Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUSRE35919 E
Type de publicationOctroi
Numéro de demandeUS 08/911,680
Date de publication13 oct. 1998
Date de dépôt20 févr. 1991
Date de priorité23 févr. 1990
État de paiement des fraisPayé
Autre référence de publicationDE69130277D1, DE69130277T2, EP0471082A1, EP0471082A4, EP0471082B1, US5126055, WO1991013046A1
Numéro de publication08911680, 911680, US RE35919 E, US RE35919E, US-E-RE35919, USRE35919 E, USRE35919E
InventeursAkira Yamashita, Fumihiko Shoji
Cessionnaire d'origineDaicel Chemical Industries, Ltd.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Introducing solution of optical isomer mixture and desorbing liquid into bed containing optical resolution packing where adsorption, concentration, desorption and liquid recovery are carried out continuously in circulation
US RE35919 E
Résumé
A process for separating optical isomers in a simulated moving bed system, which comprises introducing a solution containing an optical isomer mixture and a desorbing liquid into a packed bed containing an optical resolution packing therein and having front and rear ends thereof connected to each other endlessly via a fluid passage to circulate a fluid unidirectionally and at the same time drawing out a solution containing one of the separated isomers and another solution containing the other isomer from the packed bed, wherein a port 13 for introducing a desorbing liquid, a port 14 for drawing out a solution containing a strongly adsorbable optical isomer, i.e. an extract, a port 15 for introducing a solution containing a mixture of optical isomers, and a port 16 for drawing out a solution containing a weakly adsorbable optical isomer, i.e. a raffinate, are arranged in the packed bed in this order along the direction of fluid flow and the positions of these ports are successively moved in the direction of fluid flow in the packed bed intermittently.
Images(1)
Previous page
Next page
Revendications(3)
We claim:
1. A process for separating optical isomers in a simulated moving bed system, comprising introducing a solution containing an optical isomer mixture and a desorbing liquid into a packed bed containing an optical resolution packing therein and having front and rear ends thereof connected to each other endlessly via a recycle fluid passage to circulate a fluid unidirectionally and at the same time drawing out a solution containing one of the separated isomers and another solution containing the other isomer from the packed bed, wherein a port for introducing a desorbing liquid, an extract port for drawing out a solution containing a strongly adsorbable optical isomer a port for introducing a solution containing an optical isomer mixture, and a raffinate port for drawing out a solution containing a weakly adsorbable optical isomer are arranged in the packed bed in this order along the direction of fluid flow and the positions of these ports are successively moved in the direction of fluid flow in the packed bed intermittently. .Iadd.
2. A process for separating optical isomers in a simulated moving bed system comprising the steps of introducing a solution containing an optical isomer mixture and a desorbing liquid into a packed bed containing an optical resolution packing therein and having front and rear ends thereof connected to each other endlessly via a recycle fluid passage to circulate a fluid unidirectionally and at the same time drawing out a solution containing one of the separated isomers and another solution containing the other isomer from the bed, a port for introducing a desorbing liquid, an extract port for drawing out a solution containing a strongly adsorbable optical isomer, a port for introducing a solution containing an optical isomer mixture and a raffinate port for drawing out a solution being arranged in the packed bed in this order along the direction of fluid flow and the positions of these sorts being successively moved in the direction of fluid flow in the packed bed intermittently, wherein the optical resolution packing is selected from the group consisting of an optically active high-molecular compound, an optically active high-molecular compound supported on a carrier and a low-molecular compound having an optical resolution capability supported on a carrier. .Iaddend..Iadd.3. The process of claim 2, wherein the optical resolution packing is an optically active high-molecular compound. .Iaddend..Iadd.4. The process of claim 3, wherein the optical resolution packing is an optically active high-molecular compound and the optically active high-molecular compound is a polysaccharide derivative. .Iaddend..Iadd.5. The process of claim 2, wherein the optical resolution packing is a low-molecular compound having an optical resolution capability supported on a carrier. .Iaddend..Iadd.6. The process of claim 5, wherein the optical resolution packing is a low-molecular compound having an optical resolution capability supported on a carrier and the low-molecular compound is a cyclodextrin derivative. .Iaddend..Iadd.7. The process of claim 2, wherein the optical resolution packing is in the form of a particle. .Iaddend..Iadd.8. The process of claim 7, wherein the optical resolution packing is in the form of a particle and has a particle size in the range of from 20 to 50 μm. .Iaddend..Iadd.9. The process of claim 2, wherein the desorbing liquid comprises an organic solvent. .Iaddend..Iadd.10. The process of claim 9, wherein the desorbing liquid comprises an organic solvent and the organic solvent is an alcohol and/or
hydrocarbon. .Iaddend..Iadd.11. The process of claim 10, wherein the desorbing liquid comprises an organic solvent, and the organic solvent is a mixture of an alcohol and a hydrocarbon. .Iaddend..Iadd.12. The process of claim 11, wherein the desorbing liquid comprises an organic solvent, the organic solvent is a mixture of an alcohol and a hydrocarbon and the alcohol and hydrocarbon is isopropanol and hexane. .Iaddend..Iadd.13. The process of claim 2, wherein the desorbing liquid comprises an aqueous solution containing a salt. .Iaddend..Iadd.14. The process of claim 13, wherein the desorbing liquid comprises an aqueous solution containing a salt and the salt is copper sulfate or a perchlorate. .Iaddend.
Description

.Iadd.This application is a reissue continuation of U.S. Ser. No. 08/516,844, filed Aug. 18, 1995, now abandoned, which is a reissue application of U.S. Pat. No. 5,126,055, issued Aug. 21, 1991. .Iaddend.

INDUSTRIAL APPLICABILITY

The present invention relates to a novel process for separating optical isomers.

BACKGROUND ART

As well known in the art, optical isomers generally have different activities to living bodies, even though they are chemically the same compounds. Accordingly, in the fields of pharmaceuticals, pharmaceutical manufacture and biochemistry-related industries, it is an extremely important task to prepare optically pure compounds in order to improve the efficacy of pharmaceuticals per unit dose and to avoid the side effects and damages caused by pharmaceuticals. The separation of an optical isomer mixture, that is, optical resolution, has been performed according to the diastereomer method, the crystallization method, the enzyme method and the separating membrane method. In these methods, however, the types of compounds for which optical resolution is feasible are often limited, so that they are not suitable for general purposes. Although chromatography is available for such separation, currently known chromatographic methods are of batch type, so that noncontinuous and nonsteady operations are inevitable and hence they are not suitable for the separation in a large quantity. In addition, a large quantity of an eluent is needed to and the concentration of the desired compound in an eluate is extremely low, so that there has been a drawback that much energy and complicated process are required for recovery. Therefore, the development of a method capable of efficient separation in a large quantity has been desired in the art.

DISCLOSURE OF THE INVENTION

The present invention provides a novel process capable of efficiently separating an optical isomer. The present inventors have made extensive studies to find out that efficient separation of an optical isomer in a large quantity can be performed by the use of a simulated moving bed system, which has led to the completion of the present invention.

Accordingly, the present invention relates to a process for separating optical isomers in a simulated moving bed system, characterized by introducing a solution containing an optical isomer mixture and a desorbing liquid into a packed bed containing an optical resolution packing therein and having front and rear ends thereof connected to each other endlessly via a fluid passage to circulate a fluid unidirectionally and at the same time drawing out a solution containing one of the separated isomers and another solution containing the other isomer from the packed bed, wherein a port for introducing a desorbing liquid, a port for drawing out a solution containing a strongly adsorbable optical isomer, i.e. an extract, a port for introducing a solution containing an optical isomer mixture, and a port for drawing out a solution containing a weakly adsorbable optical isomer, i.e. a raffinate, are arranged in the packed bed in this order along the direction of fluid flow and the positions of these ports are successively moved in the direction of fluid flow in the packed bed intermittently.

The simulated moving bed system means a system in which ports for introducing a desorbing liquid and ports for drawing out an adsorbate fluid are arranged in a packed bed containing a solid adsorbent therein and having front and rear ends thereof connected to each other via a fluid passage to circulate a fluid, along the direction of fluid flow in the bed, an upstream introduction port and an upstream draw-out port being successively changed over by the downstream counterparts at given time intervals, respectively, to thereby separate a feedstock fluid into a component (adsorbate component) which is relatively strongly adsorbed by the solid adsorbent and a component (nonadsorbate component) which is relatively weakly adsorbed by the solid adsorbent. The simulated moving bed system per se is known in the art (see for example, Japanese Patent Publication No. 15681/1967). This simulated moving bed technology has been utilized in, for example, the manufacture of fructose, the separation of maltose and the recovery of coenzyme. However, no prodess for separating optical isomers by the use of a simulated moving bed system is known at all.

Preferred embodiments of the process of the present invention for separating optical isomers using a simulated moving bed system will now be described in greater detail. In the present invention, the packed bed of the simulated moving bed system contains therein a packing, such as a silica gel having carried thereon an optically active high-molecular compound, e.g., a polysaccharide derivative such as esters and carbamates of amylose and cellulose, a polyacrylate derivative and a polyamide derivative, a particulate material prepared from a polymer per se and a silica gel having carried thereon a low-molecular compound having an optical resolution capability, e.g., crown ether and cyclodextrin derivatives, which packing is known as an optical resolution packing. The packed bed has front and rear ends thereof connected to each other endlessly via a fluid passage to circulate a fluid unidirectionally. Introduced into the packed bed are a solution containing an optical isomer mixture and a desorbing liquid comprising an organic solvent, e.g., an alcohol such as methanol or isopropanol, a hydrocarbon such as hexane, and/or an aqueous solution containing a salt such as copper sulfate or a perchlorate salt. At the same time, a solution containing one optical isomer and a solution containing another optical isomer are drawn out of the packed bed. A port for introducing a desorbing liquid, a port for drawing out a solution containing a strongly adsorbable optical isomer, i.e. an extract, a port for introducing a solution containing an optical isomer mixture, and a port for drawing out a solution containing a weakly adsorbable optical isomer, i.e. a raffinate, are arranged in the packed bed in this order along the direction of fluid flow and the positions of these ports are successively moved in the direction of fluid flow in the packed bed intermittently.

In the adsorption and separation by the simulated moving bed system according to the present invention, the following operations of adsorption, concentration, desorption, and desorbing liquid recovery as the basic operations are continuously carried out in circulation.

(1) ADSORPTION

The optical isomer mixture is brought into contact with the packing, so that a strongly adsorbable optical isomer (strongly adsorbable component) is adsorbed while another weakly adsorbable optical isomer (weakly adsorbable component) is recovered as a raffinate flow together with the desorbing liquid.

(2) CONCENTRATION

The packing having the strongly adsorbable component adsorbed thereon is brought into contact with part of the extract described below, so that the weakly adsorbable component remaining on the packing is expelled and the strongly adsorbable component is concentrated.

(3) DESORPTION

The packing containing the concentrated strongly adsorbable component is brought into contact with the desorbing liquid, so that the strongly adsorbable component is expelled from the packing and recovered together with the desorbing liquid as an extract flow.

(4) DESORBING LIQUID RECOVERY

The packing having substantially only the desorbing liquid adsorbed thereon is brought into contact with part of the raffinate flow, so that part of the desorbing liquid contained in the packing is recovered as a desorbing liquid recovery flow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram showing one form of the simulated moving bed system to be used in the present invention; and

FIG. 2 is a schematic diagram showing another form of the simulated moving bed system to be used in the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the drawings,

1-12: adsorbing chamber

13: desorbing liquid feeding line

14: extract draw-out line

15: feeding line for a solution containing an optical isomer

16: raffinate draw-out line

17: recycle line

18: pump.

The process of the present invention will now be described by referring to the drawings.

FIG. 1 is a schematic diagram showing one form of the simulated moving bed system to be used in the present invention; and FIG. 2 is a schematic diagram showing another form of the simulated moving bed system to be used in the present invention. In FIG. 1, the inside of the packed bed constituting the principal part of the simulated moving bed is partitioned into 12 packed bed units, while in FIG. 2, it is partitioned into 8 packed bed units. The number and the size of such packed bed units are selected depending on the composition, concentration, flow rate and pressure loss of the solution containing an optical isomer mixture and on the size of the apparatus, and are not particularly limited.

In the drawings, numerals 1 to 12 represent chambers in which a packing is incorporated (adsorbing chamber) and which are connected with one another, numeral 13 represents a desorbing liquid feeding line, numeral 14 represents an extract draw-out line, 15 represents a feeding line for a solution containing an optical isomer, 16 represents a raffinate draw-out line, 17 represents a recycle line, and 18 represents a pump.

In the arrangement of the adsorbing chambers 1 to 12 and the lines 13 to 16 indicated in FIG. 1, desorption is performed in the adsorbing chambers 1 to 3, concentration in the adsorbing chambers 4 to 6, adsorption in the adsorbing chambers 7 to 9, and desorbing liquid recovery in the adsorbing chambers 10 to 12. In such a simulated moving bed system, each of the feeding lines and draw-out lines is moved for a distance corresponding to one adsorbing chamber in the direction of fluid flow by manipulating valves at given time intervals. Accordingly, in the resulting arrangement of the adsorbing chambers, desorption is performed in the adsorbing chambers 2 to 4, concentration in the adsorbing chambers 5 to 7, adsorption in the adsorbing chambers 8 to 10 and desorbing liquid recovery in the adsorbing chambers 11 to 1. By successively performing these operations, the separation of an optical isomer mixture is accomplished continuously and efficiently.

In the arrangement of the adsorbing chambers 1 to 8 and lines 13 to 16 indicated in FIG. 2, desorbing liquid recovery is performed in the adsorbing chamber 1, adsorption in the adsorbing chambers 2 to 5, concentration in the adsorbing chambers 6 to 7, and desorption in the adsorbing chamber 8. In such a simulated moving bed system, each of the feeding lines and draw-out lines is moved for a distance corresponding to one adsorbing chamber in the direction of fluid flow by manipulating valves at given time intervals. Accordingly, in the resulting arrangement of the adsorbing chambers, desorbing liquid recovery is performed in the adsorbing chamber 2, adsorption in the adsorbing chambers 3 to 6, concentration in the adsorbing chambers 7 to 8, and desorption in the adsorbing chamber 1. By successively performing these operations, the separation of an optical isomer mixture is accomplished continuously and efficiently.

EFFECT OF THE INVENTION

The industrial effect of the process of the present invention for separating optical isomers according to a simulated moving bed system is remarkably excellent, because this process allows an optical isomer mixture to be separated continuously and efficiently, works well even with a reduced amount of a desorbing liquid used, and can deal with a large amount of optical isomers.

EXAMPLES

The present invention will now be described in more detail by referring to the following Examples, though it is not limited to these Examples only.

EXAMPLE 1

1,3-Butanediol diacetate was fed at a rate of 6 ml/min (total concentration of isomers: 1000 mg/ml) into a simulated moving bed apparatus comprised of 8 connected columns, as adsorbing chambers, each having a diameter of 2 cm and a length of 50 cm and containing a packing for use in the separation of an optical isomer (Chiralcel OB of 20 μm in particle diameter manufactured by Daicel Chemical Industries, Ltd.). As a desorbing liquid, a solution prepared by mixing hexane with isopropanol in a ratio of 9 to 1 was fed at a rate of 27.9 ml/min.

As a result, an extract containing a strongly adsorbable isomer was obtained at a rate of 26.6 ml/min (concentration: 103.7 mg/ml), and a raffinate containing a weakly adsorbable isomer was obtained at a rate of 7.3 ml/min (concentration: 411.4 mg/ml).

COMPARATIVE EXAMPLE 1

The same feedstock was separated by a batch system using a single column containing the same packing as the one used in Example 1 to compare the throughput and the usage of desorbing liquid. The results are given in Table 1.

              TABLE 1______________________________________            Simulated            moving  Batch            bed system                    system______________________________________Throughput per unit time and              2.4       0.084unit packing (mg/ml-bed.min)Usage of desorbing liquid              0.0093    2.0(ml/mg feedstock)______________________________________

It is apparent from Table 1 that the simulated moving bed system is superior to the batch system in both the throughput and the usage of desorbing liquid.

EXAMPLE 2

The same apparatus as that of Example 1 was used except that adsorbing chambers each having a diameter of 3 cm and a length of 100 cm were employed. Chiralcel OB having a particle diameter of from 30 to 50 μm was used as a packing, and α-PhEtOH (α-phenylethyl alcohol) was fed at a rate of 6 ml/min (total concentration of isomers: 1000 mg/ml). As a desorbing liquid, a solution prepared by mixing hexane with isopropanol in a ratio of 9 to 1 was fed at a rate of 61.4 ml/min. As a result, an extract containing a strongly adsorbable isomer was obtained at a rate of 58.5 ml/min (concentration: 28.6 mg/ml), and a raffinate containing a weakly adsorbable isomer was obtained at a rate of 8.9 ml/min (concentration: 336 mg/ml).

COMPARATIVE EXAMPLE 2

The same feedstock was separated by a batch system using a single column containing the same packing as the one used in Example 2 to compare the throughput and the usage of desorbing liquid. The results are given in Table 2.

              TABLE 2______________________________________            Simulated            moving  Batch            bed system                    system______________________________________Throughput per unit time and              0.53      0.014unit packing (mg/ml-bed.min)Usage of desorbing liquid              0.02      4.5(ml/mg feedstock)______________________________________

It is apparent from Table 2 that the simulated moving bed system is superior to the batch system in both the throughput and the usage of desorbing liquid.

EXAMPLE 3

A solution of an optical isomer mixture containing 4200 ppm of racemic α-phenylethyl alcohol was fed at a rate of 5.9 ml/min into a simulated moving bed apparatus as shown in FIG. 2 which was comprised of 8 connected columns, as adsorbing chambers, each having an inside diameter of 2 cm and a length of 15 cm and containing a packing for use in the separation of an optical isomer (Chiralcel OB of 45 μm in particle diameter manufactured by Daicel Chemical Industries, Ltd.). As a desorbing liquid, a n-hexane/isopropanol (90/10 v/v %) mixture was fed at a rate of 24.2 ml/min. Each of the fluid feeding lines and draw-out lines was moved for a distance corresponding to one adsorbing chamber in the direction of fluid flow at given intervals of 3 minutes at 25° C. by automatic change-over operation of an eight-way rotary valve in order to perform continuous separation.

As a result, a raffinate containing a weakly adsorbable, optically active compound (S)-(-)-α-phenylethyl alcohol! in a concentration of 1251.5 ppm at an optical purity of 99.9% e.e. or above was obtained at a rate of 9.7 ml/min. Moreover, an extract containing a strongly adsorbable, optically active compound (R)-(+)-α-Phenylethyl alcohol! in a concentration of 613.4 ppm at an optical purity of 99.9% e.e. or above was obtained at a rate of 20.2 ml/min.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US2985589 *22 mai 195723 mai 1961Universal Oil Prod CoContinuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US4042327 *15 janv. 197616 août 1977Waters Associates, Inc.Liquid chromatography, reversible complexes
US4335226 *24 févr. 197815 juin 1982Boehringer Mannheim GmbhPolymeric carrier having covalently bonded affine residue group
US4381399 *21 déc. 198126 avr. 1983Aerojet-General CorporationPurification of tetrahydrodibenzo[b,d]pyrans from crude synthetic mixtures
US4402832 *12 août 19826 sept. 1983Uop Inc.High efficiency continuous separation process
US4416784 *23 févr. 198222 nov. 1983Kureha Kagaku Kogyo Kabushiki KaishaHydrobymethylated copolymer of styrene and divinylbenzene
US4512898 *30 sept. 198323 avr. 1985Sumitomo Chemical Company, LimitedPacking materials for chromatographic use and a method for analysis of an enantiomer mixture using the same
US4539399 *27 juil. 19843 sept. 1985Advanced Separation Technologies Inc.Bonded phase material for chromatographic separations
US4549965 *13 janv. 198429 oct. 1985The Dow Chemical CompanyLiquid chromatographic method and apparatus with membrane for post-column derivatization
US4765903 *6 oct. 198723 août 1988Interferon Sciences, Inc.Purification of monomeric interferon
US4781858 *15 juil. 19871 nov. 1988Director General Of Agency Of Industrial Science And TechnologyCyclodextrin-silica composite and a method for the preparation thereof
US4816445 *30 mai 198528 mars 1989Kabushiki Kaisha Hayashibara Seibutsu Kagaku KenkyujoCrystalline alpha-maltose
US4818394 *11 janv. 19884 avr. 1989Daicel Chemical Industries, Ltd.Separating agent
US4842935 *5 mars 198727 juin 1989Director-General Agency Of Industrial Science And TechnologySurface hydrophobic filler with adsorbed lipophilic crown compound
US4919803 *9 déc. 198824 avr. 1990The United States Of America As Represented By The Secretary Of The Department Of Health And Human ServicesLiquid chromatographic chiral stationary phase
US4960762 *27 juin 19862 oct. 1990Sellergren BoerjeChiral two-phase system and method for resolution of racemic mixtures and separation of diastereomers
US5032277 *9 mars 199016 juil. 1991Daicel Chemical Industries, Ltd.Optical resolution with β-1,4-mannan tribenzoate
US5104543 *1 avr. 199114 avr. 1992Boehringer Ingelheim GmbhLiquid chromatography using cellulose triacetate stationary phase and polar solvent mobile phase
FR2593409A1 * Titre non disponible
GB2167052A * Titre non disponible
JP6485106A * Titre non disponible
JPH01163654A * Titre non disponible
JPH01199643A * Titre non disponible
JPH01202658A * Titre non disponible
JPH01216943A * Titre non disponible
JPS5820208A * Titre non disponible
Citations hors brevets
Référence
1 *Hawley s Condensed Chemical Dictionary, Eleventh Edition, New York, Van Nostrand Reinhold, 1987, p. 276.
2Hawley's Condensed Chemical Dictionary, Eleventh Edition, New York, Van Nostrand Reinhold, 1987, p. 276.
3Industrial Chemist, "Process-scale liquid chromatography", Mark. D. Weiss, Aug. 1987, pp. 16-20.
4 *Industrial Chemist, Process scale liquid chromatography , Mark. D. Weiss, Aug. 1987, pp. 16 20.
5 *Snyder, Introduction to Modern Liquid Chromatography, John Wiley & Sons, Inc., 1979, pp. 177 183.
6Snyder, Introduction to Modern Liquid Chromatography, John Wiley & Sons, Inc., 1979, pp. 177-183.
7UOP Sorbex Processes, "UOP Sorbex Separations Technology", Nikki Universal Co., Ltd., Oct. 1989, 8 pages.
8 *UOP Sorbex Processes, UOP Sorbex Separations Technology , Nikki Universal Co., Ltd., Oct. 1989, 8 pages.
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US6409923 *19 mars 199825 juin 2002Novasep S.A.Method for enriching optical isomers by means of simulated mobile bed
EP2682397A120 juil. 20018 janv. 2014Gilead Sciences, Inc.Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same
Classifications
Classification aux États-Unis210/659, 210/198.2
Classification internationaleC07C67/56, B01D15/00, C07C29/76, C07C33/22, C07C69/16, C07B57/00
Classification coopérativeC07B57/00
Classification européenneC07B57/00
Événements juridiques
DateCodeÉvénementDescription
3 déc. 2003FPAYFee payment
Year of fee payment: 12
27 déc. 1999FPAYFee payment
Year of fee payment: 8