USRE35390E - Pressure relieving device and process for implanting - Google Patents

Pressure relieving device and process for implanting Download PDF

Info

Publication number
USRE35390E
USRE35390E US08/393,156 US39315695A USRE35390E US RE35390 E USRE35390 E US RE35390E US 39315695 A US39315695 A US 39315695A US RE35390 E USRE35390 E US RE35390E
Authority
US
United States
Prior art keywords
anterior chamber
sclera
eye
cornea
body portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/393,156
Inventor
Stewart G. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/437,840 external-priority patent/US4946436A/en
Application filed by Individual filed Critical Individual
Priority to US08/393,156 priority Critical patent/USRE35390E/en
Application granted granted Critical
Publication of USRE35390E publication Critical patent/USRE35390E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment

Definitions

  • This invention relates to the drainage of aqueous humour from eyes in the course of relieving eye disorders. Specifically, the invention relates to an implant which, when permanently affixed to or implanted in a specific area of the eye, will provide such drainage efficiently, for longer periods than heretofore accomplished, and, in short, will provide relief and prevent (or at least postpone) the adverse ultimate effects of glaucoma.
  • the eyeball is composed of three basic layers: (1) the sclera. (2) the middle layer and (3) the retina.
  • the sclera is the outer layer of the eyeball. It consists of tough, white tissue that serves as the supporting framework of the eye. At the front of the eye, the sclera is continuous with the clear, transparent cornea through which light enters the eye. Behind the cornea is a small space, the anterior chamber, which contains a clear watery fluid called the aqueous humour.
  • the middle layer is composed of three parts: (1) the choroid. (2) the ciliary muscle, and (3) the iris.
  • the choroid lies behind and to the sides of the eyeball making up about 80% of the middle layer. It contains most of the blood vessels that nourish the eye.
  • the choroid becomes the ciliary muscle. This muscle is connected by fibers to the lens, keeping the lens in place and controlling its shape.
  • the middle layer becomes the iris, a thin curtain of tissue in front of the lens.
  • the cornea refracts light through the anterior chamber and then through the pupil, the entrance aperture of the eye to the lens.
  • the lens serves to focus the refracted light through the vitreous chamber containing the vitreous humour onto the retina, the rear surface of the eye.
  • the aqueous humour Normally the fluid within the eye, the aqueous humour, is produced by the-ciliary body and migrates through the pupil into the anterior chamber, the small space behind the cornea. From this chamber, the liquid migrates through the trabecular meshwork and into the aqueous veins which form fluid collection channels beneath the conjuctiva, the latter covering the front of the eyeball except for the cornea.
  • the object of the present invention is to provide a device that can be implanted permanently, simply and effectively to permit substantially normal migration of fluid out of the anterior chamber of the eye and, thus, avoid the abnormal build-up of intra-ocular pressure. Another object is to provide the implant in a manner that will also avoid excessive migration of fluid that would lead to collapse of the anterior chamber with its accompanying complications.
  • U.S. Pat. No. 4,457,757 issued Jul. 3, 1984 to A. C. B. Molteno, involves the use of at least two ridged bodies anchored to the sclera with two tubular extensions, one communicating through the sclera to the anterior chamber to drain the aqueous humour out of the eyeball.
  • This later patent discloses the use of a subsidiary ridge in the upper surface the scleral plate that provides, with a portion of the Tenon's tissue, a small cavity where aqueous humour is drained initially and, thus, the aqueous humour can only be partially absorbed by the small area of Tenon's tissue exposed.
  • U.S. Pat. No. 4,634,418, issued Jan. 6, 1987, to P. S. Binder involves the implantation of a seton constructed of a hydrogel in the anterior chamber of the eye to alleviate intra-ocular pressure. Once implanted, the seton acts as a wick to transfer aqueous humour from the anterior chamber to the space under the conjunctiva without allowing bacteria to ingress into the eye. Implantation is made after the removal of a rectangular-sized piece of cornea, Schalbe's line and a portion of the trabecular meshwork.
  • the inventor achieves fluid flow to the exterior of the sclera into a space created beneath the conjunctiva and the accompanying Tenon's tissue that covers the scleral plate, i.e. outside the main body of the eye. Since these areas are particularly agressive in healing, the reduction in intra-ocular pressure is short-lived; the space created beneath the conjunctiva and the tenon tissue tends to collapse and prevent further migration of the fluid from the anterior chamber with the consequent pressure increase, characteristic of glaucoma.
  • the object of the present invention is to provide a means and method for treating the excessive intra-ocular pressure characteristic of glaucoma in a manner which will not be defeated by the subsequent healing process i.e. in a manner that will provide the patient with relief for several years.
  • a further object is to help avoid other problems such as collapse of the anterior chamber, penetration of scar tissue over the trabecular meshwork, which tend to occur in the immediate post operative period with the conventional glaucoma surgery (trabeculotomy) disclosed in the prior art.
  • the invention involves an implant that is biocompatible with the tissue of the eye and allows fluid to migrate from the anterior chamber into the coarsely woven fibers of the sclera, thus by-passing the obstructed trabecular meshwork but, instead of leaving the body of the eye, exiting into the outer layer of the eyeball, the sclera.
  • the normal pressure of fluid in the sclera serves to control the flow from the anterior chamber in a way that disastrous collapse of the chamber is prevented.
  • the aggressive healing of these areas is not effective in recreating the excessive intra-ocular pressure in the anterior chamber.
  • this invention involves substituting a material that is composed of small pores of similar size or larger than a healthy trabecular meshwork in an area almost adjacent to the area of the troubled trabecular meshwork, i.e. close to where the sclera meets the cornea. In this manner, an area of relatively small pores within the implant, is placed within the relatively large pores of the sclera.
  • the device for relieving intraocular pressure comprises a body portion and wall portions in substantially hexahedral form; at least the body portion is composed of a biocompatible porous hydrogel material.
  • the device is adapted to be implanted within the scleral tissue of the eye with at least one edge of the device at an opening of, with no substantial extension into the anterior chamber adjacent to the area where the sclera makes the transition into the clear cornea of the eye.
  • the pores of the body portion are of such size and quantity as to permit drainage of fluid from the anterior chamber to the scleral tissue without collapse of the anterior chamber.
  • the wall portions have at least one extension on at least one wall portion for anchoring the device securely in position.
  • the implant is made from a hydrogel or other material which is biocompatible with the tissue of the eye.
  • Such hydrogel material may have a water content ranging anywhere from about 30% to about 80%.
  • such materials comprise silicones, acrylic polymers and/or fluorocarbon polymers or the like.
  • the implant is shaped to retain its position once it is implanted within the eye and to provide sufficient surface area to accomodate the migration of the aqueou humour in a controlled manner, i.e. enough migration to reduce intra-ocular pressure but not enough to cause collapse of the chamber.
  • FIG. 1 is a cross-sectional view of the eye showing one embodiment of the invention implanted therein;
  • FIG. 2 is a side view of that embodiment of the invention.
  • FIG. 3 is a front view of that embodiment
  • FIG. 4 is a plan or top view of that emobodiment
  • FIG. 5 is a side view of another emobodiment of the invention.
  • FIG. 6 is a front view of that other embodiment.
  • FIG. 7 is a plan view of that other embodiment.
  • the overall shape of the device 11 is a hexahedral structure having a substantially rectangular cross-section as shown in FIG. 1, approximately 6 mm in length, 3 mm in width, and 1/2 mm in depth.
  • the device 11 is designed to be placed in a pocket made in the sclera 12 as seen in FIG. 1 in the following manner. An incision is made in the sclera, 2 mm from the limbus of the eye. A rectangular flap is raised into the clear cornea 13. The overall thickness of this flap is approximately 1/3 mm. Following the same incision technique, another flap of sclera 12 is raised underneath the previously made flap but extending into clear cornea 13.
  • This block of sclera is then excised by entering the anterior chamber 14 at the anterior wound edge 15 (just as the sclera 12 makes the transition into clear cornea, 13).
  • the aqueous fluid would then be able to enter this space through an opening; 16, 4 1/2 mm in length, 1 mm in width, and 1/2 mm in depth. (Since the cornea follows a curve, the tissue excised would be triangular when viewed from the side.)
  • the implant 11 is then placed in this pocket created in the sclera 12 with the anterior portion of the device anchored in the lamellar shelf 17 previously created in the clear cornea 13. It should be noted that by anchoring the device in the lamellar shelf rather than extending the device into the anterior chamber, contact with the endothelial cells 18 along the interior surface of the cornea is avoided. Such contact would result in the death of these cells and the loss of corneal function.
  • Small lamellar dissections (1 mm in size) are created in the posterior wall, medial wall and lateral wall of the sclera 12.
  • the flanges 19 (or extensions integral with the device) are placed within these lamellar dissections.
  • the first scleral flap is then sutured back into position.
  • the sclera 12 with the implant 11 in position would be of approximately the same thickness as before the procedure.
  • Fluid would then exit the anterior chamber 14 through the incision under the flap and to the implanted device 11. It would then enter the implant 11 which would allow it access to three vertical walls of sclera because of the porous nature of the interior 20 of the implant.
  • the coarsely woven fibers of the vertically cut sclera 12 would then allow the fluid to exit into the tissue 21 of the sclera 12.
  • FIGS. 5, 6 and 7 consists of a similar basic implant 11 having similar dimensions but with a thin flange 19 (1/8 mm) around the base of the implant on all four sides.
  • the flange would project 1 mm from the sides that would be in contact with the sclera only and about 1/2 mm for the side which would project into a raised flange.
  • This raised flange is attached by a 1 mm extension 22 of the vertical walls of the portion of the implant in contact with the sclera.
  • This extension is approximately 1/8 mm thick. Attached perpendicularly to this extension is the flange 19. The point of attachment is at the mid section of the flange.
  • the flange is 1/8 mm thick and 2 mm wide.
  • the posterior section is 7 mm in length and the two sides are 2 1/2 mm in length.
  • This embodiment is implanted in a similar fashion to the previously described implant with the following modifications.
  • the initial scleral flap would be 1/2 mm. 2.
  • a block of sclera would not be excised.
  • a lamellar dissection would be performed at the base of the flap for approximately 1 mm. 4.
  • the implant is placed into position sliding the posterior flange into the previously formed space from the lamellar dissection.
  • the scleral flap is then placed back into its previous position and underneath the superior flange.
  • This superior flange would overlie the incision into the sclera to create a flap of 1 mm on each side except for the furthermost anterior aspect (which would not be covered by Tenon's tissue since it does not insert as far anteriorly as the conjunctiva). The scleral flap is then sutured into position through the superior flange.
  • This embodiment would help prevent ingrowth of Tenon's tissue into the incision and would be firmly anchored into position. It also would allow access to vertically cut edges of sclera in the same manner as the previous embodiment.
  • a further modification of the device of the invention involves the particular method by which the fluid from the anterior chamber travels to the sclera.
  • This modification would involve the use of a meshwork of fibers .Iadd.26 .Iaddend.to allow rapid flow of fluid through the spaces .Iadd.28 .Iaddend.between the fibers.
  • the meshwork of fibers .Iadd.26 .Iaddend.being made of a biocompatible material would be flexible.
  • the meshwork would allow fluid flow to the vertically cut edges of the implant and the sclera.
  • Another way to achieve porosity would be through a system of channels .Iadd.30 .Iaddend.through the implant.
  • a variety of patterns could be cut so as to achieve high fluid flow through the implant to the vertically cut edges.
  • a fan shaped system .Iadd.32 .Iaddend.of drilled holes or a grid pattern of drilled holes from front to back or an interlocking pattern drilled from side to side, etc. could be used.
  • the purpose and design are such that fluid could pass through, as described above, and the implant would resist collapse from the imposed pressure.
  • a typical operation for inserting the preferred embodiment of the invention follows: After retrobulbar anesthesia, the superior rectus muscle is placed on a four O silk bridal suture. Following this, a conjunctival flap is raised starting at the superior rectus and working forward to This is then reflected back to the cornea. Cautery is used to obtain hemostasis and to outline the location of the placement for the implant. A rectangular area, 5 mm by 3 mm, is outlined using a 64 Beaver blade. A small groove is made on the sclera side to half the depth of the sclera. This is grasped at one corner and the flap is dissected anteriorly until the rectangular flap is completely raised in the clear cornea. At this point a 75 blade is used to make a stab incision into the anterior chamber of the eye and a 1 by 4 mm section of the cornea and trabecular meshwork are excised en bloc.

Abstract

This invention involves a porous device for implantation in the scleral tissue of the eye to relieve the intraocular pressure of glaucoma and a method for surgically implanting the device.

Description

.Iadd.This application is a continuation of Serial No. 08/170,664, filed Dec. 16, 1993, now abandoned, which is a continuation of 07/925,726 filed Aug. 4, 1992, now abandoned, which is a reissue of 07/437,840, filed Nov. 17, 1989, now U.S. Pat. No. 4,946,436..Iaddend.
FIELD OF INVENTION
This invention relates to the drainage of aqueous humour from eyes in the course of relieving eye disorders. Specifically, the invention relates to an implant which, when permanently affixed to or implanted in a specific area of the eye, will provide such drainage efficiently, for longer periods than heretofore accomplished, and, in short, will provide relief and prevent (or at least postpone) the adverse ultimate effects of glaucoma.
BACKGROUND OF THE INVENTION
The eyeball is composed of three basic layers: (1) the sclera. (2) the middle layer and (3) the retina.
The sclera is the outer layer of the eyeball. It consists of tough, white tissue that serves as the supporting framework of the eye. At the front of the eye, the sclera is continuous with the clear, transparent cornea through which light enters the eye. Behind the cornea is a small space, the anterior chamber, which contains a clear watery fluid called the aqueous humour.
The middle layer is composed of three parts: (1) the choroid. (2) the ciliary muscle, and (3) the iris. The choroid lies behind and to the sides of the eyeball making up about 80% of the middle layer. It contains most of the blood vessels that nourish the eye.
Toward the front of the eyeball, the choroid becomes the ciliary muscle. This muscle is connected by fibers to the lens, keeping the lens in place and controlling its shape.
At the very front, the middle layer becomes the iris, a thin curtain of tissue in front of the lens. A round opening in the iris, whose size is controlled by muscles in the iris, is called the pupil.
In simple terms, the cornea refracts light through the anterior chamber and then through the pupil, the entrance aperture of the eye to the lens. The lens serves to focus the refracted light through the vitreous chamber containing the vitreous humour onto the retina, the rear surface of the eye.
Normally the fluid within the eye, the aqueous humour, is produced by the-ciliary body and migrates through the pupil into the anterior chamber, the small space behind the cornea. From this chamber, the liquid migrates through the trabecular meshwork and into the aqueous veins which form fluid collection channels beneath the conjuctiva, the latter covering the front of the eyeball except for the cornea.
When the aqueous, migration, described above, is insufficient to relieve the build-up of intra-ocular pressure, glaucoma results. This pressure build-up is usually due to one or more obstructions in the trabecular meshwork. Unless controlled, the high pressures associated with glaucoma ultimately leads to permanent damage of the optic nerve, the nerve formed from the sensitive fibers of the retina.
The object of the present invention is to provide a device that can be implanted permanently, simply and effectively to permit substantially normal migration of fluid out of the anterior chamber of the eye and, thus, avoid the abnormal build-up of intra-ocular pressure. Another object is to provide the implant in a manner that will also avoid excessive migration of fluid that would lead to collapse of the anterior chamber with its accompanying complications.
PRIOR ART
U.S. Pat. No. 4,457,757, issued Jul. 3, 1984 to A. C. B. Molteno, involves the use of at least two ridged bodies anchored to the sclera with two tubular extensions, one communicating through the sclera to the anterior chamber to drain the aqueous humour out of the eyeball.
U.S. Pat. No. 4,750,901, issued Jun. 14, 1988, to A. C. B. Molteno, recognized a problem that arose with his earlier device (as described in U.S. Pat. No. 4,457,757). In the first few days after insertion of the earlier device, the pressure within the eye tends to fall to an unacceptably low level "which may result in surgical complications which damage sight". This fall in pressure is due to excessive absorption of the aqueous humour by the patient's Tenon capsule, a smooth layer of tissue that covers the scleral plate when it is sutured to the eye. This later patent discloses the use of a subsidiary ridge in the upper surface the scleral plate that provides, with a portion of the Tenon's tissue, a small cavity where aqueous humour is drained initially and, thus, the aqueous humour can only be partially absorbed by the small area of Tenon's tissue exposed.
U.S. Pat. No. 4,634,418, issued Jan. 6, 1987, to P. S. Binder, involves the implantation of a seton constructed of a hydrogel in the anterior chamber of the eye to alleviate intra-ocular pressure. Once implanted, the seton acts as a wick to transfer aqueous humour from the anterior chamber to the space under the conjunctiva without allowing bacteria to ingress into the eye. Implantation is made after the removal of a rectangular-sized piece of cornea, Schalbe's line and a portion of the trabecular meshwork.
U.S. Pat. No. 4,722,724, issued Feb. 2, 1988, to S. Schocket, involves the use of an implant that includes two connected tubes or a tube connected to a band. One tube is located in the anterior chamber and the other tube or band is located around the orbit of the eye. To prevent hypotony, a destructible value is located at the end of the tube inserted with the interior chamber to control the pressure of the aqueous humour flowing from the chamber.
U.S. Pat. No. 4,787,885, issued Nov. 29, 1988 to P. S. Binder, is a continuation of an application that was a continuation-in-part of the application that resulted in U.S. Pat. No. 4,634,418. This patent, like its predecessor, also involves the removal of a rectangular-sized piece of cornea, Schwalbe's line and a portion of the trabecular meshwork to accomodate a seton; and the seton permits migration of the aqueous humour from the anterior chamber to the area beneath the conjunctiva (the external covering of the eye).
In both patents, the inventor achieves fluid flow to the exterior of the sclera into a space created beneath the conjunctiva and the accompanying Tenon's tissue that covers the scleral plate, i.e. outside the main body of the eye. Since these areas are particularly agressive in healing, the reduction in intra-ocular pressure is short-lived; the space created beneath the conjunctiva and the tenon tissue tends to collapse and prevent further migration of the fluid from the anterior chamber with the consequent pressure increase, characteristic of glaucoma.
The object of the present invention is to provide a means and method for treating the excessive intra-ocular pressure characteristic of glaucoma in a manner which will not be defeated by the subsequent healing process i.e. in a manner that will provide the patient with relief for several years. A further object is to help avoid other problems such as collapse of the anterior chamber, penetration of scar tissue over the trabecular meshwork, which tend to occur in the immediate post operative period with the conventional glaucoma surgery (trabeculotomy) disclosed in the prior art.
SUMMARY OF THE INVENTION
The invention involves an implant that is biocompatible with the tissue of the eye and allows fluid to migrate from the anterior chamber into the coarsely woven fibers of the sclera, thus by-passing the obstructed trabecular meshwork but, instead of leaving the body of the eye, exiting into the outer layer of the eyeball, the sclera. The normal pressure of fluid in the sclera serves to control the flow from the anterior chamber in a way that disastrous collapse of the chamber is prevented. Further, by not creating a space to accept fluid beneath the conjunctiva and the associated Tenon's tissue, the aggressive healing of these areas is not effective in recreating the excessive intra-ocular pressure in the anterior chamber.
Basically, this invention involves substituting a material that is composed of small pores of similar size or larger than a healthy trabecular meshwork in an area almost adjacent to the area of the troubled trabecular meshwork, i.e. close to where the sclera meets the cornea. In this manner, an area of relatively small pores within the implant, is placed within the relatively large pores of the sclera.
Specifically, the device for relieving intraocular pressure comprises a body portion and wall portions in substantially hexahedral form; at least the body portion is composed of a biocompatible porous hydrogel material. The device is adapted to be implanted within the scleral tissue of the eye with at least one edge of the device at an opening of, with no substantial extension into the anterior chamber adjacent to the area where the sclera makes the transition into the clear cornea of the eye. The pores of the body portion are of such size and quantity as to permit drainage of fluid from the anterior chamber to the scleral tissue without collapse of the anterior chamber. The wall portions have at least one extension on at least one wall portion for anchoring the device securely in position.
The implant is made from a hydrogel or other material which is biocompatible with the tissue of the eye. Such hydrogel material may have a water content ranging anywhere from about 30% to about 80%. Typically, such materials comprise silicones, acrylic polymers and/or fluorocarbon polymers or the like. The implant is shaped to retain its position once it is implanted within the eye and to provide sufficient surface area to accomodate the migration of the aqueou humour in a controlled manner, i.e. enough migration to reduce intra-ocular pressure but not enough to cause collapse of the chamber.
The invention will be more clearly understood by referring to the drawings and the description which follow.
THE DRAWINGS
FIG. 1 is a cross-sectional view of the eye showing one embodiment of the invention implanted therein;
FIG. 2 is a side view of that embodiment of the invention;
FIG. 3 is a front view of that embodiment;
FIG. 4 is a plan or top view of that emobodiment;
FIG. 5 is a side view of another emobodiment of the invention;
FIG. 6 is a front view of that other embodiment; and
FIG. 7 is a plan view of that other embodiment.
DETAILED DESCRIPTION OF THE INVENTION
In the first embodiment, the overall shape of the device 11 is a hexahedral structure having a substantially rectangular cross-section as shown in FIG. 1, approximately 6 mm in length, 3 mm in width, and 1/2 mm in depth. The device 11 is designed to be placed in a pocket made in the sclera 12 as seen in FIG. 1 in the following manner. An incision is made in the sclera, 2 mm from the limbus of the eye. A rectangular flap is raised into the clear cornea 13. The overall thickness of this flap is approximately 1/3 mm. Following the same incision technique, another flap of sclera 12 is raised underneath the previously made flap but extending into clear cornea 13. This block of sclera is then excised by entering the anterior chamber 14 at the anterior wound edge 15 (just as the sclera 12 makes the transition into clear cornea, 13). The aqueous fluid would then be able to enter this space through an opening; 16, 4 1/2 mm in length, 1 mm in width, and 1/2 mm in depth. (Since the cornea follows a curve, the tissue excised would be triangular when viewed from the side.)
The implant 11 is then placed in this pocket created in the sclera 12 with the anterior portion of the device anchored in the lamellar shelf 17 previously created in the clear cornea 13. It should be noted that by anchoring the device in the lamellar shelf rather than extending the device into the anterior chamber, contact with the endothelial cells 18 along the interior surface of the cornea is avoided. Such contact would result in the death of these cells and the loss of corneal function.
Small lamellar dissections (1 mm in size) are created in the posterior wall, medial wall and lateral wall of the sclera 12. Using the embodiment of the device containing flanges, the flanges 19 (or extensions integral with the device) are placed within these lamellar dissections. By sliding the device 11 anteriorly, it becomes firmly anchored in the previously prepared corneal lamellar shelf 17. If necessary, it can be further secured by suturing the device to assure maintenance of its position. The first scleral flap is then sutured back into position. The sclera 12 with the implant 11 in position would be of approximately the same thickness as before the procedure.
Fluid would then exit the anterior chamber 14 through the incision under the flap and to the implanted device 11. It would then enter the implant 11 which would allow it access to three vertical walls of sclera because of the porous nature of the interior 20 of the implant. The coarsely woven fibers of the vertically cut sclera 12 would then allow the fluid to exit into the tissue 21 of the sclera 12.
The other embodiment shown in FIGS. 5, 6 and 7 consists of a similar basic implant 11 having similar dimensions but with a thin flange 19 (1/8 mm) around the base of the implant on all four sides. The flange would project 1 mm from the sides that would be in contact with the sclera only and about 1/2 mm for the side which would project into a raised flange. This raised flange is attached by a 1 mm extension 22 of the vertical walls of the portion of the implant in contact with the sclera. This extension is approximately 1/8 mm thick. Attached perpendicularly to this extension is the flange 19. The point of attachment is at the mid section of the flange. The flange is 1/8 mm thick and 2 mm wide. The posterior section is 7 mm in length and the two sides are 2 1/2 mm in length.
This embodiment is implanted in a similar fashion to the previously described implant with the following modifications. 1. The initial scleral flap would be 1/2 mm. 2. A block of sclera would not be excised. 3. A lamellar dissection would be performed at the base of the flap for approximately 1 mm. 4. After the opening into the anterior chamber is created, the implant is placed into position sliding the posterior flange into the previously formed space from the lamellar dissection. The scleral flap is then placed back into its previous position and underneath the superior flange. This superior flange would overlie the incision into the sclera to create a flap of 1 mm on each side except for the furthermost anterior aspect (which would not be covered by Tenon's tissue since it does not insert as far anteriorly as the conjunctiva). The scleral flap is then sutured into position through the superior flange.
This embodiment would help prevent ingrowth of Tenon's tissue into the incision and would be firmly anchored into position. It also would allow access to vertically cut edges of sclera in the same manner as the previous embodiment.
A further modification of the device of the invention involves the particular method by which the fluid from the anterior chamber travels to the sclera. This modification would involve the use of a meshwork of fibers .Iadd.26 .Iaddend.to allow rapid flow of fluid through the spaces .Iadd.28 .Iaddend.between the fibers. The meshwork of fibers .Iadd.26 .Iaddend.being made of a biocompatible material would be flexible. The meshwork would allow fluid flow to the vertically cut edges of the implant and the sclera.
Another way to achieve porosity would be through a system of channels .Iadd.30 .Iaddend.through the implant. A variety of patterns could be cut so as to achieve high fluid flow through the implant to the vertically cut edges. For example, a fan shaped system .Iadd.32 .Iaddend.of drilled holes or a grid pattern of drilled holes from front to back or an interlocking pattern drilled from side to side, etc. could be used. The purpose and design are such that fluid could pass through, as described above, and the implant would resist collapse from the imposed pressure.
A typical operation for inserting the preferred embodiment of the invention follows: After retrobulbar anesthesia, the superior rectus muscle is placed on a four O silk bridal suture. Following this, a conjunctival flap is raised starting at the superior rectus and working forward to This is then reflected back to the cornea. Cautery is used to obtain hemostasis and to outline the location of the placement for the implant. A rectangular area, 5 mm by 3 mm, is outlined using a 64 Beaver blade. A small groove is made on the sclera side to half the depth of the sclera. This is grasped at one corner and the flap is dissected anteriorly until the rectangular flap is completely raised in the clear cornea. At this point a 75 blade is used to make a stab incision into the anterior chamber of the eye and a 1 by 4 mm section of the cornea and trabecular meshwork are excised en bloc.
Using a lamellar dissecting blade, attention is turned to the posterior aspect of the bed of the rectangular flap. Further dissection at the base is carried posteriorly for approximately 0.5 millimeter. The implant is then placed into position in this bed with the inferior posterior flap laid into the groove that has just been created on the posterior aspect of the bed. The anterior portion is in direct communication with the anterior chamber. The scleral flap is then laid over this implant and tucked in underneath the superior flanges that are present. If necessary, a portion of the scleral flap can be excised so that the sclera lays down smoothly over the implant. The implant is then sutured to the sclera on both sides with a 10-O nylon suture through the fixation holes in the superior flange. The conjunctival tissue is then sutured back together with a 6-O-plain gut running suture.

Claims (7)

What is claimed is:
1. A device for relieving intraocular pressure comprises a body portion .Iadd.and wall portions in the form of a hexahedron; at least the body portion .Iaddend.composed of a biocompatible porous material; said device adapted to be implanted within the scleral tissue of the eye with at least one edge of the device at an opening of, with no substantial extension into, the anterior chamber and adjacent to the area where the sclera makes the transition into clear cornea of the eye; the pores of the body portion are of such size and quantity as to permit drainage of fluid from the anterior chamber to the scleral tissue without collapse of the anterior chamber.
2. A device as in claim 1 wherein .[.one face of the hexahedron is.]. .Iadd.said body portion has a first surface, said first surface of said body portion being .Iaddend.sloped to overlie the opening into the anterior chamber to direct fluid from the anterior chamber into the body portion of the device.
3. A device as in claim 1 wherein .[.at least one edge of one wall portion of the device.]. at least one edge of .[.one wall portion.]. .Iadd.the top surface .Iaddend.of the device is extended for anchoring the device in position.
4. A device as in claim 1 wherein the .Iadd.three .Iaddend.edges of .[.three wall portions of.]. the .Iadd.top surface of the .Iaddend.device, other than .[.an.]. .Iadd.the .Iaddend.edge at the opening of the anterior chamber, are extended for anchoring the device in position.
5. A device as in claim 1 wherein a thin flange extends from four sides of the base of the device, the flange at the posterior side of the device being raised and held in position by extensions of the vertical walls of said device .[.four sides of the base of device, the flange at the posterior side of the device being raised and held in position by extensions of the vertical walls of said device..].
6. A method for reducing intraocular pressure comprising the steps of:
creating a scleral flap by making an incision in the sclera substantially adjacent to the limbus of the eye;
excising a block of sclera by making a second incision into the sclera underneath the previously produced scleral flap but extending into the cornea and entering the anterior chamber at substantially the area where sclera becomes cornea to provide a pocket in the sclera and a shelf in the cornea .[.and to provide a window providing direct fluid contact with the anterior chamber of the eye.].;
.[.providing a device for relieving intraocular pressure, said device comprising a body portion composed of a biocompatible porous material, said body portion comprising a first end portion and a second end portion, said body portion defining pores therethrough, said pores being of such size and quantity as to permit drainage of fluid from the anterior chamber to the scleral tissue without collapse of the anterior chamber.].; and
placing .[.said device for relieving intraocular pressure.]. .Iadd.the hexahedrally shaped device of claim 1 .Iaddend.in said pocket of the sclera .[.whereby said first end.]. .Iadd.with the anterior portion of said device .[.is.]. positioned in said shelf of the cornea .[.such that said first end portion is adjacent said window and is in direct fluid contact with the anterior chamber without extending substantially into the anterior chamber and whereby said second end portion is.]. .Iadd.with the remaining portions of the device .Iaddend.positioned within the sclera. .Iadd.
7. A device for relieving intraocular pressure comprising a body portion constructed of a biocompatible material having flow passages therein; said flow passages selected from the group consisting of pores, openings, channels and spaces between fibers in a meshwork of fibers; said device having a substantially uniform cross-section adapted to be fitted within the scleral tissue of the eye at an area adjacent an opening of, with no substantial extension into, the anterior chamber of the eye at a first position adjacent to the area of the eye where the sclera makes the transition into clear cornea of the eye; and extending to a second position within the scleral tissue of the eye, the distance between said first and second positions defining the length of the body portion through which fluid can flow, said length being approximately six (6) millimeters; said flow passages being of such size and quantity as to permit drainage of fluid from the anterior chamber to the scleral tissue without collapse of the anterior chamber..Iaddend..Iadd.8. A method for reducing intraocular pressure within the anterior chamber of an eye, said method comprising the following steps
a. creating a scleral flap by making an incision in the sclera of the eye substantially adjacent to the limbus of the eye;
b. excising a block of scleral tissue by making a second incision into the sclera underneath the previously produced scleral flap but extending into the cornea and entering the anterior chamber at substantially the area where sclera becomes cornea to provide a pocket in the sclera and a shelf in the cornea, c. placing a device for relieving intraocular pressure, said device comprising a body portion constructed of a biocompatible material; and having flow passages therein; said device having a first end portion and a second end portion with said flow passages therebetween; and
d. the device being placed in said pocket of the sclera with said first end portion of said device positioned in said shelf of the cornea whereby said first end portion of said body portion is in direct fluid contact with the anterior chamber of the eye without substantial extension into the anterior chamber of the eye and with the second end portion of said device positioned within the sclera of the eye to permit drainage of fluid from the anterior chamber into the scleral tissue without collapse of the anterior chamber..Iaddend.
US08/393,156 1989-11-17 1995-02-17 Pressure relieving device and process for implanting Expired - Lifetime USRE35390E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/393,156 USRE35390E (en) 1989-11-17 1995-02-17 Pressure relieving device and process for implanting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US07/437,840 US4946436A (en) 1989-11-17 1989-11-17 Pressure-relieving device and process for implanting
US92572692A 1992-08-04 1992-08-04
US17066493A 1993-12-16 1993-12-16
US08/393,156 USRE35390E (en) 1989-11-17 1995-02-17 Pressure relieving device and process for implanting

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US07/437,840 Reissue US4946436A (en) 1989-11-17 1989-11-17 Pressure-relieving device and process for implanting
US17066493A Continuation 1989-11-17 1993-12-16

Publications (1)

Publication Number Publication Date
USRE35390E true USRE35390E (en) 1996-12-03

Family

ID=27389862

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/393,156 Expired - Lifetime USRE35390E (en) 1989-11-17 1995-02-17 Pressure relieving device and process for implanting

Country Status (1)

Country Link
US (1) USRE35390E (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752928A (en) * 1997-07-14 1998-05-19 Rdo Medical, Inc. Glaucoma pressure regulator
US6280468B1 (en) 1997-10-08 2001-08-28 Ras Holding Corp Scleral prosthesis for treatment of presbyopia and other eye disorders
US6450984B1 (en) 1999-04-26 2002-09-17 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US20020169130A1 (en) * 2001-05-03 2002-11-14 Hosheng Tu Medical device and methods of use for glaucoma treatment
US6533768B1 (en) 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof
US6595945B2 (en) 2001-01-09 2003-07-22 J. David Brown Glaucoma treatment device and method
US20030153863A1 (en) * 2002-02-13 2003-08-14 Patel Anilbhai S. Implant system for glaucoma surgery
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US6666841B2 (en) 2001-05-02 2003-12-23 Glaukos Corporation Bifurcatable trabecular shunt for glaucoma treatment
US6699210B2 (en) * 1999-04-27 2004-03-02 The Arizona Board Of Regents Glaucoma shunt and a method of making and surgically implanting the same
US20040254520A1 (en) * 2001-04-07 2004-12-16 Eric Porteous Coil implant for glaucoma treatment
US6881198B2 (en) 2001-01-09 2005-04-19 J. David Brown Glaucoma treatment device and method
US20050085905A1 (en) * 2001-12-06 2005-04-21 Asher Weiner Trabeculectomy (guarded filtration procedure) with tissue re-enforcement
US6981958B1 (en) 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
US6991650B2 (en) 1997-10-08 2006-01-31 Refocus Ocular, Inc. Scleral expansion device having duck bill
US7008396B1 (en) 1999-09-03 2006-03-07 Restorvision, Inc. Ophthalmic device and method of manufacture and use
US7037335B2 (en) 2002-11-19 2006-05-02 Eagle Vision, Inc. Bulbous scleral implants for the treatment of eye disorders such as presbyopia and glaucoma
US20060116759A1 (en) * 2004-11-30 2006-06-01 Thornton Spencer P Method of treating presbyopia and other eye conditions
US20060241750A1 (en) * 2001-05-22 2006-10-26 Ras Holding Corp Scleral expansion device having duck bill
US7135009B2 (en) 2001-04-07 2006-11-14 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US7160264B2 (en) 2002-12-19 2007-01-09 Medtronic-Xomed, Inc. Article and method for ocular aqueous drainage
US7163543B2 (en) 2001-11-08 2007-01-16 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US20070156079A1 (en) * 2005-09-16 2007-07-05 Bg Implant, Inc. Glaucoma Treatment Devices and Methods
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US7488303B1 (en) 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US20090099654A1 (en) * 2007-08-02 2009-04-16 Refocus Group, Inc. Scleral prosthesis having crossbars for treating presbyopia and other eye disorders
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US20100234791A1 (en) * 2006-05-01 2010-09-16 Glaukos Corporation Dual drainage pathway shunt device
US20110098629A1 (en) * 2006-01-17 2011-04-28 Juan Jr Eugene De Glaucoma treatment device
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US8337550B2 (en) 2006-07-11 2012-12-25 Refocus Ocular, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US8506515B2 (en) 2006-11-10 2013-08-13 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US8632489B1 (en) 2011-12-22 2014-01-21 A. Mateen Ahmed Implantable medical assembly and methods
US8808220B2 (en) 2003-11-14 2014-08-19 Transcend Medical, Inc. Ocular pressure regulation
US8911496B2 (en) 2006-07-11 2014-12-16 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US8945038B2 (en) 2003-05-05 2015-02-03 Transcend Medical, Inc. Internal shunt and method for treating glaucoma
US9155656B2 (en) 2012-04-24 2015-10-13 Transcend Medical, Inc. Delivery system for ocular implant
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US9381112B1 (en) 2011-10-06 2016-07-05 William Eric Sponsell Bleb drainage device, ophthalmological product and methods
US9480598B2 (en) 2012-09-17 2016-11-01 Novartis Ag Expanding ocular implant devices and methods
US9554940B2 (en) 2012-03-26 2017-01-31 Glaukos Corporation System and method for delivering multiple ocular implants
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US9763828B2 (en) 2009-01-28 2017-09-19 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US9763829B2 (en) 2012-11-14 2017-09-19 Novartis Ag Flow promoting ocular implant
US9987163B2 (en) 2013-04-16 2018-06-05 Novartis Ag Device for dispensing intraocular substances
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US10219942B1 (en) * 2005-12-03 2019-03-05 S. Gregory Smith Eye implant devices and method and device for implanting such devices for treatment of glaucoma
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US10736778B2 (en) 2014-12-31 2020-08-11 Microoptx Inc. Glaucoma treatment devices and methods
US10959941B2 (en) 2014-05-29 2021-03-30 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US10980667B2 (en) 2015-09-30 2021-04-20 Microoptx Inc. Eye treatment devices and methods
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
US11363951B2 (en) 2011-09-13 2022-06-21 Glaukos Corporation Intraocular physiological sensor
US11395764B1 (en) * 2005-12-03 2022-07-26 S. Gregory Smith Eye implant devices and method and device for implanting such devices for treatment of glaucoma
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037604A (en) * 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4457757A (en) * 1981-07-20 1984-07-03 Molteno Anthony C B Device for draining aqueous humour
US4521210A (en) * 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
US4634418A (en) * 1984-04-06 1987-01-06 Binder Perry S Hydrogel seton
US4722724A (en) * 1986-06-23 1988-02-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4750901A (en) * 1986-03-07 1988-06-14 Molteno Anthony C B Implant for drainage of aqueous humour
US4787885A (en) * 1984-04-06 1988-11-29 Binder Perry S Hydrogel seton
US4936825A (en) * 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037604A (en) * 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4457757A (en) * 1981-07-20 1984-07-03 Molteno Anthony C B Device for draining aqueous humour
US4521210A (en) * 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
US4634418A (en) * 1984-04-06 1987-01-06 Binder Perry S Hydrogel seton
US4787885A (en) * 1984-04-06 1988-11-29 Binder Perry S Hydrogel seton
US4750901A (en) * 1986-03-07 1988-06-14 Molteno Anthony C B Implant for drainage of aqueous humour
US4722724A (en) * 1986-06-23 1988-02-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4936825A (en) * 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma

Cited By (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752928A (en) * 1997-07-14 1998-05-19 Rdo Medical, Inc. Glaucoma pressure regulator
US6280468B1 (en) 1997-10-08 2001-08-28 Ras Holding Corp Scleral prosthesis for treatment of presbyopia and other eye disorders
US6299640B1 (en) 1997-10-08 2001-10-09 R A S Holding Corp Scleral prosthesis for treatment of presbyopia and other eye disorders
US6991650B2 (en) 1997-10-08 2006-01-31 Refocus Ocular, Inc. Scleral expansion device having duck bill
US6626858B2 (en) 1999-04-26 2003-09-30 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US6827699B2 (en) 1999-04-26 2004-12-07 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US6524275B1 (en) 1999-04-26 2003-02-25 Gmp Vision Solutions, Inc. Inflatable device and method for treating glaucoma
US8771217B2 (en) 1999-04-26 2014-07-08 Glaukos Corporation Shunt device and method for treating ocular disorders
US9827143B2 (en) 1999-04-26 2017-11-28 Glaukos Corporation Shunt device and method for treating ocular disorders
US6464724B1 (en) 1999-04-26 2002-10-15 Gmp Vision Solutions, Inc. Stent device and method for treating glaucoma
US6450984B1 (en) 1999-04-26 2002-09-17 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US8388568B2 (en) 1999-04-26 2013-03-05 Glaukos Corporation Shunt device and method for treating ocular disorders
US8152752B2 (en) 1999-04-26 2012-04-10 Glaukos Corporation Shunt device and method for treating glaucoma
US10568762B2 (en) 1999-04-26 2020-02-25 Glaukos Corporation Stent for treating ocular disorders
US7850637B2 (en) 1999-04-26 2010-12-14 Glaukos Corporation Shunt device and method for treating glaucoma
US10492950B2 (en) 1999-04-26 2019-12-03 Glaukos Corporation Shunt device and method for treating ocular disorders
US6783544B2 (en) 1999-04-26 2004-08-31 Gmp Vision Solutions, Inc. Stent device and method for treating glaucoma
US9492320B2 (en) 1999-04-26 2016-11-15 Glaukos Corporation Shunt device and method for treating ocular disorders
US6827700B2 (en) 1999-04-26 2004-12-07 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US6699210B2 (en) * 1999-04-27 2004-03-02 The Arizona Board Of Regents Glaucoma shunt and a method of making and surgically implanting the same
US7008396B1 (en) 1999-09-03 2006-03-07 Restorvision, Inc. Ophthalmic device and method of manufacture and use
US9993368B2 (en) 2000-04-14 2018-06-12 Glaukos Corporation System and method for treating an ocular disorder
EP2985012A1 (en) 2000-04-14 2016-02-17 Glaukos Corporation Implant for treating ocular disorders
US9066782B2 (en) 2000-04-14 2015-06-30 Dose Medical Corporation Ocular implant with therapeutic agents and methods thereof
US8814820B2 (en) 2000-04-14 2014-08-26 Glaukos Corporation Ocular implant with therapeutic agent and methods thereof
US10485702B2 (en) 2000-04-14 2019-11-26 Glaukos Corporation System and method for treating an ocular disorder
US8808219B2 (en) 2000-04-14 2014-08-19 Glaukos Corporation Implant delivery device and methods thereof for treatment of ocular disorders
US9789001B2 (en) 2000-04-14 2017-10-17 Dose Medical Corporation Ocular implant with therapeutic agents and methods thereof
US8801648B2 (en) 2000-04-14 2014-08-12 Glaukos Corporation Ocular implant with anchor and methods thereof
US6533768B1 (en) 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof
US6736791B1 (en) 2000-04-14 2004-05-18 Glaukos Corporation Glaucoma treatment device
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
EP2078516A2 (en) 2000-04-14 2009-07-15 Glaukos Corporation Implant for treating ocular disorders
US8348877B2 (en) 2000-04-14 2013-01-08 Dose Medical Corporation Ocular implant with therapeutic agents and methods thereof
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US8333742B2 (en) 2000-04-14 2012-12-18 Glaukos Corporation Method of delivering an implant for treating an ocular disorder
US6780164B2 (en) 2000-04-14 2004-08-24 Glaukos Corporation L-shaped implant with bi-directional flow
US8273050B2 (en) 2000-04-14 2012-09-25 Glaukos Corporation Ocular implant with anchor and therapeutic agent
US7297130B2 (en) 2000-04-14 2007-11-20 Glaukos Corporation Implant with anchor
US20070282244A1 (en) * 2000-04-14 2007-12-06 Glaukos Corporation Glaucoma implant with anchor
US20110105987A1 (en) * 2000-04-14 2011-05-05 Glaukos Corporation System and method for treating an ocular disorder
US6955656B2 (en) 2000-04-14 2005-10-18 Glaukos Corporation Apparatus and method for treating glaucoma
US7867205B2 (en) 2000-04-14 2011-01-11 Glaukos Corporation Method of delivering an implant for treating an ocular disorder
EP2260803A2 (en) 2000-04-14 2010-12-15 Glaukos Corporation Ocular implant system for treating glaucoma
US20060276739A1 (en) * 2001-01-09 2006-12-07 Brown J D Glaucoma treatment device and method
US6595945B2 (en) 2001-01-09 2003-07-22 J. David Brown Glaucoma treatment device and method
US6881198B2 (en) 2001-01-09 2005-04-19 J. David Brown Glaucoma treatment device and method
US20110092878A1 (en) * 2001-04-07 2011-04-21 Glaukos Corporation Ocular implant delivery system and methods thereof
US8579846B2 (en) 2001-04-07 2013-11-12 Glaukos Corporation Ocular implant systems
US7563241B2 (en) 2001-04-07 2009-07-21 Glaukos Corporation Implant and methods thereof for treatment of ocular disorders
US9155654B2 (en) 2001-04-07 2015-10-13 Glaukos Corporation Ocular system with anchoring implant and therapeutic agent
US7857782B2 (en) 2001-04-07 2010-12-28 Glaukos Corporation Ocular implant delivery system and method thereof
US9987472B2 (en) 2001-04-07 2018-06-05 Glaukos Corporation Ocular implant delivery systems
US7135009B2 (en) 2001-04-07 2006-11-14 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US20040254520A1 (en) * 2001-04-07 2004-12-16 Eric Porteous Coil implant for glaucoma treatment
US8118768B2 (en) 2001-04-07 2012-02-21 Dose Medical Corporation Drug eluting ocular implant with anchor and methods thereof
US10406029B2 (en) 2001-04-07 2019-09-10 Glaukos Corporation Ocular system with anchoring implant and therapeutic agent
US9572963B2 (en) 2001-04-07 2017-02-21 Glaukos Corporation Ocular disorder treatment methods and systems
US8075511B2 (en) 2001-04-07 2011-12-13 Glaukos Corporation System for treating ocular disorders and methods thereof
US8062244B2 (en) 2001-04-07 2011-11-22 Glaukos Corporation Self-trephining implant and methods thereof for treatment of ocular disorders
US10828473B2 (en) 2001-04-07 2020-11-10 Glaukos Corporation Ocular implant delivery system and methods thereof
US6666841B2 (en) 2001-05-02 2003-12-23 Glaukos Corporation Bifurcatable trabecular shunt for glaucoma treatment
US8142364B2 (en) 2001-05-02 2012-03-27 Dose Medical Corporation Method of monitoring intraocular pressure and treating an ocular disorder
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
US6981958B1 (en) 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
US7273475B2 (en) 2001-05-03 2007-09-25 Glaukos Corporation Medical device and methods of use for glaucoma treatment
US7094225B2 (en) 2001-05-03 2006-08-22 Glaukos Corporation Medical device and methods of use of glaucoma treatment
US8337445B2 (en) 2001-05-03 2012-12-25 Glaukos Corporation Ocular implant with double anchor mechanism
US20020169130A1 (en) * 2001-05-03 2002-11-14 Hosheng Tu Medical device and methods of use for glaucoma treatment
US20060241750A1 (en) * 2001-05-22 2006-10-26 Ras Holding Corp Scleral expansion device having duck bill
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US10285856B2 (en) 2001-08-28 2019-05-14 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US9561131B2 (en) 2001-08-28 2017-02-07 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US7879079B2 (en) 2001-08-28 2011-02-01 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US7163543B2 (en) 2001-11-08 2007-01-16 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20050085905A1 (en) * 2001-12-06 2005-04-21 Asher Weiner Trabeculectomy (guarded filtration procedure) with tissue re-enforcement
US20030153863A1 (en) * 2002-02-13 2003-08-14 Patel Anilbhai S. Implant system for glaucoma surgery
US8617094B2 (en) 2002-03-07 2013-12-31 Glaukos Corporation Fluid infusion methods for glaucoma treatment
US9220632B2 (en) 2002-03-07 2015-12-29 Glaukos Corporation Fluid infusion methods for ocular disorder treatment
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US8882781B2 (en) 2002-03-15 2014-11-11 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US9597230B2 (en) 2002-04-08 2017-03-21 Glaukos Corporation Devices and methods for glaucoma treatment
US7879001B2 (en) 2002-04-08 2011-02-01 Glaukos Corporation Devices and methods for treatment of ocular disorders
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US10485701B2 (en) 2002-04-08 2019-11-26 Glaukos Corporation Devices and methods for glaucoma treatment
US8007459B2 (en) 2002-09-21 2011-08-30 Glaukos Corporation Ocular implant with anchoring mechanism and multiple outlets
US7488303B1 (en) 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US7037335B2 (en) 2002-11-19 2006-05-02 Eagle Vision, Inc. Bulbous scleral implants for the treatment of eye disorders such as presbyopia and glaucoma
US7160264B2 (en) 2002-12-19 2007-01-09 Medtronic-Xomed, Inc. Article and method for ocular aqueous drainage
US9844462B2 (en) 2003-05-05 2017-12-19 Novartis Ag Internal shunt and method for treating glaucoma
US8945038B2 (en) 2003-05-05 2015-02-03 Transcend Medical, Inc. Internal shunt and method for treating glaucoma
US8808220B2 (en) 2003-11-14 2014-08-19 Transcend Medical, Inc. Ocular pressure regulation
US9351873B2 (en) 2003-11-14 2016-05-31 Transcend Medical, Inc. Ocular pressure regulation
US10226380B2 (en) 2003-11-14 2019-03-12 Novartis Ag Ocular pressure regulation
US20060116759A1 (en) * 2004-11-30 2006-06-01 Thornton Spencer P Method of treating presbyopia and other eye conditions
US20060116760A1 (en) * 2004-11-30 2006-06-01 Human Technology Group, Inc. Apparatus and method for treating presbyopia and other eye conditions
US20070156079A1 (en) * 2005-09-16 2007-07-05 Bg Implant, Inc. Glaucoma Treatment Devices and Methods
US11395764B1 (en) * 2005-12-03 2022-07-26 S. Gregory Smith Eye implant devices and method and device for implanting such devices for treatment of glaucoma
US10219942B1 (en) * 2005-12-03 2019-03-05 S. Gregory Smith Eye implant devices and method and device for implanting such devices for treatment of glaucoma
US9398977B2 (en) 2006-01-17 2016-07-26 Transcend Medical, Inc. Glaucoma treatment device
US10905590B2 (en) 2006-01-17 2021-02-02 Alcon Inc. Glaucoma treatment device
US20110098629A1 (en) * 2006-01-17 2011-04-28 Juan Jr Eugene De Glaucoma treatment device
US9421130B2 (en) 2006-01-17 2016-08-23 Novartis Ag. Glaucoma treatment device
US8814819B2 (en) 2006-01-17 2014-08-26 Transcend Medical, Inc. Glaucoma treatment device
US8801649B2 (en) 2006-01-17 2014-08-12 Transcend Medical, Inc. Glaucoma treatment device
US11786402B2 (en) 2006-01-17 2023-10-17 Alcon Inc. Glaucoma treatment device
US9789000B2 (en) 2006-01-17 2017-10-17 Novartis Ag Glaucoma treatment device
US20100234791A1 (en) * 2006-05-01 2010-09-16 Glaukos Corporation Dual drainage pathway shunt device
US9687339B2 (en) 2006-07-11 2017-06-27 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US8337550B2 (en) 2006-07-11 2012-12-25 Refocus Ocular, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US9730785B2 (en) 2006-07-11 2017-08-15 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US11273028B2 (en) 2006-07-11 2022-03-15 Refocus Group Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US9452044B2 (en) 2006-07-11 2016-09-27 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US9486310B2 (en) 2006-07-11 2016-11-08 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US9700406B2 (en) 2006-07-11 2017-07-11 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US9498324B2 (en) 2006-07-11 2016-11-22 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US9504559B2 (en) 2006-07-11 2016-11-29 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US10485653B2 (en) 2006-07-11 2019-11-26 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US10285804B2 (en) 2006-07-11 2019-05-14 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US8911496B2 (en) 2006-07-11 2014-12-16 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US8409277B2 (en) 2006-07-11 2013-04-02 Refocus Ocular, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US9717588B2 (en) 2006-07-11 2017-08-01 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
US9962290B2 (en) 2006-11-10 2018-05-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US10828195B2 (en) 2006-11-10 2020-11-10 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US8506515B2 (en) 2006-11-10 2013-08-13 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US7927372B2 (en) 2007-08-02 2011-04-19 Refocus Group, Inc. Scleral prosthesis having crossbars for treating presbyopia and other eye disorders
US20090099654A1 (en) * 2007-08-02 2009-04-16 Refocus Group, Inc. Scleral prosthesis having crossbars for treating presbyopia and other eye disorders
US11839571B2 (en) 2009-01-28 2023-12-12 Alcon Inc. Ocular implant with stiffness qualities, methods of implantation and system
US9763828B2 (en) 2009-01-28 2017-09-19 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US11344448B2 (en) 2009-01-28 2022-05-31 Alcon Inc. Ocular implant with stiffness qualities, methods of implantation and system
US10531983B2 (en) 2009-01-28 2020-01-14 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US11363951B2 (en) 2011-09-13 2022-06-21 Glaukos Corporation Intraocular physiological sensor
US9381112B1 (en) 2011-10-06 2016-07-05 William Eric Sponsell Bleb drainage device, ophthalmological product and methods
US11065154B1 (en) 2011-10-06 2021-07-20 William Eric Sponsel Bleb drainage device, ophthalmic product and methods
US8632489B1 (en) 2011-12-22 2014-01-21 A. Mateen Ahmed Implantable medical assembly and methods
US10271989B2 (en) 2012-03-26 2019-04-30 Glaukos Corporation System and method for delivering multiple ocular implants
US9554940B2 (en) 2012-03-26 2017-01-31 Glaukos Corporation System and method for delivering multiple ocular implants
US11197780B2 (en) 2012-03-26 2021-12-14 Glaukos Corporation System and method for delivering multiple ocular implants
US11944573B2 (en) 2012-03-26 2024-04-02 Glaukos Corporation System and method for delivering multiple ocular implants
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US9241832B2 (en) 2012-04-24 2016-01-26 Transcend Medical, Inc. Delivery system for ocular implant
US10912676B2 (en) 2012-04-24 2021-02-09 Alcon Inc. Delivery system for ocular implant
US9155656B2 (en) 2012-04-24 2015-10-13 Transcend Medical, Inc. Delivery system for ocular implant
US9907697B2 (en) 2012-04-24 2018-03-06 Novartis Ag Delivery system for ocular implant
US9480598B2 (en) 2012-09-17 2016-11-01 Novartis Ag Expanding ocular implant devices and methods
US9763829B2 (en) 2012-11-14 2017-09-19 Novartis Ag Flow promoting ocular implant
US10849558B2 (en) 2013-03-13 2020-12-01 Glaukos Corporation Intraocular physiological sensor
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US10188551B2 (en) 2013-03-15 2019-01-29 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US11559430B2 (en) 2013-03-15 2023-01-24 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US9987163B2 (en) 2013-04-16 2018-06-05 Novartis Ag Device for dispensing intraocular substances
US10959941B2 (en) 2014-05-29 2021-03-30 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US10736778B2 (en) 2014-12-31 2020-08-11 Microoptx Inc. Glaucoma treatment devices and methods
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
US10980667B2 (en) 2015-09-30 2021-04-20 Microoptx Inc. Eye treatment devices and methods
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants

Similar Documents

Publication Publication Date Title
USRE35390E (en) Pressure relieving device and process for implanting
US4946436A (en) Pressure-relieving device and process for implanting
US4787885A (en) Hydrogel seton
US4604087A (en) Aqueous humor drainage device
US4634418A (en) Hydrogel seton
US5743868A (en) Corneal pressure-regulating implant device
US4402681A (en) Artificial implant valve for the regulation of intraocular pressure
JP3670291B2 (en) Intraocular implant, introduction device
US4521210A (en) Eye implant for relieving glaucoma, and device and method for use therewith
JP3088746B2 (en) Glaucoma implant
US20030236483A1 (en) Dual drainage ocular shunt for glaucoma
KR100778908B1 (en) Systems and methods for reducing intraocular pressure
EP0773759B1 (en) Glaucoma implant with a temporary flow-restricting seal
US5433701A (en) Apparatus for reducing ocular pressure
US6050970A (en) Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US4886488A (en) Glaucoma drainage the lacrimal system and method
CA1295907C (en) Glaucoma drainage in the lacrimal system
RU2749066C2 (en) Apparatus and method of extracting aqueous humour
EP0168201B1 (en) Aqueous humour drainage device
US20080221501A1 (en) Systems and Methods for Reducing Intraocular Pressure
JP2007526013A (en) Shunt device for treating glaucoma
AU642498C (en) Pressure-relieving device and process for implanting
CA1238833A (en) Aqueous humor drainage device
WO2003049639A2 (en) Trabeculectomy (guarded filtration procedure) with tissue re-enforcement
Gregory et al. One-year results of the intrascleral glaucoma implant

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11