USRE38952E1 - Heat activated ink jet ink - Google Patents

Heat activated ink jet ink Download PDF

Info

Publication number
USRE38952E1
USRE38952E1 US10/195,922 US19592202A USRE38952E US RE38952 E1 USRE38952 E1 US RE38952E1 US 19592202 A US19592202 A US 19592202A US RE38952 E USRE38952 E US RE38952E
Authority
US
United States
Prior art keywords
ink
heat activated
liquid ink
ink jet
activated dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/195,922
Inventor
Nathan S. Hale
Ming Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/207,756 external-priority patent/US5487614A/en
Priority claimed from US08299736 external-priority patent/US5488907C1/en
Priority claimed from US08/506,894 external-priority patent/US5734396A/en
Priority claimed from US08/565,999 external-priority patent/US5601023A/en
Priority claimed from US08/695,121 external-priority patent/US5642141A/en
Priority claimed from US08/710,171 external-priority patent/US5640180A/en
Priority to US10/195,922 priority Critical patent/USRE38952E1/en
Application filed by Individual filed Critical Individual
Publication of USRE38952E1 publication Critical patent/USRE38952E1/en
Application granted granted Critical
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. NOTICE OF GRANT OF SECURITY INTEREST Assignors: SAWGRASS TECHNOLOGIES, INC., TROPICAL GRAPHICS, LLC
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION SECURITY AGREEMENT Assignors: SAWGRASS TECHNOLOGIES, INC.
Anticipated expiration legal-status Critical
Assigned to SAWGRASS TECHNOLOGIES, INC. reassignment SAWGRASS TECHNOLOGIES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO BANK, NATIONAL ASSOCIATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/328Inkjet printing inks characterised by colouring agents characterised by dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks

Definitions

  • This invention relates to printing heat sensitive, dye diffusion or sublimation inks generally, and is more specifically related to a method of printing inks comprising these dyes onto an intermediate tansfer sheet by means of an ink jet printer or other printer which uses liquid inks, and subsequently transferring the printed image from the intermediate sheet by the application of heat and pressure.
  • This invention relates to printing heat sensitive dye diffusion or sublimation inks, generally and is more specifically related to a liquid ink comprising these dyes which may be used in an ink jet printer.
  • Words and designs are frequently printed onto clothing and other textile materials, and other objects.
  • the use of computer technology allows substantially instantaneous printing of images.
  • video cameras or scanning may be used to capture an image to a computer.
  • the image may then be printed by any suitable printing means, including mechanical thermal printers, ink jet printers and laser printers. These printers will print multiple color images.
  • Color ink jet printers are in common use. Color ink jet printers use combinations of cyan, yellow and magenta inks or dyes to produce multiple color images. Most ink jet printers in common use employ inks which are in liquid form.
  • Heat activated, dye diffusion and sublimation ink solids change to a gas at about 400° F., and have a high affinity for polyester and other synthetic materials at the activation temperature, and a limited affinity for most other materials. Once the bonding from gassification and condensation takes place, the ink is permanently printed, and is resistant to change or fading caused by laundry products, heat or light.
  • the ink solids when the ink solids are placed into a liquid carrier, the ink solids tend to separate from the liquid over time and fall to the bottom of the ink container.
  • the ink is typically packaged in a container at a manufacturing facility for subsequent mounting of the container within the ink Jet printer, meaning that a substantial storage time for the ink composition exists prior to use. Separation of the liquid and solids comprising the ink formulation presents problems with regard to the mechanical operation of the printer and the print quality achieved from the use of the ink formulation.
  • Agents which are included within the ink formulation to inhibit separation must also inhibit agglomeration of the solid dye particles, but the agents must not inhibit activation of the dye during the final transfer at elevated temperatures, by insulating the dye or reacting with the dye, or otherwise.
  • liquid inks have been produced from dyes that initially have properties suitable for practicing the process.
  • the production of liquid inks from these dyes changes or masks the required properties, and therefore, the resulting inks cannot be satisfactorily used to practice the process.
  • additives which will inhibit the dye particles from settling out of the liquid carrier, or which will inhibit agglomeration tend to insulate the dye particles, meaning that the energy required for sublimation, diffusion or activation of the dye is elevated to unacceptable levels for practicing the process.
  • additives which are used in the prior art to produce a liquid ink from the solid dyes are reactive with the dye, and modify or eliminate required properties of the dyes.
  • Other “side effects” of using these additives include undesired color modification or contamination, bonding with the intermediate substrate, or optical density on the final substrate which is inadequate.
  • This invention is a method of printing liquid ink which is produced from sublimation, dye diffusion, or heat sensitive dyes.
  • a printer that uses liquid ink such as an ink jet printer, prints the image onto a medium, or intermediate substrate, which may be paper.
  • the sublimation, dye diffusion, or heat sensitive dyes (hereinafter collectively referred to as “heat activated dyes”) contained in the ink are not substantially sublimated or activated during the process of printing on to the medium.
  • the image formed by the printed ink is transferred from the medium to a final substrate by the application of heat and pressure which sublimates or activate the ink. This thermal transfer step is achieved at low energy when compared to other sublimation or activation processes known and used in the art.
  • a low energy transfer is a thermal transfer of the image from the intermediate sheet to the final substrate by applying a temperature which is not higher than 450° F., for no more than three and one-half minutes, with the resulting image, as deposited on the final substrate, having an optical density of 1.0 or greater, as measured by an X-Rite 418 densitometer in the density operation mode with background corrections.
  • the dyes, or perhaps pigments, which are suitable for practicing the invention are dyes which are capable of low energy transfer from the medium onto the final substrate to produce an image on the final substrate which is waterfast and colorfast. After transfer, the dyes are no longer substantially heat sensitive. Dyes which have these characteristics are found in various classifications of dyes, including disperse dyes, solvent dyes, basic dyes, acid dyes and vat dyes. However, none of the dyes which are currently available and which are suitable for producing a liquid ink for practicing the invention are soluble in water.
  • FIG. 1 is a block diagram showing the printing process.
  • FIG. 2 illustrates an example of a design printed by a printer using the printing process.
  • FIG. 3 is a diagrammatic illustration showing exemplary elements of computer and printing systems which could be used to achieve the printing process.
  • An image is input into a computer 4 .
  • the computer directs a printer 6 to print the image. Any means of forming an image which may be printed from a computer may be used, including images generated by software. Available computer design graphic software may be used, or still photography may be used.
  • the design may be read and communicated by a scanner 2 , which is connected to computer 4 .
  • the design may be photographic, graphic artistic, or simply letters or words. The use of cyan, yellow and magenta ink compositions allow the printer to print in full color or multi-color designs.
  • the image may be permanently transferred by thermal means.
  • the design will be transferred onto a textile substrate, such as a shirt 8 , although the image may be transferred onto other materials which act as a substrate, such as metal, ceramic, wood, or plastic.
  • the design 3 which is printed onto the medium 9 without activating the ink, is placed against the final substrate which may be a shirt 8 .
  • a temperature which is sufficient to activate the dye is applied. This temperature will typically be around 400° F. This temperature is applied for a time sufficient to heat activate and transfer the ink solids in accordance with the requirements of the invention.
  • a heat transfer machine 10 may be used to accomplish the transfer of the inks from the medium to the substrate.
  • Activation, or sublimation, of the dye does not take place at the time of printing the image onto the medium, but occurs during the transfer from the medium to the substrate.
  • the group of heat activated dyes from which dyes may be selected for use in the invention are dyes which substantially sublimate or activate at low energy to form an image which has an optical density value of no less than 1.0, and which is waterfast and colorfast.
  • Each of the dyes which comprise this group will achieve an optical density of 1.25 or greater after activation, when optical density is measured by an X-Rite 418 densitometer in the density operation mode with background correction.
  • the invention requires the dyes to be transferred at low energy (as defined above) after the dyes are formulated into a liquid ink as described herein and printed onto the medium (the “acceptable dyes”). While a larger group of dyes can be sublimated at low energy, dyes which are not acceptable cannot be formulated into a liquid ink which retains the required properties. While most of the acceptable dyes are disperse dyes, certain other dyes which will perform according to the goals of the invention are included in the group of acceptable dyes.
  • the acceptable dyes are not reactive, and do not have strong polar function groups, such as sulfonate or carboxyl groups. Reacting the dyes with chemical agents added to the formulation in order to form a liquid ink, as is sometimes done in the prior art, tends to inhibit the activation of the dyes at low energy, which is contrary to the present invention.
  • the acceptable dyes have a molecular weight which is less than 600, and is preferably within a range of 200-400.
  • acceptable dyes are disperse dyes but certain solvent dyes, vat dyes, basic or cationic dyes (such as carbinol base dyes or anthraquinone type dyes having a quarternary amine), acid dyes, direct dyes, mordant dyes and oxidizing colors also fall within the group of acceptable dyes.
  • the ink formulation prepared according to the invention is a liquid.
  • Dye solids of small particle size are dispersed in a liquid carrier, and one or more agents are used to maintain what may be called, according to various definitions, a collodial, dispersion or emulsion system.
  • emulsion is used herein to describe the system, even though the system could, in some forms, be called a colloid or a dispersion.
  • the heat activated solid dye particles are of small size. It is preferred that the individual solid dye particles have no dimension which is greater than 0.5 microns.
  • the solid dye particles are dispersed into the liquid carrier.
  • the dispersion is normally achieved by the introduction of a dispersing agent, although mechanical or other physical means could be used.
  • An emulsifying agent is introduced to prevent coagulation or coalescense of the individual dye particles and to stabilize the system.
  • a single agent may be used as a dispersing and emulsifying agent. Multiple agents may be used in accordance with the goals of the invention.
  • the agent or agents stabilize the system, so that the system remains sufficiently homogenous over time to allow successful printing and transfer of the dye according to the method of the invention. Further, the agent shields the individual particles from the adverse effects of the storage, transportation and printer environments, such as heat, cold and light. While the agent shields the dye particles while they are in the liquid system, it does not inhibit low energy transfer of the dyes in the form of the printed image.
  • the agents used to disperse and/or emulsify the dye particles include various dispersant materials, surfactants (including cationic, anionic, amphoteric, and nonionic surfactants) and polymeric surfactants. Polymeric materials with dispersing ability, but which are not surfactants, can also be used. Either synthetic or natural materials can be used.
  • the dispersing/emulsifying agents each have a molecular weight which is less than 100,000, and preferably less than 10,000. Thermal stability of the agents is essential to prevent decomposition and/or chemical reaction between the agents and the other components in the systems.
  • the agent(s) do not have active function groups which will react or crosslink with the medium, or which will react or crosslink with the dye or pigment in the system, since such reactions or linkages inhibit the required properties of the dye at the time of activation.
  • the agent(s) must form the emulsion from the finely divided dye particles particles and the liquid carrier, but must not materially insulate or otherwise materially inhibit the activation of the dye at the time of final transfer.
  • Agents having the required properties when used with some or all of the acceptable dyes include Lignosulfonate products such as Marasperse 52CP (Lignotech), Lignosol FTA (Lignotech), Lignosol SFX-65 (Lignotech), Marasperse CBA-1 (Lignotech), Temsperse S002 (Temfibre, Inc.) Stepsperse DF series (Stephan Co.), and Weschem NA-4 (Wesco Technologies, LTD), Kraft lignin products such as Diwatex XP (Lignotech), and Reax 85 (Westvaco), and oxylignin products such as Marasperse CBOS-6 and Vanisperse CB.
  • Lignosulfonate products such as Marasperse 52CP (Lignotech), Lignosol FTA (Lignotech), Lignosol SFX-65 (Lignotech), Marasperse CBA-1 (Lignotech), Temsperse S002
  • alkylaryl polyether alcohol nonionic surfactants such as Triton X series (Octylphenoxy-polyethoxyethanol); alkylamine ethoxylates nonionic surfactants such as Triton FW series, Triton CF-10, and Tergitol (Union Carbide Chemicals); polysorbate products such as Tween (ICI Chemicals and Polymers); polyalkylene and polyalkylene modified surfactants, such as Silwet surfactants (polydimethylsioxane copolymers) and CoatOSil surfactants from OSI Specialties; alcohol alkoxylates nonionic surfactants, such as Renex, BRII, and Ukanil; Sorbitan ester products such as Span and Arlacel; alkoxylated esters/PEG products, such as Tween, Atlas, Myrj and Cirrasol surfactants from ICI Chemicals and Polymers; unsaturated alcohol products
  • agents may be used in combination to improve the emulsification of the system and to stabilize the system, as long as the agents are not reactive and do not cause precipitation or otherwise negatively impact upon the emulsification process or the transfer process.
  • Organic solvents, cosolvents, and/or humectants can also be used as additional additives.
  • solvent materials are diethylene glycol, DMSO and dipropylene glycol.
  • additives can also be introduced into the ink, such as surfactants, corrosion control agents, foam control agents, antioxidants, radiation stabilizers, thermal stabilizers, flame retarding agents, pH control agents, viscosity control agents, or surface (interfacial) tension control agents can be added during or after the emulsification process.
  • surfactants corrosion control agents
  • foam control agents antioxidants
  • radiation stabilizers radiation stabilizers
  • thermal stabilizers flame retarding agents
  • pH control agents pH control agents
  • viscosity control agents viscosity control agents
  • surface (interfacial) tension control agents can be added during or after the emulsification process.
  • Other materials including dispersants, emulsifying agents, and stabilizers, may be included in the formulation by means of methods known in the art.
  • the heat sensitive dye may be a red (magenta), blue (cyan), yellow or brown dye.
  • the dispersant/emulsifying agent may be a sulfonated lignin such as Marasperse CBA-1.
  • the additive(s) may be Tergitol 15-s-9, Triton X-165, Triton X-405 or Surfynol 465.
  • the solvents and/or co-solvents may be diethlene glycol and/or thioglycol and/or 2-pyrrolidone and/or 1-methoxy 2-propanol.
  • the resulting ink is printed by the HP 560 Deskjet printer onto plain copy paper in a dark cyan color, and is transferred from the paper medium or receiver onto a polyester fabric substrate by thermal transfer at 400° F. temperature with 40 lb. pressure applied for 20 seconds.
  • the image as applied to the polyester fabric substrate has an optical density value of 1.4-1.5 for the cyan color as read by an X-Rite 418 densitometer.
  • Disperse Yellow 9 (CAS# 6373-73-5) is mixed with four (4) grams of Sulfynol 131 (Air Products) and 5.0 grams of glycerol (CAS# 56-81-5) and 480 grams of de-ionized water.
  • the pulverizer is used to disperse the dye into the aqueous phase for approximately 25 minutes.
  • One (1.0) gram of Sulfynol 104 E (Air Products) is added to the mixture and pulverized for another 10 minutes to produce an emulsion.
  • the mixture is filtered to remove particles larger than 0.25 microns.
  • the liquid ink for use in the ink jet printer is formulated as follows:
  • the resulting liquid ink is printed by a Canon Bubble Jet 4100 printer onto plain copy paper.
  • the printed image is thermally transferred from the paper medium to a polyester textile substrate at 400° F., while applying 40 lb. pressure for 20 seconds.
  • a liquid ink is formulated using the homogenized emulsion as follows:
  • the liquid ink is then printed by an Epson Stylus Color Pro or Epson Stylus Color lls piezo electric ink jet printer to form an image on plain copy paper.
  • the image is transferred from the paper to a polyester fabric substrate by the application of pressure and heat at a temperature of 400° F. for 25 seconds.
  • the image as transferred has an optical density of 1.45 for the magenta color, as measured by an X-Rite 418 densitometer with background correction.

Abstract

A method of printing a liquid ink which is produced from a heat activated dye which is selected from a limited group of dyes which are capable of transfer at low energy. A printer which uses liquid ink, such as an ink jet printer, prints an image onto an intermediate substrate medium. The dyes contained in the ink are not substantially activated during the process of printing on to the medium. The image formed by the printed ink is transferred from the medium to a final substrate by the application of heat and pressure for a short period of time to activate the ink. The dye and dispersing/emulsifying agent(s) are selected from a limited group to produce an ink which permits thermal transfer at low energy, with the resulting image, as deposited on the final substrate, having an optical density of 1.0 or greater.Liquid ink is produced using heat activated dyes selected from a limited group of dyes that are capable of heat activation. The dyes are not substantially soluble in the liquid carrier, such as water. One or more emulsifying agents stabilize the ink formulation. A printer that uses liquid ink, such as an ink jet printer, is used to print the ink, and the dye is heat activated after printing.

Description

This application is a divisional of U.S. Ser. No. 08/710,171, filed Sep. 12, 1996, now U.S. Pat. No. 5,640,180, which is a continuation-in-part of U.S. Ser. No. 08/695,121, filed Aug. 5, 1996, now U.S. Pat. No. 5,642,141, which is a continuation-in-part of U.S. Ser. No. 08/565,999, filed Dec. 1, 1995, now U.S. Pat. No. 5,601,023, which is a continuation-in-part of U.S. Ser. No. 08/207,756, filed Mar. 8, 1994, now U.S. Pat. No. 5,487,614, and a continuation-in-part of U.S. Ser. No. 08/506,894, filed Jul. 25, 1995, which is a continuation-in-part of U.S. Ser. No. 08/299,736, filed Sep. 1, 1994, now U.S. Pat. No. 5,488,907.
FIELD OF THE INVENTION
This invention relates to printing heat sensitive, dye diffusion or sublimation inks generally, and is more specifically related to a method of printing inks comprising these dyes onto an intermediate tansfer sheet by means of an ink jet printer or other printer which uses liquid inks, and subsequently transferring the printed image from the intermediate sheet by the application of heat and pressure.
This invention relates to printing heat sensitive dye diffusion or sublimation inks, generally and is more specifically related to a liquid ink comprising these dyes which may be used in an ink jet printer.
BACKGROUND OF THE INVENTION
Words and designs are frequently printed onto clothing and other textile materials, and other objects. The use of computer technology allows substantially instantaneous printing of images. For example, video cameras or scanning may be used to capture an image to a computer. The image may then be printed by any suitable printing means, including mechanical thermal printers, ink jet printers and laser printers. These printers will print multiple color images.
Color ink jet printers are in common use. Color ink jet printers use combinations of cyan, yellow and magenta inks or dyes to produce multiple color images. Most ink jet printers in common use employ inks which are in liquid form.
Heat activated, dye diffusion and sublimation ink solids change to a gas at about 400° F., and have a high affinity for polyester and other synthetic materials at the activation temperature, and a limited affinity for most other materials. Once the bonding from gassification and condensation takes place, the ink is permanently printed, and is resistant to change or fading caused by laundry products, heat or light.
Hale, U.S. Pat. Nos. 5,246,518, 5,248,363, 5,302,223, and 5,485,614 and Hale et al., U.S. Pat. No. 5,488,907, disclose the use of printers to produce an image on a medium or transfer sheet wherein the image is comprised of sublimation, dye diffusion or other heat activated inks. The ink is not activated during the printing of the medium or transfer sheet.
Problems are associated with liquid inks prepared from insoluble dye solids. The orifices or nozzles of most ink jet printers are not designed for the dispensing of dye solids contained within a liquid material. The orifices of these printers are typically 5-30 microns in diameter, and clogging of the orifice will occur when ink solids of large particle size or in high volume or transferred through the orifice.
Further, when the ink solids are placed into a liquid carrier, the ink solids tend to separate from the liquid over time and fall to the bottom of the ink container. The ink is typically packaged in a container at a manufacturing facility for subsequent mounting of the container within the ink Jet printer, meaning that a substantial storage time for the ink composition exists prior to use. Separation of the liquid and solids comprising the ink formulation presents problems with regard to the mechanical operation of the printer and the print quality achieved from the use of the ink formulation. Agents which are included within the ink formulation to inhibit separation must also inhibit agglomeration of the solid dye particles, but the agents must not inhibit activation of the dye during the final transfer at elevated temperatures, by insulating the dye or reacting with the dye, or otherwise.
Accordingly, the production of stable liquid inks from dyes which are not water soluble is difficult to achieve without destroying or reducing the properties of the dye which are required for practicing the process of the invention. In the prior art, liquid inks have been produced from dyes that initially have properties suitable for practicing the process. However, the production of liquid inks from these dyes changes or masks the required properties, and therefore, the resulting inks cannot be satisfactorily used to practice the process. For example, additives which will inhibit the dye particles from settling out of the liquid carrier, or which will inhibit agglomeration, tend to insulate the dye particles, meaning that the energy required for sublimation, diffusion or activation of the dye is elevated to unacceptable levels for practicing the process. Other additives which are used in the prior art to produce a liquid ink from the solid dyes are reactive with the dye, and modify or eliminate required properties of the dyes. Other “side effects” of using these additives include undesired color modification or contamination, bonding with the intermediate substrate, or optical density on the final substrate which is inadequate.
While certain solvents will dissolve the dyes, the requirements of the process makes the use of these solvents impractical. Dye materials solubilized to the molecular level have a tendency to bond with fibers, both synthetic and natural. Accordingly, the dyes cannot be effectively transferred from a substrate used as an intermediate transfer sheet by the application of heat and pressure as required by the process of the present invention.
SUMMARY OF THE PRESENT INVENTION
This invention is a method of printing liquid ink which is produced from sublimation, dye diffusion, or heat sensitive dyes. A printer that uses liquid ink, such as an ink jet printer, prints the image onto a medium, or intermediate substrate, which may be paper. The sublimation, dye diffusion, or heat sensitive dyes (hereinafter collectively referred to as “heat activated dyes”) contained in the ink are not substantially sublimated or activated during the process of printing on to the medium. The image formed by the printed ink is transferred from the medium to a final substrate by the application of heat and pressure which sublimates or activate the ink. This thermal transfer step is achieved at low energy when compared to other sublimation or activation processes known and used in the art. One of the goals of the process requires that the thermal transfer occur by applying heat and pressure for no more than three and one-half minutes, and preferably less time. In the prior art, heat at the activation temperature is applied for up to thirty minutes. Accordingly, as used herein, a low energy transfer is a thermal transfer of the image from the intermediate sheet to the final substrate by applying a temperature which is not higher than 450° F., for no more than three and one-half minutes, with the resulting image, as deposited on the final substrate, having an optical density of 1.0 or greater, as measured by an X-Rite 418 densitometer in the density operation mode with background corrections.
The dyes, or perhaps pigments, which are suitable for practicing the invention are dyes which are capable of low energy transfer from the medium onto the final substrate to produce an image on the final substrate which is waterfast and colorfast. After transfer, the dyes are no longer substantially heat sensitive. Dyes which have these characteristics are found in various classifications of dyes, including disperse dyes, solvent dyes, basic dyes, acid dyes and vat dyes. However, none of the dyes which are currently available and which are suitable for producing a liquid ink for practicing the invention are soluble in water.
Accordingly, only a relatively small range of dyes in combination with a relatively small range of dispersing/emulsifying agents will produce a stable liquid ink which will allow the printing method to be practiced. Characteristics of acceptable dyes and dispersing/emulsifying agents which will produce a liquid ink with which to practice the printing method are disclosed herein.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram showing the printing process.
FIG. 2 illustrates an example of a design printed by a printer using the printing process.
FIG. 3 is a diagrammatic illustration showing exemplary elements of computer and printing systems which could be used to achieve the printing process.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
An image is input into a computer 4. The computer directs a printer 6 to print the image. Any means of forming an image which may be printed from a computer may be used, including images generated by software. Available computer design graphic software may be used, or still photography may be used. The design may be read and communicated by a scanner 2, which is connected to computer 4. The design may be photographic, graphic artistic, or simply letters or words. The use of cyan, yellow and magenta ink compositions allow the printer to print in full color or multi-color designs.
After the image is printed onto the medium, the image may be permanently transferred by thermal means. Most commonly, the design will be transferred onto a textile substrate, such as a shirt 8, although the image may be transferred onto other materials which act as a substrate, such as metal, ceramic, wood, or plastic. The design 3, which is printed onto the medium 9 without activating the ink, is placed against the final substrate which may be a shirt 8. A temperature which is sufficient to activate the dye is applied. This temperature will typically be around 400° F. This temperature is applied for a time sufficient to heat activate and transfer the ink solids in accordance with the requirements of the invention. A heat transfer machine 10 may be used to accomplish the transfer of the inks from the medium to the substrate. Activation, or sublimation, of the dye does not take place at the time of printing the image onto the medium, but occurs during the transfer from the medium to the substrate. The group of heat activated dyes from which dyes may be selected for use in the invention are dyes which substantially sublimate or activate at low energy to form an image which has an optical density value of no less than 1.0, and which is waterfast and colorfast. Each of the dyes which comprise this group will achieve an optical density of 1.25 or greater after activation, when optical density is measured by an X-Rite 418 densitometer in the density operation mode with background correction.
The invention requires the dyes to be transferred at low energy (as defined above) after the dyes are formulated into a liquid ink as described herein and printed onto the medium (the “acceptable dyes”). While a larger group of dyes can be sublimated at low energy, dyes which are not acceptable cannot be formulated into a liquid ink which retains the required properties. While most of the acceptable dyes are disperse dyes, certain other dyes which will perform according to the goals of the invention are included in the group of acceptable dyes.
In general, the acceptable dyes are not reactive, and do not have strong polar function groups, such as sulfonate or carboxyl groups. Reacting the dyes with chemical agents added to the formulation in order to form a liquid ink, as is sometimes done in the prior art, tends to inhibit the activation of the dyes at low energy, which is contrary to the present invention. The acceptable dyes have a molecular weight which is less than 600, and is preferably within a range of 200-400. Most of the acceptable dyes are disperse dyes but certain solvent dyes, vat dyes, basic or cationic dyes (such as carbinol base dyes or anthraquinone type dyes having a quarternary amine), acid dyes, direct dyes, mordant dyes and oxidizing colors also fall within the group of acceptable dyes.
The ink formulation prepared according to the invention is a liquid. Dye solids of small particle size are dispersed in a liquid carrier, and one or more agents are used to maintain what may be called, according to various definitions, a collodial, dispersion or emulsion system. The term “emulsion” is used herein to describe the system, even though the system could, in some forms, be called a colloid or a dispersion.
The heat activated solid dye particles are of small size. It is preferred that the individual solid dye particles have no dimension which is greater than 0.5 microns.
The solid dye particles are dispersed into the liquid carrier. The dispersion is normally achieved by the introduction of a dispersing agent, although mechanical or other physical means could be used. An emulsifying agent is introduced to prevent coagulation or coalescense of the individual dye particles and to stabilize the system.
As set forth in the examples, a single agent may be used as a dispersing and emulsifying agent. Multiple agents may be used in accordance with the goals of the invention. The agent or agents stabilize the system, so that the system remains sufficiently homogenous over time to allow successful printing and transfer of the dye according to the method of the invention. Further, the agent shields the individual particles from the adverse effects of the storage, transportation and printer environments, such as heat, cold and light. While the agent shields the dye particles while they are in the liquid system, it does not inhibit low energy transfer of the dyes in the form of the printed image.
The agents used to disperse and/or emulsify the dye particles include various dispersant materials, surfactants (including cationic, anionic, amphoteric, and nonionic surfactants) and polymeric surfactants. Polymeric materials with dispersing ability, but which are not surfactants, can also be used. Either synthetic or natural materials can be used. The dispersing/emulsifying agents each have a molecular weight which is less than 100,000, and preferably less than 10,000. Thermal stability of the agents is essential to prevent decomposition and/or chemical reaction between the agents and the other components in the systems.
As with the dye, to accomplish the printing method of the invention, the agent(s) do not have active function groups which will react or crosslink with the medium, or which will react or crosslink with the dye or pigment in the system, since such reactions or linkages inhibit the required properties of the dye at the time of activation. The agent(s) must form the emulsion from the finely divided dye particles particles and the liquid carrier, but must not materially insulate or otherwise materially inhibit the activation of the dye at the time of final transfer.
Agents having the required properties when used with some or all of the acceptable dyes include Lignosulfonate products such as Marasperse 52CP (Lignotech), Lignosol FTA (Lignotech), Lignosol SFX-65 (Lignotech), Marasperse CBA-1 (Lignotech), Temsperse S002 (Temfibre, Inc.) Stepsperse DF series (Stephan Co.), and Weschem NA-4 (Wesco Technologies, LTD), Kraft lignin products such as Diwatex XP (Lignotech), and Reax 85 (Westvaco), and oxylignin products such as Marasperse CBOS-6 and Vanisperse CB.
Other examples of emulsifying agents and dispersants are alkylaryl polyether alcohol nonionic surfactants, such as Triton X series (Octylphenoxy-polyethoxyethanol); alkylamine ethoxylates nonionic surfactants such as Triton FW series, Triton CF-10, and Tergitol (Union Carbide Chemicals); polysorbate products such as Tween (ICI Chemicals and Polymers); polyalkylene and polyalkylene modified surfactants, such as Silwet surfactants (polydimethylsioxane copolymers) and CoatOSil surfactants from OSI Specialties; alcohol alkoxylates nonionic surfactants, such as Renex, BRII, and Ukanil; Sorbitan ester products such as Span and Arlacel; alkoxylated esters/PEG products, such as Tween, Atlas, Myrj and Cirrasol surfactants from ICI Chemicals and Polymers; unsaturated alcohol products such as surfynol series surfactants from Air Products Co., alkyl phosphoric acid ester surfactant products, such as amyl acid phosphate, Chemphos TR-421; alkyl amine oxide such as Chemoxide series from Chemron Corporation; anionic sarcosinate surfactants such as Hamposyl series from Hampshire Chemical corporation; glycerol esters or polyglycol ester nonionic surfactants such as Hodag series from Calgene Chemical, Alphenate (Henkel-Nopco), Solegal W (Hoechst AG), Emultex (Auschem SpA); and polyethylene glycol ether surfactants such as Newkalgen from Takemoto Oil and Fat Co.
Multiple agents may be used in combination to improve the emulsification of the system and to stabilize the system, as long as the agents are not reactive and do not cause precipitation or otherwise negatively impact upon the emulsification process or the transfer process.
Organic solvents, cosolvents, and/or humectants can also be used as additional additives. Aliphatic and/or aromatic alcohols (thioalcohols), alkoxylated alcohols (thioalcohols), halogenated alcohols (thioalcohols) and carboxylated alcohols (thioalcohols), including mono-alcohol (thioalcohol), diol (thiodialcohol), triol (thiotrialcohol) and polyol (thiopolyalcohol), aminoxide, diamine, triamine material, may be used to improve dye dispersibility, solubility and/or stability in the final ink composition. Examples of solvent materials are diethylene glycol, DMSO and dipropylene glycol.
Other additives can also be introduced into the ink, such as surfactants, corrosion control agents, foam control agents, antioxidants, radiation stabilizers, thermal stabilizers, flame retarding agents, pH control agents, viscosity control agents, or surface (interfacial) tension control agents can be added during or after the emulsification process. Other materials, including dispersants, emulsifying agents, and stabilizers, may be included in the formulation by means of methods known in the art.
EXAMPLES
An example of a liquid ink composition usable in an ink jet printer is as follows:
Material Weight %
heat sensitive dye(s) 0.05-20%
dispersant/emulsifying agent 0.05-30%
solvent(s)/cosolvent(s) 0-45%
additive(s) 0-15%
water 40-98%
Total 100%
The heat sensitive dye may be a red (magenta), blue (cyan), yellow or brown dye. The dispersant/emulsifying agent may be a sulfonated lignin such as Marasperse CBA-1. The additive(s) may be Tergitol 15-s-9, Triton X-165, Triton X-405 or Surfynol 465. The solvents and/or co-solvents may be diethlene glycol and/or thioglycol and/or 2-pyrrolidone and/or 1-methoxy 2-propanol.
Example A
30 grams of finely divided Spirit Blue Base (CAS# 68389-46-8) is mixed with 15 grams of Ultrazine NA (Lignotech, USA) and 500 grams of de-ionized water. An ultrasonic pulverizer is used to disperse the dye into the aqueous phase for approximately 30 minutes. Two (2.0) grams of Solsperse 27000 (Zenica Colors, USA) is added into the mixture, which is pulverized for another 10 minutes to achieve a stable emulsion. The mixture is filtered to remove particles larger than 0.25 microns. The printing ink for use in the ink jet printer is formulated from the emulsion as follows:
Material Weight %
Emulsion 87.0 
Glycol 4.0
1-methoxy.2-propanol 7.0
Ammonyx LO (1) 2.0
Total 100%
(1) Stepan Co
The resulting ink is printed by the HP 560 Deskjet printer onto plain copy paper in a dark cyan color, and is transferred from the paper medium or receiver onto a polyester fabric substrate by thermal transfer at 400° F. temperature with 40 lb. pressure applied for 20 seconds. The image as applied to the polyester fabric substrate has an optical density value of 1.4-1.5 for the cyan color as read by an X-Rite 418 densitometer.
Example B
Twenty (20) grams of Disperse Yellow 9 (CAS# 6373-73-5) is mixed with four (4) grams of Sulfynol 131 (Air Products) and 5.0 grams of glycerol (CAS# 56-81-5) and 480 grams of de-ionized water. The pulverizer is used to disperse the dye into the aqueous phase for approximately 25 minutes. One (1.0) gram of Sulfynol 104 E (Air Products) is added to the mixture and pulverized for another 10 minutes to produce an emulsion. The mixture is filtered to remove particles larger than 0.25 microns. The liquid ink for use in the ink jet printer is formulated as follows:
Material Weight %
Emulsion 78.5 
Diethylene Glycol 8.0
Thiodiethanol 5.0
Sulfynol 465 4.0
1-2.Propandiol 4.0
DEA 0.5
Total 100%
The resulting liquid ink is printed by a Canon Bubble Jet 4100 printer onto plain copy paper. The printed image is thermally transferred from the paper medium to a polyester textile substrate at 400° F., while applying 40 lb. pressure for 20 seconds. An intense yellow color having an optical density of 1.4, as measured by an X-Rite 418 densitometer with background correction, appears on the substrate.
Example C
Twenty-five (25) grams of finely divided Solvent Red 52 (CAS# 81-390), is mixed with twenty-two (22) grams of Transferin® N-38 (Boehme Filatex, Inc.) and one hundred and fifty (150) grams of de-ionized water. An ultrasonic pulverizer is used to finely divide the dye and to disperse and micronize the solid dye particles into the aqueous phase by operating the pulverizer for approximately Forty-five (45) minutes. Five (5) grams of Tergitol™ 15-S-15 (Union Carbide, USA). Ten (10) grams of 1,4-butanediol, and two hundred and twenty (220) grams of de-ionized water are then added into the dispersion and pulverized for an additional ten (10) minutes. The dispersion is then filtered to remove solid particulate have a dimension which is larger than 0.25 microns. A liquid ink is formulated using the homogenized emulsion as follows:
Component Weight %
Emulsion 85.0
Tergitol ™ 15-S-9(1) 3.997
1-pyrrolidinone 2.0
1-ethoxy-2-propanol 6.0
IPA 3.0
Kathon ® PFM(2) 0.003
Total 100%
(1)Union Carbide, USA
(2)Rohm & Haas Company
The liquid ink is then printed by an Epson Stylus Color Pro or Epson Stylus Color lls piezo electric ink jet printer to form an image on plain copy paper. The image is transferred from the paper to a polyester fabric substrate by the application of pressure and heat at a temperature of 400° F. for 25 seconds. The image as transferred has an optical density of 1.45 for the magenta color, as measured by an X-Rite 418 densitometer with background correction.

Claims (26)

1. A liquid ink for use in ink jet printers prepared from heat activated dye solids, comprising:
Material Weight % heat sensitive dye solid 0.05-20% dispersant/emulsifying agent 0.05-30% solvent   0-45% water   40-98% Total 100%
wherein the heat sensitive dye solid is not substantially insoluble in the water.
2. A liquid ink for use in ink jet printers prepared from heat activated dye solids, as described in claim 1, further comprising 0.01% to 15% surfactant.
3. A liquid ink for use in ink jet printers prepared from heat activated dye solids, as described in claim 1, wherein said dispersant/emulsifying agent is a sulfonated lignin.
4. A liquid ink for use in ink jet printers prepared from heat activated dye solids, as described in claim 2, wherein said dispersant/emulsifying agent is a sulfonated lignin.
5. A liquid ink for use in ink jet printers prepared from heat activated dye solids, as described in claim 1, wherein said heat activated dye is a dye which, after the liquid ink is printed, transfers by the application of heat at a temperature which is not higher than 450° F. for no more than three and one-half minutes, with the resulting image, as deposited on the final substrate having an optical density of 1.0 or greater, as measured by an X-Rite 418 densitometer in the density operation mode with background corrections.
6. A liquid ink for use in ink jet printers prepared from heat activated dye solids as described in claim 5, further comprising 0.01% to 15% surfactant.
7. A liquid ink for use in ink jet printers prepared from heat activated dye solids as described in claim 5, wherein said dispersant/emulsifying agent is a sulfonated lignin.
8. A liquid ink for use in ink jet printers prepared from heat activated dye solids as described in claim 6, wherein said dispersant/emulsifying agent is a sulfonated lignin.
9. A liquid ink for use in ink jet printers prepared from heat activated dye solids as described in claim 1, further comprising 0.01% to 45% solvent.
10. A liquid ink for use in ink jet printers prepared from heat activated dye solids as described in claim 5, further comprising 0.01% to 45% solvent.
11. A liquid ink for use in ink jet printers prepared from heat activated dye solids as described in claim 6, further comprising 0.01% to 45% solvent.
12. A liquid ink for use in ink jet printers prepared from heat activated dye solids as described in claim 7, further comprising 0.01% to 45% solvent.
13. A liquid ink jet ink, comprising:
Material Weight % heat activated dye solids 0.05-20% at least one dispersant and emulsifying agent 0.05-30% solvent   0-45% water   40-98% Total 100%
wherein said heat activated dye solids are substantially insoluble in said water, and wherein said at least one dispersant and emulsifying agent inhibits agglomeration of individual particles of said heat activated dye solids within the liquid ink to limit a particle size of said individual particles of said heat activated dye solids within the liquid ink and sustain stability of the liquid ink, wherein said at least one dispersant and emulsifying agent does not materially increase an activation temperature of said heat activated dye solids.
14. A liquid ink jet ink as described in claim 13, further comprising 0.01% to 15% surfactant.
15. A liquid ink jet ink as described in claim 13, wherein said at least one dispersant and emulsifying agent is a sulfonated lignin.
16. A liquid ink jet ink as described in claim 13, wherein said heat activated dye is a dye which, after the liquid ink is printed, transfers by the application of heat at a temperature which is not higher than 450° F., for no more than three and one-half minutes, with the resulting image, as deposited on the final substrate, having an optical density of 1.0 or greater, as measured by an X-Rite 418 densitometer in the density operation mode with background corrections.
17. A liquid ink jet ink as described in claim 13, wherein said heat activated dye solids are finely divided.
18. A liquid ink jet ink as described in claim 13, wherein individual particles of said heat activated dye solids are 0.5 microns or less in size.
19. A liquid ink jet ink as described in claim 13, wherein said at least one dispersant and emulsifying agent comprises at least one dispersant and at least one emulsifying agent, and wherein said at least one emulsifying agent emulsifies said heat activated dye solids within the liquid ink.
20. A liquid ink jet ink, comprising:
Material Weight % heat activated dye solids 0.05-20% at least one dispersant and emulsifying agent 0.05-30% solvent   0-45% water   40-98% Total 100%
wherein the heat activated dye solids are substantially insoluble in the water, and wherein said at least one dispersant and emulsifying agent emulsifies said heat activated dye solids within the liquid ink.
21. A liquid ink jet ink as described in claim 20, further comprising 0.01% to 15% surfactant.
22. A liquid ink jet ink as described in claim 20, wherein said at least one dispersant and emulsifying agent is a sulfonated lignin.
23. A liquid ink jet ink as described in claim 20, wherein said heat activated dye is a dye which, after the liquid ink is printed, transfers by the application of heat at a temperature which is not higher than 450° F., for no more than three and one-half minutes, with the resulting image, as deposited on the final substrate, having an optical density of 1.0 or greater, as measured by an X-Rite 418 densitometer in the density operation mode with background corrections.
24. A liquid ink jet ink as described in claim 20, wherein said heat activated dye solids are finely divided.
25. A liquid ink jet ink as described in claim 20, wherein individual particles of said heat activated dye solids are 0.5 microns or less in size.
26. A liquid ink jet ink as described in claim 20, wherein said at least one dispersant and emulsifying agent comprises at least one dispersant and at least one emulsifying agent, and wherein said at least one emulsifying agent emulsifies said heat activated dye solids within the liquid ink.
US10/195,922 1994-03-08 2002-07-15 Heat activated ink jet ink Expired - Lifetime USRE38952E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/195,922 USRE38952E1 (en) 1994-03-08 2002-07-15 Heat activated ink jet ink

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US08/207,756 US5487614A (en) 1990-07-09 1994-03-08 Method of printing a multiple color image using heat sensitive inks
US08299736 US5488907C1 (en) 1990-07-09 1994-09-01 Permanent heat activated transfer printing process and composition
US08/506,894 US5734396A (en) 1994-09-01 1995-07-25 Permanent heat activated transfer printing process and composition
US08/565,999 US5601023A (en) 1990-07-09 1995-12-01 Permanent heat activated transfer printing process and composition
US08/695,121 US5642141A (en) 1994-03-08 1996-08-05 Low energy heat activated transfer printing process
US08/710,171 US5640180A (en) 1994-03-08 1996-09-12 Low energy heat activated transfer printing process
US08/807,964 US5830263A (en) 1994-03-08 1997-02-28 Low energy heat activated transfer printing process
US10/195,922 USRE38952E1 (en) 1994-03-08 2002-07-15 Heat activated ink jet ink

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/807,964 Reissue US5830263A (en) 1994-03-08 1997-02-28 Low energy heat activated transfer printing process

Publications (1)

Publication Number Publication Date
USRE38952E1 true USRE38952E1 (en) 2006-01-31

Family

ID=35695054

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/195,922 Expired - Lifetime USRE38952E1 (en) 1994-03-08 2002-07-15 Heat activated ink jet ink

Country Status (1)

Country Link
US (1) USRE38952E1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050014A1 (en) * 2007-08-23 2009-02-26 Sensient Colors Inc. Self-dispersed pigments and methods for making and using the same
US20100251932A1 (en) * 2009-04-07 2010-10-07 Sujeeth Puthalath K Self-dispersing particles and methods for making and using the same
US20110007118A1 (en) * 2009-07-10 2011-01-13 Ming Xu High viscosity heat sensitive ink printing process
US7927416B2 (en) 2006-10-31 2011-04-19 Sensient Colors Inc. Modified pigments and methods for making and using the same
US20120172490A1 (en) * 2010-12-31 2012-07-05 Xiaorong Cai Carbon black pigmented inkjet ink to reduce kogation and improve text quality
US9120326B2 (en) 2013-07-25 2015-09-01 The Hillman Group, Inc. Automatic sublimated product customization system and process
US9302468B1 (en) 2014-11-14 2016-04-05 Ming Xu Digital customizer system and method
US9333788B2 (en) 2013-07-25 2016-05-10 The Hillman Group, Inc. Integrated sublimation transfer printing apparatus
US9403394B2 (en) 2013-07-25 2016-08-02 The Hillman Group, Inc. Modular sublimation transfer printing apparatus
US9731534B2 (en) 2013-07-25 2017-08-15 The Hillman Group, Inc. Automated simultaneous multiple article sublimation printing process and apparatus
US9781307B2 (en) 2014-11-14 2017-10-03 Sawgrass Technologies, Inc. Networked digital imaging customization
US9962979B2 (en) 2015-08-05 2018-05-08 The Hillman Group, Inc. Semi-automated sublimation printing apparatus
US10011120B2 (en) 2013-07-25 2018-07-03 The Hillman Group, Inc. Single heating platen double-sided sublimation printing process and apparatus
US20180255857A1 (en) * 2002-05-25 2018-09-13 Owayo Gmbh Method for the production of printed items of clothing made from textile material
US10419644B2 (en) 2014-11-14 2019-09-17 Sawgrass Technologies, Inc. Digital image processing network
US10827098B2 (en) 2015-11-02 2020-11-03 Sawgrass Technologies, Inc. Custom product imaging method
US10827097B2 (en) 2015-11-02 2020-11-03 Sawgrass Technologies, Inc. Product imaging

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844806A (en) 1972-01-07 1974-10-29 Ciba Geigy Ag Process for the production of highly concentrated dyestuff and pigment preparations
US3948828A (en) 1973-04-13 1976-04-06 Ciba-Geigy Corporation Liquid to pasty dyestuff preparations
US3969302A (en) 1969-09-03 1976-07-13 Ciba-Geigy Ag Process for the dyeing of colored shaped articles of high polymer, synthetic resins and preparations for such process
US3977828A (en) 1974-05-09 1976-08-31 Ciba-Geigy Ag Aqueous dyestuff preparations of dyestuffs insoluble to difficultly soluble in water
DE2633260A1 (en) 1975-07-25 1977-01-27 Sublistatic Holding Sa TRANSFER PRINT CARRIERS AND THEIR PRODUCTION
US4042320A (en) 1974-05-09 1977-08-16 Ciba-Geigy Ag Anionic and nonionic emulsified dye suspension with formalin, hydrotropic agent
US4079026A (en) 1977-06-20 1978-03-14 Hercules Incorporated Printing inks and process for using the same
US4205991A (en) 1974-12-13 1980-06-03 Ciba-Geigy Ag Transfer printing on textile material
US4207067A (en) 1977-06-08 1980-06-10 Ciba-Geigy Ag Transfer dye
US4265630A (en) * 1978-11-17 1981-05-05 Ciba-Geigy Ag Thermotransfer process for printing synthetic fibre materials with multi-color effects, and carrier for performing the process
US4265631A (en) 1978-08-02 1981-05-05 Ciba-Geigy Corporation Aqueous dyestuff preparations of water-insoluble or sparingly water-soluble dyes
US4281999A (en) 1977-12-29 1981-08-04 Ciba-Geigy Corporation Aqueous dye preparations of dyes difficultly soluble in water
US4370144A (en) 1977-11-10 1983-01-25 Ciba-Geigy Corporation Two-phase organic solvent-water dyeing process for polyester fibers
GB2105735A (en) 1981-09-11 1983-03-30 Konishiroku Photo Ind Ink composition for ink jet printing
US4422854A (en) * 1981-06-03 1983-12-27 Hoechst Aktiengesellschaft Transfer printing support, process for the manufacture thereof, with blue azo dye:di-cyano-nitro-phenyl-azo aniline
US4436522A (en) 1981-12-31 1984-03-13 Mitsubishi Chemical Industries Limited Disperse dye composition
EP0103892A2 (en) 1982-09-20 1984-03-28 Discovision Associates Optical recording medium and method of making same
US4460374A (en) 1981-02-12 1984-07-17 Ciba-Geigy Corporation Stable composition for treating textile substrates
EP0115241A1 (en) 1983-02-03 1984-08-08 MACO-MEUDON Société dite : Percussive tool with swinging handles
JPS608959A (en) 1983-06-29 1985-01-17 Fujitsu Ltd Disk cache controlling method
JPS6042317A (en) 1983-08-18 1985-03-06 Nisshin Oil Mills Ltd:The Cosmetics
US4559150A (en) 1982-08-11 1985-12-17 Ciba Geigy Corporation Stable composition for treating textile substrates
JPS61118477A (en) 1984-11-14 1986-06-05 Canon Inc Ink composition for ink jet recording
JPS6257750A (en) 1985-09-07 1987-03-13 Kobe Steel Ltd Method for electromagnetic stirring in casting mold of continuous casting machine for slab
US4689078A (en) 1985-09-02 1987-08-25 Canon Kabushiki Kaisha Recording liquid
US4692188A (en) 1985-10-15 1987-09-08 Xerox Corporation Preparation of ink jet compositions
GB2189436A (en) 1986-04-25 1987-10-28 Oliveira Amanda Uchoa D Printed transfer sheet for fabric decorating
US4713081A (en) 1977-11-23 1987-12-15 Ciba-Geigy Corporation Stable aqueous dyestuff preparations of finely dispersed water-insoluble or sparingly water-soluble dyes
US4725849A (en) 1985-08-29 1988-02-16 Canon Kabushiki Kaisha Process for cloth printing by ink-jet system
EP0303687A1 (en) 1987-03-02 1989-02-22 Genetics Inst Compositions for enhancing adcc therapy.
EP0309425A2 (en) 1987-09-21 1989-03-29 ISTITUTO DE ANGELI S.p.A. New heterocyclic derivatives
JPH02189373A (en) 1989-01-19 1990-07-25 Seiren Co Ltd Jet printing ink composition for dyeing cloth
US4969951A (en) 1985-05-21 1990-11-13 Canon Kabushiki Kaisha Cloth jet printing method using aqueous ink having hydroxyl or amino-reactive disperse dye
US5028262A (en) * 1989-11-02 1991-07-02 Eastman Kodak Company Stabilization of ink compositions
WO1992000852A1 (en) 1990-07-09 1992-01-23 Sawgrass Systems , Inc. D/B/A The Sawgrass Co. Transfer printing process
US5102448A (en) 1988-11-28 1992-04-07 Imperial Chemical Industries Plc Ink-jet printing
EP0506395A1 (en) 1991-03-29 1992-09-30 Lexmark International, Inc. Solid ink jet composition
US5164232A (en) 1991-02-11 1992-11-17 Xerox Corporation Ink compositions
US5175566A (en) 1990-02-23 1992-12-29 Canon Kabushiki Kaisha Image communicating apparatus with ink jet printer having controlled capping operation
US5229786A (en) 1988-12-27 1993-07-20 Canon Kabushiki Kaisha Ink-jet recording method, recording unit, ink cartridge and recording apparatus employing recording liquid
JPH05255626A (en) 1992-03-11 1993-10-05 Kanebo Ltd Ink for ink jet printing
US5250121A (en) 1991-09-26 1993-10-05 Canon Kabushiki Kaisha Ink-jet textile printing ink and ink-jet textile printing process
US5281261A (en) 1990-08-31 1994-01-25 Xerox Corporation Ink compositions containing modified pigment particles
EP0606490A1 (en) 1992-07-02 1994-07-20 Seiko Epson Corporation Intermediate transfer type ink jet recording method
EP0633347A2 (en) 1993-07-09 1995-01-11 Canon Kabushiki Kaisha Ink jet textile printing system and method using disperse dyes
WO1995021739A1 (en) 1994-02-10 1995-08-17 Sawgrass Systems, Inc. A printing method of applying a polymer surface preparation to a substrate
US5643387A (en) 1988-09-06 1997-07-01 Berghauser; Donald C. Instant color sublimation transfers
US5645888A (en) 1993-01-19 1997-07-08 Tektronix, Inc. Reactive ink compositions and systems
WO1998003724A1 (en) 1996-07-19 1998-01-29 Thermopatch B.V. Method and apparatus for printing textile labels, in particular heat-sealable textile labels
US5746816A (en) * 1996-08-01 1998-05-05 Sawgrass Systems, Inc. Liquid ink process and printing method
WO1999056948A1 (en) 1998-05-06 1999-11-11 Sawgrass Systems, Inc. Reactive ink printing process
US6105502A (en) * 1998-10-02 2000-08-22 Sawgrass Systems, Inc. Reactive ink printing process
US6123758A (en) * 1999-09-22 2000-09-26 Xerox Corporation Ink compositions containing undecylenoyl sarcosinate salts

Patent Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969302A (en) 1969-09-03 1976-07-13 Ciba-Geigy Ag Process for the dyeing of colored shaped articles of high polymer, synthetic resins and preparations for such process
US3844806A (en) 1972-01-07 1974-10-29 Ciba Geigy Ag Process for the production of highly concentrated dyestuff and pigment preparations
US3948828A (en) 1973-04-13 1976-04-06 Ciba-Geigy Corporation Liquid to pasty dyestuff preparations
US3977828A (en) 1974-05-09 1976-08-31 Ciba-Geigy Ag Aqueous dyestuff preparations of dyestuffs insoluble to difficultly soluble in water
US4042320A (en) 1974-05-09 1977-08-16 Ciba-Geigy Ag Anionic and nonionic emulsified dye suspension with formalin, hydrotropic agent
US4205991A (en) 1974-12-13 1980-06-03 Ciba-Geigy Ag Transfer printing on textile material
DE2633260A1 (en) 1975-07-25 1977-01-27 Sublistatic Holding Sa TRANSFER PRINT CARRIERS AND THEIR PRODUCTION
GB1527396A (en) 1975-07-25 1978-10-04 Sublistatic Holding Sa Transfer print carriers and their manufacture
US4207067A (en) 1977-06-08 1980-06-10 Ciba-Geigy Ag Transfer dye
US4079026A (en) 1977-06-20 1978-03-14 Hercules Incorporated Printing inks and process for using the same
US4370144A (en) 1977-11-10 1983-01-25 Ciba-Geigy Corporation Two-phase organic solvent-water dyeing process for polyester fibers
US4713081A (en) 1977-11-23 1987-12-15 Ciba-Geigy Corporation Stable aqueous dyestuff preparations of finely dispersed water-insoluble or sparingly water-soluble dyes
US4281999A (en) 1977-12-29 1981-08-04 Ciba-Geigy Corporation Aqueous dye preparations of dyes difficultly soluble in water
US4265631A (en) 1978-08-02 1981-05-05 Ciba-Geigy Corporation Aqueous dyestuff preparations of water-insoluble or sparingly water-soluble dyes
US4265630A (en) * 1978-11-17 1981-05-05 Ciba-Geigy Ag Thermotransfer process for printing synthetic fibre materials with multi-color effects, and carrier for performing the process
US4460374A (en) 1981-02-12 1984-07-17 Ciba-Geigy Corporation Stable composition for treating textile substrates
US4422854A (en) * 1981-06-03 1983-12-27 Hoechst Aktiengesellschaft Transfer printing support, process for the manufacture thereof, with blue azo dye:di-cyano-nitro-phenyl-azo aniline
GB2105735A (en) 1981-09-11 1983-03-30 Konishiroku Photo Ind Ink composition for ink jet printing
US4436522A (en) 1981-12-31 1984-03-13 Mitsubishi Chemical Industries Limited Disperse dye composition
US4559150A (en) 1982-08-11 1985-12-17 Ciba Geigy Corporation Stable composition for treating textile substrates
EP0103892A2 (en) 1982-09-20 1984-03-28 Discovision Associates Optical recording medium and method of making same
EP0115241A1 (en) 1983-02-03 1984-08-08 MACO-MEUDON Société dite : Percussive tool with swinging handles
JPS608959A (en) 1983-06-29 1985-01-17 Fujitsu Ltd Disk cache controlling method
JPS6042317A (en) 1983-08-18 1985-03-06 Nisshin Oil Mills Ltd:The Cosmetics
JPS61118477A (en) 1984-11-14 1986-06-05 Canon Inc Ink composition for ink jet recording
US4969951A (en) 1985-05-21 1990-11-13 Canon Kabushiki Kaisha Cloth jet printing method using aqueous ink having hydroxyl or amino-reactive disperse dye
US4725849A (en) 1985-08-29 1988-02-16 Canon Kabushiki Kaisha Process for cloth printing by ink-jet system
US4689078A (en) 1985-09-02 1987-08-25 Canon Kabushiki Kaisha Recording liquid
JPS6257750A (en) 1985-09-07 1987-03-13 Kobe Steel Ltd Method for electromagnetic stirring in casting mold of continuous casting machine for slab
US4692188A (en) 1985-10-15 1987-09-08 Xerox Corporation Preparation of ink jet compositions
GB2189436A (en) 1986-04-25 1987-10-28 Oliveira Amanda Uchoa D Printed transfer sheet for fabric decorating
EP0303687A1 (en) 1987-03-02 1989-02-22 Genetics Inst Compositions for enhancing adcc therapy.
EP0309425A2 (en) 1987-09-21 1989-03-29 ISTITUTO DE ANGELI S.p.A. New heterocyclic derivatives
US5643387A (en) 1988-09-06 1997-07-01 Berghauser; Donald C. Instant color sublimation transfers
US5102448A (en) 1988-11-28 1992-04-07 Imperial Chemical Industries Plc Ink-jet printing
US5229786A (en) 1988-12-27 1993-07-20 Canon Kabushiki Kaisha Ink-jet recording method, recording unit, ink cartridge and recording apparatus employing recording liquid
JPH02189373A (en) 1989-01-19 1990-07-25 Seiren Co Ltd Jet printing ink composition for dyeing cloth
US5028262A (en) * 1989-11-02 1991-07-02 Eastman Kodak Company Stabilization of ink compositions
US5175566A (en) 1990-02-23 1992-12-29 Canon Kabushiki Kaisha Image communicating apparatus with ink jet printer having controlled capping operation
WO1992000852A1 (en) 1990-07-09 1992-01-23 Sawgrass Systems , Inc. D/B/A The Sawgrass Co. Transfer printing process
US5281261A (en) 1990-08-31 1994-01-25 Xerox Corporation Ink compositions containing modified pigment particles
US5164232A (en) 1991-02-11 1992-11-17 Xerox Corporation Ink compositions
EP0506395A1 (en) 1991-03-29 1992-09-30 Lexmark International, Inc. Solid ink jet composition
US5250121A (en) 1991-09-26 1993-10-05 Canon Kabushiki Kaisha Ink-jet textile printing ink and ink-jet textile printing process
JPH05255626A (en) 1992-03-11 1993-10-05 Kanebo Ltd Ink for ink jet printing
EP0606490A1 (en) 1992-07-02 1994-07-20 Seiko Epson Corporation Intermediate transfer type ink jet recording method
US5645888A (en) 1993-01-19 1997-07-08 Tektronix, Inc. Reactive ink compositions and systems
EP0633347A2 (en) 1993-07-09 1995-01-11 Canon Kabushiki Kaisha Ink jet textile printing system and method using disperse dyes
WO1995021739A1 (en) 1994-02-10 1995-08-17 Sawgrass Systems, Inc. A printing method of applying a polymer surface preparation to a substrate
WO1998003724A1 (en) 1996-07-19 1998-01-29 Thermopatch B.V. Method and apparatus for printing textile labels, in particular heat-sealable textile labels
US5746816A (en) * 1996-08-01 1998-05-05 Sawgrass Systems, Inc. Liquid ink process and printing method
WO1999056948A1 (en) 1998-05-06 1999-11-11 Sawgrass Systems, Inc. Reactive ink printing process
US6105502A (en) * 1998-10-02 2000-08-22 Sawgrass Systems, Inc. Reactive ink printing process
US6123758A (en) * 1999-09-22 2000-09-26 Xerox Corporation Ink compositions containing undecylenoyl sarcosinate salts

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
AF Encyclopedia of Textiles, p. 472, 2<SUP>nd </SUP>Edition, Doric Publishing Company, Mar. 1973.
AMIGA Advertisement, Compedo Spezialfarbbander GMB, Sep. 1993.
Amiga Magazine, 1992, p. 14, Compedo Spezialfarbbander GmbH, Postfach 1352, no month available.
AMIGA Special, 1991, p. 40, No. 3/91, Compedo Pennekamp-Dorsch GbR, Postfach 1352, 5860 Iserlohn, no month available.
Borregaard Ligno Tech, Dyestuffs, Web Page, no date available.
BYK Chemie, Disperbyk, Web Page, no date available.
Drew Myers, Surfactant Science and Technology, 1946, pp. 60, 61, VCH Publishers, Inc., New York, NY, no month available.
Hermann Rath, Lehrbuch der Textilchemie, 1972, Springer Verlag, Berlin-Heidelberg, p. 725, New York, NY, no month available.
Lesley Brown, The New Shorter Oxford English Dictionary on Historical Principles, 1993, pp. 961, 962, vol. 1, A-M, Oxford University Press, Inc., New York, NY, no month available.
Lies Muller, PC-Active, No. 42, 1992, pp. 42, 43, no month available.
Nicholas L. Moore, Heat-transfer Printing, J. Soc. Dyers and Colourists, pp. 318-325, Watford College of Technology, Watford; Sep. 1974.
PC Praxis, 1994, p. 48, no month available.
PCM, pp. 145, 147, Aug. 1992.
Rompps Chemie-Lexikon, 8. Aufl., Franckhsche Verlagshandlung Stuttgart, 1981, pp. 986, 987, 1126, 1127, no month available.
Wolfgang Gerhartz, Ullmann's Encyclopedia of Industrial Chemistry, 1987, pp. 565, 573-574, 577-601, vol. A 8; VCH Publishers, Inc., New York, NY, no month available.

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180255857A1 (en) * 2002-05-25 2018-09-13 Owayo Gmbh Method for the production of printed items of clothing made from textile material
US8147608B2 (en) 2006-10-31 2012-04-03 Sensient Colors Llc Modified pigments and methods for making and using the same
US8163075B2 (en) 2006-10-31 2012-04-24 Sensient Colors Llc Inks comprising modified pigments and methods for making and using the same
US7927416B2 (en) 2006-10-31 2011-04-19 Sensient Colors Inc. Modified pigments and methods for making and using the same
US7964033B2 (en) 2007-08-23 2011-06-21 Sensient Colors Llc Self-dispersed pigments and methods for making and using the same
US8118924B2 (en) 2007-08-23 2012-02-21 Sensient Colors Llc Self-dispersed pigments and methods for making and using the same
US20090050014A1 (en) * 2007-08-23 2009-02-26 Sensient Colors Inc. Self-dispersed pigments and methods for making and using the same
US20100251932A1 (en) * 2009-04-07 2010-10-07 Sujeeth Puthalath K Self-dispersing particles and methods for making and using the same
US9221986B2 (en) 2009-04-07 2015-12-29 Sensient Colors Llc Self-dispersing particles and methods for making and using the same
US8425029B2 (en) 2009-07-10 2013-04-23 Sawgrass Technologies, Inc. High viscosity heat sensitive ink printing process
US8632175B2 (en) 2009-07-10 2014-01-21 Sawgrass Technologies, Inc. High viscosity heat sensitive ink printing process
US20110007118A1 (en) * 2009-07-10 2011-01-13 Ming Xu High viscosity heat sensitive ink printing process
US9708496B2 (en) 2009-07-10 2017-07-18 Sawgrass Technologies, Inc. High viscosity heat sensitive ink printing process
US9315681B2 (en) 2009-07-10 2016-04-19 Ming Xu High viscosity heat sensitive ink printing process
US20120172490A1 (en) * 2010-12-31 2012-07-05 Xiaorong Cai Carbon black pigmented inkjet ink to reduce kogation and improve text quality
US9403394B2 (en) 2013-07-25 2016-08-02 The Hillman Group, Inc. Modular sublimation transfer printing apparatus
US10016986B2 (en) 2013-07-25 2018-07-10 The Hillman Group, Inc. Integrated sublimation printing apparatus
US9446599B2 (en) 2013-07-25 2016-09-20 The Hillman Group, Inc. Automatic sublimated product customization system and process
US9545808B2 (en) 2013-07-25 2017-01-17 The Hillman Group, Inc. Modular sublimation printing apparatus
US9120326B2 (en) 2013-07-25 2015-09-01 The Hillman Group, Inc. Automatic sublimated product customization system and process
US9731534B2 (en) 2013-07-25 2017-08-15 The Hillman Group, Inc. Automated simultaneous multiple article sublimation printing process and apparatus
US10065442B2 (en) 2013-07-25 2018-09-04 The Hillman Group, Inc. Automated simultaneous multiple article sublimation printing process and apparatus
US9333788B2 (en) 2013-07-25 2016-05-10 The Hillman Group, Inc. Integrated sublimation transfer printing apparatus
US10011120B2 (en) 2013-07-25 2018-07-03 The Hillman Group, Inc. Single heating platen double-sided sublimation printing process and apparatus
US9781307B2 (en) 2014-11-14 2017-10-03 Sawgrass Technologies, Inc. Networked digital imaging customization
US10075619B2 (en) 2014-11-14 2018-09-11 Sawgrass Technologies, Inc. Networked digital imaging customization
US9302468B1 (en) 2014-11-14 2016-04-05 Ming Xu Digital customizer system and method
US10419644B2 (en) 2014-11-14 2019-09-17 Sawgrass Technologies, Inc. Digital image processing network
US10587777B2 (en) 2014-11-14 2020-03-10 Sawgrass Technologies, Inc. Digital image processing network
US9962979B2 (en) 2015-08-05 2018-05-08 The Hillman Group, Inc. Semi-automated sublimation printing apparatus
US10827098B2 (en) 2015-11-02 2020-11-03 Sawgrass Technologies, Inc. Custom product imaging method
US10827097B2 (en) 2015-11-02 2020-11-03 Sawgrass Technologies, Inc. Product imaging
US11503187B2 (en) 2015-11-02 2022-11-15 Sawgrass Technologies, Inc. Custom product imaging method

Similar Documents

Publication Publication Date Title
US5830263A (en) Low energy heat activated transfer printing process
US5642141A (en) Low energy heat activated transfer printing process
US5746816A (en) Liquid ink process and printing method
USRE38952E1 (en) Heat activated ink jet ink
US6966643B2 (en) Permanent heat activated ink jet printing process
EP1132439B1 (en) Liquid ink
US6425331B1 (en) Permanent heat activated printing process
US5601023A (en) Permanent heat activated transfer printing process and composition
US6488370B2 (en) Printed media produced by permanent heat activated printing process
EP0778798B2 (en) Permanent heat activated transfer printing process and composition
US5488907A (en) Permanent heat activated transfer printing process and composition
US7654660B2 (en) Energy activated printing process
US8398224B2 (en) Heat activated printing process
EP1533348B1 (en) Inkjet recording ink for sublimation transfer and method of dyeing
AU768805B2 (en) Permanent heat activated transfer printing process and composition
JP2004107648A (en) Inkjet recording ink for sublimation transfer printing and printing technique
MX2007010786A (en) Energy activated printing process.
JP2009119874A (en) Permanent heat activated transfer printing process, ink composition used for the same, and container
MXPA97001433A (en) Permanent heat activated transfer printing process and composition

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: BANK OF AMERICA, N.A.,SOUTH CAROLINA

Free format text: NOTICE OF GRANT OF SECURITY INTEREST;ASSIGNORS:SAWGRASS TECHNOLOGIES, INC.;TROPICAL GRAPHICS, LLC;REEL/FRAME:017811/0604

Effective date: 20060523

Owner name: BANK OF AMERICA, N.A., SOUTH CAROLINA

Free format text: NOTICE OF GRANT OF SECURITY INTEREST;ASSIGNORS:SAWGRASS TECHNOLOGIES, INC.;TROPICAL GRAPHICS, LLC;REEL/FRAME:017811/0604

Effective date: 20060523

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, SOUTH CARO

Free format text: SECURITY AGREEMENT;ASSIGNOR:SAWGRASS TECHNOLOGIES, INC.;REEL/FRAME:030427/0567

Effective date: 20130430

AS Assignment

Owner name: SAWGRASS TECHNOLOGIES, INC., SOUTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION;REEL/FRAME:036719/0738

Effective date: 20150729