues", J. Acoust. Soc. Am., vol. 74, No. 2, Aug. 1984, pp. 393-399.
22 *Campbell, J. et al., Normalization of Ultrasonic Scattering Measurements to Obtain Average Differential Scattering Cross Sections for Tissues , J. Acoust. Soc. Am., vol. 74, No. 2, Aug. 1984, pp. 393 399.
23Chaussy et al., "Extracorporeal Shock Wave Lithotripsy (ESWL) for Treatment of Urolithiasis", Special Issue to Urology, vol. 23, No. 5, May 1984, pp. 59-66.
24Chaussy et al., "Extrakorporale Stobwellenlithotripsie-Beginn einer Umstrukturierung in der Behandlung des Harnsteinleiden?", Urologe A, vol. 23, 1984, pp. 25-29.
25Chaussy et al., "First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves", J. Urol., vol. 127, Mar. 1982, pp. 417-420.
26Chaussy et al., "Shock Wave Treatment for Stones in the Upper Urinary Tract", Urologic Clinics of North America, vol. 10, No. 4, Nov. 1984, pp. 743-750.
27 *Chaussy et al., Extracorporeal Shock Wave Lithotripsy (ESWL) for Treatment of Urolithiasis , Special Issue to Urology, vol. 23, No. 5, May 1984, pp. 59 66.
28 *Chaussy et al., Extrakorporale Stobwellenlithotripsie Beginn einer Umstrukturierung in der Behandlung des Harnsteinleiden , Urologe A, vol. 23, 1984, pp. 25 29.
29 *Chaussy et al., First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves , J. Urol., vol. 127, Mar. 1982, pp. 417 420.
30 *Chaussy et al., Shock Wave Treatment for Stones in the Upper Urinary Tract , Urologic Clinics of North America, vol. 10, No. 4, Nov. 1984, pp. 743 750.
31Chaussy, "Beruhrungsfreie Nierensteinzertrummerung Durch Extrakorporal Erzeugte, Fokussierte Stobwellen", Beitrage Zur Urologic, vol. 2, Karger, Bassel, 1980, pp. 40-41, Translation of entire source included, Chaussy et al., Extracorporeal Shock Wave Lithotripsy--New Aspects in the Treatment of Kidney Stone Disease, Karger, Basel, 1982.
32 *Chaussy, Beruhrungsfreie Nierensteinzertrummerung Durch Extrakorporal Erzeugte, Fokussierte Stobwellen , Beitrage Zur Urologic, vol. 2, Karger, Bassel, 1980, pp. 40 41, Translation of entire source included, Chaussy et al., Extracorporeal Shock Wave Lithotripsy New Aspects in the Treatment of Kidney Stone Disease, Karger, Basel, 1982.
33Chaussy, et al., "Extracorporeal Shock Wave Lithotripsy for the Treatment of Urinary Tract Stones", Hospimedica, Sep.-Oct. 1986, pp. 21-27.
34 *Chaussy, et al., Extracorporeal Shock Wave Lithotripsy for the Treatment of Urinary Tract Stones , Hospimedica, Sep. Oct. 1986, pp. 21 27.
35Coats, "Application of Ultrasonic Energy to Urinary and Biliary Calculi", J. Urol., vol. 75, No. 5, May 1956, pp. 865-874.
36Coleman et al., "Production of Alternate Filtration Paths for Treatment of Glaucoma with High Intensity Ultrasound", Paper No. 1303, AIUM/SDMS Annual Convention, San Francisco, Calif., Aug. 17-21, 1981.
37Coleman et al., "Therapeutic Ultrasound in the Production of Ocular Lesions", American Journal of Opthalmology, 86:185-192, 1978.
38Coleman et al., "Ultrasonically Accelerated Resorption of Vitreous Membranes", American Journal of Opthalmology, 89:490-499, 1980.
39 *Coleman et al., Production of Alternate Filtration Paths for Treatment of Glaucoma with High Intensity Ultrasound , Paper No. 1303, AIUM/SDMS Annual Convention, San Francisco, Calif., Aug. 17 21, 1981.
40 *Coleman et al., Therapeutic Ultrasound in the Production of Ocular Lesions , American Journal of Opthalmology, 86:185 192, 1978.
41 *Coleman et al., Ultrasonically Accelerated Resorption of Vitreous Membranes , American Journal of Opthalmology, 89:490 499, 1980.
42Coleman, D. et al., "Experimental Investigations into Glaucoma Treatment Using High Intensity Focused Ultrasound", 24th Annual Meeting of the American Institute of Ultrasound in Medicine, Aug. 27-31, 1979, Paper No. 1301.
43 *Coleman, D. et al., Experimental Investigations into Glaucoma Treatment Using High Intensity Focused Ultrasound , 24th Annual Meeting of the American Institute of Ultrasound in Medicine, Aug. 27 31, 1979, Paper No. 1301.
44Coleman, et al., "Applications of Therapeutic Ultrasound in Opthalmology", reprinted from Progress in Medical Ultrasound, vol. 2/1981, Amsterdam, Excerpta Medica, pp. 263-270.
45 *Coleman, et al., Applications of Therapeutic Ultrasound in Opthalmology , reprinted from Progress in Medical Ultrasound, vol. 2/1981, Amsterdam, Excerpta Medica, pp. 263 270.
46Deposition Transcript of Jacques Dory, Feb. 15-17, 1989, pp. 394-395, 546-549 and 597.
47Duck, F. et al., "Acoustic Shock Generation by Ultrasonic Imaging Equipment", Brit. J. Radiol., Mar. 1984, pp. 231-240.
48 *Duck, F. et al., Acoustic Shock Generation by Ultrasonic Imaging Equipment , Brit. J. Radiol., Mar. 1984, pp. 231 240.
49 *Echographic Ultrasonore: Un Circuit CCD Pour Simplifier L Electronique De Commande , Mesures Regulation Automatisme Fevrier 1980, pp. 25 27.
50Edell, S. et al., "Ultrasonic Evaluation of Renal Calculi", Am. J. Roentgenol, 130:261-263, Feb. 1978.
51 *Edell, S. et al., Ultrasonic Evaluation of Renal Calculi , Am. J. Roentgenol, 130:261 263, Feb. 1978.
52Eisenmenger, W. "Experimentelle Bestimung der Stossfrontdicke aus dem Akustischen Frequenzspektrum Elecktromagnetisch Erzeugter Stosswellen in Flussigkeiten bei ein em Stossdruckbereich von 10 Atm bis 100 Atm", Acustica, (Publ. S. Hirzel Verlag, Stuttgart, Ger.), vol. 14, No. 4, 1964, pp. 187-204.
53 *Eisenmenger, W. Experimentelle Bestimung der Stossfrontdicke aus dem Akustischen Frequenzspektrum Elecktromagnetisch Erzeugter Stosswellen in Flussigkeiten bei ein em Stossdruckbereich von 10 Atm bis 100 Atm , Acustica, (Publ. S. Hirzel Verlag, Stuttgart, Ger.), vol. 14, No. 4, 1964, pp. 187 204.
54 *El piner, I., Ultrasound/Physical, Chemical, and Biological Effects, 1964, (English translation by F. L. Sinclair, Consultants Bureau, N.Y.).
55Elder et al., "Ultrasonic Lithotripsy of a Large Staghorn Calculus", J. Urol., vol. 131, Jun. 1984, pp. 1152-1154.
56 *Elder et al., Ultrasonic Lithotripsy of a Large Staghorn Calculus , J. Urol., vol. 131, Jun. 1984, pp. 1152 1154.
57El'piner, I., Ultrasound/Physical, Chemical, and Biological Effects, 1964, (English translation by F. L. Sinclair, Consultants Bureau, N.Y.).
58Fraatz, V. N. et al., "Lichtoptisch Abbildung Fokussierter Ultraschallfelder", Materialpruf, vol. 21 (1979), No. 10, Oct., pp. 359-363.
59 *Fraatz, V. N. et al., Lichtoptisch Abbildung Fokussierter Ultraschallfelder , Materialpruf, vol. 21 (1979), No. 10, Oct., pp. 359 363.
60Friedland, "Present Status of Ultrasound in Medicine", The Journal of the American Medical Association, vol. 163, No. 10, Mar. 1957, pp. 799-803.
61 *Friedland, Present Status of Ultrasound in Medicine , The Journal of the American Medical Association, vol. 163, No. 10, Mar. 1957, pp. 799 803.
62 *Frungel, F., High Speed Pulse Technology, vol. 1, Academic Press, 1965, New York.
63Fry et al., "Ultrasonic Visualization of Soft Tissue Structure Based on Gradients in Absorption Characteristics", The Journal of the Acoustical Society of America, vol. 35, No. 11, Nov. 1963, pp. 1788-1790.
64 *Fry et al., Ultrasonic Visualization of Soft Tissue Structure Based on Gradients in Absorption Characteristics , The Journal of the Acoustical Society of America, vol. 35, No. 11, Nov. 1963, pp. 1788 1790.
65Fry, "Precision High Intensity Focusing Ultrasonic Machines for Surgery", American Journal of Physical Medicine, vol. 37, No. 3, Jun. 1958, pp. 152-156.
66Fry, "Ultrasonic Visualization of Ultrasonically Produced Lesions in Brain," Confina Neurologica, vol. 32, pp. 38-52, 1970.
67Fry, "Ultrasound: Its Applications in Medicine and Biology", Elsevier Scientific Publishing Company, Amsterdam, 1978, pp. 689-707; 724-741; and 743-745.
68 *Fry, Precision High Intensity Focusing Ultrasonic Machines for Surgery , American Journal of Physical Medicine, vol. 37, No. 3, Jun. 1958, pp. 152 156.
69 *Fry, Ultrasonic Visualization of Ultrasonically Produced Lesions in Brain, Confina Neurologica, vol. 32, pp. 38 52, 1970.
70 *Fry, Ultrasound: Its Applications in Medicine and Biology , Elsevier Scientific Publishing Company, Amsterdam, 1978, pp. 689 707; 724 741; and 743 745.
71Gavrilov, L. et al., "Use of Focused Ultrasound to Accelerate the `Maturing` of a Cataract", Sov. Phys-Acoust., vol. 20, No. 3, Nov.-Dec., 1974, pp. 229-231.
72 *Gavrilov, L. et al., Use of Focused Ultrasound to Accelerate the Maturing of a Cataract , Sov. Phys Acoust., vol. 20, No. 3, Nov. Dec., 1974, pp. 229 231.
73Gekhman et al., "The Effect of Supersonic Waves upon the Kidneys and the Urinary Tract", (Russian) 1963, pp. 17-21.
74 *Gekhman et al., The Effect of Supersonic Waves upon the Kidneys and the Urinary Tract , (Russian) 1963, pp. 17 21.
75Greenleaf, J. et al., "Algebraic Reconstruction of Spatial Distributions of Acoustic Velocities in Tissue from their Time-of-Flight Profiles", Acoustic Holography, 1975, pp. 71-90.
76 *Greenleaf, J. et al., Algebraic Reconstruction of Spatial Distributions of Acoustic Velocities in Tissue from their Time of Flight Profiles , Acoustic Holography, 1975, pp. 71 90.
77Guilgkett, "Stobspannungen und Stobstrome"(Symp.e unknown), pp. 2-22.
78 *Guilgkett, Stobspannungen und Stobstrome (Symp.e unknown), pp. 2 22.
79Hausler and Stein, "Fokussierbare Unterwasserimpulsschallquellen", Acustica, vol. 49, No. 4, 1981, pp. 273-279.
80 *Hausler and Stein, Fokussierbare Unterwasserimpulsschallquellen , Acustica, vol. 49, No. 4, 1981, pp. 273 279.
81Hausler et al., "Properties and Physiological Application of Focussed Fluid Shock Waves", ASA Meeting, Honolulu, Hawaii, Dec. 1978, pp. 2-12.
82Hausler et al., "Ultraschallverfahren Zur Ortung Von Nierensteinen", Symposium Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10-11, 1976, pp. 54-60.
83 *Hausler et al., Properties and Physiological Application of Focussed Fluid Shock Waves , ASA Meeting, Honolulu, Hawaii, Dec. 1978, pp. 2 12.
84 *Hausler et al., Ultraschallverfahren Zur Ortung Von Nierensteinen , Symposium Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10 11, 1976, pp. 54 60.
85Hausler, "Physikalische Grundlagen Der Instrumentellen Und Der Extrakorporalen Zerkleinerung Von Harnsteinen", Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, , Meersburg, Jun. 10-11, 1976, p. 32.
86 *Hausler, Physikalische Grundlagen Der Instrumentellen Und Der Extrakorporalen Zerkleinerung Von Harnsteinen , Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, , Meersburg, Jun. 10 11, 1976, p. 32.
87 *Hepp, W., Uberblick uber die Entwicklung der Stosswellenlithotripsie, (Publ. Dornier Medizintechnik), Sep. 1984.
88Hill, C. et al., "A Search for Chromosome Damage Following Exposure of Chinese Hamster Cells to High Intensity, Pulsed Ultrasound", Brit. J. Radiol., vol. 45, May, 1972, pp. 333-334.
89 *Hill, C. et al., A Search for Chromosome Damage Following Exposure of Chinese Hamster Cells to High Intensity, Pulsed Ultrasound , Brit. J. Radiol., vol. 45, May, 1972, pp. 333 334.
90Hill, C., "Ultra-Sonic Imaging", J. Physics E Scientific Instruments, vol. 9, Mar., 1976, pp. 153-162.
91 *Hill, C., Ultra Sonic Imaging , J. Physics E Scientific Instruments, vol. 9, Mar., 1976, pp. 153 162.
92Howards et al., "Current Status of Mechanical Lithotripsy", Transactions of the American Association of Genito-Urinary Surgeons, vol. 65, 1973, pp. 123-125.
93 *Howards et al., Current Status of Mechanical Lithotripsy , Transactions of the American Association of Genito Urinary Surgeons, vol. 65, 1973, pp. 123 125.
94Hunt et al., "Ultrasound Transducers for Pulse-Echo Medical Imaging", IEEE Transactions on Biomedical Engineering, vol. BME-30, No. 8, Aug. 1983, pp. 453-481.
95 *Hunt et al., Ultrasound Transducers for Pulse Echo Medical Imaging , IEEE Transactions on Biomedical Engineering, vol. BME 30, No. 8, Aug. 1983, pp. 453 481.
96Hynynen et al., "A Clinical Hyperthermia Unit Utilizing an Array of Seven Focused Ultrasonic Transducers", 1983, Ultrasonics Symposium, IEEE, pp. 816-821.
97 *Hynynen et al., A Clinical Hyperthermia Unit Utilizing an Array of Seven Focused Ultrasonic Transducers , 1983, Ultrasonics Symposium, IEEE, pp. 816 821.
98Hynynen, K. et al., "Design of Ultrasonic Transducers for Local Hyperthermia", Ultrasound in Med. and Biol, vol. 7, No. 4, 1981, pp. 397-402.
99 *Hynynen, K. et al., Design of Ultrasonic Transducers for Local Hyperthermia , Ultrasound in Med. and Biol, vol. 7, No. 4, 1981, pp. 397 402.
100 *Ibid., pp. 208 213.
101Ibid., pp. 208-213.
102 *Ibid., pp. 511 594.
103Ibid., pp. 511-594.
104 *IEEE Transactions on Sonics and Ultrasonics, Jan. 1973, p. 54.
105Konrad et al., "Fokussierte Stobwellen zur Beruhrungsfreien Nierensteinzertrummerung an der Freigelegten Niere", Urologe A 18 (1979), pp. 289-293.
106 *Konrad et al., Fokussierte Stobwellen zur Beruhrungsfreien Nierensteinzertrummerung an der Freigelegten Niere , Urologe A 18 (1979), pp. 289 293.
107Kossoff, G., "Analysis of Focusing Action of Spherically Curved Transducers", Ultrasound in Med. & Biol., vol. 5, 1979, pp. 359-365.
108 *Kossoff, G., Analysis of Focusing Action of Spherically Curved Transducers , Ultrasound in Med. & Biol., vol. 5, 1979, pp. 359 365.
109Kurtze, "Uber die Bedingunguen fur das Auftreten von Kavitation in Flussigkeiten", (source unknown), pp. 1-47.
110 *Kurtze, Uber die Bedingunguen fur das Auftreten von Kavitation in Flussigkeiten , (source unknown), pp. 1 47.
111Lauterborn, Session 3, "Cavitation: General and Basic Aspects", 3:1-General and Basic Aspects of Cavitation, pp. 195-202.
112 *Lauterborn, Session 3, Cavitation: General and Basic Aspects , 3:1 General and Basic Aspects of Cavitation, pp. 195 202.
113Lele, "Production of Deep Focal Lesions by Focused Ultrasound-Current Status", Ultrasonics, Apr. 1967, pp. 105-112.
114 *Lele, Production of Deep Focal Lesions by Focused Ultrasound Current Status , Ultrasonics, Apr. 1967, pp. 105 112.
115Linke, C. et al., "Localized Tissue Destruction by High-Intensity Focused Ultrasound", Arch. Surg., vol. 107, Dec. 1973, pp. 887-891.
116 *Linke, C. et al., Localized Tissue Destruction by High Intensity Focused Ultrasound , Arch. Surg., vol. 107, Dec. 1973, pp. 887 891.
117Lizzi et al., "Experimental Treatment of Intra-Ocular Carcinoma with High Intensity Focused Ultrasound", Paper No. 1305, Proceedings of the 25th Annual Meeting of the American Institute of Ultrasound in Medicine, Sep. 15-19, 1980, New Orleans, Louisiana.
118 *Lizzi et al., Experimental Treatment of Intra Ocular Carcinoma with High Intensity Focused Ultrasound , Paper No. 1305, Proceedings of the 25th Annual Meeting of the American Institute of Ultrasound in Medicine, Sep. 15 19, 1980, New Orleans, Louisiana.
119Lizzi, et al., "Thermal Model for Ultrasonic Treatment of Glaucoma", Ultrasound in Med. & Biol., vol. 10, No. 3, 1984, pp. 289-298.
120 *Lizzi, et al., Thermal Model for Ultrasonic Treatment of Glaucoma , Ultrasound in Med. & Biol., vol. 10, No. 3, 1984, pp. 289 298.
121Lizzi, F., "Ultrasonic Hyperthermia for Ophthalmic Therapy", IEEE Transactions on Sonics and Ultrasonics, vol. SU-31, No. 5, Sep. 1984, pp. 473-481.
122 *Lizzi, F., Ultrasonic Hyperthermia for Ophthalmic Therapy , IEEE Transactions on Sonics and Ultrasonics, vol. SU 31, No. 5, Sep. 1984, pp. 473 481.
123Macovski, "Medical Imaging Systems", pp. 4-6 and 173-181, 1983, Prentice-Hall, Inc.
124 *Macovski, Medical Imaging Systems , pp. 4 6 and 173 181, 1983, Prentice Hall, Inc.
125Marshall, F. et al., "A Comparison of Ultrasonography and Radiography in the Localization of Renal Calculi: Experimental and Operative Experience", J. Urol., vol. 126, Nov. 1981, pp. 576-580.
126 *Marshall, F. et al., A Comparison of Ultrasonography and Radiography in the Localization of Renal Calculi: Experimental and Operative Experience , J. Urol., vol. 126, Nov. 1981, pp. 576 580.
127Mulvaney, "Attempted Disintegration of Calculi by Ultrasonic Vibrations", J. Urol., vol. 70, No. 5, Nov. 1953, pp.704-707.
128 *Mulvaney, Attempted Disintegration of Calculi by Ultrasonic Vibrations , J. Urol., vol. 70, No. 5, Nov. 1953, pp.704 707.
129 *New Hospital Technologies, Auzenet et al., Proceedings from the Mar. Oct. 1984 Training Course.
130New Hospital Technologies, Auzenet et al., Proceedings from the Mar.-Oct. 1984 Training Course.
131Petersen, "Piezoelektrische Aktautoren", Feinwerktechnik & Messtechnik, 86 (1978), pp. 304-308.
132 *Petersen, Piezoelektrische Aktautoren , Feinwerktechnik & Messtechnik, 86 (1978), pp. 304 308.
133 *Portions of the 1977 Clinical Ultrasound Purchaser Catalogue, (Publ. 1976 by McGraphics, Denver, Colo.).
134Portions of the 1977 Clinical Ultrasound Purchaser'Catalogue, (Publ. 1976 by McGraphics, Denver, Colo.).
135 *Portions of the 1978 Clinical Ultrasound Purchaser s Catalogue, (Publ. 1977 by McGraphics, Denver, Colo.).
136Portions of the 1978 Clinical Ultrasound Purchaser's Catalogue, (Publ. 1977 by McGraphics, Denver, Colo.).
137 *Program of the 7th Annual Meeting, European Intrarenal Surgery Club, Ghent, Belgium, 1982.
138 *Programme & Abstract, BMUS 13th Annual Meeting, 14th 15th Dec. 1981, London.
139Programme & Abstract, BMUS 13th Annual Meeting, 14th-15th Dec. 1981, London.
140Raudsz, "Pschrometrische Bestimmung", Feinwerktechnik & Messtechnik, 86 (1978), p. 303.
141 *Raudsz, Pschrometrische Bestimmung , Feinwerktechnik & Messtechnik, 86 (1978), p. 303.
142Riedlinger et al., "Er Zeugung Hochenergetischen Ultrashallimpulse Mit Fokussierenden Piezowandlarn", Generation of High Energy Ultrasound Impulses with Focusing Piezoelectric Transducers, Fortschritte der Akustik, FASA/DAGA '82, Gottingen, 1982, pp. 755-758, (Translation included).
143 *Riedlinger et al., Er Zeugung Hochenergetischen Ultrashallimpulse Mit Fokussierenden Piezowandlarn , Generation of High Energy Ultrasound Impulses with Focusing Piezoelectric Transducers, Fortschritte der Akustik, FASA/DAGA 82, Gottingen, 1982, pp. 755 758, (Translation included).
144Romer, V. M. et al., "Fresnelsche Zonenplatte zur Schallfeldfokussierung", Materialpruf, vol. 21 (1979), No. 10, Oct., pp. 363-365.
145 *Romer, V. M. et al., Fresnelsche Zonenplatte zur Schallfeldfokussierung , Materialpruf, vol. 21 (1979), No. 10, Oct., pp. 363 365.
146Rosenberg, L. D., "La Generation Et L'Etude Des Vibrations Ultra-Sonores De Tres Grande Intensite", Acustica, vol. 12, (1962), pp. 40-49.
147 *Rosenberg, L. D., La Generation Et L Etude Des Vibrations Ultra Sonores De Tres Grande Intensite , Acustica, vol. 12, (1962), pp. 40 49.
148Rozenberg, L. et al., "A Focusing Radiator for the Generation of Superhigh Intensity Ultrasound at 1 Mc", Sov. Phys.-Acoust., vol. 9, No. 1, Jul.-Sep., 1963, pp. 47-50.
149Rozenberg, L. et al., "Apparatus for the Generation of Focused Ultrasound of High-Intensity," Sov. Phys-Acoust., vol. 5, 1959, pp. 206-210.
150 *Rozenberg, L. et al., A Focusing Radiator for the Generation of Superhigh Intensity Ultrasound at 1 Mc , Sov. Phys. Acoust., vol. 9, No. 1, Jul. Sep., 1963, pp. 47 50.
151 *Rozenberg, L. et al., Apparatus for the Generation of Focused Ultrasound of High Intensity, Sov. Phys Acoust., vol. 5, 1959, pp. 206 210.
152 *Rozenberg, L., (Ed.), High Intensity Ultrasonic Fields, 1971 (translation by James S. Wood, Plenum Press, N.Y.).
153Rozenberg, L., (Ed.), High-Intensity Ultrasonic Fields, 1971 (translation by James S. Wood, Plenum Press, N.Y.).
154 *Rozenberg, L., (Ed.), Sources of High Intensity Ultrasound, vols. 1 and 2, 1969 (translations by James S. Wood, Plenum Press, N.Y.).
155Rozenberg, L., (Ed.), Sources of High-Intensity Ultrasound, vols. 1 and 2, 1969 (translations by James S. Wood, Plenum Press, N.Y.).
156Schlegel, J. et al., "The Use of Ultrasound for Localizing Renal Calculi", J. Urol., vol. 86, No. 4, Oct., 1961, pp. 367-369.
157 *Schlegel, J. et al., The Use of Ultrasound for Localizing Renal Calculi , J. Urol., vol. 86, No. 4, Oct., 1961, pp. 367 369.
158Shaw, A. et al., "A Real Time 2-Dimensional Ultarsonic Scanner for Clinical Use", Ultrasonics, Jan., 1976, pp. 35-40.
159 *Shaw, A. et al., A Real Time 2 Dimensional Ultarsonic Scanner for Clinical Use , Ultrasonics, Jan., 1976, pp. 35 40.
160Sturtevant, B. et al., "The Focusing of Weak Shock Waves", J. Fluid Mech., 1976, vol. 73, Part 4, pp. 651-671.
161 *Sturtevant, B. et al., The Focusing of Weak Shock Waves , J. Fluid Mech., 1976, vol. 73, Part 4, pp. 651 671.
162 *Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10 11, 1976.
163Symposium/Biophysikalische Verfahren zur Diagnose und Therapie von Steinleiden der Harnevege Wissenschaftliche Berichte, Meersburg, Jun. 10-11, 1976.
164Tarnoczy, "Sound Focussing Lenses and Wave Guides", Ultrasonics, Jul.-Sep., 1965, pp. 115-127.
165 *Tarnoczy, Sound Focussing Lenses and Wave Guides , Ultrasonics, Jul. Sep., 1965, pp. 115 127.
166Thurstone, F. et al., "Resolution Enhancement in Scanning of Tissue", Ultrasonics, Jan., 1966, pp. 25-27.
167 *Thurstone, F. et al., Resolution Enhancement in Scanning of Tissue , Ultrasonics, Jan., 1966, pp. 25 27.
168Translation of P3, 1938, pp. 1-39.
169Trial Transcript Testimony of Dr. William Swindell, pp. 34, 36, 39, 45, 48, 50, 5190, 52, 53.
170 *Ultrasonic Focusing Radiators , pp. 225 285, 306 307.
171 *Ultrasonic Imaging, C. R. Hill, Journal of Physics E Scientific Instruments, vol. 9, Mar. 1976.
172 *Ultrasonics, Jan. 1984, pp. 5 6.
173Ultrasonics, Jan. 1984, pp. 5-6.
174 *Ultrasonics, May 1982, pp. 99 101.
175Ultrasonics, May 1982, pp. 99-101.
176 *Ultrasound: Its Applications in Medicine and Biology, Intense Focused Ultrasound: Its Production, Effects and Utilization.
177von Klot, R., "Ausbreitung von Ultraschallimipulsen bei der Prufung von Kernreaktor-Druckbehaltern mittels Schallemissionsanalyse", Materialpruf, vol. 21 (1979), No. 10, Oct. pp. 353-358.
178 *von Klot, R., Ausbreitung von Ultraschallimipulsen bei der Prufung von Kernreaktor Druckbehaltern mittels Schallemissionsanalyse , Materialpruf, vol. 21 (1979), No. 10, Oct. pp. 353 358.
179Wanner et al., "Problematik Einer Integrierten Ultraschallortung im Versuchsmodell Beruhrungsfreie Nierensteinzertrummerung", Symposium Biophysikalische Verfahren Zur Diagnose und Therapie von Steinleiden der Harnwege, Meersburg, Jun. 10 and 11, 1976, pp. 235-240.
180 *Wanner et al., Problematik Einer Integrierten Ultraschallortung im Versuchsmodell Beruhrungsfreie Nierensteinzertrummerung , Symposium Biophysikalische Verfahren Zur Diagnose und Therapie von Steinleiden der Harnwege, Meersburg, Jun. 10 and 11, 1976, pp. 235 240.
181Watanabe et al., "Micro-Explosion Cystolithotripsy", J. Urol., vol. 129, Jan. 1983, pp. 23-28.
182 *Watanabe et al., Micro Explosion Cystolithotripsy , J. Urol., vol. 129, Jan. 1983, pp. 23 28.
183Wells, P. N. T. "Biomedical Ultrasonics", Academic Press, London, 1977, pp. 494-495.
184 *Wells, P. N. T. Biomedical Ultrasonics , Academic Press, London, 1977, pp. 494 495.
185Wells, P. N. T., "Diagnostic Imaging in Europe", Ultrasonics, Mar., 1980, pp. 91-92.
186Wells, P. N. T., "Scientific Basis of Medical Imaging", Churchill Livingstone, Edinburgh, 1982.
187Wells, P. N. T., "Ultraschall in der Medizinischen Diagnostik", Walter de Gruyter, Berlin, 1980.
188 *Wells, P. N. T., Diagnostic Imaging in Europe , Ultrasonics, Mar., 1980, pp. 91 92.
189 *Wells, P. N. T., Scientific Basis of Medical Imaging , Churchill Livingstone, Edinburgh, 1982.
190 *Wells, P. N. T., Ultraschall in der Medizinischen Diagnostik , Walter de Gruyter, Berlin, 1980.
191Ziegler et al., "Erfahrungen mit Hochenergetischen Stobwellen Bei der Behandlung Von Nierensteinen", Results of High Intensity Shock Wave Treatment of Renal Calculi, Program of the 7th Annual Meeting, European Intrarenal Surgery Club, Ghent, Belgium, 1982, (Translation included).
192 *Ziegler et al., Erfahrungen mit Hochenergetischen Stobwellen Bei der Behandlung Von Nierensteinen , Results of High Intensity Shock Wave Treatment of Renal Calculi, Program of the 7th Annual Meeting, European Intrarenal Surgery Club, Ghent, Belgium, 1982, (Translation included).
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US5150713 *20 août 199029 sept. 1992Kabushiki Kaisha ToshibaMethod and system for controlling shock wave irradiation in a shock wave therapy apparatus
US5247935 *19 mars 199228 sept. 1993General Electric CompanyMagnetic resonance guided focussed ultrasound surgery
US5291890 *29 août 19918 mars 1994General Electric CompanyMagnetic resonance surgery using heat waves produced with focussed ultrasound
US5311869 *22 mars 199117 mai 1994Kabushiki Kaisha ToshibaMethod and apparatus for ultrasonic wave treatment in which medical progress may be evaluated
US5490840 *26 sept. 199413 févr. 1996General Electric CompanyTargeted thermal release of drug-polymer conjugates
US5643179 *28 déc. 19941 juil. 1997Kabushiki Kaisha ToshibaMethod and apparatus for ultrasonic medical treatment with optimum ultrasonic irradiation control
US626773418 juin 199931 juil. 2001Kabushiki Kaisha ToshibaUltrasound therapeutic apparatus
US633484618 juin 19991 janv. 2002Kabushiki Kaisha ToshibaUltrasound therapeutic apparatus
US636153121 janv. 200026 mars 2002Medtronic Xomed, Inc.Focused ultrasound ablation devices having malleable handle shafts and methods of using the same
US63741329 août 200016 avr. 2002Transurgical, Inc.MRI-guided therapeutic unit and methods
US640972031 juil. 200025 juin 2002Medtronic Xomed, Inc.Methods of tongue reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US641325419 janv. 20002 juil. 2002Medtronic Xomed, Inc.Method of tongue reduction by thermal ablation using high intensity focused ultrasound
US642586717 sept. 199930 juil. 2002University Of WashingtonNoise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US645471318 juin 199924 sept. 2002Kabushiki Kaisha ToshibaUltrasound therapeutic apparatus
US65162116 juil. 20004 févr. 2003Transurgical, Inc.MRI-guided therapeutic unit and methods
US659593431 juil. 200022 juil. 2003Medtronic Xomed, Inc.Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US668908728 mars 200210 févr. 2004Cybersonics, Inc.Floating probe for ultrasonic transducers
US669245019 janv. 200017 févr. 2004Medtronic Xomed, Inc.Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
US67161847 juin 20026 avr. 2004University Of WashingtonUltrasound therapy head configured to couple to an ultrasound imaging probe to facilitate contemporaneous imaging using low intensity ultrasound and treatment using high intensity focused ultrasound
US67734086 juil. 200010 août 2004Transurgical, Inc.MRI-guided therapeutic unit and methods
US693604618 juin 200330 août 2005Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US69769865 janv. 200420 déc. 2005Afx, Inc.Electrode arrangement for use in a medical instrument
US703335218 janv. 200025 avr. 2006Afx, Inc.Flexible ablation instrument
US70524911 avr. 200230 mai 2006Afx, Inc.Vacuum-assisted securing apparatus for a microwave ablation instrument
US70997173 janv. 200229 août 2006Afx Inc.Catheter having improved steering
US711512615 avr. 20023 oct. 2006Afx Inc.Directional microwave ablation instrument with off-set energy delivery portion
US715684114 juil. 20052 janv. 2007Afx, Inc.Electrode arrangement for use in a medical instrument
US719242719 févr. 200320 mars 2007Afx, Inc.Apparatus and method for assessing transmurality of a tissue ablation
US721104412 déc. 20031 mai 2007Ethicon Endo-Surgery, Inc.Method for mapping temperature rise using pulse-echo ultrasound
US722644612 sept. 20005 juin 2007Dinesh ModySurgical microwave ablation assembly
US722946926 avr. 200312 juin 2007Quantumcor, Inc.Methods for treating and repairing mitral valve annulus
US723991923 avr. 20023 juil. 2007Biophysical Mind Technologies, Ltd.Diagnosis, treatment and research of mental disorder
US730113116 févr. 200627 nov. 2007Afx, Inc.Microwave ablation instrument with flexible antenna assembly and method
US730356024 sept. 20044 déc. 2007Afx, Inc.Method of positioning a medical instrument
US734639912 nov. 200418 mars 2008Afx, Inc.Monopole tip for ablation catheter
US73876124 déc. 200317 juin 2008Cybersonics, Inc.Floating probe for ultrasonic transducers
US738762714 sept. 200517 juin 2008Maquet Cardiovascular LlcVacuum-assisted securing apparatus for a microwave ablation instrument
US745235722 oct. 200418 nov. 2008Ethicon Endo-Surgery, Inc.System and method for planning treatment of tissue
US747322422 mai 20026 janv. 2009Ethicon Endo-Surgery, Inc.Deployable ultrasound medical transducers
US747325021 mai 20046 janv. 2009Ethicon Endo-Surgery, Inc.Ultrasound medical system and method
US749446716 avr. 200424 févr. 2009Ethicon Endo-Surgery, Inc.Medical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode
US752085629 oct. 200421 avr. 2009University Of WashingtonImage guided high intensity focused ultrasound device for therapy in obstetrics and gynecology
US759199617 août 200522 sept. 2009University Of WashingtonUltrasound target vessel occlusion using microbubbles
US761009510 mai 200627 oct. 2009Biophysical Mind Technologies, Ltd.Diagnosis, treatment, and research of brain disorders
US761501520 juin 200310 nov. 2009Medtronic, Inc.Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US762187317 août 200524 nov. 2009University Of WashingtonMethod and system to synchronize acoustic therapy with ultrasound imaging
US767029116 sept. 20052 mars 2010University Of WashingtonInterference-free ultrasound imaging during HIFU therapy, using software tools
US772253918 août 200525 mai 2010University Of WashingtonTreatment of unwanted tissue by the selective destruction of vasculature providing nutrients to the tissue
US780683914 juin 20045 oct. 2010Ethicon Endo-Surgery, Inc.System and method for ultrasound therapy using grating lobes
US780689222 mai 20025 oct. 2010Ethicon Endo-Surgery, Inc.Tissue-retaining system for ultrasound medical treatment
US783322122 oct. 200416 nov. 2010Ethicon Endo-Surgery, Inc.System and method for treatment of tissue using the tissue as a fiducial
US784609624 nov. 20037 déc. 2010Ethicon Endo-Surgery, Inc.Method for monitoring of medical treatment using pulse-echo ultrasound
US785062630 oct. 200714 déc. 2010University Of WashingtonMethod and probe for using high intensity focused ultrasound
US788346818 mai 20048 févr. 2011Ethicon Endo-Surgery, Inc.Medical system having an ultrasound source and an acoustic coupling medium
US795109520 mai 200431 mai 2011Ethicon Endo-Surgery, Inc.Ultrasound medical system
US801675729 sept. 200613 sept. 2011University Of WashingtonNon-invasive temperature estimation technique for HIFU therapy monitoring using backscattered ultrasound
US805740815 mai 200815 nov. 2011The Regents Of The University Of MichiganPulsed cavitational ultrasound therapy
US813727411 févr. 201120 mars 2012Kona Medical, Inc.Methods to deliver high intensity focused ultrasound to target regions proximate blood vessels
US816780519 oct. 20061 mai 2012Kona Medical, Inc.Systems and methods for ultrasound applicator station keeping
US819740923 févr. 200912 juin 2012University Of WashingtonUltrasound guided high intensity focused ultrasound treatment of nerves
US820629921 sept. 201026 juin 2012University Of WashingtonImage guided high intensity focused ultrasound treatment of nerves
US821101721 sept. 20103 juil. 2012University Of WashingtonImage guided high intensity focused ultrasound treatment of nerves
US823590211 sept. 20077 août 2012Focus Surgery, Inc.System and method for tissue change monitoring during HIFU treatment
US827739811 févr. 20112 oct. 2012Kona Medical, Inc.Methods and devices to target vascular targets with high intensity focused ultrasound
US829591211 janv. 201023 oct. 2012Kona Medical, Inc.Method and system to inhibit a function of a nerve traveling with an artery
US832879815 mai 200711 déc. 2012Quantumcor, IncMethod for treating and repairing mitral valve annulus
US833743415 nov. 201025 déc. 2012University Of WashingtonMethods for using high intensity focused ultrasound and associated systems and devices
US837200926 sept. 201112 févr. 2013Kona Medical, Inc.System and method for treating a therapeutic site
US83746741 févr. 201112 févr. 2013Kona Medical, Inc.Nerve treatment system
US838853521 janv. 20115 mars 2013Kona Medical, Inc.Methods and apparatus for focused ultrasound application
US841449415 sept. 20069 avr. 2013University Of WashingtonThin-profile therapeutic ultrasound applicators
US846990415 mars 201125 juin 2013Kona Medical, Inc.Energetic modulation of nerves
US851226227 juin 201220 août 2013Kona Medical, Inc.Energetic modulation of nerves
US851796215 mars 201127 août 2013Kona Medical, Inc.Energetic modulation of nerves
US853981322 sept. 201024 sept. 2013The Regents Of The University Of MichiganGel phantoms for testing cavitational ultrasound (histotripsy) transducers
US855683413 déc. 201015 oct. 2013Kona Medical, Inc.Flow directed heating of nervous structures
US861118916 sept. 200517 déc. 2013University of Washington Center for CommercializationAcoustic coupler using an independent water pillow with circulation for cooling a transducer
US86229378 oct. 20087 janv. 2014Kona Medical, Inc.Controlled high efficiency lesion formation using high intensity ultrasound
US871520912 avr. 20126 mai 2014Kona Medical, Inc.Methods and devices to modulate the autonomic nervous system with ultrasound
US88456295 avr. 201030 sept. 2014Medtronic Ardian Luxembourg S.A.R.L.Ultrasound apparatuses for thermally-induced renal neuromodulation
US898621115 mars 201124 mars 2015Kona Medical, Inc.Energetic modulation of nerves
US898623115 mars 201124 mars 2015Kona Medical, Inc.Energetic modulation of nerves
US899244714 juin 201231 mars 2015Kona Medical, Inc.Energetic modulation of nerves
US900514319 mai 201114 avr. 2015Kona Medical, Inc.External autonomic modulation
US900514418 déc. 201214 avr. 2015Michael H. SlaytonTissue-retaining systems for ultrasound medical treatment
US904978313 avr. 20122 juin 2015Histosonics, Inc.Systems and methods for obtaining large creepage isolation on printed circuit boards
US906113117 août 201023 juin 2015Histosonics, Inc.Disposable acoustic coupling medium container
US906667914 juin 201030 juin 2015University Of WashingtonUltrasonic technique for assessing wall vibrations in stenosed blood vessels
US911995120 avr. 20111 sept. 2015Kona Medical, Inc.Energetic modulation of nerves
US911995229 oct. 20121 sept. 2015Kona Medical, Inc.Methods and devices to modulate the autonomic nervous system via the carotid body or carotid sinus
US91256426 déc. 20138 sept. 2015Kona Medical, Inc.External autonomic modulation
US913228717 août 201015 sept. 2015T. Douglas MastSystem and method for ultrasound treatment using grating lobes
US91446949 août 201229 sept. 2015The Regents Of The University Of MichiganLesion generation through bone using histotripsy therapy without aberration correction
US917406511 oct. 20103 nov. 2015Kona Medical, Inc.Energetic modulation of nerves
US9186198 *14 sept. 201217 nov. 2015Medtronic Ardian Luxembourg S.A.R.L.Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods
US919863511 août 20061 déc. 2015University Of WashingtonMethod and apparatus for preparing organs and tissues for laparoscopic surgery
US919909716 mai 20131 déc. 2015Kona Medical, Inc.Energetic modulation of nerves
US922048814 sept. 201229 déc. 2015Kona Medical, Inc.System and method for treating a therapeutic site
US926159629 oct. 201016 févr. 2016T. Douglas MastMethod for monitoring of medical treatment using pulse-echo ultrasound
US935217127 janv. 201331 mai 2016Kona Medical, Inc.Nerve treatment system
US93584019 mars 20127 juin 2016Kona Medical, Inc.Intravascular catheter to deliver unfocused energy to nerves surrounding a blood vessel
US952692322 juin 201527 déc. 2016Histosonics, Inc.Disposable acoustic coupling medium container
US95795181 juin 201228 févr. 2017Kona Medical, Inc.Nerve treatment system
US963613330 avr. 20132 mai 2017The Regents Of The University Of MichiganMethod of manufacturing an ultrasound system
US964263422 sept. 20119 mai 2017The Regents Of The University Of MichiganPulsed cavitational ultrasound therapy
US20030013970 *22 mai 200216 janv. 2003Makin Inder Raj. S.Deployable ultrasound medical transducers
US20030014093 *22 mai 200216 janv. 2003Makin Inder Raj. S.Excisional and ultrasound medical treatment system
US20030018266 *22 mai 200223 janv. 2003Makin Inder Raj. S.Faceted ultrasound medical transducer assembly
US20030018270 *22 mai 200223 janv. 2003Makin Inder Raj. S.Tissue-retaining system for ultrasound medical treatment
US20030036754 *1 avr. 200220 févr. 2003Lyndall ErbVacuum-assisted securing apparatus for a microwave ablation instrument
US20040082884 *4 déc. 200329 avr. 2004Dharmendra PalFloating probe for ultrasonic transducers
US20040127791 *12 déc. 20031 juil. 2004Mast T. DouglasMethod for mapping temperature rise using pulse-echo ultrasound
US20050020945 *29 janv. 200427 janv. 2005Tosaya Carol A.Acoustically-aided cerebrospinal-fluid manipulation for neurodegenerative disease therapy
US20050038340 *2 févr. 200417 févr. 2005University Of WashingtonUse of contrast agents to increase the effectiveness of high intensity focused ultrasound therapy
US20050203399 *29 oct. 200415 sept. 2005University Of WashingtonImage guided high intensity focused ultrasound device for therapy in obstetrics and gynecology
US20050228286 *7 avr. 200413 oct. 2005Messerly Jeffrey DMedical system having a rotatable ultrasound source and a piercing tip
US20050234438 *15 avr. 200420 oct. 2005Mast T DUltrasound medical treatment system and method
US20050240105 *14 avr. 200427 oct. 2005Mast T DMethod for reducing electronic artifacts in ultrasound imaging
US20050240124 *15 avr. 200427 oct. 2005Mast T DUltrasound medical treatment system and method
US20050240125 *16 avr. 200427 oct. 2005Makin Inder Raj SMedical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode
US20050261585 *20 mai 200424 nov. 2005Makin Inder Raj SUltrasound medical system
US20050261586 *18 mai 200424 nov. 2005Makin Inder R SMedical system having an ultrasound source and an acoustic coupling medium
US20050261587 *20 mai 200424 nov. 2005Makin Inder R SUltrasound medical system and method
US20050261588 *21 mai 200424 nov. 2005Makin Inder Raj SUltrasound medical system
US20050261611 *21 mai 200424 nov. 2005Makin Inder Raj SUltrasound medical system and method
US20060052701 *18 août 20059 mars 2006University Of WashingtonTreatment of unwanted tissue by the selective destruction of vasculature providing nutrients to the tissue
US20060089624 *22 oct. 200427 avr. 2006Voegele James WSystem and method for planning treatment of tissue
US20060264748 *16 sept. 200523 nov. 2006University Of WashingtonInterference-free ultrasound imaging during HIFU therapy, using software tools
US20070004984 *11 août 20064 janv. 2007University Of WashingtonMethod and apparatus for preparing organs and tissues for laparoscopic surgery
US20070016184 *14 juil. 200518 janv. 2007Ethicon Endo-Surgery, Inc.Medical-treatment electrode assembly and method for medical treatment
US20070041961 *17 août 200522 févr. 2007University Of WashingtonUltrasound target vessel occlusion using microbubbles
US20070055155 *17 août 20058 mars 2007Neil OwenMethod and system to synchronize acoustic therapy with ultrasound imaging
US20070106157 *29 sept. 200610 mai 2007University Of WashingtonNon-invasive temperature estimation technique for hifu therapy monitoring using backscattered ultrasound
US20080051656 *30 oct. 200728 févr. 2008University Of WashingtonMethod for using high intensity focused ultrasound
US20080319356 *15 mai 200825 déc. 2008Cain Charles APulsed cavitational ultrasound therapy
US20090069677 *11 sept. 200712 mars 2009Focus Surgery, Inc.System and method for tissue change monitoring during hifu treatment
US20090112098 *15 sept. 200630 avr. 2009Shahram VaezyThin-profile therapeutic ultrasound applicators
US20090198156 *13 avr. 20096 août 2009Mast T DouglasUltrasound medical treatment system and method
US20100069797 *29 sept. 200918 mars 2010Cain Charles APulsed cavitational ultrasound therapy
US20100160781 *9 déc. 200924 juin 2010University Of WashingtonDoppler and image guided device for negative feedback phased array hifu treatment of vascularized lesions
US20100234728 *23 févr. 200916 sept. 2010University Of WashingtonUltrasound guided high intensity focused ultrasound treatment of nerves
US20100256490 *18 juin 20107 oct. 2010Makin Inder Raj SMedical system having an ultrasound source and an acoustic coupling medium
US20100312150 *17 août 20109 déc. 2010Mast T DouglasSystem and method for medical treatment using ultrasound
US20110009734 *21 sept. 201013 janv. 2011University Of WashingtonImage guided high intensity focused ultrasound treatment of nerves
US20110040171 *21 sept. 201017 févr. 2011University Of WashingtonImage guided high intensity focused ultrasound treatment of nerves
US20110040184 *29 oct. 201017 févr. 2011Mast T DouglasMethod for monitoring of medical treatment using pulse-echo ultrasound
US20110040190 *17 août 201017 févr. 2011Jahnke Russell CDisposable Acoustic Coupling Medium Container
US20110054363 *26 août 20103 mars 2011Cain Charles ADevices and methods for using controlled bubble cloud cavitation in fractionating urinary stones
US20110201929 *15 nov. 201018 août 2011University Of WashingtonMethod for using high intensity focused ultrasound
US20110201975 *21 avr. 201118 août 2011Makin Inder Raj SUltrasound medical system
US20130012844 *14 sept. 201210 janv. 2013Ardian, Inc.Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods
Classifications
Classification aux États-Unis600/439, 601/3
Classification internationaleA61N7/02
Classification coopérativeA61N7/02
Classification européenneA61N7/02
Événements juridiques
DateCodeÉvénementDescription
22 nov. 1988ASAssignment
Owner name: EDAP INTERNATIONAL, A CORP. OF FRANCE, FRANCE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DORY, JACQUES;REEL/FRAME:005001/0646
Effective date: 19881019
29 nov. 1994REMIMaintenance fee reminder mailed
21 avr. 1997ASAssignment
Owner name: TECHNOMED MEDICAL SYSTEMS, S.A., FRANCE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EDAP INTERNATIONAL S.A.;REEL/FRAME:008470/0235
Effective date: 19970414
19 oct. 1998FPAYFee payment
Year of fee payment: 12