USRE38396E1 - Method of making injection molding cooled thread split inserts - Google Patents

Method of making injection molding cooled thread split inserts Download PDF

Info

Publication number
USRE38396E1
USRE38396E1 US09/922,594 US92259401A USRE38396E US RE38396 E1 USRE38396 E1 US RE38396E1 US 92259401 A US92259401 A US 92259401A US RE38396 E USRE38396 E US RE38396E
Authority
US
United States
Prior art keywords
split inserts
thread split
pair
inserts
thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/922,594
Inventor
Jobst Ulrich Gellert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mold Masters 2007 Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002244511A external-priority patent/CA2244511C/en
Application filed by Individual filed Critical Individual
Priority to US09/922,594 priority Critical patent/USRE38396E1/en
Application granted granted Critical
Publication of USRE38396E1 publication Critical patent/USRE38396E1/en
Assigned to 4437667 CANADA INC. reassignment 4437667 CANADA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOBST U. GELLERT, MOLD-MASTERS LIMITED
Assigned to SOCIETE GENERALE reassignment SOCIETE GENERALE SECURITY AGREEMENT Assignors: 4437667 CANADA INC.
Assigned to MOLD-MASTERS (2007) LIMITED reassignment MOLD-MASTERS (2007) LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: 4437667 CANADA INC.
Assigned to MOLD-MASTERS LUXEMBOURG ACQUISITIONS S.A.R.L., A LIMITED LIABILITY COMPANY OF LUXEMBOURG, 4437667 CANADA INC. A/K/A MOLD-MASTERS (2007) LIMITED, A CORPORATION OF CANADA, MOLD-MASTERS LUXEMBOURG HOLDINGS S.A.R.L., A LIMITED LIABILITY COMPANY OF LUXEMBOURG reassignment MOLD-MASTERS LUXEMBOURG ACQUISITIONS S.A.R.L., A LIMITED LIABILITY COMPANY OF LUXEMBOURG RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SOCIETE GENERALE, A CORPORATION OF FRANCE
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT SUPPLEMENTAL SECURITY AGREEMENT Assignors: MOLD-MASTERS (2007) LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/24Making specific metal objects by operations not covered by a single other subclass or a group in this subclass dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/007Making specific metal objects by operations not covered by a single other subclass or a group in this subclass injection moulding tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • B29C2033/042Meander or zig-zag shaped cooling channels, i.e. continuous cooling channels whereby a plurality of cooling channel sections are oriented in a substantial parallel direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/33Moulds having transversely, e.g. radially, movable mould parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49787Obtaining plural composite product pieces from preassembled workpieces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • Y10T29/49794Dividing on common outline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • Y10T29/49796Coacting pieces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49989Followed by cutting or removing material

Definitions

  • This invention relates a method of making pairs of cooled thread split inserts used to injection mold bottle preforms.
  • the invention provides a method of making a pair of thread split inserts used in injection molding elongated hollow bottle preforms.
  • Each preform has a neck portion with an outer surface forming a ring collar and threads extending between an open end and the ring collar.
  • Each thread split insert has a front end, a rear end and first and second flat inner aligned faces extending on opposite sides of a curved inner surface.
  • the thread split inserts are mounted together in a mold with the respective flat inner faces of the thread split inserts abutting, wherein the curved inner surfaces of the thread split inserts combine to form an opening therethrough shaped to mold the outer surface of the neck portion of the preform.
  • the curved inner surfaces of the thread split inserts each have a semicircular groove to form the ring collar and a threaded portion extending between the semicircular groove and the rear end to form the threads.
  • the method comprises the steps of injection molding a ceramic core having a predetermined shape and then casting wax around the ceramic core in the shape of an inner part of the pair of thread split inserts. Then investment casting a suitable metal in a mold to replace the wax around the ceramic core to form a hollow inner part of the pair of thread split inserts extending around a central longitudinal axis.
  • the inner part has a generally cylindrical outer surface with grooves therein to partially form inner portions of two cooling fluid conduits. Each cooling fluid conduit extends around the curved inner surface of one of the thread split inserts.
  • FIG. 1 is an isometric view showing a bottle preform and a pair of thread split inserts made according to a preferred embodiment of the invention
  • FIG. 2 is a sectional view of a ceramic core
  • FIG. 3 is a sectional view taken along 3 — 3 in FIG. 2,
  • FIG. 4 is a sectional view of a wax mold having a cavity in the shape of an inner part of a pair of thread split inserts
  • FIG. 5 is a sectional view showing the wax covered by ceramic coatings during investment casting
  • FIG. 6 is a sectional view showing the cast inner part
  • FIG. 7 is a sectional view showing the inner part after machining
  • FIG. 8 is a sectional view of a machined outer part of the pair of thread split inserts
  • FIG. 9 is a bottom view of the outer part seen in FIG. 8,
  • FIG. 10 is a sectional view of the outer part mounted around the inner part ready for brazing in a vacuum furnace
  • FIG. 11 is a plan view of the parts shown in FIG. 10,
  • FIG. 12 is a plan view of the integrally brazed two parts cut in half to form the pair of thread split inserts
  • FIG. 13 is a sectional view of the completed pair of thread split inserts in FIG. 12 after grinding the outer surfaces
  • FIG. 14 is a schematic view showing the configuration of the cooling fluid conduit in each of the pair of thread split inserts.
  • FIG. 1 shows a bottle preform 10 and a pair of thread split inserts 12 , 14 made according to a preferred embodiment of the invention.
  • the bottle preform 10 is hollow and is elongated to a selected length.
  • the bottle preform 10 has a neck portion 16 with an outer surface 18 forming a ring collar 20 and threads 22 extending between an open end 24 and the ring collar 20 .
  • the bottle preform 10 is injection molded of polyethylene terephthalate (PET) according to a conventional injection molding cycle in a conventional mold.
  • PET polyethylene terephthalate
  • Each thread split insert 12 , 14 has a front end 26 , a rear end 28 and flat inner aligned faces 30 , 32 extending on opposite sides of a curved inner surface 34 .
  • the thread split inserts 12 , 14 are mounted in a mold with the respective flat inner faces 30 , 32 of the thread split inserts 12 , 14 abutting, whereby as seen in FIG. 13 the curved inner surfaces 34 of the thread split inserts 12 , 14 combine to form an opening 35 therethrough shaped to mold the outer surface 18 of the neck portion 16 of the preform 10 .
  • the curved inner surfaces 34 of the thread split inserts 12 , 14 each have a semi-circular groove 36 to form the ring collar 20 and a threaded portion 38 extending between the semi-circular groove 36 and the rear end 28 to form the threads 22 .
  • the bottle preform 10 has an elongated cylindrical portion 40 and may include a slightly tapered portion 42 extending from the neck portion 16 .
  • the cylindrical portion 40 and tapered portion 42 are later enlarged by stretching and then blow molding to form a beverage bottle.
  • a removable threaded cap (not shown) is screwed on to the threads 22 to close the bottle.
  • the ring collar 20 is used in the stretch-blow molding process, but is also used to assist in ejecting the preform 10 .
  • a hollow core 48 is injection molded of a suitable material such as ceramic.
  • the ceramic core 48 is made with an outer surface 49 shaped to form the inner surfaces 34 of the thread split inserts 12 , 14 .
  • the ceramic core 48 also has a locating ridge 50 on its inner surface 52 and is generally cylindrical, but has two flat sections 54 which are long enough to allow the integral thread split inserts 12 , 14 to be circular after some material is lost when they are cut in half. As seen in FIG.
  • the hollow ceramic core 48 is then placed on a mounting pin 56 extending upwardly from a bottom plate 58 of a wax mold 60 .
  • the locating ridge 50 fits in a groove (not shown) on the mounting pin 56 to ensure the ceramic core 48 is properly oriented.
  • the wax mold 60 has a top plate 62 and two inserts 64 , 66 which slide inwardly together to form a cavity 68 extending between them around the hollow ceramic core 48 . After the mold 60 is closed, screws 70 are inserted to hold the plates 58 , 62 and the inserts 64 , 66 together during molding.
  • a resilient O-ring 72 extending around the mounting pin 56 ensures the ceramic core 48 is positioned at the top of the mold 60 .
  • the sliding inserts 64 , 66 are made having inner surfaces 74 , 76 shaped with a configuration of interconnected ridges 78 extending therefrom to provide the hollow inner part 44 of the pair of thread split inserts 12 , 14 with a generally cylindrical outer surface 80 with the same configuration of interconnected grooves 82 therein to form inner portions 84 of two cooling fluid conduits extending around the curved inner surface 34 of the thread split inserts 12 , 14 .
  • Molten wax is then injected into the cavity 68 through a large casting gate 86 . After the wax has cooled and solidified, the mold 60 is opened leaving a wax part 88 having the same shape as the hollow inner part 44 of the pair of thread split inserts 12 , 14 extending around the ceramic core 48 .
  • the wax part 88 is dipped repeatedly in a bath (not shown) of ceramic material which hardens to form an outer shell 90 of several layers 92 of ceramic material.
  • the coated wax part 88 is then heated in an autoclave to remove the wax and the empty shell 90 is then filled with a suitable molten material such as steel through the gate 86 .
  • the outer shell 90 and the ceramic core 48 are removed leaving the hollow raw cast inner part 44 of the pair of thread split inserts 12 , 14 extending around a central longitudinal axis 96 as seen in FIG. 6 .
  • the cast hollow inner part 44 has the generally cylindrical outer surface 80 with the grooves 82 therein to partially form the inner portions 84 of the two cooling conduits.
  • This process of, making the raw cast inner part 44 is a conventional lost wax or investment casting process. Although only one hollow inner part 44 is shown for ease of illustration, normally the wax parts 88 and the hollow inner parts 44 are made in interconnected arrangements or trees to expedite the process.
  • the raw cast inner part 44 seen in FIG. 6 is then mounted on spindles 100 as seen in FIG. 7 and machined to make the outer surface 80 a predetermined size and to form tapered end portions 102 .
  • FIGS. 8 and 9 show the hollow outer part 46 which is machined of a suitable material such as tool steel.
  • the hollow outer part 46 is made with four retaining bolt holes 104 as well as a central opening 106 extending therethrough with an inner surface 108 .
  • the inner surface 108 is made to fit around the outer surface 80 of the hollow inner part 44 .
  • the hollow outer part 46 is also machined to have outer portions 110 of two cooling fluid conduits which are made to align respectively with the inner portions 84 of the two cooling fluid conduits in the outer surface 80 of the inner part 84 .
  • Nickel brazing paste 94 is applied to the inner portions 84 of the cooling conduits and the hollow inner part 44 is inserted into the central opening 106 through the hollow outer part 46 to form the pair of thread split inserts 12 , 14 . As can be seen in FIGS. 10 and 11, this completes the inner portions 84 of the cooling conduits in the hollow inner part 44 which are aligned with the corresponding outer portions 110 of the cooling conduits in the hollow outer part 46 . This produces the two cooling conduits 112 through which cooling water flows from inlets 114 to outlets 116 on the front end 26 . Nickel brazing material is inserted into circular groove 118 and the assembled hollow inner and hollow outer parts 44 , 46 are gradually heated in a vacuum furnace (not shown) to a temperature of approximately 1925° F.
  • the furnace As the furnace is heated, it is evacuated to a relatively high vacuum to remove substantially all of the oxygen and then partially backfilled with an inert gas such as argon or nitrogen.
  • an inert gas such as argon or nitrogen.
  • the melting point of the nickel melts and flows by capillary action between the hollow inner part 44 and the hollow outer part 46 to integrally braze them together to form the pair of thread split inserts 12 , 14 . Brazing them together this way in the vacuum furnace provides a metallurgical bonding between them to maximize their strength and prevent leakage of the cooling water from the cooling conduits 112 .
  • the integral pair of thread split inserts 12 , 14 After removal of the integral pair of thread split inserts 12 , 14 from the vacuum furnace, they are cut in half along the longitudinal axis 96 in an electrical wire-cut machine to form the two separate thread split inserts 12 , 14 shown in FIG. 12 . As shown, they are cut in the correct plane to have one of the cooling conduits 112 in each of the thread split inserts 12 , 14 .
  • the pair of thread split inserts 12 , 14 are then machined to provide a good outer finish and the tapered portions 120 , 122 at their front and rear ends 26 , 28 .
  • the pair of thread split inserts 12 , 14 are secured tightly together by the tapered flange portions 120 , 122 being engaged by the rest of the mold (not shown).
  • the matching flat inner surfaces 30 , 32 abut and the curved inner surfaces 34 of the pair of thread split inserts 12 , 14 combine to form the opening 35 therethrough shaped to mold the outer surface 18 of the neck portion 16 of the preform 10 .
  • an elongated cylindrical core (not shown) extends through this opening 35 to form the inner surface 124 of the preform 10 .
  • a number of pairs of thread split inserts 12 , 14 made according to the invention are mounted in a conventional mold.
  • a supply of cooling water or other suitable cooling fluid is connected to the inlet 116 of the cooling fluid conduit 112 in each thread split insert 12 , 14 to circulate through each cooling fluid conduit 112 .
  • Pressurized melt from a molding machine is then injected into the cavity in the opening 35 through each pair of thread split inserts 12 , 14 according to a predetermined injection cycle. After the cavities are full, injection pressure is held momentarily to pack and then released. After a short cooling period, the mold is opened to eject each preform 10 .
  • the preform 10 first being ejected from the core and the two thread split inserts 12 , 14 then separated to drop the preform 10 onto a conveyor belt or cooling plate.
  • this requires that the two thread split inserts 12 , 14 be separated enough to release the ring collar 20 and threads 22 of the preform 10 .
  • the mold is closed and injection pressure is reapplied to refill the cavity and the injection cycle is repeated continuously.

Abstract

A method of making pairs of thread splits inserts used to injection mold bottle preforms. Machining a hollow outer part of the pair of thread split inserts with an opening therethrough and outer portions of two cooling conduits extending from the opening therethrough to respective inlets and outlets. Making an inner part of the pair of thread split inserts by injection molding a ceramic core with the required shape and investment casting the inner part around the ceramic core. The outer surface of the inner part having grooves to partially form inner portions of the two cooling fluid conduits. Then machining the cast inner part to fit in the opening through the outer part. Mounting the outer part around the inner part with the inner and outer portions of the two cooling fluid conduits aligned. Applying brazing material between the inner and outer parts and heating them in a vacuum furnace to integrally braze them together. Finally, cutting the integral inner and outer parts in half to form the pair of thread split inserts with each of the thread split inserts having one of the cooling fluid conduits therein.

Description

BACKGROUND OF THE INVENTION
This invention relates a method of making pairs of cooled thread split inserts used to injection mold bottle preforms.
As seen in the applicant's U.S. Pat. No. 5,599,567 which issued Feb. 4, 1997, it is well known to use a pair of thread split inserts in a mold to form the threaded neck portion of a PET bottled preform. The neck portion of the preform also has a ring collar which is used to eject the preform from the mold. The thread split inserts have conduits through which cooling fluid is circulated to cool the neck portion of the preform prior to ejection.
In the past, thread split inserts have been made by machining steel upper and lower parts and then integrally brazing them together. This method has the disadvantage that both parts must be machined to provide cooling fluid conduits and threads and this is time consuming and therefore relatively costly.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to at least partially overcome the disadvantages of the prior art by providing a method of making cooled thread split inserts wherein an inner part which fits in an outer part is made by casting rather than machining.
To this end, in one of its aspects, the invention provides a method of making a pair of thread split inserts used in injection molding elongated hollow bottle preforms. Each preform has a neck portion with an outer surface forming a ring collar and threads extending between an open end and the ring collar. Each thread split insert has a front end, a rear end and first and second flat inner aligned faces extending on opposite sides of a curved inner surface. The thread split inserts are mounted together in a mold with the respective flat inner faces of the thread split inserts abutting, wherein the curved inner surfaces of the thread split inserts combine to form an opening therethrough shaped to mold the outer surface of the neck portion of the preform. The curved inner surfaces of the thread split inserts each have a semicircular groove to form the ring collar and a threaded portion extending between the semicircular groove and the rear end to form the threads. The method comprises the steps of injection molding a ceramic core having a predetermined shape and then casting wax around the ceramic core in the shape of an inner part of the pair of thread split inserts. Then investment casting a suitable metal in a mold to replace the wax around the ceramic core to form a hollow inner part of the pair of thread split inserts extending around a central longitudinal axis. The inner part has a generally cylindrical outer surface with grooves therein to partially form inner portions of two cooling fluid conduits. Each cooling fluid conduit extends around the curved inner surface of one of the thread split inserts. Then machining the cast inner part to make the outer surface a predetermined size. Making a hollow outer part of the pair of thread split inserts of a suitable metal having a predetermined shape with an opening therethrough having an inner surface which fits around the outer surface of the inner part and outer portions of the two cooling conduits extending from the opening therethrough to respective inlets and outlets. Mounting the outer part around the inner part with the inner and outer portions of the two cooling fluid conduits aligned. Then applying brazing material between the inner part the outer part and heating the assembled inner part and outer part in a vacuum furnace to integrally braze the inner part and the outer part together. Cutting the integral inner and outer parts in half along the central longitudinal axis to form the pair of thread split inserts, with each of the thread split inserts having one of the cooling fluid conduits therein.
Further objects and advantages of the invention will appear from the following description taken together with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an isometric view showing a bottle preform and a pair of thread split inserts made according to a preferred embodiment of the invention,
FIG. 2 is a sectional view of a ceramic core,
FIG. 3 is a sectional view taken along 33 in FIG. 2,
FIG. 4 is a sectional view of a wax mold having a cavity in the shape of an inner part of a pair of thread split inserts,
FIG. 5 is a sectional view showing the wax covered by ceramic coatings during investment casting,
FIG. 6 is a sectional view showing the cast inner part,
FIG. 7 is a sectional view showing the inner part after machining,
FIG. 8 is a sectional view of a machined outer part of the pair of thread split inserts,
FIG. 9 is a bottom view of the outer part seen in FIG. 8,
FIG. 10 is a sectional view of the outer part mounted around the inner part ready for brazing in a vacuum furnace,
FIG. 11 is a plan view of the parts shown in FIG. 10,
FIG. 12 is a plan view of the integrally brazed two parts cut in half to form the pair of thread split inserts,
FIG. 13 is a sectional view of the completed pair of thread split inserts in FIG. 12 after grinding the outer surfaces, and
FIG. 14 is a schematic view showing the configuration of the cooling fluid conduit in each of the pair of thread split inserts.
DETAILED DESCRIPTION OF THE INVENTION
Reference is first made to FIG. 1 which shows a bottle preform 10 and a pair of thread split inserts 12, 14 made according to a preferred embodiment of the invention. As can be seen, the bottle preform 10 is hollow and is elongated to a selected length. The bottle preform 10 has a neck portion 16 with an outer surface 18 forming a ring collar 20 and threads 22 extending between an open end 24 and the ring collar 20. The bottle preform 10 is injection molded of polyethylene terephthalate (PET) according to a conventional injection molding cycle in a conventional mold.
Each thread split insert 12, 14 has a front end 26, a rear end 28 and flat inner aligned faces 30, 32 extending on opposite sides of a curved inner surface 34. During molding of the bottled preforms 10, the thread split inserts 12, 14 are mounted in a mold with the respective flat inner faces 30, 32 of the thread split inserts 12, 14 abutting, whereby as seen in FIG. 13 the curved inner surfaces 34 of the thread split inserts 12, 14 combine to form an opening 35 therethrough shaped to mold the outer surface 18 of the neck portion 16 of the preform 10. The curved inner surfaces 34 of the thread split inserts 12, 14 each have a semi-circular groove 36 to form the ring collar 20 and a threaded portion 38 extending between the semi-circular groove 36 and the rear end 28 to form the threads 22.
The bottle preform 10 has an elongated cylindrical portion 40 and may include a slightly tapered portion 42 extending from the neck portion 16. As is well known, the cylindrical portion 40 and tapered portion 42 are later enlarged by stretching and then blow molding to form a beverage bottle. After the preform 10 is stretch-blow molded and the resulting bottle is filled with a suitable beverage, a removable threaded cap (not shown) is screwed on to the threads 22 to close the bottle. The ring collar 20 is used in the stretch-blow molding process, but is also used to assist in ejecting the preform 10.
Reference will now be made to the rest of the drawings in describing the method of making the pair of thread split inserts 12, 14 by casting a hollow inner part 44, machining a hollow outer part 46, integrally brazing the hollow inner part 44 and the hollow outer part 46 together, and then cutting the integral hollow inner and outer parts 44, 46 in half to form the pair of thread split inserts 12, 14.
Reference will first be made to FIGS. 2-7 to describe how the hollow inner part 44 is made by a conventional lost wax or investment casting process. First, as seen in FIGS. 2 and 3, a hollow core 48 is injection molded of a suitable material such as ceramic. As seen in FIG. 3, the ceramic core 48 is made with an outer surface 49 shaped to form the inner surfaces 34 of the thread split inserts 12, 14. The ceramic core 48 also has a locating ridge 50 on its inner surface 52 and is generally cylindrical, but has two flat sections 54 which are long enough to allow the integral thread split inserts 12, 14 to be circular after some material is lost when they are cut in half. As seen in FIG. 4, the hollow ceramic core 48 is then placed on a mounting pin 56 extending upwardly from a bottom plate 58 of a wax mold 60. The locating ridge 50 fits in a groove (not shown) on the mounting pin 56 to ensure the ceramic core 48 is properly oriented. The wax mold 60 has a top plate 62 and two inserts 64, 66 which slide inwardly together to form a cavity 68 extending between them around the hollow ceramic core 48. After the mold 60 is closed, screws 70 are inserted to hold the plates 58, 62 and the inserts 64, 66 together during molding. A resilient O-ring 72 extending around the mounting pin 56 ensures the ceramic core 48 is positioned at the top of the mold 60. The sliding inserts 64, 66 are made having inner surfaces 74, 76 shaped with a configuration of interconnected ridges 78 extending therefrom to provide the hollow inner part 44 of the pair of thread split inserts 12, 14 with a generally cylindrical outer surface 80 with the same configuration of interconnected grooves 82 therein to form inner portions 84 of two cooling fluid conduits extending around the curved inner surface 34 of the thread split inserts 12, 14. Molten wax is then injected into the cavity 68 through a large casting gate 86. After the wax has cooled and solidified, the mold 60 is opened leaving a wax part 88 having the same shape as the hollow inner part 44 of the pair of thread split inserts 12, 14 extending around the ceramic core 48.
As seen in FIG. 5, the wax part 88 is dipped repeatedly in a bath (not shown) of ceramic material which hardens to form an outer shell 90 of several layers 92 of ceramic material. The coated wax part 88 is then heated in an autoclave to remove the wax and the empty shell 90 is then filled with a suitable molten material such as steel through the gate 86. After cooling, the outer shell 90 and the ceramic core 48 are removed leaving the hollow raw cast inner part 44 of the pair of thread split inserts 12, 14 extending around a central longitudinal axis 96 as seen in FIG. 6. As can be seen, the cast hollow inner part 44 has the generally cylindrical outer surface 80 with the grooves 82 therein to partially form the inner portions 84 of the two cooling conduits. It also has a central opening 98 with the same shape as the ceramic inner core 48. This process of, making the raw cast inner part 44 is a conventional lost wax or investment casting process. Although only one hollow inner part 44 is shown for ease of illustration, normally the wax parts 88 and the hollow inner parts 44 are made in interconnected arrangements or trees to expedite the process. The raw cast inner part 44 seen in FIG. 6 is then mounted on spindles 100 as seen in FIG. 7 and machined to make the outer surface 80 a predetermined size and to form tapered end portions 102.
Reference is now made to FIGS. 8 and 9 which show the hollow outer part 46 which is machined of a suitable material such as tool steel. As can be seen, the hollow outer part 46 is made with four retaining bolt holes 104 as well as a central opening 106 extending therethrough with an inner surface 108. The inner surface 108 is made to fit around the outer surface 80 of the hollow inner part 44. The hollow outer part 46 is also machined to have outer portions 110 of two cooling fluid conduits which are made to align respectively with the inner portions 84 of the two cooling fluid conduits in the outer surface 80 of the inner part 84.
Nickel brazing paste 94 is applied to the inner portions 84 of the cooling conduits and the hollow inner part 44 is inserted into the central opening 106 through the hollow outer part 46 to form the pair of thread split inserts 12, 14. As can be seen in FIGS. 10 and 11, this completes the inner portions 84 of the cooling conduits in the hollow inner part 44 which are aligned with the corresponding outer portions 110 of the cooling conduits in the hollow outer part 46. This produces the two cooling conduits 112 through which cooling water flows from inlets 114 to outlets 116 on the front end 26. Nickel brazing material is inserted into circular groove 118 and the assembled hollow inner and hollow outer parts 44, 46 are gradually heated in a vacuum furnace (not shown) to a temperature of approximately 1925° F. which is above the melting point of the nickel alloy. As the furnace is heated, it is evacuated to a relatively high vacuum to remove substantially all of the oxygen and then partially backfilled with an inert gas such as argon or nitrogen. When the melting point of the nickel is reached, it melts and flows by capillary action between the hollow inner part 44 and the hollow outer part 46 to integrally braze them together to form the pair of thread split inserts 12, 14. Brazing them together this way in the vacuum furnace provides a metallurgical bonding between them to maximize their strength and prevent leakage of the cooling water from the cooling conduits 112.
After removal of the integral pair of thread split inserts 12, 14 from the vacuum furnace, they are cut in half along the longitudinal axis 96 in an electrical wire-cut machine to form the two separate thread split inserts 12, 14 shown in FIG. 12. As shown, they are cut in the correct plane to have one of the cooling conduits 112 in each of the thread split inserts 12, 14. The pair of thread split inserts 12, 14 are then machined to provide a good outer finish and the tapered portions 120, 122 at their front and rear ends 26, 28. During molding the pair of thread split inserts 12, 14 are secured tightly together by the tapered flange portions 120, 122 being engaged by the rest of the mold (not shown). In this position, the matching flat inner surfaces 30, 32 abut and the curved inner surfaces 34 of the pair of thread split inserts 12, 14 combine to form the opening 35 therethrough shaped to mold the outer surface 18 of the neck portion 16 of the preform 10. Of course, during molding an elongated cylindrical core (not shown) extends through this opening 35 to form the inner surface 124 of the preform 10.
In use in a multi-cavity mold, a number of pairs of thread split inserts 12, 14 made according to the invention are mounted in a conventional mold. A supply of cooling water or other suitable cooling fluid is connected to the inlet 116 of the cooling fluid conduit 112 in each thread split insert 12, 14 to circulate through each cooling fluid conduit 112. Pressurized melt from a molding machine is then injected into the cavity in the opening 35 through each pair of thread split inserts 12, 14 according to a predetermined injection cycle. After the cavities are full, injection pressure is held momentarily to pack and then released. After a short cooling period, the mold is opened to eject each preform 10. This is done by the preform 10 first being ejected from the core and the two thread split inserts 12, 14 then separated to drop the preform 10 onto a conveyor belt or cooling plate. Of course, this requires that the two thread split inserts 12, 14 be separated enough to release the ring collar 20 and threads 22 of the preform 10. After ejection, the mold is closed and injection pressure is reapplied to refill the cavity and the injection cycle is repeated continuously.
While the description of the method of making the pair of thread split inserts 12, 14 has been given, with respect to a preferred embodiment, it will be evident that various other modifications are possible without departing from the scope of the invention as understood by those skilled in the art and as defined in the following claims.

Claims (5)

The embodiments of the invention in which an exclusive property or privilege is claimed is defined as follows:
1. A method of making a pair of thread split inserts used in injection molding elongated hollow bottle preforms, each preform having a neck portion with an outer surface forming a ring collar and threads extending between an open end and the ring collar , each thread split insert having a front end, a rear end and first and second flat inner aligned faces extending on opposite sides of a curved inner surface, the thread split inserts to be mounted together in a mold with the respective flat inner faces of the thread split inserts abutting, wherein the curved inner surfaces of the thread split inserts combine to form an opening therethrough shaped to mold the outer surface of the neck portion of the preform, the curved inner surfaces of the thread split inserts each have a semicircular groove to form the ring collar and a threaded portion extending between the semicircular groove and the rear end to form the threads, comprising the steps of;
(a) injection molding a ceramic core having a predetermined shape,
(b) casting wax around the ceramic core in the shape of an inner part of the pair of thread split inserts,
(c) investment :
(a) casting a suitable metal in a mold to replace the wax around the ceramic core to form a hollow inner part of the pair of thread split inserts extending around a central longitudinal axis, said inner part having a generally cylindrical outer surface with grooves therein to partially form inner portions of two cooling fluid conduits, each cooling fluid conduit to extend around the curved inner surface of one of the thread split inserts,
(d) machining the cast inner part to make the outer surface a predetermined size,
(e) ;
(b) making a hollow outer part of the pair of thread split inserts of a suitable metal having a predetermined shape with an opening therethrough having an inner surface which fits around the outer surface of the inner part and outer portions of the two cooling conduits extending from the opening therethrough to respective inlets and outlets,
(f) (c) mounting the outer part around the inner part with the inner and outer portions of the two cooling fluid conduits aligned, applying brazing material between the inner part and the outer part, and heating the assembled inner part and outer part in a vacuum furnace to integrally braze the inner part and the outer part together, and
(g)(d) cutting the integral inner and outer parts in half along the central longitudinal axis to form the pair of thread split inserts, each of the thread split inserts having one of the cooling fluid conduits therein.
2. A The method of making a pair of thread split inserts as claimed in claim 1, wherein the outer part of the pair of thread split inserts is made by machining.
3. A The method of making a pair of thread split inserts as claimed in claim 2, wherein the integrally brazed inner and outer parts of the thread split inserts are cut in half by an electrical discharge machine.
4. A The method of making a pair of thread split inserts as claimed in claim 3, further comprising the step of: (e) machining the brazed inner and outer parts of the thread split inserts to provide the thread split inserts with a desired finish and shape.
5. A method of making a pair of split inserts for use in injection molding, comprising the steps of:
(a) casting a hollow inner part;
(b) machining a hollow outer part;
(c) integrally brazing the hollow inner part and the hollow outer part together; and
(d) cutting the integral hollow inner and outer parts to form the pair of split inserts.
US09/922,594 1998-07-29 2001-08-03 Method of making injection molding cooled thread split inserts Expired - Lifetime USRE38396E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/922,594 USRE38396E1 (en) 1998-07-29 2001-08-03 Method of making injection molding cooled thread split inserts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA002244511A CA2244511C (en) 1998-07-29 1998-07-29 Method of making injection molding cooled thread split inserts
CA2244511 1998-07-29
US09/134,952 US5930882A (en) 1998-07-29 1998-08-17 Method of making injection molding cooled thread split inserts
US09/922,594 USRE38396E1 (en) 1998-07-29 2001-08-03 Method of making injection molding cooled thread split inserts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/134,952 Reissue US5930882A (en) 1998-07-29 1998-08-17 Method of making injection molding cooled thread split inserts

Publications (1)

Publication Number Publication Date
USRE38396E1 true USRE38396E1 (en) 2004-01-27

Family

ID=30118642

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/922,594 Expired - Lifetime USRE38396E1 (en) 1998-07-29 2001-08-03 Method of making injection molding cooled thread split inserts

Country Status (1)

Country Link
US (1) USRE38396E1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040247734A1 (en) * 2003-06-09 2004-12-09 Unterlander Richard Matthias Cooling tube with a low friction coating
US20050276879A1 (en) * 2004-06-14 2005-12-15 Husky Injection Molding Systems Ltd. Cooling circuit for cooling neck ring of preforms
US20050287319A1 (en) * 2001-04-17 2005-12-29 Ngk Insulators, Ltd. Method of manufacturing molded body, slurry for molding, core for molding, method of manufacturing core for molding, hollow ceramic molded body, and light emitting container
WO2006128275A1 (en) * 2005-06-03 2006-12-07 Husky Injection Molding Systems Ltd. A mold split insert
US20070154590A1 (en) * 2004-01-30 2007-07-05 Anctil Albert R Injection molding
US20080292745A1 (en) * 2007-05-23 2008-11-27 Husky Injection Molding Systems Ltd. Mold Structure and Method of Manufacture Thereof
US20090214890A1 (en) * 2008-02-26 2009-08-27 Floodcooling Technologies, Llc Brazed aluminum laminate mold tooling
US20090229795A1 (en) * 2005-10-11 2009-09-17 Toyo Seikan Kaisha, Ltd. Apparatus for cooling preformed articles and method of cooling preformed articles
US20110114653A1 (en) * 2008-07-23 2011-05-19 Du Pont-Mitsui Polychemicals Co., Ltd. Resin molding apparatus, resin molding method, and resin container
US20120128812A1 (en) * 2010-11-22 2012-05-24 R&D Tool & Engineering Co. Injection blow molding system with enhanced heat transfer channel configuration
US20120126463A1 (en) * 2010-11-22 2012-05-24 R&D Tool & Engineering Co. Injection blow molding system with enhanced parison body mold configuration
US8512028B2 (en) 2010-11-22 2013-08-20 R&D Tool & Engineering Co. Injection blow molding system with enhanced supply of heat transfer fluid to parison molds
US20130230616A1 (en) * 2012-03-01 2013-09-05 Mold-Masters (2007) Limited Split thread insert
US8562334B2 (en) 2010-11-22 2013-10-22 R&D Tool & Engineering Co. Injection blow molding system with enhanced parison neck mold configuration
USD705659S1 (en) 2007-12-21 2014-05-27 Silgan Plastics Llc Preform for dosing bottle
US8877117B2 (en) 2010-11-22 2014-11-04 R&D Tool & Engineering Co. Injection blow molding system with enhanced parison temperature control
US9132581B2 (en) 2010-11-22 2015-09-15 R&D Tools & Engineering Co. Injection blow molding system with enhanced parison mold configuration
US20160052176A1 (en) * 2011-06-14 2016-02-25 S.I.P.A. Societa' Industrializzazione Progettazione E Automazione S.P.A. Process of manufacturing an injection mould component
USD769720S1 (en) 2007-12-21 2016-10-25 Silgan Plastics Llc Preform for dosing bottle
US9701075B2 (en) 2009-02-26 2017-07-11 Floodcooling Technologies, Llc Mold insert for improved heat transfer
CN108838403A (en) * 2018-08-17 2018-11-20 广州道注塑机械股份有限公司 A kind of mold cooling pipe structure
US20210107193A1 (en) * 2017-09-08 2021-04-15 Nissei Asb Machine Co., Ltd. Mold
USD990999S1 (en) * 2021-06-24 2023-07-04 Hanlong Industrial Co., Ltd. Crimping die

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187595A (en) 1978-09-12 1980-02-12 The United States of Amrica as represented by the Secretary of the Air Force Method of fabricating nozzle blades for lasers
US4557685A (en) 1984-07-13 1985-12-10 Gellert Jobst U Heated nozzle for injection molding apparatus
US4969263A (en) 1989-04-18 1990-11-13 Tecumseh Products Company Method of making a cast engine cylinder having an internal passageway
GB2240300A (en) 1990-01-24 1991-07-31 Metal Box Plc Blow mould having cooling channels
US5096411A (en) 1990-05-17 1992-03-17 Gellert Jobst U Injection molding cast manifold
US5443381A (en) 1994-07-18 1995-08-22 Gellert; Jobst U. Injection molding one-piece insert having cooling chamber with radial rib portions
US5599567A (en) 1995-10-16 1997-02-04 Gellert; Jobst U. Cooled thread split inserts for injection molding preforms

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187595A (en) 1978-09-12 1980-02-12 The United States of Amrica as represented by the Secretary of the Air Force Method of fabricating nozzle blades for lasers
US4557685A (en) 1984-07-13 1985-12-10 Gellert Jobst U Heated nozzle for injection molding apparatus
US4969263A (en) 1989-04-18 1990-11-13 Tecumseh Products Company Method of making a cast engine cylinder having an internal passageway
GB2240300A (en) 1990-01-24 1991-07-31 Metal Box Plc Blow mould having cooling channels
US5096411A (en) 1990-05-17 1992-03-17 Gellert Jobst U Injection molding cast manifold
US5443381A (en) 1994-07-18 1995-08-22 Gellert; Jobst U. Injection molding one-piece insert having cooling chamber with radial rib portions
US5599567A (en) 1995-10-16 1997-02-04 Gellert; Jobst U. Cooled thread split inserts for injection molding preforms

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tanaka Kisaburo, "Manufacture of Mold," 3/90, Patent Abstract of Japan vol. 015, No. 061.

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287319A1 (en) * 2001-04-17 2005-12-29 Ngk Insulators, Ltd. Method of manufacturing molded body, slurry for molding, core for molding, method of manufacturing core for molding, hollow ceramic molded body, and light emitting container
US7407145B2 (en) * 2001-04-17 2008-08-05 Ngk Insulators, Ltd. Core for molding hollow ceramic molded body and light emitting container
US20040247734A1 (en) * 2003-06-09 2004-12-09 Unterlander Richard Matthias Cooling tube with a low friction coating
US7264464B2 (en) * 2003-06-09 2007-09-04 Husky Injection Molding Systems Ltd. Cooling tube with a low friction coating
US20070154590A1 (en) * 2004-01-30 2007-07-05 Anctil Albert R Injection molding
US7455518B2 (en) * 2004-01-30 2008-11-25 Rexam Prescription Products Inc. Injection molding
EP1758720A4 (en) * 2004-06-14 2008-08-06 Husky Injection Molding Cooling circuit for cooling neck rings of preforms
US20050276879A1 (en) * 2004-06-14 2005-12-15 Husky Injection Molding Systems Ltd. Cooling circuit for cooling neck ring of preforms
EP1758720A1 (en) * 2004-06-14 2007-03-07 Husky Injection Molding Systems Ltd. Cooling circuit for cooling neck rings of preforms
WO2005120802A1 (en) 2004-06-14 2005-12-22 Husky Injection Molding Systems Ltd. Cooling circuit for cooling neck rings of preforms
US7234930B2 (en) 2004-06-14 2007-06-26 Husky Injection Molding Systems Ltd. Cooling circuit for cooling neck ring of preforms
US20060283210A1 (en) * 2005-06-03 2006-12-21 Husky Injection Molding Systems Ltd. Mold split insert
US7377767B2 (en) 2005-06-03 2008-05-27 Husky Injection Holding Systems Ltd. Mold split insert
WO2006128275A1 (en) * 2005-06-03 2006-12-07 Husky Injection Molding Systems Ltd. A mold split insert
US20090229795A1 (en) * 2005-10-11 2009-09-17 Toyo Seikan Kaisha, Ltd. Apparatus for cooling preformed articles and method of cooling preformed articles
US7887319B2 (en) * 2005-10-11 2011-02-15 Toyo Seikan Kaisha, Ltd. Apparatus for cooling preformed articles and method of cooling preformed articles
US20080292745A1 (en) * 2007-05-23 2008-11-27 Husky Injection Molding Systems Ltd. Mold Structure and Method of Manufacture Thereof
USD705659S1 (en) 2007-12-21 2014-05-27 Silgan Plastics Llc Preform for dosing bottle
USD769720S1 (en) 2007-12-21 2016-10-25 Silgan Plastics Llc Preform for dosing bottle
US20090214890A1 (en) * 2008-02-26 2009-08-27 Floodcooling Technologies, Llc Brazed aluminum laminate mold tooling
US8079509B2 (en) 2008-02-26 2011-12-20 Floodcooling Technologies, Llc Brazed aluminum laminate mold tooling
US20110114653A1 (en) * 2008-07-23 2011-05-19 Du Pont-Mitsui Polychemicals Co., Ltd. Resin molding apparatus, resin molding method, and resin container
US8551385B2 (en) * 2008-07-23 2013-10-08 Du Pont-Mitsui Polychemicals Co., Ltd. Resin molding apparatus, resin molding method, and resin container
US10155350B2 (en) 2009-02-26 2018-12-18 Zen Project Llc Mold insert for improved heat transfer
US9701075B2 (en) 2009-02-26 2017-07-11 Floodcooling Technologies, Llc Mold insert for improved heat transfer
US20120128812A1 (en) * 2010-11-22 2012-05-24 R&D Tool & Engineering Co. Injection blow molding system with enhanced heat transfer channel configuration
US8512028B2 (en) 2010-11-22 2013-08-20 R&D Tool & Engineering Co. Injection blow molding system with enhanced supply of heat transfer fluid to parison molds
US8562334B2 (en) 2010-11-22 2013-10-22 R&D Tool & Engineering Co. Injection blow molding system with enhanced parison neck mold configuration
US8523556B2 (en) * 2010-11-22 2013-09-03 R&D Tool & Engineering Co. Injection blow molding system with enhanced parison body mold configuration
US20120126463A1 (en) * 2010-11-22 2012-05-24 R&D Tool & Engineering Co. Injection blow molding system with enhanced parison body mold configuration
US8877117B2 (en) 2010-11-22 2014-11-04 R&D Tool & Engineering Co. Injection blow molding system with enhanced parison temperature control
US9132581B2 (en) 2010-11-22 2015-09-15 R&D Tools & Engineering Co. Injection blow molding system with enhanced parison mold configuration
US8512625B2 (en) * 2010-11-22 2013-08-20 R&D Tool & Engineering Co. Injection blow molding system with enhanced heat transfer channel configuration
US9352492B2 (en) 2010-11-22 2016-05-31 R&D Tool & Engineering Co. Injection blow molding system with enhanced parison mold configuration
US20160052176A1 (en) * 2011-06-14 2016-02-25 S.I.P.A. Societa' Industrializzazione Progettazione E Automazione S.P.A. Process of manufacturing an injection mould component
US9833987B2 (en) * 2011-06-14 2017-12-05 S.I.P.A. Societa' Industrializzazione Progettazione E Automazione S.P.A. Process of manufacturing an injection mould component
US20130230616A1 (en) * 2012-03-01 2013-09-05 Mold-Masters (2007) Limited Split thread insert
US8845321B2 (en) * 2012-03-01 2014-09-30 Mold-Masters (2007) Limited Split thread insert
US20210107193A1 (en) * 2017-09-08 2021-04-15 Nissei Asb Machine Co., Ltd. Mold
US11685093B2 (en) * 2017-09-08 2023-06-27 Nissei Asb Machine Co., Ltd. Mold
CN108838403A (en) * 2018-08-17 2018-11-20 广州道注塑机械股份有限公司 A kind of mold cooling pipe structure
USD990999S1 (en) * 2021-06-24 2023-07-04 Hanlong Industrial Co., Ltd. Crimping die

Similar Documents

Publication Publication Date Title
US5930882A (en) Method of making injection molding cooled thread split inserts
USRE38396E1 (en) Method of making injection molding cooled thread split inserts
EP0768164B1 (en) Cooled thread split inserts for injection molding preforms
US4289191A (en) Injection molding thermoplastic patterns having ceramic cores
TW322445B (en)
JP4233616B2 (en) Torpedo for injection molding
JP2000043095A5 (en)
KR830008821A (en) Method and apparatus for manufacturing preform for bottle manufacturing
US6196824B1 (en) Center gating injection molding apparatus with removable hetero-molding tools
JPH09234774A (en) Method of injection molding plastics lens
KR20010102233A (en) Injection molding cooled cavity insert
US8002540B2 (en) Neck block cooling
CN105813820A (en) Plastic molding method
IL37942A (en) Injection blow molding equipment in the form of an adapter or tool for use with an injection molding machine
JP2006526521A (en) Gate cooling structure in the mold stack
HU219390B (en) Mold assembly
EP0716913B1 (en) Method of manufacturing injection molding manifold having a melt passage with an elbow
US4555259A (en) Component
JPH04232010A (en) Manifold for injection molding
US5173237A (en) Method of making a metallic core assembly
JP3913896B2 (en) Injection molding container and injection mold
US20070132145A1 (en) Retainer for a mold gate insert for use in an injection molding apparatus
CN215242505U (en) Multi-insert high-precision injection mold
KR100815792B1 (en) Neck ring insert, cooling pack attachment and apparatus for cooling preforms
JPS61233515A (en) Gate bush for mold

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: 4437667 CANADA INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOBST U. GELLERT;MOLD-MASTERS LIMITED;REEL/FRAME:019955/0181

Effective date: 20071011

AS Assignment

Owner name: SOCIETE GENERALE,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:4437667 CANADA INC.;REEL/FRAME:020174/0241

Effective date: 20071011

Owner name: SOCIETE GENERALE, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:4437667 CANADA INC.;REEL/FRAME:020174/0241

Effective date: 20071011

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: MOLD-MASTERS (2007) LIMITED, CANADA

Free format text: CHANGE OF NAME;ASSIGNOR:4437667 CANADA INC.;REEL/FRAME:029865/0890

Effective date: 20071026

AS Assignment

Owner name: MOLD-MASTERS LUXEMBOURG ACQUISITIONS S.A.R.L., A L

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SOCIETE GENERALE, A CORPORATION OF FRANCE;REEL/FRAME:030182/0506

Effective date: 20130328

Owner name: 4437667 CANADA INC. A/K/A MOLD-MASTERS (2007) LIMI

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SOCIETE GENERALE, A CORPORATION OF FRANCE;REEL/FRAME:030182/0506

Effective date: 20130328

Owner name: MOLD-MASTERS LUXEMBOURG HOLDINGS S.A.R.L., A LIMIT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SOCIETE GENERALE, A CORPORATION OF FRANCE;REEL/FRAME:030182/0506

Effective date: 20130328

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, WISCON

Free format text: SUPPLEMENTAL SECURITY AGREEMENT;ASSIGNOR:MOLD-MASTERS (2007) LIMITED;REEL/FRAME:034013/0738

Effective date: 20141017