USRE38193E1 - Contact lens utilizing Stiles-Crawford effect - Google Patents

Contact lens utilizing Stiles-Crawford effect Download PDF

Info

Publication number
USRE38193E1
USRE38193E1 US09/506,547 US50654700A USRE38193E US RE38193 E1 USRE38193 E1 US RE38193E1 US 50654700 A US50654700 A US 50654700A US RE38193 E USRE38193 E US RE38193E
Authority
US
United States
Prior art keywords
lens
contact lens
light
eye
retina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/506,547
Inventor
Patricia J. Bowling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/506,547 priority Critical patent/USRE38193E1/en
Application granted granted Critical
Publication of USRE38193E1 publication Critical patent/USRE38193E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/16Shades; shields; Obturators, e.g. with pinhole, with slot
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/048Means for stabilising the orientation of lenses in the eye

Definitions

  • This invention relates to contact lenses, and more particularly, to soft contact lenses whereby visual activity is increased by increasing the amount of light absorbed by the cones of the retina.
  • the retina contains two types of photo receptors: rods and cones.
  • Stiles showed that light rays which strike a cone perpendicular to its surface are perceived as brighter than those that do not strike in a perpendicular fashion. See “The Luminous Efficiency of Monochromatic Rays Entering the Eye Pupil at Different Points and a New Colour Effect” by W. S. Stiles from The National Physical Laboratory, pp. 90-118, of 16 Feb., 1938. Additionally please see “The Scotopic Stiles-Crawford Effect” by Van Loo, Jr. and Enoch in Vision Res . Vol. 15 pp 1005-1009 1975 and Wavelength Discrimination of the Peripheral Cones and Its Change with Rod Intrusion” by Stabell and Stabell, Vision Res . Vol 17, pp 423-426,1977.
  • the present apparatus comprises a lens body of conventional soft contact lens composition, having a generally spherical concave back surface adapted m fit the cornea of the eye, and a generally convex front surface.
  • the lens preferably includes a prism ballast to ensure correct orientation.
  • the lens of the present invention is made of opaque a other substances which generally do not transmit light.
  • the eye is mapped with a conventional field test to determine the diseased portion of the eye and those portions of the eye having optical perception.
  • circular channels or “pinholes” which traverse the entire thickness of the lens are placed In an area which maps and therefore corresponds to the potion of the retina having optical perception. Light incident on the underlying portion of the retina having optical perception through the pinholes provides improved vision.
  • These pinholes can be made in the form of channels. Such channels further increase tear distribution under the lens with improved comfort to the wearer.
  • the channels additionally provide increased oxygen flow to the cornea and lens, thereby diminishing the physiological burden occasioned by standard soft contact lens.
  • the present invention seeks to improve the remaining visual acuity by altering the manner in which ambient light is delivered to those cones not destroyed by the disease process.
  • the portion of the retina not having sufficient light sensitivity to contribute to meaningful perception is covered by the opaque portion of the lens-thin portion not having the pinholes. Light is prevented from being perpendicularly incident on the diseased portions of the retina. Specular reflection of this light from the diseased retina is inhibited
  • the lens must possess a means by which to maintain axial orientation thereby insuring that the opacified portion of the lens does not occlude the remaining visual field. This is conventionally done with a prism to bias the lens and prevent lens rotation.
  • FIG. 1 shows the result of conventional field testing on a diseased eye—in this case my own eye—illustrating in the shaded portion that area of the visual field which is not capable of light reception a meaningful vision;
  • FIG. 2 is a contact lens having an opaque surface with “pinholes” placed over a mapped portion of the eye lens which corresponds to a mapped portion of the retina having visual sensitivity;
  • FIG. 3 illustrates the lens of FIG. 2 on the eye of a patient.
  • retinal field F of a patient is conventionally mapped utilizing a conventional and well known field analyzer.
  • light insensitive portion D is insufficiently sensitive to light to have meaningful vision. This is to be contrasted with light sensitive portion L where meaningful vision can occur.
  • contact lens C is illustrated. It is to be understood that the entirety of contact lens C is opaque—the underlying cornea of the eye would be obscure.
  • Contact lens C is likewise mapped. It includes light sensitive portion L′ and light insensitive potion D. Pinholes 18 are placed in an array over light sensitive portion L′ of contact lens C.
  • Contact lens C is preferably a soft contact lens. The reader will understand that it can be a hard contact lens. It is typically provided with a mechanism for biasing the lens in rotation with respect to the eye. R will be seen that contact lens C has been provided with prism P at the bottom portion of the lens. Those having skill in the contact lens art will appreciate that virtually any mechanism which biases the lens in rotation with respect to the eye could be used as well.
  • pinholes 18 constitute through hole channels in the lens.
  • Such through hole channels contribute both to tear distribution and to oxygen distribution through the lens.
  • Channels or “holes” 18 force light entering the pupil to strike the retina at an angle perpendicular to the back wall of the retina, thereby increasing the absorption of this light by the cones, and thereby increasing the visual acuity of the wearer.
  • the channels transverse the entire thickness of the lens also serve to promote and facilitate the distribution of tests around the periphery of the lens resulting in improved oxygen transport to the surface of the eye, particularly in the area of the prism ballast where lens thickness is the greatest.
  • pinholes 18 can admit of modification. It is only required that the pinholes admit light locally of the pinhole to the eye. For this reason, constructions different from through holes can be utilized.
  • the opaque covering of contact lens C can be locally interrupted et the pinhole with the otherwise transparent body of contact lens C permitting light to pass through the lens.
  • the pinholes are directionally oriented such that the light entering through the pinhole is directed toward the fovea of the eye, this area being the area of maximal concentration of cones.
  • Lenses of the present invention may be prepared by those skilled in the art utilizing conventional techniques for the fabrication of soft contact lenses.
  • the lenses may be lathe art from a dehydrated lens blank a button of a hydrophilic polymer and subsequently hydrated to obtain the soft lens product.
  • the lens may be molded in a hydrated state or is the presence of water or solvent to obtain a soft product.
  • Lens compositions may be of polyhydroxyethylmethacrylate (HEMA), copolymers of HEMA and N-vinylpyrrolidone (NVP), silicone or other material known to be useful in the fabrication of soft contact lenses.
  • HEMA polyhydroxyethylmethacrylate
  • NDP N-vinylpyrrolidone
  • contact lens C is shown on eye E of a patient. It will be understood that eye E has been conventionally mapped utilizing a field test-a procedure well known in the prior art. Prism P maintain contact lens C in rotational alignment on eye E. Light Insensitive portion D of contact lens C covers the cornea of the eye overlying the mapped light insensitive portion D of the eye. Conversely, pinholes 18 form an array over the mapped light sensitive portion L′ of contact lens C.
  • the retina contains two types of photo receptors—rods and cones.
  • the rods are adapted for dim light conditions (aka: scotopic vision), and transmit monochromatic light.
  • the cones are adapted for ambient light (aka: photopic vision) and transmit color (polychromatic) images.
  • light enters the pupil, lands upon the rods and cones, and is absorbed there.
  • the photopigments contained in the rods and cones become (what is commonly referred to as) “bleached”. This results in the transmission of a neuroimpulse from the photopigment, across the synapse to the visual cortex. When a sufficient number of the impulses are received, they are, in essence, summed, and an image is created.
  • Stiles was able to document that the angle at which light strikes the cones determines the amount of light photon energy which is absorbed. More specifically, light which strikes the cones at a perpendicular angle is more readily absorbed. Thus, if as a ray of light enters the pupil it can be “bent” in such a manner that it lands on the posterior retinal surface perpendicularly, less light will be necessary to activate the cone, or putting it differently, less light will be necessary in order “to see”. This is known as the Stiles-Crawford Effect of the First Kind.
  • the “pinhole test” is a clinical application of the Stiles-Crawford effect. Stiles is generally credited with developing the “pinhole test”. If you have a full ophthalmic exam, you are given a little device which blocks one eye, and which has an opaque surface with holes covering the other eye. You are then asked to re-read the visual acuity chart.
  • This device restricts the angle at which light enters the pupils, resulting in the rays actually falling upon the cones in a perpendicular manner, thus, fewer photons are required, the absorption of these photons is faster (more efficient).
  • This increase in efficiency results In an increase in visual acuity. (For most there is a alight increase in ability to read the last line). This test, in essence, is an easy way for the examiner to ensure that any loss of visual acuity is a result of non-organic causes—e.g. garden variety near-sightedness.
  • the only way to improve visual acuity was to increase the number of photons delivered to the remaining photopigments. This is classically done in two ways—an increase in the intensity of the light, and an increase In the size of the image (e.g. large print books) which effectively increases the number of photons reflected to the retina.
  • An example would be the use of an architect's lamp which contains both a magnifying lens and the illuminating fluorescent bulb.
  • the fluorescent bulb increases visual acuity by increasing the amount of light available.
  • the magnification increases visual acuity by increasing the size of the image, thus increasing the number of photons reflected to the eye. For example, I use a magnifying “architect's” lamp far reading.
  • the fluorescent light increases the actual quantity of light available, and the magnification of the print makes it easier for me to “fill in the gaps” in the letters, and almost approach the ability to scan a text.

Abstract

The present apparatus comprises a lens body of conventional soft contact lens composition, having a generally spherical concave back surface adapted to fit the cornea of the eye, and a generally convex front surface. The lens preferably includes a prism ballast to ensure correct orientation. The lens of the present invention is made of opaque or other substances which generally do not transmit light. In the process, the eye is mapped with a conventional field test to determine the diseased portion of the eye and those portions of the eye having optical perception. Through the lens surface, circular channels or “pinholes” which traverse the entire thickness of the lens are placed in an area which maps and therefore corresponds to the portion of the retina having optical perception. Light incident on the underlying portion of the retina having optical perception through the pinholes provides improved vision. These pinholes can be made in the form of channels. Such channels further increase tear distribution under the lens with improved comfort to the wearer. The channels additionally provide increased oxygen flow to the cornea and lens, thereby diminishing the physiological burden occasioned by standard soft contact lens.

Description

FIELD OF THE INVENTION
This invention relates to contact lenses, and more particularly, to soft contact lenses whereby visual activity is increased by increasing the amount of light absorbed by the cones of the retina.
BACKGROUND OF THE INVENTION
The retina contains two types of photo receptors: rods and cones. In 1939, Stiles showed that light rays which strike a cone perpendicular to its surface are perceived as brighter than those that do not strike in a perpendicular fashion. See “The Luminous Efficiency of Monochromatic Rays Entering the Eye Pupil at Different Points and a New Colour Effect” by W. S. Stiles from The National Physical Laboratory, pp. 90-118, of 16 Feb., 1938. Additionally please see “The Scotopic Stiles-Crawford Effect” by Van Loo, Jr. and Enoch in Vision Res. Vol. 15 pp 1005-1009 1975 and Wavelength Discrimination of the Peripheral Cones and Its Change with Rod Intrusion” by Stabell and Stabell, Vision Res. Vol 17, pp 423-426,1977.
To date, this effect has been primarily a clinical phenomenon. It has not been utilized for the improvement of vision.
SUMMARY OF THE INVENTION
The present apparatus comprises a lens body of conventional soft contact lens composition, having a generally spherical concave back surface adapted m fit the cornea of the eye, and a generally convex front surface. The lens preferably includes a prism ballast to ensure correct orientation. The lens of the present invention is made of opaque a other substances which generally do not transmit light. In the process, the eye is mapped with a conventional field test to determine the diseased portion of the eye and those portions of the eye having optical perception. Through the lens surface, circular channels or “pinholes” which traverse the entire thickness of the lens are placed In an area which maps and therefore corresponds to the potion of the retina having optical perception. Light incident on the underlying portion of the retina having optical perception through the pinholes provides improved vision. These pinholes can be made in the form of channels. Such channels further increase tear distribution under the lens with improved comfort to the wearer. The channels additionally provide increased oxygen flow to the cornea and lens, thereby diminishing the physiological burden occasioned by standard soft contact lens.
There are a number of individuals afflicted by retinal disease. In these individuals the total number of retinal cones has been dramatically reduced as a result of the disease process. The present invention seeks to improve the remaining visual acuity by altering the manner in which ambient light is delivered to those cones not destroyed by the disease process.
By placing a number of “holes” or channels through an opaque contact lens surface in an area on the lens which corresponds with the remaining visual field, the light passing through these holes is faced to strike the posterior retinal surface in a perpendicular manner. The physiological effect is an overall increase in visual acuity as a result of increased light reception. It is believed that this improvement is related to the so-called Stiles-Crawford Effect of the First Order.
The portion of the retina not having sufficient light sensitivity to contribute to meaningful perception is covered by the opaque portion of the lens-thin portion not having the pinholes. Light is prevented from being perpendicularly incident on the diseased portions of the retina. Specular reflection of this light from the diseased retina is inhibited
Because each person suffering from retinal disease will have a specific field defect unique to their own process, the lens must possess a means by which to maintain axial orientation thereby insuring that the opacified portion of the lens does not occlude the remaining visual field. This is conventionally done with a prism to bias the lens and prevent lens rotation.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the result of conventional field testing on a diseased eye—in this case my own eye—illustrating in the shaded portion that area of the visual field which is not capable of light reception a meaningful vision;
FIG. 2 is a contact lens having an opaque surface with “pinholes” placed over a mapped portion of the eye lens which corresponds to a mapped portion of the retina having visual sensitivity; and,
FIG. 3 illustrates the lens of FIG. 2 on the eye of a patient.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIG. 1, retinal field F of a patient is conventionally mapped utilizing a conventional and well known field analyzer. In this case, light insensitive portion D is insufficiently sensitive to light to have meaningful vision. This is to be contrasted with light sensitive portion L where meaningful vision can occur.
Referring to FIG. 2, contact lens C is illustrated. It is to be understood that the entirety of contact lens C is opaque—the underlying cornea of the eye would be obscure.
Contact lens C is likewise mapped. It includes light sensitive portion L′ and light insensitive potion D. Pinholes 18 are placed in an array over light sensitive portion L′ of contact lens C. Contact lens C is preferably a soft contact lens. The reader will understand that it can be a hard contact lens. It is typically provided with a mechanism for biasing the lens in rotation with respect to the eye. R will be seen that contact lens C has been provided with prism P at the bottom portion of the lens. Those having skill in the contact lens art will appreciate that virtually any mechanism which biases the lens in rotation with respect to the eye could be used as well.
Preferably, pinholes 18 constitute through hole channels in the lens. Such through hole channels contribute both to tear distribution and to oxygen distribution through the lens.
Channels or “holes” 18 force light entering the pupil to strike the retina at an angle perpendicular to the back wall of the retina, thereby increasing the absorption of this light by the cones, and thereby increasing the visual acuity of the wearer.
The channels transverse the entire thickness of the lens also serve to promote and facilitate the distribution of tests around the periphery of the lens resulting in improved oxygen transport to the surface of the eye, particularly in the area of the prism ballast where lens thickness is the greatest.
It will be understood that pinholes 18 can admit of modification. It is only required that the pinholes admit light locally of the pinhole to the eye. For this reason, constructions different from through holes can be utilized. For example, the opaque covering of contact lens C can be locally interrupted et the pinhole with the otherwise transparent body of contact lens C permitting light to pass through the lens. Further, the pinholes are directionally oriented such that the light entering through the pinhole is directed toward the fovea of the eye, this area being the area of maximal concentration of cones.
Lenses of the present invention may be prepared by those skilled in the art utilizing conventional techniques for the fabrication of soft contact lenses. For example, the lenses may be lathe art from a dehydrated lens blank a button of a hydrophilic polymer and subsequently hydrated to obtain the soft lens product. Alternatively, the lens may be molded in a hydrated state or is the presence of water or solvent to obtain a soft product. Lens compositions may be of polyhydroxyethylmethacrylate (HEMA), copolymers of HEMA and N-vinylpyrrolidone (NVP), silicone or other material known to be useful in the fabrication of soft contact lenses.
Wearing of the contact lens is otherwise conventional. Referring to FIG. 3, contact lens C is shown on eye E of a patient. It will be understood that eye E has been conventionally mapped utilizing a field test-a procedure well known in the prior art. Prism P maintain contact lens C in rotational alignment on eye E. Light Insensitive portion D of contact lens C covers the cornea of the eye overlying the mapped light insensitive portion D of the eye. Conversely, pinholes 18 form an array over the mapped light sensitive portion L′ of contact lens C.
Without limiting this invention, an explanation as to how operation of this invention occurs is offered.
The retina contains two types of photo receptors—rods and cones. The rods are adapted for dim light conditions (aka: scotopic vision), and transmit monochromatic light. The cones are adapted for ambient light (aka: photopic vision) and transmit color (polychromatic) images. By way of simplification, light enters the pupil, lands upon the rods and cones, and is absorbed there. As the light is absorbed, the photopigments contained in the rods and cones become (what is commonly referred to as) “bleached”. This results in the transmission of a neuroimpulse from the photopigment, across the synapse to the visual cortex. When a sufficient number of the impulses are received, they are, in essence, summed, and an image is created.
In 1939, Stiles was able to document that the angle at which light strikes the cones determines the amount of light photon energy which is absorbed. More specifically, light which strikes the cones at a perpendicular angle is more readily absorbed. Thus, if as a ray of light enters the pupil it can be “bent” in such a manner that it lands on the posterior retinal surface perpendicularly, less light will be necessary to activate the cone, or putting it differently, less light will be necessary in order “to see”. This is known as the Stiles-Crawford Effect of the First Kind.
The “pinhole test” is a clinical application of the Stiles-Crawford effect. Stiles is generally credited with developing the “pinhole test”. If you have a full ophthalmic exam, you are given a little device which blocks one eye, and which has an opaque surface with holes covering the other eye. You are then asked to re-read the visual acuity chart.
This device restricts the angle at which light enters the pupils, resulting in the rays actually falling upon the cones in a perpendicular manner, thus, fewer photons are required, the absorption of these photons is faster (more efficient). This increase in efficiency results In an increase in visual acuity. (For most there is a alight increase in ability to read the last line). This test, in essence, is an easy way for the examiner to ensure that any loss of visual acuity is a result of non-organic causes—e.g. garden variety near-sightedness.
For the individual without retinal disease there is sufficient number of rods and cones such that the summation of impulses occurs with photons to spare. This is no the case, however, when large portions of the retina have been functionally, if not literally, destroyed by disease.
Thus, prior to this contact lens, the only way to improve visual acuity was to increase the number of photons delivered to the remaining photopigments. This is classically done in two ways—an increase in the intensity of the light, and an increase In the size of the image (e.g. large print books) which effectively increases the number of photons reflected to the retina. An example would be the use of an architect's lamp which contains both a magnifying lens and the illuminating fluorescent bulb. The fluorescent bulb increases visual acuity by increasing the amount of light available. The magnification increases visual acuity by increasing the size of the image, thus increasing the number of photons reflected to the eye. For example, I use a magnifying “architect's” lamp far reading. The fluorescent light increases the actual quantity of light available, and the magnification of the print makes it easier for me to “fill in the gaps” in the letters, and almost approach the ability to scan a text.
In extensive testing at the Shiley Eye Clinic (Scripps) I show a marked improvement in visual acuity when using the pinhole device. For this reason, I believe that this lens is a new approach to the problem of retinal disease. If I can increase the efficiency of the remaining photopigments, i.e., I can deliver the light perpendicular to the remaining cones, then I can achieve the summation required to create a visual impulse by the visual cortex-only without having to carry a lamp and a magnifying glass.
It will be recognized by persons skilled in the art that numerous variations and modifications can be made to the present invention without departing from the overall spirit and scope of the invention as broadly described herein.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which as a matter of language might be said to fall therebetween.

Claims (17)

What is claimed is:
1. A contact lens for an eye having a diseased retina with a first potion of the retina having light perception and a second portion of the retina having insufficient light perception of the contact lens comprising:
a convex anterior surface and a concave posterior surface for fitting to the eye of the wearer;
means for biasing the contact lens in rotational alignment with respect to the eye;
means for rendering the contact lens opaque for blocking light to the retina of the eye; and,
an array of pinholes overlying the first portion of the retina having light perception only to produce light entrance apertures through the opaque layer to the retina of the eye.
2. A contact lens according to claim 1 including:
an opaque layer over the contact lens.
3. A contact lens according to claim 1 including:
the pinholes constitute through holes in the contact lens.
4. A contact lens according to claim 1 including:
the means for basing the contact lens in rotational alignment includes a prism.
5. A contact lens according to claim 1 including:
said contact lens is a hard contact lens.
6. A contact lens according to claim 1 including: said contact lens is a soft contact lens.
7. A contact lens comprising:
a convex anterior surface;
a concave posterior surface;
a plurality of apertures passing from said anterior surface towards said posterior surface;
said plurality of apertures positioned to direct light to a predetermined portion of a retina.
8. The lens of claim 7, wherein said lens is opaque.
9. The contact lens of claim 7 wherein said apertures formed in a portion of said lens such that said apertures improve visual acuity and perceived brightness.
10. The lens of claim 7, wherein said lens is constructed to maintain a desired axial orientation relative to said retina.
11. A lens comprising:
a posterior surface;
an anterior surface;
a portion of said lens adapted to increase the perpendicularity of light striking preselected healthy photo receptors.
12. The lens of claim 11, wherein said orientation is caused by holes passing from said posterior surface to said anterior surface in a predetermined pattern.
13. The lens of claim 11, wherein a portion of said lens blocks passage of light.
14. The lens of claim 11, wherein a portion of said lens is opaque.
15. The lens of claim 11 wherein said increased perpendicularity is caused by a plurality of light manipulating structures within said lens such that the addition of said structures improves visual acuity.
16. The lens of claim 11 wherein said increased perpendicularity is caused by a plurality or light manipulating structures within said lens such that the addition of said structures improves brightness perception.
17. The lens of claim 11 additionally comprising a structure that maintains the axial orientation of said lens with said preselected healthy photo receptors.
US09/506,547 1995-05-19 2000-02-17 Contact lens utilizing Stiles-Crawford effect Expired - Fee Related USRE38193E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/506,547 USRE38193E1 (en) 1995-05-19 2000-02-17 Contact lens utilizing Stiles-Crawford effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/446,169 US5719656A (en) 1995-05-19 1995-05-19 Contact lens utilizing stiles-crawford effect
US09/506,547 USRE38193E1 (en) 1995-05-19 2000-02-17 Contact lens utilizing Stiles-Crawford effect

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/446,169 Reissue US5719656A (en) 1995-05-19 1995-05-19 Contact lens utilizing stiles-crawford effect

Publications (1)

Publication Number Publication Date
USRE38193E1 true USRE38193E1 (en) 2003-07-22

Family

ID=23771571

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/446,169 Ceased US5719656A (en) 1995-05-19 1995-05-19 Contact lens utilizing stiles-crawford effect
US09/506,547 Expired - Fee Related USRE38193E1 (en) 1995-05-19 2000-02-17 Contact lens utilizing Stiles-Crawford effect

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/446,169 Ceased US5719656A (en) 1995-05-19 1995-05-19 Contact lens utilizing stiles-crawford effect

Country Status (1)

Country Link
US (2) US5719656A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046794A1 (en) * 2003-06-17 2005-03-03 Silvestrini Thomas A. Method and apparatus for aligning a mask with the visual axis of an eye
US20060113054A1 (en) * 2004-12-01 2006-06-01 Silvestrini Thomas A Method of making an ocular implant
US20060118263A1 (en) * 2004-12-01 2006-06-08 Silvestrini Thomas A Method of making an ocular implant
US20060184243A1 (en) * 2004-10-22 2006-08-17 Omer Yilmaz System and method for aligning an optic with an axis of an eye
US20060235428A1 (en) * 2005-04-14 2006-10-19 Silvestrini Thomas A Ocular inlay with locator
US20060265058A1 (en) * 2005-04-14 2006-11-23 Silvestrini Thomas A Corneal mask formed of degradation resistant polymer and providing reduced corneal deposits
US20060274267A1 (en) * 1999-03-01 2006-12-07 David Miller System and method for increasing the depth of focus of the human eye
US20070258042A1 (en) * 2006-05-08 2007-11-08 Wooley C B Multifocal contact lens designs utilizing pupil apodization
US20090306773A1 (en) * 2008-06-04 2009-12-10 Acufocus, Inc. Opaque corneal insert for refractive correction
USD656526S1 (en) 2009-11-10 2012-03-27 Acufocus, Inc. Ocular mask
US8460374B2 (en) 2003-05-28 2013-06-11 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
US9005281B2 (en) 2009-08-13 2015-04-14 Acufocus, Inc. Masked intraocular implants and lenses
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US9545303B2 (en) 2011-12-02 2017-01-17 Acufocus, Inc. Ocular mask having selective spectral transmission

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808904B2 (en) * 2004-11-18 2010-10-05 Fortinet, Inc. Method and apparatus for managing subscriber profiles
CA2705785A1 (en) * 2006-11-14 2008-05-22 Saul Yedgar Use of lipid conjugates in the treatment of diseases or disorders of the eye
AU2007320737B2 (en) * 2006-11-14 2014-04-03 Celsus Therapeutics Plc Contact lens compositions
GB2458495A (en) * 2008-03-20 2009-09-23 David Richard Hendrik Veen Contact lens with multiple pinholes
EP2429532A4 (en) 2009-05-11 2015-05-27 Yissum Res Dev Co Lipid-polymer conjugates, their preparation and uses thereof
WO2011048953A1 (en) * 2009-10-20 2011-04-28 ユニバーサルビジョン株式会社 Soft contact lens
US8454159B1 (en) * 2012-05-23 2013-06-04 Donald M. Cislo Method and devices for treatment of macular degeneration visual impairment
CN109073780B (en) * 2016-03-01 2022-09-06 莫尔研究应用有限公司 External eye contact device with opaque portion and off-center light-transmitting portion
US11058890B2 (en) 2017-02-15 2021-07-13 Iridex Corporation Method and apparatus for cyclo-scanner using surface emitting lasers or LEDs
JP7185632B2 (en) 2017-02-15 2022-12-07 イリデックス・コーポレーション Method and ophthalmic mask device for treating eyes with broad-spectrum light source
IL268124B2 (en) 2017-03-01 2023-12-01 Mor Research Applic Ltd Ophthalmic device having opaque and decentered light-transmissive portions for alleviating symptoms relating to ocular diseases
US11745024B2 (en) 2018-12-27 2023-09-05 Iridex Corporation Electrical methods and devices for ophthalmic treatment
CN114981713A (en) 2019-12-13 2022-08-30 多帕维森有限公司 Contact lens for an eye

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1276003A (en) * 1969-03-10 1972-06-01 Frank Auld Corneal contact device
US4208365A (en) * 1978-12-20 1980-06-17 National Patent Development Corporation Method and apparatus for molding toric contact lenses
US4573774A (en) * 1981-09-28 1986-03-04 Vistakon, Inc. Soft toric contact lens
US4580882A (en) * 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
US4618227A (en) * 1983-10-07 1986-10-21 Vistakon, Inc. Soft contact lens
US4815846A (en) * 1986-01-08 1989-03-28 Michael Wodis Toric soft contact lens holder
US4994080A (en) * 1988-07-15 1991-02-19 Shepard Dennis D Optical lens having at least one stenopaeic opening located in the central area thereof
US5009497A (en) * 1987-11-12 1991-04-23 Cohen Allen L Contact lenses utilizing keel orientation
US5076683A (en) * 1988-09-14 1991-12-31 Allergan, Inc. Spuncast compound contact lens
US5104213A (en) * 1989-01-17 1992-04-14 Wolfson Leonard G Polymer buttons having holes therein and contact lenses manufactured therefrom and method of manufacture
US5125728A (en) * 1988-02-03 1992-06-30 Igel International Limited Soft contact lens for the correction of astigmatism
US5260727A (en) * 1990-10-22 1993-11-09 Oksman Henry C Wide depth of focus intraocular and contact lenses
US5782911A (en) * 1994-12-08 1998-07-21 Herrick Family Limited Partnership, A Calif Ltd Part. Artificial lens including a multifocal lens system having eccentric axis and method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1276003A (en) * 1969-03-10 1972-06-01 Frank Auld Corneal contact device
US4208365A (en) * 1978-12-20 1980-06-17 National Patent Development Corporation Method and apparatus for molding toric contact lenses
US4573774A (en) * 1981-09-28 1986-03-04 Vistakon, Inc. Soft toric contact lens
US4580882A (en) * 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
US4618227A (en) * 1983-10-07 1986-10-21 Vistakon, Inc. Soft contact lens
US4815846A (en) * 1986-01-08 1989-03-28 Michael Wodis Toric soft contact lens holder
US5009497A (en) * 1987-11-12 1991-04-23 Cohen Allen L Contact lenses utilizing keel orientation
US5125728A (en) * 1988-02-03 1992-06-30 Igel International Limited Soft contact lens for the correction of astigmatism
US4994080A (en) * 1988-07-15 1991-02-19 Shepard Dennis D Optical lens having at least one stenopaeic opening located in the central area thereof
US5076683A (en) * 1988-09-14 1991-12-31 Allergan, Inc. Spuncast compound contact lens
US5300262A (en) * 1988-09-14 1994-04-05 Allergan, Inc. Process of spincasting a compound contact lens
US5104213A (en) * 1989-01-17 1992-04-14 Wolfson Leonard G Polymer buttons having holes therein and contact lenses manufactured therefrom and method of manufacture
US5260727A (en) * 1990-10-22 1993-11-09 Oksman Henry C Wide depth of focus intraocular and contact lenses
US5782911A (en) * 1994-12-08 1998-07-21 Herrick Family Limited Partnership, A Calif Ltd Part. Artificial lens including a multifocal lens system having eccentric axis and method
US5855605A (en) * 1994-12-08 1999-01-05 Herrick Family Limited Partnership, A Calif Ltd Part. Multifocal lens system having eccentic axes and method

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Applegate, R. et al., "Induced movement of receptor alignment toward a newpapillary aperture", Invest. Ophthalmol. Vis. Sci, vol. 21, No. 6, pp. 869-873 (Dec. 1981).
Campbell, F. et al., "Electrophysiological Evidence For The Existence Of Orientation And Detectors In The Human Visual System", J. Physiol., vol. 207, pp. 635-652 (1970).
Hecht, S. et al., "Energy, Quanta, And Vision", Laboratory Of Biophysics, pp. 819-840 (1942).
Pask, C. et al., "Optical Properties of Retinal Photoreceptors and the Campbell Effect", Vision Res., VoB8, No. 7, pp. 953-961 (1998).
Shlaer, S. et al., "Visual Acuity And Illumination In Different Spectral Regions", Laboratory of Biophysic.pp. 553-569 (1941).
Snyder, A. et al., "The Stiles-Crawford Effect-Explanation And Consequences" Vision Res, vol. 13, pp. 1115-1137 (1973).
Sperling, H. et al., "Intensity-Time Relationship at Threshold for Spectral Stimuli in Human Vision", Journal Of The Optical Society of America, vol. 55, No. 2, pp. 191-199 (Feb. 1965).
Stabell, Ulf et al (1977) "Wavelength Discrimination of Peripheral Cones and Its Change with Rod Intrusion", Vision Res. 17:423-426.* *
Stiles, W.S. (1938) "Directional Sensitivity of the Retina and the Spectral Sensitivities of Rods and Cones", Abstacts-Papers Communicated to The Royal Society of London, pp. 141-142.* *
Stiles, W.S. (1938) "The Luminous Efficiency of Monochromatic Rays Entering the Eye Pupil at Different Points and a New Colour Effect", The National Physical Laboratory, pp. 90-118.* *
Van Loo, Joseph A. et al (1975) "The Scotopic Stiles-Crawford Effect", Vision Res., 15: 1005-1009.* *
Zacharia, P. et al., "Holes in Clear Lenses Demonstrate a Pinhole Effect", Arch Ophthamol., vol. 106 (Apr. 1988).

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274267A1 (en) * 1999-03-01 2006-12-07 David Miller System and method for increasing the depth of focus of the human eye
US8752958B2 (en) 1999-03-01 2014-06-17 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US8343215B2 (en) 1999-03-01 2013-01-01 Acufocus, Inc. System and method for increasing the depth of focus of the human eye
US9138142B2 (en) 2003-05-28 2015-09-22 Acufocus, Inc. Masked intraocular devices
US8460374B2 (en) 2003-05-28 2013-06-11 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
US8858624B2 (en) 2003-05-28 2014-10-14 Acufocus, Inc. Method for increasing the depth of focus of a patient
US8079706B2 (en) 2003-06-17 2011-12-20 Acufocus, Inc. Method and apparatus for aligning a mask with the visual axis of an eye
US8864824B2 (en) 2003-06-17 2014-10-21 Acufocus, Inc. Method and apparatus for aligning a mask with the visual axis of an eye
US20050046794A1 (en) * 2003-06-17 2005-03-03 Silvestrini Thomas A. Method and apparatus for aligning a mask with the visual axis of an eye
US20060184243A1 (en) * 2004-10-22 2006-08-17 Omer Yilmaz System and method for aligning an optic with an axis of an eye
US7491350B2 (en) 2004-12-01 2009-02-17 Acufocus, Inc. Method of making an ocular implant
US20060271184A1 (en) * 2004-12-01 2006-11-30 Silvestrini Thomas A Method of making an ocular implant
US20060271185A1 (en) * 2004-12-01 2006-11-30 Silvestrini Thomas A Method of making an ocular implant
US20060118263A1 (en) * 2004-12-01 2006-06-08 Silvestrini Thomas A Method of making an ocular implant
US20060113054A1 (en) * 2004-12-01 2006-06-01 Silvestrini Thomas A Method of making an ocular implant
US20060235428A1 (en) * 2005-04-14 2006-10-19 Silvestrini Thomas A Ocular inlay with locator
US7976577B2 (en) 2005-04-14 2011-07-12 Acufocus, Inc. Corneal optic formed of degradation resistant polymer
US8287592B2 (en) 2005-04-14 2012-10-16 Acufocus, Inc. Ophthalmic devices having a degradation resistant polymer
US20060265058A1 (en) * 2005-04-14 2006-11-23 Silvestrini Thomas A Corneal mask formed of degradation resistant polymer and providing reduced corneal deposits
US7517084B2 (en) 2006-05-08 2009-04-14 Johnson & Johnson Vision Care, Inc. Multifocal contact lens designs utilizing pupil apodization
US20070258042A1 (en) * 2006-05-08 2007-11-08 Wooley C B Multifocal contact lens designs utilizing pupil apodization
US20090306773A1 (en) * 2008-06-04 2009-12-10 Acufocus, Inc. Opaque corneal insert for refractive correction
US9492272B2 (en) 2009-08-13 2016-11-15 Acufocus, Inc. Masked intraocular implants and lenses
US9005281B2 (en) 2009-08-13 2015-04-14 Acufocus, Inc. Masked intraocular implants and lenses
USD656526S1 (en) 2009-11-10 2012-03-27 Acufocus, Inc. Ocular mask
USD681086S1 (en) 2009-11-10 2013-04-30 Acufocus, Inc. Ocular mask
US9545303B2 (en) 2011-12-02 2017-01-17 Acufocus, Inc. Ocular mask having selective spectral transmission
US9603704B2 (en) 2013-03-13 2017-03-28 Acufocus, Inc. In situ adjustable optical mask
US11771552B2 (en) 2013-03-13 2023-10-03 Acufocus, Inc. In situ adjustable optical mask
US10350058B2 (en) 2013-03-13 2019-07-16 Acufocus, Inc. In situ adjustable optical mask
US10939995B2 (en) 2013-03-13 2021-03-09 Acufocus, Inc. In situ adjustable optical mask
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask

Also Published As

Publication number Publication date
US5719656A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
USRE38193E1 (en) Contact lens utilizing Stiles-Crawford effect
US5632282A (en) Ocular disease detection apparatus
Applegate et al. The importance of pupil size in optical quality measurements following radial keratotomy
Enoch et al. Forever young: visual functions not affected or minimally affected by aging: a review
Eldred Optimal illumination for reading in patients with age-related maculopathy
Knighton et al. Glare measurements before and after neodymium-YAG laser posterior capsulotomy
Almutleb et al. Simulation of a central scotoma using contact lenses with an opaque centre
Miller et al. Quantification of the pinhole effect
Eperjesi et al. Effects of yellow filters on visual acuity, contrast sensitivity and reading under conditions of forward light scatter
Maguire et al. Visual distortion after myopic keratomileusis: computer analysis of keratoscope photographs
Mukherjee Clinical Examination in Ophthalmology-E-Book: Clinical Examination in Ophthalmology-E-Book
Geneva et al. The complexities of negative dysphotopsia
Hamer et al. Comparison of on-and off-axis photorefraction with cycloplegic retinoscopy in infants
Fonda et al. Characteristics and Low Vision, Corrections in Stargardt's Disease: Educational and Vocational Achievements Enhanced by Low Vision Corrections
Pieh et al. Tritan colour contrast sensitivity function in refractive multifocal intraocular lenses
Timberlake et al. The direct ophthalmoscope how it works and how to use it
Nadler Glare and contrast sensitivity in cataracts and pseudophakia
Katz et al. Glare disability in nephropathic cystinosis
Millodot Variation of visual acuity with soft contact lenses: a function of luminance
Carney et al. Problems remaining after successful keratoplasty for keratoconus
Doshi et al. Assessment and investigative techniques
Deiter et al. Glare and the scatter of light in the vitreous: effect in postoperative retinal detachment patients
Neves Analysis of light visual distortion and quality of vision with different multifocal lens designs for the compensation of presbyopia
Swanzy A Handbook of the Diseases of the Eye and Their Treatment
Parretta et al. Optometry in the dark with the use of photoluminescent optotypes

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees