USRE35247E - Biocatalytic production of phenolic resins with ramped peroxide addition - Google Patents

Biocatalytic production of phenolic resins with ramped peroxide addition Download PDF

Info

Publication number
USRE35247E
USRE35247E US08/270,867 US27086794A USRE35247E US RE35247 E USRE35247 E US RE35247E US 27086794 A US27086794 A US 27086794A US RE35247 E USRE35247 E US RE35247E
Authority
US
United States
Prior art keywords
peroxide
phenol
reaction
medium
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/270,867
Inventor
William L. Cyrus, Jr.
Alexander R. Pokora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WestRock MWV LLC
Original Assignee
Mead Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mead Corp filed Critical Mead Corp
Priority to US08/270,867 priority Critical patent/USRE35247E/en
Application granted granted Critical
Publication of USRE35247E publication Critical patent/USRE35247E/en
Assigned to MEADWESTVACO CORPORATION reassignment MEADWESTVACO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEAD CORPORATION, THE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic

Definitions

  • the present invention is an improvement in the biocatalytic processes for producing phenolic resins described in U.S. Pat. No. 4,900,671 and U.S. application Ser. No. 07/599,584 filed Oct. 18, 1990 now U.S. Pat. No. 5,147,793.
  • U.S. Pat. No. 4,900,671 commonly assigned to The Mead Corporation discloses a method for preparing a phenolic resin which comprises preparing a solution of a phenol in a water miscible or a water-immiscible solvent and an aqueous solution of a peroxidase or oxidase enzyme, mixing the two solutions and adding a peroxide or oxygen.
  • the preferred method described in this patent makes use of horseradish peroxidase. Hydrogen peroxide is added to the system and reaction occurs on the enzyme.
  • U.S. application Ser. No. 07/599,584 now U.S. Pat. No. 5,147,793 discloses that soybean peroxidase and other plant peroxidases can be used in this method.
  • the peroxide is consumed and converted into free radicals by the enzyme catalyst. As the reaction proceeds, monomeric phenol is converted to resin product. In the later stages of the reaction, the concentration of monomeric phenol falls and the consumption of the peroxide slows to a point at which an excess of peroxide is present. The excess peroxide is believed to interfere with the reaction of the remaining phenol by inhibiting the catlayst or terminating chain transfer. This results in poor reaction and production efficiencies as reflected in higher concentrations of residual monomer than are desirable in the resin and lower molecular weight resins.
  • the peroxide addition is ramped, i.e., high concentrations of peroxide are used at the beginning of the reaction when high concentrations of monomeric phenol are present and lower concentrations of peroxide are used in later stages of the reaction when higher peroxide concentrations would lead to premature termination of the reaction.
  • one manifestation of the present invention is a process for preparing a phenolic resin which comprises preparing a reaction medium containing an unreacted phenol and a peroxidase enzyme and adding a solution of a peroxide to said medium, said solution being added to said reaction medium at a rate which decreases from an initial rate as the concentration of said unreacted phenol in said medium decreases.
  • phenolic resin as used herein includes phenolic dimers and trimers as well as oligomers and higher molecular weight species.
  • a "unit" of peroxidase means the amount of peroxidase which produces a change of 12 absorbance units measured at 1 cm pathlength in one minute at 420 nm when added to a solution containing 100 mM potassium phosphate, 44 mM pyrogallol and 8 mM hydrogen peroxide and having a pH of 6 (Sigma Chemical Co. Peroxidase Bulletin).
  • peroxidases can be used in the present invention.
  • the most preferred peroxidases are soybean and horseradish peroxidases.
  • peroxidases from other legumes are also useful such as peroxidases from peas, guar beans, garbanzo beans, and runner beans. It is also believe that peroxidases from rice and certain malvaceous plants, such as cotton, may be useful.
  • Peroxidases useful herein are commercially available. Being water soluble they are easily harvested by homogenizing the protein source with water, filtering the homogenate, and retaining the filtrate. The filtrate is treated to remove proteinaceous and lipophilic impurities by adding to the filtrate a solution of a protein fixative or a detergent and forcing the enzyme to precipitate by the addition of a non-solvent for the peroxidase such as acetone or isopropanol.
  • a non-solvent for the peroxidase such as acetone or isopropanol.
  • Legume hulls such as soybean hulls are biocatalytically active and can be used directly in some cases. It is not clear whether the peroxidase is being extracted by the reaction solvent medium or whether the peroxidase reacts similar to an immobilized enzyme. A combination of both mechanisms may occur.
  • the amount of hulls used will depend on their reactivity. For preparation of soybean hulls and suggested reaction amounts see the above-referenced patent application.
  • the amount of the enzyme used to make the phenolic resin will depend on its activity.
  • the enzyme is not consumed in the reaction but gradually loses activity during the course of reaction.
  • the enzyme can be reacted in an amount of about 500 to 500,000 and more typically 1000 to 5000 units per 100 grams phenol.
  • the peroxide used is typically hydrogen peroxide, but other peroxides are also useful. Examples of other potentially useful peroxides include methyl peroxide, ethyl peroxide, etc.
  • the peroxide is reacted in a total amount of about 0.1 to 2.5 moles per mole phenol (or other oxidizable substrate) and, more typically, about 0.1 to 1.0 mole per mole phenol. Depending upon its nature, it is reacted neat or as a solution.
  • hydrogen peroxide is dissolved in water in a concentration of about 1 mM to 10 M and added to the reaction medium as described next.
  • the initial rate of addition (moles/min) of the peroxide solution is set at about twice the average reaction rate.
  • the peroxide is initially added at a rate of about 2 to 3 millimolar/min.
  • the reaction rate of the peroxide is downwardly adjusted for the decrease in the rate of reaction which accompanies the reaction of the phenol and the lower phenol concentrations.
  • the rate of downward adjustment is controlled such that the peroxide concentration does not exceed 3 to 12 and more preferably about 3 to 5 millimolar.
  • the phenols can be reacted in a water-miscible or a water-immiscible solvent.
  • useful water-immiscible solvents include hexane, trichloromethane, methyl ethyl ketone, ethyl acetate, and butanol.
  • useful water-miscible solvents include ethanol, methanol, dioxane, tetrahydrofuran (THF), dimethyl formamide, methyl formate, acetone, n-propanol, isopropanol, ethanol, t-butyl alcohol.
  • the reaction is typically carried out at phenol concentrations of about 1 to 100 g per 100 ml solvent.
  • Solutions of the phenol and enzyme may be individually prepared and metered into a reaction vessel, or solutions of the phenol and enzyme may be pre-mixed. Alternatively, the enzyme and the phenol may be dissolved in a common solvent. However, the preferred reaction system is a mixture of water and a solvent.
  • the organic-aqueous system formed upon mixing the phenol, enzyme and peroxide may contain water and an organic solvent in a volumetric ratio (water:organic) in the range of about 1:10 to 10:1, more typically, 1:2 to 2:1. The most preferred ratio will vary with the solubility characteristics of the phenolic monomer(s) that is (are) polymerized and the resin which is produced.
  • Reaction temperatures will vary with the substrate and the enzyme. Enzymes are generally quite temperature sensitive and a temperature is selected which does not denature the enzyme, lower its reactivity or otherwise inhibit the reaction.
  • the reaction of the phenol proceeds at room temperature, but temperatures of about 0° to 70° C. can be used.
  • the enzymes can lose their activity if the reaction temperature becomes much higher. However, some latitude exists, depending upon the solvent system which is used. Certain solvents appear to stabilize the enzyme and thereby permit the use of higher temperatures. There is evidence in the literature that temperatures up to 100° C. may be useful with some peroxidases.
  • the activity of peroxidases is pH dependent.
  • the oxidative reactions are typically carried out at a pH in the range of 4 to 12 and, preferably, 4 to 9, and, more preferably, about 6.
  • a pH may be selected at which the enzyme is highly active. This will vary with the nature of the enzyme and its source. Buffers can be used to maintain pH, but are not usually required.
  • a useful buffer is a potassium phosphate buffer.
  • Phenolic resins prepared in accordance with the present invention are useful in a variety of applications depending on the nature of the phenol and the molecular weight distribution of the resin. Among other factors affecting molecular weight are solvent selection, phenol selection, and reaction conditions. The resins are often mixtures of dimers, trimers, and higher molecular weight oligomers. Phenolic resins useful as developers in recording materials such as carbonless copy paper, heat-sensitive recording paper, electrothermographic recording paper are preferably para-substituted and may range from about 500 to 5000 in molecular weight. The phenols used in adhesives need not be para-substituted. These resins typically range from about 1000 to 15,000 in molecular weight but molecular weights up to at least 30,000 are attainable.
  • Phenols which are preferred for reaction in the present invention are represented by the Formula (I): ##STR1## wherein Y and Z are selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, an allyl group, a phenylalkyl group, a --COOR group, a --NR 1 R 2 group, where R represents a hydrogen atom or a lower alkyl group, and R 1 and R 2 represent a hydrogen atom, an alkyl group, or a phenylalkyl group or Z in conjunction with the adjacent meta position forms a condensed benzene ring.
  • the method of this invention is also useful in the reaction of other oxidizable substrates such as aromatic amines. Examples of other oxidizable substrates are disclosed in the above-referenced patent application.

Abstract

A process for preparing a phenolic resin which comprises preparing a reaction medium containing a phenol and a peroxidase enzyme and adding a solution of a peroxide to said medium, said peroxide being added to said medium at a rate which decreases from an initial rate of about 2 to 3 millimolar/min as the amount of phenol in said medium decreases such that the concentration of peroxide does not exceed about 12 millimolar.

Description

The present invention is an improvement in the biocatalytic processes for producing phenolic resins described in U.S. Pat. No. 4,900,671 and U.S. application Ser. No. 07/599,584 filed Oct. 18, 1990 now U.S. Pat. No. 5,147,793.
U.S. Pat. No. 4,900,671 commonly assigned to The Mead Corporation discloses a method for preparing a phenolic resin which comprises preparing a solution of a phenol in a water miscible or a water-immiscible solvent and an aqueous solution of a peroxidase or oxidase enzyme, mixing the two solutions and adding a peroxide or oxygen. The preferred method described in this patent makes use of horseradish peroxidase. Hydrogen peroxide is added to the system and reaction occurs on the enzyme. U.S. application Ser. No. 07/599,584 now U.S. Pat. No. 5,147,793 discloses that soybean peroxidase and other plant peroxidases can be used in this method.
SUMMARY OF THE INVENTION
In the biocatalytic processes described above, the peroxide is consumed and converted into free radicals by the enzyme catalyst. As the reaction proceeds, monomeric phenol is converted to resin product. In the later stages of the reaction, the concentration of monomeric phenol falls and the consumption of the peroxide slows to a point at which an excess of peroxide is present. The excess peroxide is believed to interfere with the reaction of the remaining phenol by inhibiting the catlayst or terminating chain transfer. This results in poor reaction and production efficiencies as reflected in higher concentrations of residual monomer than are desirable in the resin and lower molecular weight resins.
In accordance with the present invention, the peroxide addition is ramped, i.e., high concentrations of peroxide are used at the beginning of the reaction when high concentrations of monomeric phenol are present and lower concentrations of peroxide are used in later stages of the reaction when higher peroxide concentrations would lead to premature termination of the reaction.
Accordingly, one manifestation of the present invention is a process for preparing a phenolic resin which comprises preparing a reaction medium containing an unreacted phenol and a peroxidase enzyme and adding a solution of a peroxide to said medium, said solution being added to said reaction medium at a rate which decreases from an initial rate as the concentration of said unreacted phenol in said medium decreases.
DEFINITIONS
The term "phenolic resin" as used herein includes phenolic dimers and trimers as well as oligomers and higher molecular weight species.
A "unit" of peroxidase means the amount of peroxidase which produces a change of 12 absorbance units measured at 1 cm pathlength in one minute at 420 nm when added to a solution containing 100 mM potassium phosphate, 44 mM pyrogallol and 8 mM hydrogen peroxide and having a pH of 6 (Sigma Chemical Co. Peroxidase Bulletin).
DETAILED DESCRIPTION
A variety of peroxidases can be used in the present invention. The most preferred peroxidases are soybean and horseradish peroxidases. However, peroxidases from other legumes are also useful such as peroxidases from peas, guar beans, garbanzo beans, and runner beans. It is also believe that peroxidases from rice and certain malvaceous plants, such as cotton, may be useful.
Peroxidases useful herein are commercially available. Being water soluble they are easily harvested by homogenizing the protein source with water, filtering the homogenate, and retaining the filtrate. The filtrate is treated to remove proteinaceous and lipophilic impurities by adding to the filtrate a solution of a protein fixative or a detergent and forcing the enzyme to precipitate by the addition of a non-solvent for the peroxidase such as acetone or isopropanol. Useful purification techniques are described in the above-referenced patent application.
Legume hulls such as soybean hulls are biocatalytically active and can be used directly in some cases. It is not clear whether the peroxidase is being extracted by the reaction solvent medium or whether the peroxidase reacts similar to an immobilized enzyme. A combination of both mechanisms may occur.
The amount of hulls used will depend on their reactivity. For preparation of soybean hulls and suggested reaction amounts see the above-referenced patent application.
The amount of the enzyme used to make the phenolic resin will depend on its activity. The enzyme is not consumed in the reaction but gradually loses activity during the course of reaction. For practical purposes, the enzyme can be reacted in an amount of about 500 to 500,000 and more typically 1000 to 5000 units per 100 grams phenol.
The peroxide used is typically hydrogen peroxide, but other peroxides are also useful. Examples of other potentially useful peroxides include methyl peroxide, ethyl peroxide, etc.
The peroxide is reacted in a total amount of about 0.1 to 2.5 moles per mole phenol (or other oxidizable substrate) and, more typically, about 0.1 to 1.0 mole per mole phenol. Depending upon its nature, it is reacted neat or as a solution. In the preferred embodiments, hydrogen peroxide, is dissolved in water in a concentration of about 1 mM to 10 M and added to the reaction medium as described next.
The initial rate of addition (moles/min) of the peroxide solution is set at about twice the average reaction rate. Typically, the peroxide is initially added at a rate of about 2 to 3 millimolar/min. Thereafter, the reaction rate of the peroxide is downwardly adjusted for the decrease in the rate of reaction which accompanies the reaction of the phenol and the lower phenol concentrations. The rate of downward adjustment is controlled such that the peroxide concentration does not exceed 3 to 12 and more preferably about 3 to 5 millimolar.
The phenols can be reacted in a water-miscible or a water-immiscible solvent. Representative examples of useful water-immiscible solvents include hexane, trichloromethane, methyl ethyl ketone, ethyl acetate, and butanol. Examples of useful water-miscible solvents include ethanol, methanol, dioxane, tetrahydrofuran (THF), dimethyl formamide, methyl formate, acetone, n-propanol, isopropanol, ethanol, t-butyl alcohol. The reaction is typically carried out at phenol concentrations of about 1 to 100 g per 100 ml solvent.
A number of different procedures may be used to react the phenol or other oxidizable substrate. Solutions of the phenol and enzyme may be individually prepared and metered into a reaction vessel, or solutions of the phenol and enzyme may be pre-mixed. Alternatively, the enzyme and the phenol may be dissolved in a common solvent. However, the preferred reaction system is a mixture of water and a solvent.
The organic-aqueous system formed upon mixing the phenol, enzyme and peroxide may contain water and an organic solvent in a volumetric ratio (water:organic) in the range of about 1:10 to 10:1, more typically, 1:2 to 2:1. The most preferred ratio will vary with the solubility characteristics of the phenolic monomer(s) that is (are) polymerized and the resin which is produced.
Reaction temperatures will vary with the substrate and the enzyme. Enzymes are generally quite temperature sensitive and a temperature is selected which does not denature the enzyme, lower its reactivity or otherwise inhibit the reaction. The reaction of the phenol proceeds at room temperature, but temperatures of about 0° to 70° C. can be used. The enzymes can lose their activity if the reaction temperature becomes much higher. However, some latitude exists, depending upon the solvent system which is used. Certain solvents appear to stabilize the enzyme and thereby permit the use of higher temperatures. There is evidence in the literature that temperatures up to 100° C. may be useful with some peroxidases.
The activity of peroxidases is pH dependent. The oxidative reactions are typically carried out at a pH in the range of 4 to 12 and, preferably, 4 to 9, and, more preferably, about 6. A pH may be selected at which the enzyme is highly active. This will vary with the nature of the enzyme and its source. Buffers can be used to maintain pH, but are not usually required. One example of a useful buffer is a potassium phosphate buffer.
While reference is herein made to the bulk pH of the reaction system, those skilled in the art will appreciate that it is the pH in the micro-environment of the enzyme that is critical. Thus, where the phenol is dissolved in a water- immiscible solvent and the enzyme solution is dispersed in the solution of the phenol, it is the pH of the enzyme solution which is critical.
Phenolic resins prepared in accordance with the present invention are useful in a variety of applications depending on the nature of the phenol and the molecular weight distribution of the resin. Among other factors affecting molecular weight are solvent selection, phenol selection, and reaction conditions. The resins are often mixtures of dimers, trimers, and higher molecular weight oligomers. Phenolic resins useful as developers in recording materials such as carbonless copy paper, heat-sensitive recording paper, electrothermographic recording paper are preferably para-substituted and may range from about 500 to 5000 in molecular weight. The phenols used in adhesives need not be para-substituted. These resins typically range from about 1000 to 15,000 in molecular weight but molecular weights up to at least 30,000 are attainable.
Phenols which are preferred for reaction in the present invention are represented by the Formula (I): ##STR1## wherein Y and Z are selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, an allyl group, a phenylalkyl group, a --COOR group, a --NR1 R2 group, where R represents a hydrogen atom or a lower alkyl group, and R1 and R2 represent a hydrogen atom, an alkyl group, or a phenylalkyl group or Z in conjunction with the adjacent meta position forms a condensed benzene ring. Since polymerization proceeds via the ortho or para positions, when Y is at the ortho or para position, at least one of Y and Z must be a hydrogen atom or Z must form a condensed benzene ring. Y is preferably para to the phenolic hydroxyl group. U.S. Pat. No. 4,900,671 contains a discussion of phenolic substitution which may be used in this invention.
Specific examples of phenols which can be polymerized in accordance with the process of the present invention are phenol, 4-t-butylphenol, 4-n-butylphenol, 4-ethylphenol, cresol, p-phenylphenol, p-octylphenol, p-nonylphenol, p-hydroxybenzoate, bisphenol A, etc.
In addition to being useful in reacting phenols, the method of this invention is also useful in the reaction of other oxidizable substrates such as aromatic amines. Examples of other oxidizable substrates are disclosed in the above-referenced patent application.
The invention is illustrated in more detail by the following non-limiting examples.
COMPARATIVE EXAMPLE
1800 ml of acetone is added to a 5000 ml jacketed, 3-necked, round bottom flask. The jacket is used to maintain the temperature of the flask at 15° C. The acetone is mixed with a mechanical stirrer at 300 RPM and 500 g bisphenol A is added After the bisphenol A is dissolved, 1078 ml distilled water is added with 122.0 ml of a horseradish peroxidase enzyme solution containing 25,000 total purpurogallin units. A 15% hydrogen peroxide solution is then added using a peristaltic pump at a constant rate of 1 ml/min. until 500 ml have been added. A resin containing 23.43% residual monomer and having Mn=4410 and Mw=7992 was obtained.
EXAMPLE 1
360 ml of acetone is placed in a 1000 ml jacketed, 3-necked, round bottom flask. The jacket is used to maintain the temperature of the flask at 15° C. The acetone is mixed using a mechanical stirrer at 300 RPM and 100 g bisphenol A is added. After the bisphenol A is dissolved, 215 ml distilled water and 25 ml horseradish peroxidase enzyme solution containing 5,000 total purpurogallin units are added. A 15% hydrogen peroxide solution is metered into the reaction medium using a peristaltic pump at a ramped rate starting at 0.6 ml/min. and decreasing at a constant ramped rate until the rate is 0.0 ml/min. after 6 hrs. A total of 107 ml hydrogen peroxide solution is added. The resin contained less than 1% residual monomer and had Mn=4966 and Mw=9097.
EXAMPLE 2
302 ml of isopropyl alcohol was added to a 1000 ml jacketed, 3-necked, round bottom flask. The jacket was maintained at a temperature of 55° C. The alcohol was stirred with a mechanical stirrer at 350 RPM and 100 g t-butylphenol was added. After the phenol dissolved 285.2 ml distilled water and 16.8 ml soy enzyme soluton containing 2515 total purpurogallin units was added. When the contents of the flask reached 50° C the peroxide addition was begun. 35% hydrogen peroxide solution was added by use of a computer controlled peristaltic pump at a ramped rate over a 2 hour period. The initial rate was set to 0.76 ml/min. and at the end of 2 hours the rate was zero.
Having described the invention in detail and by reference to preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.

Claims (6)

What is claimed is:
1. A process for preparing a phenolic resin which comprises preparing a reaction medium containing a phenol and a peroxidase enzyme and adding a solution of a peroxide to said medium, said peroxide being added to said medium at a rate which decreases from an initial rate .[.of about 2 to 3 millimolar/min.]. as the amount of phenol in said medium decreases such that the concentration of peroxide .Iadd.in said medium .Iaddend.does not exceed about 12 millimolar.
2. The process of claim 1 wherein said medium is a mixture of water and an organic solvent.
3. The process of claim 2 wherein said organic solvent is a water-miscible solvent.
4. The process of claim 2 wherein said peroxidase is horseradish peroxidase or soybean peroxidase.
5. The process of claim 4 wherein said phenol is present in said medium in a concentration of 1 to 100 g/100 ml
6. The process of claim 5 wherein said rate decreases such that the concentration of peroxide in said reaction medium does not exceed about 3 to 12 millimolar.
US08/270,867 1992-06-09 1994-07-05 Biocatalytic production of phenolic resins with ramped peroxide addition Expired - Lifetime USRE35247E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/270,867 USRE35247E (en) 1992-06-09 1994-07-05 Biocatalytic production of phenolic resins with ramped peroxide addition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/895,905 US5278055A (en) 1992-06-09 1992-06-09 Biocatalytic production of phenolic resins with ramped peroxide addition
US08/270,867 USRE35247E (en) 1992-06-09 1994-07-05 Biocatalytic production of phenolic resins with ramped peroxide addition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/895,905 Reissue US5278055A (en) 1992-06-09 1992-06-09 Biocatalytic production of phenolic resins with ramped peroxide addition

Publications (1)

Publication Number Publication Date
USRE35247E true USRE35247E (en) 1996-05-21

Family

ID=25405266

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/895,905 Ceased US5278055A (en) 1992-06-09 1992-06-09 Biocatalytic production of phenolic resins with ramped peroxide addition
US08/270,867 Expired - Lifetime USRE35247E (en) 1992-06-09 1994-07-05 Biocatalytic production of phenolic resins with ramped peroxide addition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/895,905 Ceased US5278055A (en) 1992-06-09 1992-06-09 Biocatalytic production of phenolic resins with ramped peroxide addition

Country Status (1)

Country Link
US (2) US5278055A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780104A (en) * 1995-12-28 1998-07-14 Mitsui Chemicals, Inc. Method for preventing the inner wall surfaces of the polymerization apparatus from being fouled with scale during the polymerizatioin of vinyl chloride
US6149977A (en) 1998-04-13 2000-11-21 Rohm And Haas Company Method of catalytic crosslinking of polymer and two-pack composition used therein
US20060128930A1 (en) * 2004-12-03 2006-06-15 Ashish Dhawan Synthesis of sterically hindered phenol based macromolecular antioxidants
US20060128931A1 (en) * 2004-12-03 2006-06-15 Rajesh Kumar Synthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US20060233741A1 (en) * 2005-03-25 2006-10-19 Rajesh Kumar Alkylated and polymeric macromolecular antioxidants and methods of making and using the same
US20070135539A1 (en) * 2005-10-27 2007-06-14 Cholli Ashok L Macromolecular antioxidants based on sterically hindered phenols and phosphites
US20080293856A1 (en) * 2005-10-27 2008-11-27 Vijayendra Kumar Stabilized polyolefin compositions
US20080311065A1 (en) * 2004-07-23 2008-12-18 Cholli Ashok L Anti-oxidant macromonomers and polymers and methods of making and using the same
US20090184294A1 (en) * 2006-07-06 2009-07-23 Cholli Ashok L Novel macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US20100084607A1 (en) * 2005-10-27 2010-04-08 Polnox Corporation Macromolecular antioxidants and polymeric macromolecular antioxidants
US7767853B2 (en) 2006-10-20 2010-08-03 Polnox Corporation Antioxidants and methods of making and using the same
US7799948B2 (en) 2005-02-22 2010-09-21 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US8927472B2 (en) 2005-12-02 2015-01-06 Polnox Corporation Lubricant oil compositions
US10294423B2 (en) 2013-11-22 2019-05-21 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US11578285B2 (en) 2017-03-01 2023-02-14 Polnox Corporation Macromolecular corrosion (McIn) inhibitors: structures, methods of making and using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096859A (en) 1996-01-16 2000-08-01 The United States Of America As Represented By The Secretary Of The Army Process to control the molecular weight and polydispersity of substituted polyphenols and polyaromatic amines by enzymatic synthesis in organic solvents, microemulsions, and biphasic systems
US6444450B2 (en) 1998-01-28 2002-09-03 The United States Of America As Represented By The Secretary Of The Army Large-scale production of polyphenols or polyaromatic amines using enzyme-mediated reactions
AU2517099A (en) * 1999-01-12 2000-08-01 Stockhausen Gmbh & Co. Kg Copolymers or graft polymers of phenols, method for their production and their use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657856A (en) * 1980-09-25 1987-04-14 Kyowa Hakko Kogyo Co., Ltd. Glutathione peroxidase, process for production thereof, method and composition for the quantitative determination of lipid peroxide
US4900671A (en) * 1985-11-13 1990-02-13 The Mead Corporation Biocatalytic process for preparing phenolic resins using peroxidase or oxidase enzyme
US5110740A (en) * 1989-09-06 1992-05-05 The Mead Corporation Pretreatment of phenolic resin suspension to remove residual phenol
US5112752A (en) * 1990-10-18 1992-05-12 The Mead Corporation Biocatalytic oxidation using soybean and other legume peroxidases
US5147793A (en) * 1990-10-18 1992-09-15 The Mead Corporation Biocatalytic oxidation using soybean peroxidases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657856A (en) * 1980-09-25 1987-04-14 Kyowa Hakko Kogyo Co., Ltd. Glutathione peroxidase, process for production thereof, method and composition for the quantitative determination of lipid peroxide
US4900671A (en) * 1985-11-13 1990-02-13 The Mead Corporation Biocatalytic process for preparing phenolic resins using peroxidase or oxidase enzyme
US5110740A (en) * 1989-09-06 1992-05-05 The Mead Corporation Pretreatment of phenolic resin suspension to remove residual phenol
US5112752A (en) * 1990-10-18 1992-05-12 The Mead Corporation Biocatalytic oxidation using soybean and other legume peroxidases
US5147793A (en) * 1990-10-18 1992-09-15 The Mead Corporation Biocatalytic oxidation using soybean peroxidases

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780104A (en) * 1995-12-28 1998-07-14 Mitsui Chemicals, Inc. Method for preventing the inner wall surfaces of the polymerization apparatus from being fouled with scale during the polymerizatioin of vinyl chloride
US6149977A (en) 1998-04-13 2000-11-21 Rohm And Haas Company Method of catalytic crosslinking of polymer and two-pack composition used therein
US6306991B1 (en) 1998-04-13 2001-10-23 Rohm And Haas Company Method of catalytic crosslinking of polymers and two-pack composition used therein
US7923587B2 (en) 2004-07-23 2011-04-12 Polnox Corporation Anti-oxidant macromonomers and polymers and methods of making and using the same
US20080311065A1 (en) * 2004-07-23 2008-12-18 Cholli Ashok L Anti-oxidant macromonomers and polymers and methods of making and using the same
US20060128931A1 (en) * 2004-12-03 2006-06-15 Rajesh Kumar Synthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US8846847B2 (en) 2004-12-03 2014-09-30 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US8691933B2 (en) 2004-12-03 2014-04-08 Polnox Corporation Stabilized polyolefin compositions
US7902317B2 (en) 2004-12-03 2011-03-08 Polnox Corporation Synthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US8598382B2 (en) 2004-12-03 2013-12-03 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US8481670B2 (en) 2004-12-03 2013-07-09 Polnox Corporation Stabilized polyolefin compositions
US8252884B2 (en) 2004-12-03 2012-08-28 Polnox Corporation Stabilized polyolefin compositions
US8242230B2 (en) 2004-12-03 2012-08-14 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US8008423B2 (en) 2004-12-03 2011-08-30 Polnox Corporation Stabilized polyolefin compositions
US7956153B2 (en) 2004-12-03 2011-06-07 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US20060128930A1 (en) * 2004-12-03 2006-06-15 Ashish Dhawan Synthesis of sterically hindered phenol based macromolecular antioxidants
US20100305251A1 (en) * 2004-12-03 2010-12-02 Vijayendra Kumar Stabilized polyolefin compositions
US20100305361A1 (en) * 2004-12-03 2010-12-02 Cholli Ashok L Macromolecular antioxidants based on sterically hindered phenols and phosphites
US8710266B2 (en) 2005-02-22 2014-04-29 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US9388120B2 (en) 2005-02-22 2016-07-12 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US7799948B2 (en) 2005-02-22 2010-09-21 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US20110040125A1 (en) * 2005-02-22 2011-02-17 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US8080689B2 (en) 2005-02-22 2011-12-20 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US7705185B2 (en) 2005-03-25 2010-04-27 Polnox Corporation Alkylated and polymeric macromolecular antioxidants and methods of making and using the same
US20060233741A1 (en) * 2005-03-25 2006-10-19 Rajesh Kumar Alkylated and polymeric macromolecular antioxidants and methods of making and using the same
US20100084607A1 (en) * 2005-10-27 2010-04-08 Polnox Corporation Macromolecular antioxidants and polymeric macromolecular antioxidants
US20070135539A1 (en) * 2005-10-27 2007-06-14 Cholli Ashok L Macromolecular antioxidants based on sterically hindered phenols and phosphites
US7705075B2 (en) 2005-10-27 2010-04-27 Polnox Corporation Stabilized polyolefin compositions
US7705176B2 (en) 2005-10-27 2010-04-27 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US20080293856A1 (en) * 2005-10-27 2008-11-27 Vijayendra Kumar Stabilized polyolefin compositions
US8927472B2 (en) 2005-12-02 2015-01-06 Polnox Corporation Lubricant oil compositions
US9523060B2 (en) 2005-12-02 2016-12-20 Polnox Corporation Lubricant oil compositions
US20090184294A1 (en) * 2006-07-06 2009-07-23 Cholli Ashok L Novel macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US8039673B2 (en) 2006-07-06 2011-10-18 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US9193675B2 (en) 2006-07-06 2015-11-24 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US9950990B2 (en) 2006-07-06 2018-04-24 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US7767853B2 (en) 2006-10-20 2010-08-03 Polnox Corporation Antioxidants and methods of making and using the same
US10294423B2 (en) 2013-11-22 2019-05-21 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US10683455B2 (en) 2013-11-22 2020-06-16 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US11578285B2 (en) 2017-03-01 2023-02-14 Polnox Corporation Macromolecular corrosion (McIn) inhibitors: structures, methods of making and using the same

Also Published As

Publication number Publication date
US5278055A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
USRE35247E (en) Biocatalytic production of phenolic resins with ramped peroxide addition
US5153298A (en) Biocatalytic process for preparing phenolic resins
WO1996031614A1 (en) Process for the biocatalytic coupling of aromatic compounds in the presence of a radical tranfer agent
EP0481815B1 (en) Method for preparing a phenolic resin using soybean peroxidase
SU1233803A3 (en) Method of producing precipitated catalyst for polymerization of ethylene
Okahata et al. Enhancing enantioselectivity of a lipid-coated lipase via imprinting methods for esterification in organic solvents
US5112752A (en) Biocatalytic oxidation using soybean and other legume peroxidases
US5188953A (en) Biocatalytic oxidation using soybean peroxidase
EP0355868B1 (en) Biocatalytic process for preparing phenolic resins
NL1007158C2 (en) Enzymatic modification.
CN110804604B (en) Co-crosslinking immobilization method of tyrosinase
US8198358B2 (en) Polymerization of phenolic compound using Coprinus cinereus peroxidase
Lenz et al. Extracellular polymerization of 3-hydroxyalkanoate monomers with the polymerase of Alcaligenes eutrophus
JPS62118889A (en) Method for immobilizing biological substance and immobilizedbiological substance obtained thereby
JPS63256611A (en) Production of polyamine
CN110760503B (en) Co-crosslinking immobilization method of phospholipase D
Tao et al. Synthesis of porous polymer carrier and immobilization of α-chymotrypsin
US5439813A (en) Production of glyoxylic acid with glycolate oxidase and catalase immobilized on oxirane acrylic beads
US5912203A (en) Process to synthesize a linear phosphonitrilic chloride catalyst
EP0472849A1 (en) Method for the continuous preparation of aromatic polycarbonate having a high molecular weight
CN110777129A (en) Tannase co-crosslinking immobilization method
JPH0240343A (en) Fluorine-containing polyester and production thereof
US5856546A (en) Method for the preparation of potassium silanolates
JP3869501B2 (en) Colorless non-toxic stable aqueous solution of C1-C5 alkyl vinyl ether and maleic acid copolymer
SU1433982A1 (en) Method of producing immobilized pancreatin

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: MEADWESTVACO CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEAD CORPORATION, THE;REEL/FRAME:014066/0963

Effective date: 20021231

FPAY Fee payment

Year of fee payment: 12