USRE42834E1 - Personally portable vacuum desiccator - Google Patents

Personally portable vacuum desiccator Download PDF

Info

Publication number
USRE42834E1
USRE42834E1 US12/580,991 US58099109A USRE42834E US RE42834 E1 USRE42834 E1 US RE42834E1 US 58099109 A US58099109 A US 58099109A US RE42834 E USRE42834 E US RE42834E
Authority
US
United States
Prior art keywords
desiccator
personally portable
vacuum desiccator
portable vacuum
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/580,991
Inventor
Richard Watson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KCI Licensing Inc
Original Assignee
KCI Licensing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KCI Licensing Inc filed Critical KCI Licensing Inc
Priority to US12/580,991 priority Critical patent/USRE42834E1/en
Application granted granted Critical
Publication of USRE42834E1 publication Critical patent/USRE42834E1/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/78Means for preventing overflow or contamination of the pumping systems
    • A61M1/784Means for preventing overflow or contamination of the pumping systems by filtering, sterilising or disinfecting the exhaust air, e.g. swellable filter valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/60Containers for suction drainage, adapted to be used with an external suction source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated

Definitions

  • the present invention is in the field of portable, motor driven vacuum p-umps having a movable working member which is motivated by electricity or a magnetic field. More specifically, the present invention relates to a personally portable, low negative pressure, motor driven vacuum pump having an electric power storage means and a moisture trap.
  • a number of portable, low pressure vacuum apparatuses capable of producing vacuum pressures down to about 500 mm HG currently exist. Medicine, particularly the wound healing arts, is a field where such devices have a specific utility. In the wound healing arts, it has been recognized that the removal of excess fluid from a wound site can improve the healing of the wound. This recognition has motivated the field to develop wound treatment regimens that include the use of vacuum devices for removing excess exudate from a wound site. For example, in full thickness dermal wounds devices to assist in the removal of excess fluid from these wounds have been developed and used. Further, because of the recognized benefits of encouraging patients to be active and mobile if possible, these devices need to be portable, and preferably, personally portable.
  • One strategy for providing a personally portable, low pressure vacuum source for drainage of wound site involves the use of a passive vacuum reservoir.
  • this types of device includes those disclosed by Fell, U.S. Pat. No. 5,073,172; Seddon et al., U.S. Pat. No. 6,024,7311 and Dixon et al., U.S. Pat. No. 5,944,703.
  • these devices comprise an evacuated cannister attached to a drainage tube. Because the vacuum pressure in the reservoir of these devices continuously decreases as the wound is drained (and the reservoir filled), they often include a means for regulating the pressure delivered to the wound site at some level below the maximum pressure of the vacuum reservoir. Additionally, these devices require a reservoir of a relatively larger volume than that of the volume of fluid they are capable of removing from a wound site.
  • a strategy for accomplishing this objective includes having the device comprise a vacuum pump to provide a constant low pressure vacuum source, or to replenish a separate vacuum reservoir.
  • An example of this type of device includes that disclosed by McNeil et al., U.S. Pat. No. 4,710,165. Also see U.S. Pat. No. 5,134,994 to Say.
  • these devices are bulky and obvious to an observer of the user, and may subject the user to embarrassment or personal questions. It would be beneficial to have a portable vacuum device that was personally portable by the user without being obvious to an observer.
  • the Hunt apparatus is supported on a belt or harness worn by the user, and is small enough to be unobtrusive when worn under a jacket or the like.
  • the Hunt apparatus utilizes a liquid reservoir containing the fluids drained from a wound site. Fluids contained in the liquid reservoir of Hunt are subject to slouching, which may adversely affect the function of the Hunt apparatus if the fluid prematurely enters an inappropriate pathway (the outlet end of the cannister).
  • the Hunt device requires multiple tubes or a multi-lumen tube running from the device to the wound site to accomplish its full utility.
  • the Hunt apparatus is intended to be worn by a patient at waist level or higher. This means that wound sites below and distal to the users waist can be subjected to a higher vacuum pressure than with a device that may be located more proximal the wound site than the Hunt apparatus.
  • the present desiccator is a personally portable vacuum pump and moisture trapping device.
  • the invention is useful where a user desires to carry a device for collecting and trapping small volumes of liquids.
  • the present invention is therapeutically useful to provide a personally portable low negative pressure source and trap for aspirating and collecting fluid exudate from a wound or incision.
  • a further benefit of the present invention for such applications involving biological waste is that the trap and all other components of the desiccator device that contact the aspirated biological materials are removable from the device and are replaceable.
  • the desiccator device includes a trap, a vacuum pump head member, an electric motive mechanism and an electric control and power circuit.
  • the trap comprises a desiccator cartridge enclosing an interior space or chamber.
  • An inlet port and an outlet port provide gas/liquid flow communication with the interior chamber of the desiccator cartridge.
  • the desiccator cartridge is of a design and construction to withstand the application of an appropriate vacuum without substantial collapse of the interior chamber. Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial.
  • a trapping agent is contained within the interior chamber for retaining the fluid that enter the chamber. The composition of the trapping agent is selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped.
  • a vacuum pump member or pump head is connected in gas flow communication with the interior chamber of the trap by having the low pressure port of the vacuum pump member being connected to the outlet port of the trap.
  • the exhaust port of the vacuum pump member is vented to atmosphere. Operation of the vacuum pump member develops a low vacuum pressure which is communicated to the interior chamber of the desiccator cartridge and then to the inlet port of the trap.
  • the vacuum pressure at the inlet port of the trap is selectable by the ordinary skilled artisan depending on the intended use of the present device. Typically, the selected vacuum pressures range less than about 250 mm Hg, and in part depends on the vacuum pressure to be delivered to the wound site and the any loss of vacuum pressure across the delivery tube connecting the inlet port to the wound site.
  • An electric motive means (an electric motor) is coupled to the vacuum pump member and drives the pump head.
  • An electrical control circuit including an electrical power source, is in electrical communication with the electric motive means. The control circuit is operable to control the operation of the electric motive means.
  • the desiccator cartridge of the trap has only a single, ingress gas/liquid flow pathway, which is the inlet port. Additionally, the flow path at the inlet port is unidirectional, in that gas/liquid flow can enter the trap via the inlet port, but not exit or back flow out of the trap via the inlet port.
  • the personally portable vacuum desiccator includes a single passage gas/liquid flow path delivery tube for connecting the trap to a source of gas or liquids to be delivered into the trap.
  • the delivery tube has an input end for communicating with the gas/liquid source and an output end connectable to the inlet port of the desiccator cartridge.
  • a one-way valve is located proximate the inlet port of the desiccator cartridge.
  • the one-way valve prevents the contents of the desiccator cartridge from back-flowing out of the inlet port.
  • the one way valve may be separate from or incorporated into the inlet port.
  • the desiccator cartridge is removable from the vacuum desiccator and separately disposable. A fresh desiccator cartridge is installed in the desiccator to replace the removed cartridge.
  • the desiccator cartridge contains a trapping agent for containing the liquids or moisture delivered to the trap under the force of the vacuum.
  • the trapping agent combines with the liquid or moisture to alter its physical features, i.e., from a liquid or vapor to a mixed phase or solid state.
  • Compositions suitable for use as trapping agents in the present invention are selectable by one of ordinary skill in the art in view of the present disclosure and teachings herein.
  • the trapping agent should adsorb, absorb or in some way combine with the liquid or moisture to immobilize and keep it from sloshing in the desiccator cartridge as it is accumulated in the interior chamber. Examples of potentially suitable trapping agents include: a desiccant, an adsorbent and an absorbent.
  • Such moisture trapping materials are often found in disposable baby diapers and in feminine napkins.
  • the level of moisture in the desiccant chamber is monitored by the moisture sensor circuit. When the amount of moisture trapped in desiccant material approaches saturation, the chamber may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge).
  • the present vacuum desiccator can further comprise a filter for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere.
  • the filter may be located proximate the outlet port to protect the pump member and/or proximate the exhaust port to prevent venting bacteria or moisture to atmosphere.
  • the electric motive means of the vacuum desiccator includes an electric motor.
  • the motor is coupled to the vacuum pump member to drive the pump.
  • the motor may be coupled to the pump head by any of a number of means known to and practicable by the ordinary skilled artisan.
  • the motor shaft may be integrated with the vacuum pump head, it may be mechanically coupled to the vacuum pump so as to be readily separable from the pump head, or it may be magnetically coupled to the pump head so as to, again, be readily separable from the vacuum pump member.
  • a readily separable motive means is particularly useful where the vacuum pump member and the desiccator cartridge are integrated together as a unit.
  • the electrical control circuit includes the electrical power source for the device.
  • the power source comprises an electrical power storage means, such as a battery.
  • a feature of the power source is that the electrical storage means is removable from the electrical control circuit and is replaceable. Additionally, the electric control circuit optionally includes other ancillary circuits for the operation and control of the device.
  • These circuits include: a moisture sensor circuit for detecting the presence of moisture proximate the low pressure port of the vacuum pump member; a timer circuit for intermittently operating the electric motive means; a vacuum pressure sensor circuit for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
  • the component parts of the vacuum desiccator device which are in gas/liquid flow communication are replaceable. This allows the components of the device which are exposed to contact with the wound fluids to be separable from the other components of the device to facilitate cleaning or disposal of contaminated components.
  • the present personally portable vacuum desiccator can further comprise a housing for containing some or all of the component parts of the device.
  • the housing may contain the electric motive means and the electrical control circuit, while the other components are simply attached to the housing, e.g., an integrated pump head/trap combination assembly.
  • Other configurations obviously are possible, such as a housing containing the electric motive means and the electrical control circuit and additionally either or both of the trap (desiccator cartridge) and the vacuum pump member.
  • the present vacuum desiccator device may comprise the battery being housed in a battery compartment attached or integral to the desiccator cartridge of the moisture trap.
  • the battery and the desiccator cartridge are replaceable in the device as a single unit.
  • the personally portable vacuum desiccator can be used as part of a treatment regimen to promote wound healing by drawing excess wound exudate away from the wound site.
  • a treatment regimen to promote wound healing by drawing excess wound exudate away from the wound site.
  • an open, full thickness dermal wound is covered with an air tight dressing, such as are commercially available.
  • the input end of the gas/liquid flow delivery tube is positioned under the dressing in flow communication with the wound site.
  • the vacuum desiccator is activated, a low negative pressure is produced at the wound site via the delivery tube and excess fluids excreted by the wound are removed under the force of the low negative pressure.
  • FIG. 1 is a schematic diagram of the major components of the present vacuum desiccator showing the electric control circuit contained in a housing with the motor coupled to the trap and vacuum pump member.
  • FIG. 2A is a side elevation and partial cross-sectional view of the desiccator cartridge of the present device, showing the interior chamber containing a trapping agent.
  • FIG. 2B is a top plan and partial cross-section view of the desiccator cartridge showing the interior chamber containing alternative trapping agents and showing alternative moisture/fluid sensors for detecting fluid in flow path proximate the outlet port of the cartridge. Also shown is a separately mountable outlet microfilter.
  • FIG. 3 is a partial top plan view of the outlet port portion of the desiccator cartridge showing in phantom a micro-filter integral to the desiccator cartridge flow path, and also a vacuum pressure sensor mountable to the outlet port of the cartridge.
  • FIG. 4 is a cross-sectional view through a side elevation of a combination of a desiccator cartridge and vacuum pump head as an integral unit.
  • FIG. 5A is a partial top plan view of the inlet portion of the desiccator cartridge showing the inlet port with a one-way gas/fluid flow valve installed.
  • FIGS. 5B and 5C are partial cross-sectional views of two types of one-way gas/liquid flow valves.
  • FIG. 6 is a block diagram of the electric control circuit of the desiccator device indicating its sub-circuits and the interconnect relationship with certain ancillary components.
  • FIGS. 7A and 7B show alternative strain-gauge means for monitoring vacuum pressure in the interior chamber of the desiccator cartridge.
  • FIG. 8 is a partial cross-section of a side elevation of a desiccator cartridge showing the interior components and their layout.
  • FIG. 9A is an exploded view of a side elevation of a desiccator cartridge showing a cover member incorporating an integral gas flow channel.
  • FIG. 9B is a bottom plan view of the cover member of FIG. 9A illustrating an example of an integral gas flow channel layout (in phantom) and the perforations by which the integral channel is in gas flow communication with the interior chamber of the desiccator cartridge.
  • the personally portable vacuum desiccator is a device useful as a source for providing a low vacuum pressure for removing excess wound exudate from dressed dermal wounds. This application of present personally portable vacuum desiccator is useful for promoting wound healing by draining such excess wound exudate from the wound site.
  • the present invention is a personally portable vacuum desiccator 10 comprises a trap 12 , a vacuum pump member operable to provide a source of low vacuum pressure, an electric motive or drive means 36 for operating the vacuum pump member, and an electrical control circuit, including an electrical power source.
  • the control circuit is electrically connected to the electric motive means to control its operation, i.e., to turn it on and off.
  • the trap 12 includes a desiccator cartridge 14
  • the desiccator cartridge 14 has an interior chamber 16 containing a trapping agent 54 (see FIG. 2 ). Additionally, the desiccator cartridge 14 has an inlet port 18 and an outlet port 20 in gas/liquid communication with the interior chamber 16 of the cartridge 14 .
  • a vacuum pump head or member 22 serves as a source for a low pressure vacuum of about 250 mm Hg or less.
  • the vacuum pump member 22 is placed after desiccant chamber 14 in the gas/liquid flow pathway to facilitate preventing fluid from entering the vacuum pump member.
  • the vacuum pump head 22 has a low pressure port 24 and an exhaust port 26 .
  • the low pressure port 22 is in gas/liquid flow communication with the outlet port 20 of the desiccator cartridge 14 .
  • the exhaust port 26 of the vacuum pump head 22 is vented to atmosphere.
  • the vacuum pump member 22 provides a low vacuum pressure to the interior chamber 16 of the desiccator cartridge.
  • an electric motive means 36 is in communication with the vacuum pump member 22 via a coupling 38 .
  • the electric motive means 36 is a low voltage electric motor, which is operable to drive the vacuum pump member 22 , thus providing a low vacuum pressure at the pump member's low pressure port 24 .
  • the electrical control circuit 40 including an electrical power source 46 , is in electrical communication with the electric motive means 36 via an electric motor lead 42 .
  • the control circuit 40 controls the operation of the electric motive means.
  • a delivery tube 32 is included with the desiccator device 10 to put the trap 14 in gas/liquid flow communication with a location to which a low negative vacuum pressure is to be applied, such as a wound site covered by an occlusive dressing (not shown).
  • the delivery tube 32 consists of a single passage gas/liquid flow path, having an input end 33 and an output end 24 , the output end 34 being connected to the inlet port 18 of the desiccator cartridge 14 .
  • the components of the personally portable vacuum desiccator 10 can further comprise a housing 50 for containing or mounting the component parts of the vacuum desiccator 10 .
  • the housing 50 contains the electric motive means 26 and the electrical control circuit 40 .
  • the housing 50 can contain the electric motive means 36 , the electrical control circuit 40 and additionally, the desiccator cartridge 14 and/or the vacuum pump member 22 .
  • the trap 12 comprises a desiccator cartridge 14 .
  • the desiccator cartridge 14 encloses an interior space or chamber 16 .
  • the desiccator cartridge 14 is of a design and material construction to withstand the application of an appropriate vacuum without substantial collapse of the interior chamber 16 . Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial or distortion of the chamber 16 is used as an index of the vacuum pressure within the interior chamber 16 .
  • a trapping agent 54 is contained within the interior chamber 16 to retain (trap) fluids and moisture that enter the chamber 16 .
  • compositions available in the art that are appropriate trapping agents for practice in the present invention.
  • a specific composition or combination of compositions useful as the trapping agent 54 is readily selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped.
  • classes of such compositions suitable as trapping agents 54 include desiccants, adsorbents, absorbents and the combination of any of these. Specific examples include silica gel, sodium polyacrylate, potassium polyacrylamide and related compounds. Such moisture trapping materials are often found in disposable baby diapers and in feminine napkins.
  • compositions may be particulate trapping agents 54 a or fibrous trapping agents 54 b.
  • the trapping agent 54 was a pillow-like structure (see FIG. 8 ), which included a fiber matrix material which served to contain and somewhat immobilize the other loose components of the trapping agent, and to act as a wick to distribute the fluid as it entered the interior chamber.
  • the level of moisture in the interior chamber 16 proximate the outlet port 20 is monitored by a moisture sensor 84 (see FIG. 1 ).
  • the desiccator cartridge 14 may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge).
  • Other means for detecting the degree of saturation of the trapping agent 54 are available.
  • the desiccant cartridge 14 may be constructed in part from a transparent material, allowing the trapping agent 54 to be directly observed.
  • the degree of saturation of the trapping agent 54 maybe indicated by a color change in a component of the trapping agent 54 in response, for example, to a pH change or degree of hydration.
  • the desiccator cartridge 14 is removable from the device 10 and separately disposable.
  • a fresh desiccator cartridge 14 is installed in the desiccator 10 to replace the removed cartridge.
  • the cartridge 14 can be constructed to make its interior chamber 16 accessible, e.g., through a lid or by disassembly, whereby the used trapping agent 54 can be replaced with fresh.
  • the refreshed desiccator cartridge may then be reattached to vacuum desiccator 10 . This feature may be useful where the desiccator cartridge and vacuum pump head are combined as a single integrated unit (see FIG. 4 ).
  • the desiccator cartridge 14 has a single, gas/liquid flow pathway, which is the inlet port 18 , as the only inlet path into the trap 12 .
  • the flow path at the inlet port 18 is unidirectional, in that gas/liquid flow can enter the trap via the inlet port 18 , but not exit or back flow out of the trap 14 via the inlet port 18 .
  • Unidirectional flow at the inlet port is accomplished by a one-way valve 30 located proximate the inlet port 18 of the desiccator cartridge 14 (see FIG. 5A ).
  • the one-way valve 30 prevents the contents of the desiccator cartridge 14 from back-flowing out of the inlet port 18 .
  • the one-way valve 30 maybe separable from the desiccator cartridge 14 , as shown in FIG.
  • One-way gas/liquid flow valves practicable in the present invention are known in the art and selectable by the ordinary skilled artisan for use in the present invention. Examples of such one-way valves include biased and/or unbiased piston-type 30 a and ball-stop 30 b valves as exemplified in FIGS. 5B and 5C .
  • a micro-filter 28 useful for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere is located in the gas/liquid flow path of the device 10 after the interior chamber 16 of the desiccator cartridge.
  • the micro-filter 28 may be located proximate the outlet port 20 to protect the pump member 22 and/or proximate the exhaust port 26 to prevent venting bacteria (or moisture) to atmosphere.
  • the micro-filter may be an in-line micro-filter 28 a separate from the desiccator cartridge as shown in FIG. 2B , or an integral micro-filter 28 b incorporated into the cartridge 14 proximate the outlet port 20 as shown in FIG. 3 .
  • an electric motive means 36 is coupled to the vacuum pump member 22 of the vacuum desiccator 10 .
  • the motive means 36 is an electric motor.
  • Electric motors practicable in the present invention are known to and selectable by one of ordinary skill in the art in view of the teachings and figures contained herein.
  • a miniature, oil-less diaphragm pump is commercially available from the Gast Manufacturing, Inc. (Michigan): series 3D 1060, model 101-1028.
  • the electric motor 36 communicates with the vacuum pump member 22 via a drive coupling 38 to drive the pump.
  • the drive coupling 38 for connecting the motor 36 to the pump head 22 may be accomplished by any of a number of means known to and practicable by the ordinary skilled artisan.
  • a motor shaft coupling 38 maybe integrated with the vacuum pump head, i.e., the motor 36 and pump member 22 are substantially a single unit.
  • a motor shaft coupling 38 may be mechanically coupled to the vacuum pump head 22 so as to be readily separable from the pump head 22 .
  • the hub 100 of a rotary-vane pump head 22 a has a motor shaft receiver 102 for accepting the end or spindle of a shaft coupling 38 of a motor 36 .
  • the shaft receiver 102 has a threaded, keyed or similar interfacing configuration (not shown) complementary to the spindle or end of the shaft coupling 38 of the motor 36 .
  • the motor 36 maybe magnetically coupled (not shown) to the pump head 22 so as to again be readily separable from the vacuum pump member 22 .
  • a readily separable motive means 36 is particularly useful where the vacuum pump member 22 and the desiccator cartridge 14 are integrated together as a unit, as shown in FIG. 4 .
  • the present vacuum desiccator device 10 includes an electrical control circuit 40 that comprises logic and switching circuits and a number of ancillary circuits and functions, external sensors, electrical connections and a power source.
  • the purpose of the electrical control circuit 40 is to monitor the condition of the device 10 and to control operation of the motive means 36 .
  • the ancillary circuits can be chosen for inclusion in an embodiment of the device 10 to affect one or more of the following functions: device data Input/Output, electrical power, sensor signal processing and motor control (power to the motor).
  • An I/O unit 70 for accomplishing device data input and out put can include data input means such as a power and data entry switches (e.g., a key pad and/or on-off switch), and a readout display and alarms.
  • data input means such as a power and data entry switches (e.g., a key pad and/or on-off switch), and a readout display and alarms.
  • I/O units 70 are well known in the art, and are readily practicable in the present invention by the ordinary skilled artisan.
  • Other ancillary circuits and other sensors 88 may be provided at the user's option, and are similarly accomplishable by the ordinary skilled artisan.
  • the power source 46 for storing and providing electrical energy for the device 10 is a battery 60 .
  • the power source 46 is removable from the electrical control circuit 40 and is easily replaceable.
  • the POLAROID® P100 PolapulseTMbattery is an example of an appropriate battery 60 useful as a power source 46 in the present vacuum desiccator device 10 in a preferred embodiment because of its planar configuration and low profile. See FIGS. 7A and 7B .
  • the electrical control circuit have sensory capabilities to detect certain physical conditions of the device 10 , and to utilize the conditions to control operation of the motor 36 , and other appropriate functions of the control circuit 40 .
  • These ancillary sensory circuits include: a moisture sensor 84 and circuit, for detecting the presence of moisture proximate the outlet port 20 of the desiccant cartridge 14 ; at least one vacuum pressure sensor 76 and circuit, for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit, for sensing a difference in pressure between two sections of the gas/liquid flow pathway of the device 10 , e.g., between the inlet and outlet ports 18 & 20 of the desiccator cartridge 14 .
  • the sensors are interconnected to the control circuit 40 via electrical leads 44 .
  • Sensors appropriate for accomplishing the various sensory functions of an electrical control circuit are known in the art and are readily adaptable for practice in the present invention by the ordinary skilled artisan.
  • a vacuum pressure sensor 76 MPL model 500, diaphragm-type pressure differential sensor
  • MPL model 500, diaphragm-type pressure differential sensor suitable for practice in the present device is commercially available from Micro Pneumatic Logic, Inc. (Florida) from a line of pressure sensors.
  • Other types of sensors are adaptable for use in the present invention for detecting or sensing pressure, such as surface strain gauges mounted on the surface of the desiccator cartridge 14 , and optical displacement gauges mounted to transmit light through the surfaces of desiccator cartridge 14 .
  • an optical fiber strain gauge 77 is commercially available from FISO Technologies (Quebec, model FOS “C” or “N”) from a line of optical strain gauges. This sensor can be used to monitor and indicate the presence of a vacuum in the desiccator cartridge by displacement (bending) of the cartridge surface under the force of a vacuum in the interior chamber 16 .
  • Optical displacement/strain gauges 78 are also commercially, including for the detection of fluid intrusion into a section of tubing. These gauges typically comprise a combination light source/detector 78 a and a mirror 78 b.
  • Distortion of the surface of the desiccator cartridge 14 on which the mirror 78 b is mounted alters the reflection path of the emitted light as it passes through the cartridge to return to the detector, which alteration is detectable. Of course, this requires the walls of the cartridge 14 proximate the optical displacement gauge 78 to be transparent to the light.
  • the use of more than one pressure sensor 76 can allow sensing and/or measurement of the pressure differential between two different points in the gas/liquid flow pathway, such as between the inlet and outlet ports 18 & 20 of the desiccator cartridge 14 .
  • the vacuum pressure sensor 76 is used to monitor the vacuum pressure in the interior chamber 16 of the desiccator cartridge 14 .
  • the electric control circuit 40 may switch off the motor 36 , thereby conserving electrical power.
  • the control circuit 40 may switch on the motor 36 to reestablish an appropriate vacuum pressure in the interior chamber 16 of the desiccator cartridge 14 .
  • the electrical control circuit 40 can include a clock/timer circuit for intermittently operating the electric motive means 36 , as another way of conserving electrical power.
  • the I/O unit 70 can be utilized to set the time interval for the control circuit's intermittent operation of the motor 36 .
  • the battery 60 of the power source 46 is integral with the desiccator cartridge 14 a.
  • the battery 60 is contained in a battery compartment 110 , which is integral to the structure of the desiccator cartridge 14 a.
  • Battery leads 112 connect the battery 60 to electrical battery contacts 114 on the exterior surface 120 of the desiccator cartridge 14 a.
  • the desiccator cartridge 14 a and battery 60 are replaceable as a unit.
  • FIG. 8 also illustrates another preferred feature of a desiccator cartridge 14 , in which a gas flow channel is disposed inside the interior chamber 16 of the cartridge 14 a.
  • the flow channel 120 is a tube connected to the outlet port 20 and having a length sufficient to allow it to be coiled or snaked about the interior chamber 16 (also see FIG. 9B ).
  • the flow channel tube 120 has perforations 122 along its length, or is otherwise constructed, to allow gas flow from the interior chamber 16 into the lumen of the flow channel tube 120 under the force of the vacuum pressure from the pump member 22 .
  • trapping agent 54 c having a pillow-like structure. The flow channel tube 120 is laid out on one side of the pillow trapping agent 54 c.
  • the pillow trapping agent 54 c was constructed using 10 grams of sodium polyacrylate distributed between two layers of an elastic mesh material (nylon stocking).
  • an elastic mesh material nylon stocking
  • other fabrics are suitable for practice with the moisture trapping pillow 54 c, including knitted fabric mesh materials like gauze and similar fabrics.
  • the two layers of elastic mesh material were sewn together to form compartments.
  • the volume of the interior chamber 16 of the desiccator cartridge 14 was sufficient to hold the pillow and about 50 cc of trapped moisture.
  • a flow channel may be accomplished by means other than a tube.
  • a flow channel may be integrated into the desiccator cartridge 14 and be in gas flow communication with the interior chamber 16 .
  • This embodiment of a desiccator cartridge 14 can be accomplished as shown in FIGS. 9A and 9B , wherein the cartridge 14 b has a cover member 124 and a body member 126 ( FIG. 9A ).
  • the cartridge cover member 124 has a gas flow channel 120 a integrated into it.
  • the integral flow channel 120 a has perforations 122 a along its length, or is otherwise constructed, to allow gas flow from the interior chamber into the lumen of the integral channel 120 a under the force of the vacuum pressure from the pump member 22 .

Abstract

The vacuum desiccator low pressure vacuum pump and trap and is transportable upon a user's person. The device is especially useful to remove excess fluids from wounds and incisions as they heal. The device includes a desiccator cartridge containing a fluid trapping agent. The desiccator cartridge is connected to a vacuum pump member providing a low vacuum pressure to the interior chamber of the desiccator cartridge. A small battery powered, electric motor drives the pump member. An electrical control circuit, including the battery power source, controls the operation of the electric motor. A single passage, one-way, gas/liquid flow pathway connects the inlet port of the desiccator cartridge to an occlusive dressing covering the wound to be drained. The control circuit includes one or more ancillary circuits for controlling operation of the device, such as: a power circuit, a moisture sensor, a timer circuit, a vacuum pressure sensor, and a pressure differential sensor.

Description

FIELD OF THE INVENTION
The present invention is in the field of portable, motor driven vacuum p-umps having a movable working member which is motivated by electricity or a magnetic field. More specifically, the present invention relates to a personally portable, low negative pressure, motor driven vacuum pump having an electric power storage means and a moisture trap.
BACKGROUND OF THE INVENTION
A number of portable, low pressure vacuum apparatuses capable of producing vacuum pressures down to about 500 mm HG currently exist. Medicine, particularly the wound healing arts, is a field where such devices have a specific utility. In the wound healing arts, it has been recognized that the removal of excess fluid from a wound site can improve the healing of the wound. This recognition has motivated the field to develop wound treatment regimens that include the use of vacuum devices for removing excess exudate from a wound site. For example, in full thickness dermal wounds devices to assist in the removal of excess fluid from these wounds have been developed and used. Further, because of the recognized benefits of encouraging patients to be active and mobile if possible, these devices need to be portable, and preferably, personally portable.
One strategy for providing a personally portable, low pressure vacuum source for drainage of wound site involves the use of a passive vacuum reservoir. Examples of this types of device includes those disclosed by Fell, U.S. Pat. No. 5,073,172; Seddon et al., U.S. Pat. No. 6,024,7311 and Dixon et al., U.S. Pat. No. 5,944,703. Typically, these devices comprise an evacuated cannister attached to a drainage tube. Because the vacuum pressure in the reservoir of these devices continuously decreases as the wound is drained (and the reservoir filled), they often include a means for regulating the pressure delivered to the wound site at some level below the maximum pressure of the vacuum reservoir. Additionally, these devices require a reservoir of a relatively larger volume than that of the volume of fluid they are capable of removing from a wound site.
Recognizing these limitations, the field has been further motivated to develop means for providing a portable, low pressure vacuum source for drainage of a user's wound site which provides a relatively constant vacuum pressure. A strategy for accomplishing this objective includes having the device comprise a vacuum pump to provide a constant low pressure vacuum source, or to replenish a separate vacuum reservoir. An example of this type of device includes that disclosed by McNeil et al., U.S. Pat. No. 4,710,165. Also see U.S. Pat. No. 5,134,994 to Say. Although portable, these devices are bulky and obvious to an observer of the user, and may subject the user to embarrassment or personal questions. It would be beneficial to have a portable vacuum device that was personally portable by the user without being obvious to an observer.
An apparatus which addresses this latter benefit is disclosed in U.S. Pat. No. 6,142,892 to Hunt et al. The Hunt apparatus is supported on a belt or harness worn by the user, and is small enough to be unobtrusive when worn under a jacket or the like. However, the Hunt apparatus utilizes a liquid reservoir containing the fluids drained from a wound site. Fluids contained in the liquid reservoir of Hunt are subject to slouching, which may adversely affect the function of the Hunt apparatus if the fluid prematurely enters an inappropriate pathway (the outlet end of the cannister). Also, the Hunt device requires multiple tubes or a multi-lumen tube running from the device to the wound site to accomplish its full utility. Additionally, the Hunt apparatus is intended to be worn by a patient at waist level or higher. This means that wound sites below and distal to the users waist can be subjected to a higher vacuum pressure than with a device that may be located more proximal the wound site than the Hunt apparatus.
Although the above apparatuses may be useful in the field for accomplishing their intended purposes, it would be beneficial to have an alternative personally portable vacuum device that can be worn unobtrusively by the user, and which is not subject to slouching of the fluid it retains, and further which does not require special tubing to connect it to a wound site.
SUMMARY OF THE INVENTION
The present desiccator is a personally portable vacuum pump and moisture trapping device. The invention is useful where a user desires to carry a device for collecting and trapping small volumes of liquids. As a specific example, the present invention is therapeutically useful to provide a personally portable low negative pressure source and trap for aspirating and collecting fluid exudate from a wound or incision. A further benefit of the present invention for such applications involving biological waste is that the trap and all other components of the desiccator device that contact the aspirated biological materials are removable from the device and are replaceable. The desiccator device includes a trap, a vacuum pump head member, an electric motive mechanism and an electric control and power circuit.
The trap comprises a desiccator cartridge enclosing an interior space or chamber. An inlet port and an outlet port provide gas/liquid flow communication with the interior chamber of the desiccator cartridge. The desiccator cartridge is of a design and construction to withstand the application of an appropriate vacuum without substantial collapse of the interior chamber. Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial. A trapping agent is contained within the interior chamber for retaining the fluid that enter the chamber. The composition of the trapping agent is selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped.
A vacuum pump member or pump head is connected in gas flow communication with the interior chamber of the trap by having the low pressure port of the vacuum pump member being connected to the outlet port of the trap. The exhaust port of the vacuum pump member is vented to atmosphere. Operation of the vacuum pump member develops a low vacuum pressure which is communicated to the interior chamber of the desiccator cartridge and then to the inlet port of the trap. The vacuum pressure at the inlet port of the trap is selectable by the ordinary skilled artisan depending on the intended use of the present device. Typically, the selected vacuum pressures range less than about 250 mm Hg, and in part depends on the vacuum pressure to be delivered to the wound site and the any loss of vacuum pressure across the delivery tube connecting the inlet port to the wound site. An electric motive means (an electric motor) is coupled to the vacuum pump member and drives the pump head. An electrical control circuit, including an electrical power source, is in electrical communication with the electric motive means. The control circuit is operable to control the operation of the electric motive means.
The desiccator cartridge of the trap has only a single, ingress gas/liquid flow pathway, which is the inlet port. Additionally, the flow path at the inlet port is unidirectional, in that gas/liquid flow can enter the trap via the inlet port, but not exit or back flow out of the trap via the inlet port. Optionally, the personally portable vacuum desiccator includes a single passage gas/liquid flow path delivery tube for connecting the trap to a source of gas or liquids to be delivered into the trap. The delivery tube has an input end for communicating with the gas/liquid source and an output end connectable to the inlet port of the desiccator cartridge. A one-way valve is located proximate the inlet port of the desiccator cartridge. The one-way valve prevents the contents of the desiccator cartridge from back-flowing out of the inlet port. The one way valve may be separate from or incorporated into the inlet port. The desiccator cartridge is removable from the vacuum desiccator and separately disposable. A fresh desiccator cartridge is installed in the desiccator to replace the removed cartridge.
The desiccator cartridge contains a trapping agent for containing the liquids or moisture delivered to the trap under the force of the vacuum. The trapping agent combines with the liquid or moisture to alter its physical features, i.e., from a liquid or vapor to a mixed phase or solid state. Compositions suitable for use as trapping agents in the present invention are selectable by one of ordinary skill in the art in view of the present disclosure and teachings herein. The trapping agent should adsorb, absorb or in some way combine with the liquid or moisture to immobilize and keep it from sloshing in the desiccator cartridge as it is accumulated in the interior chamber. Examples of potentially suitable trapping agents include: a desiccant, an adsorbent and an absorbent. Specific examples include silica gel, sodium polyacrylate, potassium polyacrylamide and related compounds. Such moisture trapping materials are often found in disposable baby diapers and in feminine napkins. The level of moisture in the desiccant chamber is monitored by the moisture sensor circuit. When the amount of moisture trapped in desiccant material approaches saturation, the chamber may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge).
The present vacuum desiccator can further comprise a filter for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere. The filter may be located proximate the outlet port to protect the pump member and/or proximate the exhaust port to prevent venting bacteria or moisture to atmosphere.
The electric motive means of the vacuum desiccator includes an electric motor. The motor is coupled to the vacuum pump member to drive the pump. The motor may be coupled to the pump head by any of a number of means known to and practicable by the ordinary skilled artisan. For example, the motor shaft may be integrated with the vacuum pump head, it may be mechanically coupled to the vacuum pump so as to be readily separable from the pump head, or it may be magnetically coupled to the pump head so as to, again, be readily separable from the vacuum pump member. A readily separable motive means is particularly useful where the vacuum pump member and the desiccator cartridge are integrated together as a unit.
A purpose of the electrical control circuit is to monitor the condition of the device and to control operation of the motive means. The electrical control circuit includes the electrical power source for the device. The power source comprises an electrical power storage means, such as a battery. A feature of the power source is that the electrical storage means is removable from the electrical control circuit and is replaceable. Additionally, the electric control circuit optionally includes other ancillary circuits for the operation and control of the device. These circuits include: a moisture sensor circuit for detecting the presence of moisture proximate the low pressure port of the vacuum pump member; a timer circuit for intermittently operating the electric motive means; a vacuum pressure sensor circuit for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
The component parts of the vacuum desiccator device which are in gas/liquid flow communication are replaceable. This allows the components of the device which are exposed to contact with the wound fluids to be separable from the other components of the device to facilitate cleaning or disposal of contaminated components.
The present personally portable vacuum desiccator can further comprise a housing for containing some or all of the component parts of the device. For example, the housing may contain the electric motive means and the electrical control circuit, while the other components are simply attached to the housing, e.g., an integrated pump head/trap combination assembly. Other configurations obviously are possible, such as a housing containing the electric motive means and the electrical control circuit and additionally either or both of the trap (desiccator cartridge) and the vacuum pump member.
Additionally, the present vacuum desiccator device may comprise the battery being housed in a battery compartment attached or integral to the desiccator cartridge of the moisture trap. In this configuration, the battery and the desiccator cartridge are replaceable in the device as a single unit.
It is a feature of the present invention that the personally portable vacuum desiccator can be used as part of a treatment regimen to promote wound healing by drawing excess wound exudate away from the wound site. As an example of using the desiccator for this purpose, an open, full thickness dermal wound is covered with an air tight dressing, such as are commercially available. The input end of the gas/liquid flow delivery tube is positioned under the dressing in flow communication with the wound site. The vacuum desiccator is activated, a low negative pressure is produced at the wound site via the delivery tube and excess fluids excreted by the wound are removed under the force of the low negative pressure.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic diagram of the major components of the present vacuum desiccator showing the electric control circuit contained in a housing with the motor coupled to the trap and vacuum pump member.
FIG. 2A is a side elevation and partial cross-sectional view of the desiccator cartridge of the present device, showing the interior chamber containing a trapping agent.
FIG. 2B is a top plan and partial cross-section view of the desiccator cartridge showing the interior chamber containing alternative trapping agents and showing alternative moisture/fluid sensors for detecting fluid in flow path proximate the outlet port of the cartridge. Also shown is a separately mountable outlet microfilter.
FIG. 3 is a partial top plan view of the outlet port portion of the desiccator cartridge showing in phantom a micro-filter integral to the desiccator cartridge flow path, and also a vacuum pressure sensor mountable to the outlet port of the cartridge.
FIG. 4 is a cross-sectional view through a side elevation of a combination of a desiccator cartridge and vacuum pump head as an integral unit.
FIG. 5A is a partial top plan view of the inlet portion of the desiccator cartridge showing the inlet port with a one-way gas/fluid flow valve installed.
FIGS. 5B and 5C are partial cross-sectional views of two types of one-way gas/liquid flow valves.
FIG. 6 is a block diagram of the electric control circuit of the desiccator device indicating its sub-circuits and the interconnect relationship with certain ancillary components.
FIGS. 7A and 7B show alternative strain-gauge means for monitoring vacuum pressure in the interior chamber of the desiccator cartridge.
FIG. 8 is a partial cross-section of a side elevation of a desiccator cartridge showing the interior components and their layout.
FIG. 9A is an exploded view of a side elevation of a desiccator cartridge showing a cover member incorporating an integral gas flow channel.
FIG. 9B is a bottom plan view of the cover member of FIG. 9A illustrating an example of an integral gas flow channel layout (in phantom) and the perforations by which the integral channel is in gas flow communication with the interior chamber of the desiccator cartridge.
DETAILED DESCRIPTION OF THE INVENTION
The personally portable vacuum desiccator is a device useful as a source for providing a low vacuum pressure for removing excess wound exudate from dressed dermal wounds. This application of present personally portable vacuum desiccator is useful for promoting wound healing by draining such excess wound exudate from the wound site.
Referring now to the drawings, the details of preferred embodiments of the present invention are graphically and schematically illustrated. Like elements in the drawings are represented by like numbers, and any similar elements are represented by like numbers with a different lower case letter suffix.
As shown in FIG. 1, the present invention is a personally portable vacuum desiccator 10 comprises a trap 12, a vacuum pump member operable to provide a source of low vacuum pressure, an electric motive or drive means 36 for operating the vacuum pump member, and an electrical control circuit, including an electrical power source. The control circuit is electrically connected to the electric motive means to control its operation, i.e., to turn it on and off. The trap 12 includes a desiccator cartridge 14 The desiccator cartridge 14 has an interior chamber 16 containing a trapping agent 54 (see FIG. 2). Additionally, the desiccator cartridge 14 has an inlet port 18 and an outlet port 20 in gas/liquid communication with the interior chamber 16 of the cartridge 14. A vacuum pump head or member 22 serves as a source for a low pressure vacuum of about 250 mm Hg or less. The vacuum pump member 22 is placed after desiccant chamber 14 in the gas/liquid flow pathway to facilitate preventing fluid from entering the vacuum pump member. The vacuum pump head 22 has a low pressure port 24 and an exhaust port 26. The low pressure port 22 is in gas/liquid flow communication with the outlet port 20 of the desiccator cartridge 14. The exhaust port 26 of the vacuum pump head 22 is vented to atmosphere. When operated, the vacuum pump member 22 provides a low vacuum pressure to the interior chamber 16 of the desiccator cartridge. As further shown in FIG. 1., an electric motive means 36 is in communication with the vacuum pump member 22 via a coupling 38. The electric motive means 36 is a low voltage electric motor, which is operable to drive the vacuum pump member 22, thus providing a low vacuum pressure at the pump member's low pressure port 24. The electrical control circuit 40, including an electrical power source 46, is in electrical communication with the electric motive means 36 via an electric motor lead 42. The control circuit 40 controls the operation of the electric motive means.
Optionally, a delivery tube 32 is included with the desiccator device 10 to put the trap 14 in gas/liquid flow communication with a location to which a low negative vacuum pressure is to be applied, such as a wound site covered by an occlusive dressing (not shown). The delivery tube 32 consists of a single passage gas/liquid flow path, having an input end 33 and an output end 24, the output end 34 being connected to the inlet port 18 of the desiccator cartridge 14.
The components of the personally portable vacuum desiccator 10 can further comprise a housing 50 for containing or mounting the component parts of the vacuum desiccator 10. As exemplified in FIG. 1, the housing 50 contains the electric motive means 26 and the electrical control circuit 40. Alternatively, the housing 50 can contain the electric motive means 36, the electrical control circuit 40 and additionally, the desiccator cartridge 14 and/or the vacuum pump member 22.
The trap 12 comprises a desiccator cartridge 14. As shown in FIGS. 2A and 2B, the desiccator cartridge 14 encloses an interior space or chamber 16. The desiccator cartridge 14 is of a design and material construction to withstand the application of an appropriate vacuum without substantial collapse of the interior chamber 16. Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial or distortion of the chamber 16 is used as an index of the vacuum pressure within the interior chamber 16.
A trapping agent 54 is contained within the interior chamber 16 to retain (trap) fluids and moisture that enter the chamber 16. There are a variety of compositions available in the art that are appropriate trapping agents for practice in the present invention. A specific composition or combination of compositions useful as the trapping agent 54 is readily selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped. Examples of classes of such compositions suitable as trapping agents 54 include desiccants, adsorbents, absorbents and the combination of any of these. Specific examples include silica gel, sodium polyacrylate, potassium polyacrylamide and related compounds. Such moisture trapping materials are often found in disposable baby diapers and in feminine napkins. These compositions may be particulate trapping agents 54a or fibrous trapping agents 54b. In a preferred embodiment, the trapping agent 54 was a pillow-like structure (see FIG. 8), which included a fiber matrix material which served to contain and somewhat immobilize the other loose components of the trapping agent, and to act as a wick to distribute the fluid as it entered the interior chamber. The level of moisture in the interior chamber 16 proximate the outlet port 20 is monitored by a moisture sensor 84 (see FIG. 1). When the amount of moisture retained by the trapping agent 54 approaches saturation (as detected by the moisture sensor 84 or indicated by other means), the desiccator cartridge 14 may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge). Other means for detecting the degree of saturation of the trapping agent 54 are available. For example, the desiccant cartridge 14 may be constructed in part from a transparent material, allowing the trapping agent 54 to be directly observed. The degree of saturation of the trapping agent 54 maybe indicated by a color change in a component of the trapping agent 54 in response, for example, to a pH change or degree of hydration.
In a preferred embodiment of the vacuum desiccator 10, all of the components in gas/liquid flow communication are replaceable. This allows the components of the device that are exposed to contact with the wound fluids to be separable from the other components of the device to facilitate cleaning or disposal of contaminated components. In particular, the desiccator cartridge 14 is removable from the device 10 and separately disposable. A fresh desiccator cartridge 14 is installed in the desiccator 10 to replace the removed cartridge. Alternatively, the cartridge 14 can be constructed to make its interior chamber 16 accessible, e.g., through a lid or by disassembly, whereby the used trapping agent 54 can be replaced with fresh. The refreshed desiccator cartridge may then be reattached to vacuum desiccator 10. This feature may be useful where the desiccator cartridge and vacuum pump head are combined as a single integrated unit (see FIG. 4).
The desiccator cartridge 14 has a single, gas/liquid flow pathway, which is the inlet port 18, as the only inlet path into the trap 12. The flow path at the inlet port 18 is unidirectional, in that gas/liquid flow can enter the trap via the inlet port 18, but not exit or back flow out of the trap 14 via the inlet port 18. Unidirectional flow at the inlet port is accomplished by a one-way valve 30 located proximate the inlet port 18 of the desiccator cartridge 14 (see FIG. 5A). The one-way valve 30 prevents the contents of the desiccator cartridge 14 from back-flowing out of the inlet port 18. The one-way valve 30 maybe separable from the desiccator cartridge 14, as shown in FIG. 5A, or it may be incorporated into the cartridge 14 proximate the inlet port 18 (not shown). One-way gas/liquid flow valves practicable in the present invention are known in the art and selectable by the ordinary skilled artisan for use in the present invention. Examples of such one-way valves include biased and/or unbiased piston-type 30a and ball-stop 30b valves as exemplified in FIGS. 5B and 5C.
A micro-filter 28 useful for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere is located in the gas/liquid flow path of the device 10 after the interior chamber 16 of the desiccator cartridge. The micro-filter 28 may be located proximate the outlet port 20 to protect the pump member 22 and/or proximate the exhaust port 26 to prevent venting bacteria (or moisture) to atmosphere. The micro-filter may be an in-line micro-filter 28a separate from the desiccator cartridge as shown in FIG. 2B, or an integral micro-filter 28b incorporated into the cartridge 14 proximate the outlet port 20 as shown in FIG. 3.
As shown in FIG. 1, an electric motive means 36 is coupled to the vacuum pump member 22 of the vacuum desiccator 10. In the preferred embodiment, the motive means 36 is an electric motor. Electric motors practicable in the present invention are known to and selectable by one of ordinary skill in the art in view of the teachings and figures contained herein. For example, a miniature, oil-less diaphragm pump is commercially available from the Gast Manufacturing, Inc. (Michigan): series 3D 1060, model 101-1028. The electric motor 36 communicates with the vacuum pump member 22 via a drive coupling 38 to drive the pump. The drive coupling 38 for connecting the motor 36 to the pump head 22 may be accomplished by any of a number of means known to and practicable by the ordinary skilled artisan. For example, a motor shaft coupling 38 maybe integrated with the vacuum pump head, i.e., the motor 36 and pump member 22 are substantially a single unit. Alternatively, a motor shaft coupling 38 may be mechanically coupled to the vacuum pump head 22 so as to be readily separable from the pump head 22. For instance, as exemplified in FIG. 4, the hub 100 of a rotary-vane pump head 22a has a motor shaft receiver 102 for accepting the end or spindle of a shaft coupling 38 of a motor 36. The shaft receiver 102 has a threaded, keyed or similar interfacing configuration (not shown) complementary to the spindle or end of the shaft coupling 38 of the motor 36. As a further alternative, the motor 36 maybe magnetically coupled (not shown) to the pump head 22 so as to again be readily separable from the vacuum pump member 22. A readily separable motive means 36 is particularly useful where the vacuum pump member 22 and the desiccator cartridge 14 are integrated together as a unit, as shown in FIG. 4.
As shown in FIG. 6, the present vacuum desiccator device 10 includes an electrical control circuit 40 that comprises logic and switching circuits and a number of ancillary circuits and functions, external sensors, electrical connections and a power source. In the preferred embodiment, the purpose of the electrical control circuit 40 is to monitor the condition of the device 10 and to control operation of the motive means 36. The ancillary circuits can be chosen for inclusion in an embodiment of the device 10 to affect one or more of the following functions: device data Input/Output, electrical power, sensor signal processing and motor control (power to the motor). An I/O unit 70 for accomplishing device data input and out put can include data input means such as a power and data entry switches (e.g., a key pad and/or on-off switch), and a readout display and alarms. Such I/O units 70 are well known in the art, and are readily practicable in the present invention by the ordinary skilled artisan. Other ancillary circuits and other sensors 88 may be provided at the user's option, and are similarly accomplishable by the ordinary skilled artisan.
In the preferred embodiment exemplified in FIG. 1, the power source 46 for storing and providing electrical energy for the device 10 is a battery 60. In the preferred embodiment, the power source 46 is removable from the electrical control circuit 40 and is easily replaceable. The POLAROID® P100 Polapulse™battery is an example of an appropriate battery 60 useful as a power source 46 in the present vacuum desiccator device 10 in a preferred embodiment because of its planar configuration and low profile. See FIGS. 7A and 7B.
It is intended that the electrical control circuit have sensory capabilities to detect certain physical conditions of the device 10, and to utilize the conditions to control operation of the motor 36, and other appropriate functions of the control circuit 40. These ancillary sensory circuits include: a moisture sensor 84 and circuit, for detecting the presence of moisture proximate the outlet port 20 of the desiccant cartridge 14; at least one vacuum pressure sensor 76 and circuit, for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit, for sensing a difference in pressure between two sections of the gas/liquid flow pathway of the device 10, e.g., between the inlet and outlet ports 18 & 20 of the desiccator cartridge 14. The sensors are interconnected to the control circuit 40 via electrical leads 44. Sensors appropriate for accomplishing the various sensory functions of an electrical control circuit are known in the art and are readily adaptable for practice in the present invention by the ordinary skilled artisan. For example, a vacuum pressure sensor 76 (MPL model 500, diaphragm-type pressure differential sensor) suitable for practice in the present device is commercially available from Micro Pneumatic Logic, Inc. (Florida) from a line of pressure sensors. Other types of sensors are adaptable for use in the present invention for detecting or sensing pressure, such as surface strain gauges mounted on the surface of the desiccator cartridge 14, and optical displacement gauges mounted to transmit light through the surfaces of desiccator cartridge 14. For example, an optical fiber strain gauge 77 is commercially available from FISO Technologies (Quebec, model FOS “C” or “N”) from a line of optical strain gauges. This sensor can be used to monitor and indicate the presence of a vacuum in the desiccator cartridge by displacement (bending) of the cartridge surface under the force of a vacuum in the interior chamber 16. Optical displacement/strain gauges 78 are also commercially, including for the detection of fluid intrusion into a section of tubing. These gauges typically comprise a combination light source/detector 78a and a mirror 78b. Distortion of the surface of the desiccator cartridge 14 on which the mirror 78b is mounted alters the reflection path of the emitted light as it passes through the cartridge to return to the detector, which alteration is detectable. Of course, this requires the walls of the cartridge 14 proximate the optical displacement gauge 78 to be transparent to the light. The use of more than one pressure sensor 76 can allow sensing and/or measurement of the pressure differential between two different points in the gas/liquid flow pathway, such as between the inlet and outlet ports 18 & 20 of the desiccator cartridge 14.
The vacuum pressure sensor 76 is used to monitor the vacuum pressure in the interior chamber 16 of the desiccator cartridge 14. When the vacuum pressure detected in the chamber 16 by the pressure sensor 76 is sufficient, the electric control circuit 40 may switch off the motor 36, thereby conserving electrical power. When the vacuum pressure detected in the chamber 16 by the pressure sensor 76 is no longer sufficient the control circuit 40 may switch on the motor 36 to reestablish an appropriate vacuum pressure in the interior chamber 16 of the desiccator cartridge 14. Also, the electrical control circuit 40 can include a clock/timer circuit for intermittently operating the electric motive means 36, as another way of conserving electrical power. The I/O unit 70 can be utilized to set the time interval for the control circuit's intermittent operation of the motor 36.
In an alternative preferred embodiment of the vacuum desiccator 10, the battery 60 of the power source 46 is integral with the desiccator cartridge 14a. As exemplified in FIG. 8, the battery 60 is contained in a battery compartment 110, which is integral to the structure of the desiccator cartridge 14a. Battery leads 112 connect the battery 60 to electrical battery contacts 114 on the exterior surface 120 of the desiccator cartridge 14a. In this embodiment, the desiccator cartridge 14a and battery 60 are replaceable as a unit.
FIG. 8 also illustrates another preferred feature of a desiccator cartridge 14, in which a gas flow channel is disposed inside the interior chamber 16 of the cartridge 14a. In the embodiment illustrated, the flow channel 120 is a tube connected to the outlet port 20 and having a length sufficient to allow it to be coiled or snaked about the interior chamber 16 (also see FIG. 9B). The flow channel tube 120 has perforations 122 along its length, or is otherwise constructed, to allow gas flow from the interior chamber 16 into the lumen of the flow channel tube 120 under the force of the vacuum pressure from the pump member 22. Further shown in FIG. 8, is trapping agent 54c having a pillow-like structure. The flow channel tube 120 is laid out on one side of the pillow trapping agent 54c. In the preferred embodiment, the pillow trapping agent 54c was constructed using 10 grams of sodium polyacrylate distributed between two layers of an elastic mesh material (nylon stocking). In addition to elastic mesh material, other fabrics are suitable for practice with the moisture trapping pillow 54c, including knitted fabric mesh materials like gauze and similar fabrics. To maintain even distribution of the sodium polyacrylate, the two layers of elastic mesh material were sewn together to form compartments. The volume of the interior chamber 16 of the desiccator cartridge 14 was sufficient to hold the pillow and about 50 cc of trapped moisture.
A flow channel may be accomplished by means other than a tube. For example, a flow channel may be integrated into the desiccator cartridge 14 and be in gas flow communication with the interior chamber 16. This embodiment of a desiccator cartridge 14 can be accomplished as shown in FIGS. 9A and 9B, wherein the cartridge 14b has a cover member 124 and a body member 126 (FIG. 9A). The cartridge cover member 124 has a gas flow channel 120a integrated into it. The integral flow channel 120a has perforations 122a along its length, or is otherwise constructed, to allow gas flow from the interior chamber into the lumen of the integral channel 120a under the force of the vacuum pressure from the pump member 22.
While the above description contains many specifics, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of one or another preferred embodiment thereof. Many other variations are possible, which would be obvious to one skilled in the art. Accordingly, the scope of the invention should be determined by the scope of the appended claims and their equivalents, and not just by the embodiments.

Claims (55)

1. A personally portable vacuum desiccator comprising:
a moisture trap, the trap further comprising a desiccator cartridge having an interior chamber containing a trapping agent and a gas flow channel having a plurality of perforations along the gas flow channel, and the desiccator cartridge further including an inlet port and an outlet port in gas/liquid communication with the interior chamber, the outlet port being connected to the gas flow channel;
a vacuum pump member having a low pressure port and an exhaust port, the low pressure port in gas/liquid flow communication with the outlet port of the desiccator cartridge and with the exhaust port vented to atmosphere, and the vacuum pump member being operable to provide a low vacuum pressure to the interior chamber;
an electric motive means in communication with the vacuum pump member and operative to drive the vacuum pump member; and
an electrical control circuit, including an electrical power source, the control circuit in electrical communication with and operative to control operation of the electric motive means;
wherein said personally portable vacuum desiccator is generally flat and may be worn unobtrusively by a user and is adaptable for collecting and trapping liquid from a wound or incision on the user in said moisture trap.
2. The personally portable vacuum desiccator of claim 1, further comprising a single passage gas/liquid flow path delivery tube, having an input end and an output end, the output end being connected to the inlet port of the desiccator cartridge.
3. The personally portable vacuum desiccator of claim 1, further comprising a housing containing the electric motive means and the electrical control circuit.
4. The personally portable vacuum desiccator of claim 1, further comprising a housing containing the electric motive means and the electrical control circuit and at least one additional element selected from the group consisting of the desiccator cartridge and the vacuum pump member.
5. The personally portable vacuum desiccator of claim 1, wherein the vacuum pump member is integral with the desiccator cartridge.
6. The personally portable vacuum desiccator of claim 1, wherein the electric motive means includes an electric motor mechanically coupled to the vacuum pump member.
7. The personally portable vacuum desiccator of claim 1, wherein the electric motive means includes an electric motor magnetically coupled to the vacuum pump member.
8. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes an electrical power source comprising a battery.
9. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes an electrical power source comprising a battery, and the battery is removable from the electrical control circuit and replaceable.
10. The personally portable vacuum desiccator of claim 1, further comprising a one-way valve disposed proximate the inlet port of the desiccator cartridge, the one-way valve preventing gas/liquid and particulate flow out of the inlet port.
11. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes a moisture sensor for detecting the presence of moisture proximate the low pressure port of the vacuum pump member.
12. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes a timer circuit for intermittently operating the electric motive means.
13. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes a vacuum pressure sensor for detecting a vacuum pressure in the interior chamber of the desiccator cartridge.
14. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes a pressure differential sensor for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
15. The personally portable vacuum desiccator of claim 1, wherein the desiccator cartridge is removable from the vacuum desiccator and replaceable.
16. The personally portable vacuum desiccator of claim 1, wherein components in gas/liquid flow communication are replaceable.
17. The personally portable vacuum desiccator of claim 1, wherein the desiccator cartridge contains a trapping agent selected from the group consisting of: a desiccant, an adsorbent and an absorbent.
18. The personally portable vacuum desiccator of claim 1, further comprising a micro-filter positioned after the outlet port of the desiccator cartridge and before the exhaust port of the vacuum pump member, the micro-filter blocking the passage of bacteria.
19. The personally portable vacuum desiccator of claim 1, wherein the power source is integrally combined with the desiccator cartridge, and the combined desiccator-power source being installable in and removable from the vacuum desiccator as a single unit.
20. A personally portable vacuum desiccator comprising:
a desiccator cartridge, the cartridge being removable from the vacuum desiccator and replaceable, and having an interior chamber containing a trapping agent, the trapping agent being a moisture tapping pillow, and an inlet port and an outlet port in gas/liquid communication with the interior chamber, and a one-way valve disposed proximate the inlet port for preventing gas/liquid and particulate flow out of the inlet port;
a single passage gas/liquid flow pathway having an input end and an output end, the output end being connected to the inlet port of the desiccator cartridge;
a vacuum pump member having a low pressure port and an exhaust port, the low pressure port in gas/liquid flow communication with the outlet port of the desiccator cartridge and with the exhaust port vented to atmosphere, and the vacuum pump member being operable to provide a low vacuum pressure to the interior chamber;
an electric motive means in communication with the vacuum pump member and operative to drive the vacuum pump member, the electric motive means including an electric motor coupled to the vacuum pump member; and
an electrical control circuit, including an electrical power source, the control circuit in electrical communication with and operative to control operation of the electric motive means, the electrical power source comprising a battery, with the battery being removable from the electrical control circuit and replaceable, and wherein the electrical control circuit includes one or more ancillary circuits selected from the group consisting of: a power circuit for turning the electrical control circuit on and off, a moisture sensor for detecting the presence of moisture proximate the low pressure port of the vacuum pump member, a timer circuit for intermittently operating the electric motive means, a vacuum pressure sensor for detecting a vacuum pressure in the interior chamber of the desiccator cartridge, a pressure differential sensor for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
21. A personally portable vacuum desiccator for draining and collecting excess fluid from a wound ox incision on a user, said vacuum desiccator comprising; :
a thin moisture trap having a fluid trapping agent, a gas flow channel having a plurality of perforations along the gas flow channel, an inlet port, and an outlet port, the outlet port being connected to the gas flow channel;
a delivery tube having a first end positionable in gas/liquid flow communication with the wound or incision on the user and a second end in gas/liquid flow communication with said inlet port;
a vacuum pump in gas/liquid flow communication with said outlet port;
an electric motor operably connected to said vacuum pump; and
a control circuit in electrical communication with said motor, said control circuit having an electric power source and being operable for controlling the operation of said motor;
said vacuum desiccator being transportable upon the user's person;
said vacuum pump being operable to draw fluid from the wound or incision through said delivery tube and into said moisture trap;
said fluid trapping agent having a capacity for trapping a volume of the fluid.
22. The personally portable vacuum desiccator of claim 21 wherein said delivery tube comprises a single passage gas/liquid flow path.
23. The personally portable vacuum desiccator of claim 21 wherein:
said moisture trap comprises a desiccator cartridge having an interior chamber; in which the gas flow channel is positioned
said interior chamber having a gas flow channel and said fluid trapping agent disposed therein;
said gas flow channel being connected to said outlet port.
24. The personally portable vacuum desiccator of claim 23 wherein said gas flow channel comprises a second tubehaving perforations therein.
25. The personally portable vacuum desiccator of claim 24 wherein said second rube is arranged in a configuration selected from the group consisting of coiled and snaked.
26. The personally portable vacuum desiccator of claim 23 wherein said desiccator cartridge comprises a cover member and a body member, said gas flow channel being integrated into said cover member.
27. The personally portable vacuum desiccator of claim 21 further comprising a one-way valve proximate said inlet port to prevent gas/liquid flow out of said moisture trap through said inlet port.
28. The personally portable vacuum desiccator of claim 21 further comprising a micro-filter proximate said outlet port to prevent bacteria or moisture from leaving said moisture tap through said outlet port.
29. The personally portable vacuum desiccator of claim 21 further comprising a moisture sensor proximate said outlet port and in communication with said control for controlling said motor in response to the detection of moisture proximate circuit said outlet port.
30. The personally portable vacuum desiccator of claim 21 further comprising a vacuum pressure sensor for detecting the vacuum pressure within said moisture trap, said vacuum pressure sensor being in communication with said control circuit for controlling said motor in response to said vacuum pressure.
31. The personally portable vacuum desiccator of claim 21 further comprising a pressure differential sensor for detecting the pressure differential between said inlet port and said outlet port, said pressure differential sensor being in communication with said control circuit for controlling said motor in response to said pressure differential.
32. The personally portable vacuum desiccator of claim 21 wherein said volume is about 50 cc.
33. The personally portable vacuum desiccator of claim 21 wherein said fluid tapping agent is selected from the group consisting of desiccants, adsorbent, and absorbents.
34. The personally portable vacuum desiccator of claim 21 wherein said moisture trap has a generally rectangular shape.
35. The personally portable vacuum desiccator of claim 1, wherein the gas flow channel comprises a tube positioned within the interior chamber.
36. The personally portable vacuum desiccator of claim 1, wherein the gas flow channel is positioned within the interior chamber on one side of the trapping agent.
37. The personally portable vacuum desiccator of claim 1, wherein the desiccator cartridge comprises a cover member and a body member, the gas flow channel being integrated into the cover member.
38. The personally portable vacuum desiccator of claim 1, wherein the trapping agent comprises a pillow-like configuration.
39. The personally portable vacuum desiccator of claim 38, wherein the pillow-like configuration further includes sodium polyacrylate distributed between two layers of an elastic mesh material.
40. The personally portable vacuum desiccator of claim 23, wherein the gas flow channel is positioned within the interior chamber on one side of the fluid trapping agent.
41. The personally portable vacuum desiccator of claim 21, wherein the fluid trapping agent comprises a pillow-like configuration.
42. The personally portable vacuum desiccator of claim 41, wherein the pillow-like configuration further includes sodium polyacrylate distributed between two layers of an elastic mesh material.
43. A personally portable vacuum desiccator for draining and collecting excess fluid from a wound or incision on a user, said vacuum desiccator comprising:
a thin moisture trap having a fluid trapping agent, an inlet port, and an outlet port;
a one-way valve disposed proximate the inlet port of the thin moisture trap, the one-way valve preventing gas/liquid and particulate flow out of the inlet port;
a delivery tube having a first end positionable in gas/liquid flow communication with the wound or incision on the user and a second end in gas/liquid flow communication with said inlet port;
a vacuum pump in gas/liquid flow communication with said outlet port;
an electric motor operably connected to said vacuum pump; and
a control circuit in electrical communication with said motor, said control circuit having an electric power source and being operable for controlling the operation of said motor;
said vacuum desiccator being transportable upon the user's person;
said vacuum pump being operable to draw fluid from the wound or incision through said delivery tube and into said moisture trap;
said fluid trapping agent having a capacity for trapping a volume of the fluid.
44. The personally portable vacuum desiccator of claim 43, wherein said delivery tube comprises a single passage gas/liquid flow path.
45. The personally portable vacuum desiccator of claim 43, wherein:
said moisture trap comprises a desiccator cartridge having an interior chamber;
said interior chamber having a gas flow channel and said fluid trapping agent disposed therein, said gas flow channel being connected to said outlet port.
46. The personally portable vacuum desiccator of claim 45, wherein said gas flow channel comprises a second tube having perforations therein.
47. The personally portable vacuum desiccator of claim 46, wherein said second tube is arranged in a configuration selected from the group consisting of coiled and snaked.
48. The personally portable vacuum desiccator of claim 45, wherein said desiccator cartridge comprises a cover member and a body member, said gas flow channel being integrated into said cover member.
49. The personally portable vacuum desiccator of claim 43 further comprising a micro-filter proximate said outlet port to prevent bacteria or moisture from leaving said moisture tap through said outlet port.
50. The personally portable vacuum desiccator of claim 43 further comprising a moisture sensor proximate said outlet port and in communication with said control for controlling said motor in response to the detection of moisture proximate circuit said outlet port.
51. The personally portable vacuum desiccator of claim 43 further comprising a vacuum pressure sensor for detecting the vacuum pressure within said moisture trap, said vacuum pressure sensor being in communication with said control circuit for controlling said motor in response to said vacuum pressure.
52. The personally portable vacuum desiccator of claim 43 further comprising a pressure differential sensor for detecting the pressure differential between said inlet port and said outlet port, said pressure differential sensor being in communication with said control circuit for controlling said motor in response to said pressure differential.
53. The personally portable vacuum desiccator of claim 43, wherein said volume is about 50 cc.
54. The personally portable vacuum desiccator of claim 43, wherein said fluid trapping agent is selected from the group consisting of desiccants, adsorbents, and absorbents.
55. The personally portable vacuum desiccator of claim 43, wherein said moisture trap has a generally rectangular shape.
US12/580,991 2001-11-20 2009-10-16 Personally portable vacuum desiccator Expired - Fee Related USRE42834E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/580,991 USRE42834E1 (en) 2001-11-20 2009-10-16 Personally portable vacuum desiccator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/996,970 US6648862B2 (en) 2001-11-20 2001-11-20 Personally portable vacuum desiccator
US12/580,991 USRE42834E1 (en) 2001-11-20 2009-10-16 Personally portable vacuum desiccator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/996,970 Reissue US6648862B2 (en) 2001-11-20 2001-11-20 Personally portable vacuum desiccator

Publications (1)

Publication Number Publication Date
USRE42834E1 true USRE42834E1 (en) 2011-10-11

Family

ID=25543492

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/996,970 Ceased US6648862B2 (en) 2001-11-20 2001-11-20 Personally portable vacuum desiccator
US10/715,164 Abandoned US20040167482A1 (en) 2001-11-20 2003-11-17 Personally portable vacuum desiccator
US12/580,991 Expired - Fee Related USRE42834E1 (en) 2001-11-20 2009-10-16 Personally portable vacuum desiccator

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/996,970 Ceased US6648862B2 (en) 2001-11-20 2001-11-20 Personally portable vacuum desiccator
US10/715,164 Abandoned US20040167482A1 (en) 2001-11-20 2003-11-17 Personally portable vacuum desiccator

Country Status (1)

Country Link
US (3) US6648862B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108870A1 (en) * 2007-07-12 2010-05-06 Abb Research Ltd Pressure sensor
US20130066301A1 (en) * 2011-09-13 2013-03-14 Christopher Brian Locke Reduced-pressure canisters having hydrophobic pores
US8986269B2 (en) 2010-11-11 2015-03-24 Ulcerx Medical Inc. Wound leakage vacuum collection device
US9814806B2 (en) 2009-12-23 2017-11-14 Kci Licensing, Inc. Reduced-pressure, multi-orientation, liquid-collection canister

Families Citing this family (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458109B1 (en) 1998-08-07 2002-10-01 Hill-Rom Services, Inc. Wound treatment apparatus
US6764462B2 (en) 2000-11-29 2004-07-20 Hill-Rom Services Inc. Wound treatment apparatus
US6824533B2 (en) * 2000-11-29 2004-11-30 Hill-Rom Services, Inc. Wound treatment apparatus
US20010043943A1 (en) 2000-05-22 2001-11-22 Coffey Arthur C. Combination SIS and vacuum bandage and method
US6855135B2 (en) 2000-11-29 2005-02-15 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US6685681B2 (en) 2000-11-29 2004-02-03 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
CA2462877A1 (en) 2001-10-11 2003-04-17 Hill-Rom Services, Inc. Waste container for negative pressure therapy
US6648862B2 (en) 2001-11-20 2003-11-18 Spheric Products, Ltd. Personally portable vacuum desiccator
CA2468309A1 (en) 2001-12-26 2003-07-17 Robert Petrosenko Wound vacuum therapy dressing kit
CA2468307A1 (en) 2001-12-26 2003-07-17 Hill-Rom Services, Inc. Vacuum bandage packing
WO2003057070A2 (en) 2001-12-26 2003-07-17 Hill-Rom Services Inc. Vented vacuum bandage and method
CN100506312C (en) * 2002-02-28 2009-07-01 赛氏联合企业 Portable battery operated aspirator
WO2003086232A2 (en) 2002-04-10 2003-10-23 Hill-Rom Services, Inc. Access openings in vacuum bandage
JP4584708B2 (en) * 2002-06-11 2010-11-24 シーエムエス サージカル、 リミテッド ライアビリティ カンパニー Efficient body cavity discharge device
JP2005536275A (en) 2002-08-21 2005-12-02 ヒル−ロム サービシズ,インコーポレイテッド Wound packing to prevent wound closure
US7846141B2 (en) 2002-09-03 2010-12-07 Bluesky Medical Group Incorporated Reduced pressure treatment system
US7625362B2 (en) * 2003-09-16 2009-12-01 Boehringer Technologies, L.P. Apparatus and method for suction-assisted wound healing
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
US7814021B2 (en) * 2003-01-23 2010-10-12 Verdasys, Inc. Managed distribution of digital assets
JP4411929B2 (en) * 2003-02-28 2010-02-10 株式会社日立製作所 Backup method, system, and program
US7533667B2 (en) * 2003-05-29 2009-05-19 Portaero, Inc. Methods and devices to assist pulmonary decompression
US7361184B2 (en) * 2003-09-08 2008-04-22 Joshi Ashok V Device and method for wound therapy
WO2005036465A1 (en) * 2003-10-14 2005-04-21 Koninklijke Philips Electronics N.V. Video encoding method and device
GB0325129D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus in situ
US7790945B1 (en) 2004-04-05 2010-09-07 Kci Licensing, Inc. Wound dressing with absorption and suction capabilities
US7708724B2 (en) 2004-04-05 2010-05-04 Blue Sky Medical Group Incorporated Reduced pressure wound cupping treatment system
US7909805B2 (en) 2004-04-05 2011-03-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US10058642B2 (en) 2004-04-05 2018-08-28 Bluesky Medical Group Incorporated Reduced pressure treatment system
US7776028B2 (en) 2004-04-05 2010-08-17 Bluesky Medical Group Incorporated Adjustable overlay reduced pressure wound treatment system
US8062272B2 (en) 2004-05-21 2011-11-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
GB0409446D0 (en) 2004-04-28 2004-06-02 Smith & Nephew Apparatus
US8529548B2 (en) 2004-04-27 2013-09-10 Smith & Nephew Plc Wound treatment apparatus and method
US7824384B2 (en) * 2004-08-10 2010-11-02 Kci Licensing, Inc. Chest tube drainage system
US8512301B2 (en) * 2005-02-08 2013-08-20 Feng Ma Canned vacuum
ITUD20050051A1 (en) * 2005-04-05 2006-10-06 Cps Color Equipment Spa DEVICE AND PROCEDURE TO PREVENT DRYING OF FLUID PRODUCTS IN A DRAWING MACHINE OF THESE PRODUCTS
US7857806B2 (en) * 2005-07-14 2010-12-28 Boehringer Technologies, L.P. Pump system for negative pressure wound therapy
US7438705B2 (en) 2005-07-14 2008-10-21 Boehringer Technologies, L.P. System for treating a wound with suction and method detecting loss of suction
US20110077605A1 (en) * 2005-07-14 2011-03-31 Boehringer Technologies, L.P. Pump system for negative pressure wound therapy
AU2005330067B1 (en) * 2005-07-24 2006-12-14 Carmeli Adahan Wound closure and drainage system
US7503910B2 (en) * 2006-02-01 2009-03-17 Carmeli Adahan Suctioning system, method and kit
WO2007013049A1 (en) * 2005-07-24 2007-02-01 Carmeli Adahan Wound closure and drainage system
CA2614797A1 (en) * 2005-07-24 2007-02-01 Carmeli Adahan Suctioning system, method and kit
WO2007024230A1 (en) * 2005-08-26 2007-03-01 Spheric Products, Ltd. Chest tube drainage system
EP2708216B1 (en) * 2005-09-07 2016-04-06 Smith & Nephew, Inc. Self contained wound dressing apparatus
WO2007030598A2 (en) * 2005-09-07 2007-03-15 Tyco Healthcare Group Lp Wound dressing with vacuum reservoir
US7569742B2 (en) * 2005-09-07 2009-08-04 Tyco Healthcare Group Lp Self contained wound dressing with micropump
US20070093805A1 (en) * 2005-10-17 2007-04-26 Coaptus Medical Corporation Systems and methods for securing cardiovascular tissue, including via asymmetric electrodes
AU2007211738A1 (en) * 2006-02-02 2007-08-09 Coloplast A/S A suction method and a wound suction system
CA2634275A1 (en) * 2006-02-02 2007-08-09 Coloplast A/S Device, pump and system for stimulating the healing of a wound
CA2635697A1 (en) * 2006-02-02 2007-08-09 Coloplast A/S A suction system
CA2634274A1 (en) * 2006-02-02 2007-08-09 Coloplast A/S Pump and system for treatment of a wound
US8235939B2 (en) 2006-02-06 2012-08-07 Kci Licensing, Inc. System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment
JP4719278B2 (en) 2006-02-06 2011-07-06 ケーシーアイ ライセンシング インコーポレイテッド Adapter for applying negative pressure wound therapy to tissue sites
US8852149B2 (en) 2006-04-06 2014-10-07 Bluesky Medical Group, Inc. Instructional medical treatment system
US7615036B2 (en) 2006-05-11 2009-11-10 Kalypto Medical, Inc. Device and method for wound therapy
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
US8715267B2 (en) * 2006-06-02 2014-05-06 Kci Medical Resources Assemblies, systems, and methods for vacuum assisted internal drainage during wound healing
US8025650B2 (en) 2006-06-12 2011-09-27 Wound Care Technologies, Inc. Negative pressure wound treatment device, and methods
AU2013205545B2 (en) * 2006-09-19 2016-03-17 Solventum Intellectual Properties Company Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities
US8366690B2 (en) 2006-09-19 2013-02-05 Kci Licensing, Inc. System and method for determining a fill status of a canister of fluid in a reduced pressure treatment system
US8061360B2 (en) 2006-09-19 2011-11-22 Kci Licensing, Inc. System and method for locating fluid leaks at a drape of a reduced pressure delivery system
AU2016203841B2 (en) * 2006-09-19 2018-02-22 Solventum Intellectual Properties Company Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities
MX2009002948A (en) * 2006-09-19 2009-03-31 Kci Licensing Inc Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities.
US9820888B2 (en) 2006-09-26 2017-11-21 Smith & Nephew, Inc. Wound dressing
ATE456383T1 (en) * 2006-09-28 2010-02-15 Tyco Healthcare PORTABLE WOUND THERAPY SYSTEM
EP2081618B1 (en) 2006-10-13 2016-01-06 Bluesky Medical Group Inc. Improved control circuit and apparatus for negative pressure wound treatment
US8287507B2 (en) 2006-10-13 2012-10-16 Kci Licensing, Inc. Reduced pressure indicator for a reduced pressure source
TWI370000B (en) * 2006-10-13 2012-08-11 Kci Licensing Inc Reduced presure delivery system having a low-profile dressing for providing treatment to low-severity wounds
AU2007311028B2 (en) 2006-10-17 2013-06-27 Smith & Nephew Plc Auxiliary powered negative pressure wound therapy apparatuses and methods
US20080103462A1 (en) * 2006-10-30 2008-05-01 Stuart Wenzel Wound healing patch with integral passive vacuum and electrostimulation
US7931651B2 (en) 2006-11-17 2011-04-26 Wake Lake University Health Sciences External fixation assembly and method of use
US8377016B2 (en) 2007-01-10 2013-02-19 Wake Forest University Health Sciences Apparatus and method for wound treatment employing periodic sub-atmospheric pressure
US8267908B2 (en) * 2007-02-09 2012-09-18 Kci Licensing, Inc. Delivery tube, system, and method for storing liquid from a tissue site
MX2009008399A (en) * 2007-02-09 2009-11-10 Kci Licensing Inc Apparatus and method for administering reduced pressure treatment to a tissue site.
RU2428208C2 (en) 2007-02-09 2011-09-10 КейСиАй Лайсензинг Инк. System and method of low pressure control in tissue area
WO2008100438A1 (en) 2007-02-09 2008-08-21 Kci Licensing Inc. System and method for applying reduced pressure at a tissue site
CA2675263C (en) 2007-02-20 2012-01-03 Kci Licensing, Inc. System and method for distinguishing leaks from a disengaged canister condition in a reduced pressure treatment system
JP2010525916A (en) * 2007-05-07 2010-07-29 カルメリ アダハン Suction system
GB0715259D0 (en) 2007-08-06 2007-09-12 Smith & Nephew Canister status determination
GB0712764D0 (en) 2007-07-02 2007-08-08 Smith & Nephew Carrying Bag
GB0712737D0 (en) * 2007-07-02 2007-08-08 Smith & Nephew Apparatus
GB0712739D0 (en) 2007-07-02 2007-08-08 Smith & Nephew Apparatus
GB0712763D0 (en) 2007-07-02 2007-08-08 Smith & Nephew Apparatus
GB0715211D0 (en) * 2007-08-06 2007-09-12 Smith & Nephew Apparatus
GB0712760D0 (en) * 2007-07-02 2007-08-08 Smith & Nephew Status indication
GB0712758D0 (en) * 2007-07-02 2007-08-08 Smith & Nephew Battery recharging
US9408954B2 (en) 2007-07-02 2016-08-09 Smith & Nephew Plc Systems and methods for controlling operation of negative pressure wound therapy apparatus
GB0712736D0 (en) * 2007-07-02 2007-08-08 Smith & Nephew Apparatus
US7790946B2 (en) 2007-07-06 2010-09-07 Tyco Healthcare Group Lp Subatmospheric pressure wound therapy dressing
GB0715212D0 (en) * 2007-08-06 2007-09-12 Smith & Nephew Apparatus
WO2009049058A1 (en) 2007-10-10 2009-04-16 Wake Forest University Health Sciences Devices and methods for treating spinal cord tissue
BRPI0818512A2 (en) * 2007-10-18 2016-05-24 Convatec Technologies Inc aspiration system to remove liquid except urine and discharged by human body
JP5613566B2 (en) 2007-11-21 2014-10-22 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Wound dressing
GB0722820D0 (en) 2007-11-21 2008-01-02 Smith & Nephew Vacuum assisted wound dressing
DK3000448T3 (en) 2007-11-21 2019-01-21 Smith & Nephew Wound dressing
WO2009068667A2 (en) * 2007-11-30 2009-06-04 Coloplast A/S Collecting container for wound exudate
US11253399B2 (en) 2007-12-06 2022-02-22 Smith & Nephew Plc Wound filling apparatuses and methods
US20130096518A1 (en) 2007-12-06 2013-04-18 Smith & Nephew Plc Wound filling apparatuses and methods
GB0723875D0 (en) 2007-12-06 2008-01-16 Smith & Nephew Wound management
GB0723872D0 (en) * 2007-12-06 2008-01-16 Smith & Nephew Apparatus for topical negative pressure therapy
GB0724564D0 (en) * 2007-12-18 2008-01-30 Smith & Nephew Portable wound therapy apparatus and method
GB2455962A (en) 2007-12-24 2009-07-01 Ethicon Inc Reinforced adhesive backing sheet, for plaster
US8372051B2 (en) * 2007-12-31 2013-02-12 3M Innovative Properties Company Medical dressing with edge port and methods of use
BRPI0906939A2 (en) 2008-01-09 2017-06-13 Univ Wake Forest Health Sciences apparatus and method for treating injured central nervous system tissue.
GB0803564D0 (en) * 2008-02-27 2008-04-02 Smith & Nephew Fluid collection
EP2345438B2 (en) 2008-03-05 2021-12-15 KCI Licensing, Inc. Dressing for applying reduced pressure to and collecting and storing fluid from a tissue site
US8021347B2 (en) 2008-07-21 2011-09-20 Tyco Healthcare Group Lp Thin film wound dressing
US8298200B2 (en) 2009-06-01 2012-10-30 Tyco Healthcare Group Lp System for providing continual drainage in negative pressure wound therapy
US9033942B2 (en) 2008-03-07 2015-05-19 Smith & Nephew, Inc. Wound dressing port and associated wound dressing
US9199012B2 (en) 2008-03-13 2015-12-01 Smith & Nephew, Inc. Shear resistant wound dressing for use in vacuum wound therapy
WO2009124100A1 (en) * 2008-04-04 2009-10-08 3M Innovative Properties Company Wound dressing with micropump
US8267909B2 (en) * 2008-05-01 2012-09-18 Devilbiss Healthcare, Llc Canister having fluid flow control
CN103893845B (en) 2008-05-02 2016-08-17 凯希特许有限公司 Have regulation pressure capability manually activates reduced pressure treatment pump
US8048046B2 (en) * 2008-05-21 2011-11-01 Tyco Healthcare Group Lp Wound therapy system with housing and canister support
US8414519B2 (en) * 2008-05-21 2013-04-09 Covidien Lp Wound therapy system with portable container apparatus
US8007481B2 (en) 2008-07-17 2011-08-30 Tyco Healthcare Group Lp Subatmospheric pressure mechanism for wound therapy system
US10912869B2 (en) 2008-05-21 2021-02-09 Smith & Nephew, Inc. Wound therapy system with related methods therefor
US8177763B2 (en) 2008-09-05 2012-05-15 Tyco Healthcare Group Lp Canister membrane for wound therapy system
CN103977459B (en) 2008-05-30 2017-09-05 凯希特许有限公司 Reduced-pressure, linear wound closing bolsters and system
EP3797616A1 (en) 2008-05-30 2021-03-31 3M Innovative Properties Co. See-through, reduced-pressure dressings and systems
GB0811572D0 (en) * 2008-06-24 2008-07-30 Smith & Nephew Negitive pressure wound theraphy device
US8257326B2 (en) 2008-06-30 2012-09-04 Tyco Healthcare Group Lp Apparatus for enhancing wound healing
AU2009268997B2 (en) 2008-07-08 2015-04-02 Smith & Nephew Inc. Portable negative pressure wound therapy device
CA2730086C (en) 2008-07-11 2017-12-19 Kci Licensing, Inc. Manually-actuated, reduced-pressure systems for treating wounds
US9289193B2 (en) 2008-07-18 2016-03-22 Wake Forest University Health Sciences Apparatus and method for cardiac tissue modulation by topical application of vacuum to minimize cell death and damage
HUE037556T2 (en) 2008-08-08 2018-09-28 Smith & Nephew Inc Wound dressing of continuous fibers
CA2937100C (en) 2008-08-08 2019-07-02 Kci Licensing, Inc. Reduced-pressure treatment systems with reservoir control
US8216198B2 (en) 2009-01-09 2012-07-10 Tyco Healthcare Group Lp Canister for receiving wound exudate in a negative pressure therapy system
US8827983B2 (en) 2008-08-21 2014-09-09 Smith & Nephew, Inc. Sensor with electrical contact protection for use in fluid collection canister and negative pressure wound therapy systems including same
US8251979B2 (en) 2009-05-11 2012-08-28 Tyco Healthcare Group Lp Orientation independent canister for a negative pressure wound therapy device
US9414968B2 (en) 2008-09-05 2016-08-16 Smith & Nephew, Inc. Three-dimensional porous film contact layer with improved wound healing
TW201021867A (en) * 2008-12-12 2010-06-16 Ind Tech Res Inst Fluid processing system and collecting device thereof
TWI418374B (en) * 2008-12-31 2013-12-11 Ind Tech Res Inst Wound treatment apparatus and guiding unit thereof
MX2011007051A (en) 2008-12-31 2011-07-20 Kci Licensing Inc Manifolds, systems, and methods for administering reduced pressure to a subcutaneous tissue site.
US8162907B2 (en) 2009-01-20 2012-04-24 Tyco Healthcare Group Lp Method and apparatus for bridging from a dressing in negative pressure wound therapy
US8246591B2 (en) 2009-01-23 2012-08-21 Tyco Healthcare Group Lp Flanged connector for wound therapy
US8167869B2 (en) 2009-02-10 2012-05-01 Tyco Healthcare Group Lp Wound therapy system with proportional valve mechanism
GB0902368D0 (en) 2009-02-13 2009-04-01 Smith & Nephew Wound packing
GB0902816D0 (en) 2009-02-19 2009-04-08 Smith & Nephew Fluid communication path
EP2419157A4 (en) 2009-04-17 2018-01-03 Kalypto Medical, Inc. Negative pressure wound therapy device
US8591485B2 (en) * 2009-04-23 2013-11-26 Prospera Technologies, LLC System, method, and pump to prevent pump contamination during negative pressure wound therapy
US20110196321A1 (en) 2009-06-10 2011-08-11 Tyco Healthcare Group Lp Fluid Collection Canister Including Canister Top with Filter Membrane and Negative Pressure Wound Therapy Systems Including Same
EP2442770B1 (en) * 2009-06-16 2016-03-30 3M Innovative Properties Company Conformable medical dressing with self supporting substrate
US20100324516A1 (en) 2009-06-18 2010-12-23 Tyco Healthcare Group Lp Apparatus for Vacuum Bridging and/or Exudate Collection
WO2011017489A1 (en) 2009-08-05 2011-02-10 Tyco Healthcare Group Lp Surgical wound dressing incorporating connected hydrogel beads having an embedded electrode therein
US8529526B2 (en) 2009-10-20 2013-09-10 Kci Licensing, Inc. Dressing reduced-pressure indicators, systems, and methods
US8292863B2 (en) 2009-10-21 2012-10-23 Donoho Christopher D Disposable diaper with pouches
DK2515961T3 (en) 2009-12-22 2019-07-15 Smith & Nephew Inc APPARATUS AND METHODS FOR NEGATIVE PRESSURE WOUND THERAPY
US8791315B2 (en) 2010-02-26 2014-07-29 Smith & Nephew, Inc. Systems and methods for using negative pressure wound therapy to manage open abdominal wounds
US8814842B2 (en) * 2010-03-16 2014-08-26 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US9061095B2 (en) 2010-04-27 2015-06-23 Smith & Nephew Plc Wound dressing and method of use
US8623047B2 (en) 2010-04-30 2014-01-07 Kci Licensing, Inc. System and method for sealing an incisional wound
USRE48117E1 (en) 2010-05-07 2020-07-28 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US8641693B2 (en) * 2010-05-18 2014-02-04 Kci Licensing, Inc. Reduced-pressure canisters and methods for recycling
GB201011173D0 (en) 2010-07-02 2010-08-18 Smith & Nephew Provision of wound filler
US9463265B2 (en) * 2010-08-18 2016-10-11 Kci Licensing, Inc. Reduced-pressure, multi-orientation, liquid-collection canister
CA140188S (en) 2010-10-15 2011-11-07 Smith & Nephew Medical dressing
CA140189S (en) 2010-10-15 2011-11-07 Smith & Nephew Medical dressing
WO2013007973A2 (en) 2011-07-14 2013-01-17 Smith & Nephew Plc Wound dressing and method of treatment
EP2643412B1 (en) 2010-11-25 2016-08-17 Smith & Nephew PLC Composition i-ii and products and uses thereof
GB201020005D0 (en) 2010-11-25 2011-01-12 Smith & Nephew Composition 1-1
USD714433S1 (en) 2010-12-22 2014-09-30 Smith & Nephew, Inc. Suction adapter
CN103384538B (en) 2010-12-22 2017-03-22 史密夫和内修有限公司 Apparatuses and methods for negative pressure wound therapy
US9050175B2 (en) 2011-01-20 2015-06-09 Scott Stephan Therapeutic treatment pad
GB2488749A (en) 2011-01-31 2012-09-12 Systagenix Wound Man Ip Co Bv Laminated silicone coated wound dressing
US9302034B2 (en) 2011-04-04 2016-04-05 Smith & Nephew, Inc. Negative pressure wound therapy dressing
GB201106491D0 (en) 2011-04-15 2011-06-01 Systagenix Wound Man Ip Co Bv Patterened silicone coating
WO2012144668A1 (en) * 2011-04-20 2012-10-26 Moon Myung Sun Medical suction apparatus
US9058634B2 (en) 2011-05-24 2015-06-16 Kalypto Medical, Inc. Method for providing a negative pressure wound therapy pump device
BR112013030071A2 (en) 2011-05-24 2016-09-20 Kalypto Medical Inc device with controller and pump modules to provide negative pressure for wound therapy
US9067003B2 (en) 2011-05-26 2015-06-30 Kalypto Medical, Inc. Method for providing negative pressure to a negative pressure wound therapy bandage
JP6000343B2 (en) 2011-06-07 2016-09-28 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Wound contact member and method
WO2012178161A1 (en) * 2011-06-24 2012-12-27 Kci Licensing, Inc. Medical drapes, devices, and systems employing a holographically-formed polymer dispersed liquid crystal (h-pdlc) device
JP2014530075A (en) * 2011-10-17 2014-11-17 ケーシーアイライセンシング インコーポレイテッド System and apparatus with an in-line canister for treating a tissue site
US20150159066A1 (en) 2011-11-25 2015-06-11 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
US10940047B2 (en) 2011-12-16 2021-03-09 Kci Licensing, Inc. Sealing systems and methods employing a hybrid switchable drape
JP6320930B2 (en) 2011-12-16 2018-05-09 ケーシーアイ ライセンシング インコーポレイテッド Peelable medical drape
CN103203068B (en) * 2012-01-13 2015-07-22 雃博股份有限公司 Negative-pressure wound nursing system with buffering unit
EP2825220B2 (en) 2012-03-12 2021-03-03 Smith & Nephew PLC Reduced pressure apparatus and methods
AU346291S (en) 2012-05-15 2013-01-09 Smith & Nephew Medical dressing
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
US20130317463A1 (en) * 2012-05-22 2013-11-28 Apex Medical Corp. Negative pressure wound therapy system with a buffering unit
AU2013264934B2 (en) 2012-05-23 2017-07-20 Smith & Nephew Plc Apparatuses and methods for negative pressure wound therapy
CA2880148C (en) 2012-08-01 2021-07-20 Smith & Nephew Plc Wound dressing and method of treatment
ES2625709T3 (en) 2012-08-01 2017-07-20 Smith & Nephew Plc. Wound dressing
CN111991092A (en) 2012-11-16 2020-11-27 凯希特许有限公司 Medical drape having patterned adhesive layer and method of making same
GB201222770D0 (en) 2012-12-18 2013-01-30 Systagenix Wound Man Ip Co Bv Wound dressing with adhesive margin
US9533081B1 (en) * 2013-03-11 2017-01-03 Quint Barefoot Wound canister waste solidification system
USD764654S1 (en) 2014-03-13 2016-08-23 Smith & Nephew, Inc. Canister for collecting wound exudate
BR112015020855A2 (en) 2013-03-15 2017-07-18 Smith & Nephew wound dressing and treatment method
US20160120706A1 (en) 2013-03-15 2016-05-05 Smith & Nephew Plc Wound dressing sealant and use thereof
DE102013208107A1 (en) * 2013-05-03 2014-11-06 Paul Hartmann Ag Fluid receptacle for a device for providing negative pressure for medical applications, and device
AU2014266943B2 (en) 2013-05-10 2018-03-01 Smith & Nephew Plc Fluidic connector for irrigation and aspiration of wounds
EP3038667B1 (en) 2013-08-26 2019-10-09 KCI Licensing, Inc. Dressing interface with moisture controlling feature and sealing function
WO2015065742A1 (en) 2013-10-28 2015-05-07 Kci Licensing, Inc. Hybrid sealing tape
TR201807060T4 (en) 2013-10-30 2018-06-21 Kci Licensing Inc Winding with different sizes of perforations.
US9925092B2 (en) 2013-10-30 2018-03-27 Kci Licensing, Inc. Absorbent conduit and system
EP3513773A1 (en) 2013-10-30 2019-07-24 KCI Licensing, Inc. Condensate absorbing and dissipating system
WO2015065616A1 (en) 2013-10-30 2015-05-07 Kci Licensing, Inc. Dressing with sealing and retention intereface
US20150133897A1 (en) * 2013-11-12 2015-05-14 Constantino G. Mendieta Liposuction absorption cartridge
CN103751903A (en) * 2014-02-17 2014-04-30 浙江双安医药包装有限公司医疗科技设备分公司 Portable impulse type negative-pressure wound drainage instrument with wound negative-pressure paster
EP3848009A1 (en) 2014-02-28 2021-07-14 3M Innovative Properties Company Hybrid drape having a gel-coated perforated mesh
US11026844B2 (en) 2014-03-03 2021-06-08 Kci Licensing, Inc. Low profile flexible pressure transmission conduit
US10406266B2 (en) 2014-05-02 2019-09-10 Kci Licensing, Inc. Fluid storage devices, systems, and methods
USD764047S1 (en) 2014-05-28 2016-08-16 Smith & Nephew, Inc. Therapy unit assembly
USD764653S1 (en) 2014-05-28 2016-08-23 Smith & Nephew, Inc. Canister for collecting wound exudate
USD764048S1 (en) 2014-05-28 2016-08-16 Smith & Nephew, Inc. Device for applying negative pressure to a wound
USD765830S1 (en) 2014-06-02 2016-09-06 Smith & Nephew, Inc. Therapy unit assembly
USD770173S1 (en) 2014-06-02 2016-11-01 Smith & Nephew, Inc. Bag
EP3281616B1 (en) 2014-06-05 2020-01-01 KCI Licensing, Inc. Dressing with fluid acquisition and distribution characteristics
EP3174569B1 (en) 2014-07-31 2020-01-15 Smith & Nephew, Inc Systems and methods for applying reduced pressure therapy
EP3017869A1 (en) * 2014-11-05 2016-05-11 Deutsche Sporthochschule Köln Dried-Blood-Spot-card shipping and storage container
US11224712B2 (en) * 2014-11-13 2022-01-18 Tni Medical Ag Multifunctonal applicator which can be used in a mobile manner for mobile use
EP3233001B1 (en) 2014-12-17 2020-06-17 KCI Licensing, Inc. Dressing with offloading capability
JP6725527B2 (en) 2014-12-22 2020-07-22 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Device and method for negative pressure wound therapy
EP3701920A1 (en) 2015-04-27 2020-09-02 Smith & Nephew plc Reduced pressure apparatus and methods
WO2016182977A1 (en) 2015-05-08 2016-11-17 Kci Licensing, Inc. Low acuity dressing with integral pump
US10076594B2 (en) 2015-05-18 2018-09-18 Smith & Nephew Plc Fluidic connector for negative pressure wound therapy
CN104984418A (en) * 2015-06-30 2015-10-21 昆山韦睿医疗科技有限公司 Negative-pressure therapy system and exudate collecting box thereof
US10583228B2 (en) 2015-07-28 2020-03-10 J&M Shuler Medical, Inc. Sub-atmospheric wound therapy systems and methods
WO2017040045A1 (en) 2015-09-01 2017-03-09 Kci Licensing, Inc. Dressing with increased apposition force
EP3349807B1 (en) 2015-09-17 2021-02-24 3M Innovative Properties Company Hybrid silicone and acrylic adhesive cover for use with wound treatment
JP1586115S (en) 2016-02-29 2017-09-19
USD796735S1 (en) 2016-02-29 2017-09-05 Smith & Nephew Plc Mount apparatus for portable negative pressure apparatus
AU2017230775B2 (en) 2016-03-07 2021-12-23 Smith & Nephew Plc Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing
CN114469523A (en) 2016-04-26 2022-05-13 史密夫及内修公开有限公司 Wound dressing and method for use with an integrated negative pressure source having a fluid intrusion inhibiting feature
AU2017259003B2 (en) 2016-05-03 2022-09-22 Smith & Nephew Plc Systems and methods for driving negative pressure sources in negative pressure therapy systems
EP3452129B1 (en) 2016-05-03 2022-03-23 Smith & Nephew plc Negative pressure wound therapy device activation and control
WO2017191149A1 (en) 2016-05-03 2017-11-09 Smith & Nephew Plc Optimizing power transfer to negative pressure sources in negative pressure therapy systems
AU2017315129B2 (en) 2016-08-25 2022-10-27 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
US11564847B2 (en) 2016-09-30 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB2555584B (en) 2016-10-28 2020-05-27 Smith & Nephew Multi-layered wound dressing and method of manufacture
JP7361606B2 (en) 2017-03-08 2023-10-16 スミス アンド ネフュー ピーエルシー Control of negative pressure wound therapy devices in the presence of fault conditions
WO2018195101A1 (en) 2017-04-19 2018-10-25 Smith & Nephew, Inc. Negative pressure wound therapy canisters
US11160915B2 (en) 2017-05-09 2021-11-02 Smith & Nephew Plc Redundant controls for negative pressure wound therapy systems
AU2018293063B2 (en) 2017-06-30 2024-03-07 T.J.Smith & Nephew,Limited Negative pressure wound therapy apparatus
SG11202001900UA (en) * 2017-09-13 2020-04-29 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718070D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718072D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718054D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
GB201718014D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Dressing for negative pressure wound therapy with filter
US11497653B2 (en) 2017-11-01 2022-11-15 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201811449D0 (en) 2018-07-12 2018-08-29 Smith & Nephew Apparatuses and methods for negative pressure wound therapy
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
EP3880270A4 (en) * 2019-02-07 2022-07-06 Bearpac Medical, LLC Fluid removal system
US10828202B1 (en) * 2019-10-03 2020-11-10 Aatru Medical, LLC Negative pressure treatment including mechanical and chemical pump
US11160917B2 (en) 2020-01-22 2021-11-02 J&M Shuler Medical Inc. Negative pressure wound therapy barrier
CN111228531A (en) * 2020-03-25 2020-06-05 杨刚 Sterilization and disinfection device
EP4168678A1 (en) * 2020-06-18 2023-04-26 Milwaukee Electric Tool Corporation Vacuum pump with a solenoid valve

Citations (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355846A (en) 1920-02-06 1920-10-19 David A Rannells Medical appliance
US2547758A (en) 1949-01-05 1951-04-03 Wilmer B Keeling Instrument for treating the male urethra
US2632443A (en) 1949-04-18 1953-03-24 Eleanor P Lesher Surgical dressing
GB692578A (en) 1949-09-13 1953-06-10 Minnesota Mining & Mfg Improvements in or relating to drape sheets for surgical use
US2682873A (en) 1952-07-30 1954-07-06 Johnson & Johnson General purpose protective dressing
US2910763A (en) 1955-08-17 1959-11-03 Du Pont Felt-like products
US2969057A (en) 1957-11-04 1961-01-24 Brady Co W H Nematodic swab
US3026874A (en) 1959-11-06 1962-03-27 Robert C Stevens Wound shield
US3066672A (en) 1960-09-27 1962-12-04 Jr William H Crosby Method and apparatus for serial sampling of intestinal juice
US3089492A (en) 1961-05-11 1963-05-14 Owens Neal Wet surgical dressing
US3142298A (en) 1962-01-29 1964-07-28 William L Koski Stomach pump apparatus
US3367332A (en) 1965-08-27 1968-02-06 Gen Electric Product and process for establishing a sterile area of skin
US3472230A (en) 1966-12-19 1969-10-14 Fogarty T J Umbrella catheter
US3520300A (en) 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3648692A (en) 1970-12-07 1972-03-14 Parke Davis & Co Medical-surgical dressing for burns and the like
US3682180A (en) 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
US3826254A (en) 1973-02-26 1974-07-30 Verco Ind Needle or catheter retaining appliance
DE2640413A1 (en) 1976-09-08 1978-03-09 Wolf Gmbh Richard CATHETER MONITORING DEVICE
US4080970A (en) 1976-11-17 1978-03-28 Miller Thomas J Post-operative combination dressing and internal drain tube with external shield and tube connector
US4096853A (en) 1975-06-21 1978-06-27 Hoechst Aktiengesellschaft Device for the introduction of contrast medium into an anus praeter
US4139004A (en) 1977-02-17 1979-02-13 Gonzalez Jr Harry Bandage apparatus for treating burns
US4165748A (en) 1977-11-07 1979-08-28 Johnson Melissa C Catheter tube holder
US4184510A (en) 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
WO1980002182A1 (en) 1979-04-06 1980-10-16 J Moss Portable suction device for collecting fluids from a closed wound
US4233969A (en) 1976-11-11 1980-11-18 Lock Peter M Wound dressing materials
US4245630A (en) 1976-10-08 1981-01-20 T. J. Smith & Nephew, Ltd. Tearable composite strip of materials
US4256109A (en) 1978-07-10 1981-03-17 Nichols Robert L Shut off valve for medical suction apparatus
US4261363A (en) 1979-11-09 1981-04-14 C. R. Bard, Inc. Retention clips for body fluid drains
US4261360A (en) 1979-11-05 1981-04-14 Urethral Devices Research, Inc. Transurethral irrigation pressure controller
US4275721A (en) 1978-11-28 1981-06-30 Landstingens Inkopscentral Lic, Ekonomisk Forening Vein catheter bandage
US4284079A (en) 1979-06-28 1981-08-18 Adair Edwin Lloyd Method for applying a male incontinence device
US4297995A (en) 1980-06-03 1981-11-03 Key Pharmaceuticals, Inc. Bandage containing attachment post
US4333468A (en) 1980-08-18 1982-06-08 Geist Robert W Mesentery tube holder apparatus
US4373519A (en) 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4382441A (en) 1978-12-06 1983-05-10 Svedman Paul Device for treating tissues, for example skin
US4392858A (en) 1981-07-16 1983-07-12 Sherwood Medical Company Wound drainage device
US4392853A (en) 1981-03-16 1983-07-12 Rudolph Muto Sterile assembly for protecting and fastening an indwelling device
US4409974A (en) 1981-06-29 1983-10-18 Freedland Jeffrey A Bone-fixating surgical implant device
US4419097A (en) 1981-07-31 1983-12-06 Rexar Industries, Inc. Attachment for catheter tube
US4421583A (en) 1979-04-18 1983-12-20 Courtaulds Limited Man-made filaments and method of making wound dressings containing them
EP0100148A1 (en) 1982-07-06 1984-02-08 Dow Corning Limited Medical-surgical dressing and a process for the production thereof
US4444545A (en) 1982-04-08 1984-04-24 Sanders David F Pump control system
US4464172A (en) 1979-04-30 1984-08-07 Lichtenstein Eric Stefan Computer-control medical care system
US4465485A (en) 1981-03-06 1984-08-14 Becton, Dickinson And Company Suction canister with unitary shut-off valve and filter features
US4468219A (en) 1983-12-20 1984-08-28 International Business Machines Corporation Pump flow rate compensation system
EP0117632A2 (en) 1983-01-27 1984-09-05 Johnson & Johnson Products Inc. Adhesive film dressing
US4475909A (en) 1982-05-06 1984-10-09 Eisenberg Melvin I Male urinary device and method for applying the device
US4480638A (en) 1980-03-11 1984-11-06 Eduard Schmid Cushion for holding an element of grafted skin
US4525374A (en) 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
US4525166A (en) 1981-11-21 1985-06-25 Intermedicat Gmbh Rolled flexible medical suction drainage device
US4533352A (en) 1983-03-07 1985-08-06 Pmt Inc. Microsurgical flexible suction mat
US4536217A (en) 1980-07-30 1985-08-20 Ceskoslovenska Akademie Ved Of Praha Absorbing cover for wounds and the method for manufacturing thereof
US4540412A (en) 1983-07-14 1985-09-10 The Kendall Company Device for moist heat therapy
US4543100A (en) 1983-11-01 1985-09-24 Brodsky Stuart A Catheter and drain tube retainer
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4551139A (en) 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
EP0161865A2 (en) 1984-05-03 1985-11-21 Smith and Nephew Associated Companies p.l.c. Adhesive wound dressing
US4569348A (en) 1980-02-22 1986-02-11 Velcro Usa Inc. Catheter tube holder strap
AU550575B2 (en) 1981-08-07 1986-03-27 Richard Christian Wright Wound drainage device
US4605399A (en) 1984-12-04 1986-08-12 Complex, Inc. Transdermal infusion device
US4608041A (en) 1981-10-14 1986-08-26 Frese Nielsen Device for treatment of wounds in body tissue of patients by exposure to jets of gas
US4640688A (en) 1985-08-23 1987-02-03 Mentor Corporation Urine collection catheter
US4655754A (en) 1984-11-09 1987-04-07 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
US4664662A (en) 1984-08-02 1987-05-12 Smith And Nephew Associated Companies Plc Wound dressing
WO1987004626A1 (en) 1986-01-31 1987-08-13 Osmond, Roger, L., W. Suction system for wound and gastro-intestinal drainage
US4710165A (en) 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
US4733659A (en) 1986-01-17 1988-03-29 Seton Company Foam bandage
GB2195255A (en) 1986-09-30 1988-04-07 Vacutec Uk Limited Method and apparatus for vacuum treatment of an epidermal surface
US4743232A (en) 1986-10-06 1988-05-10 The Clinipad Corporation Package assembly for plastic film bandage
GB2197789A (en) 1986-11-28 1988-06-02 Smiths Industries Plc Anti-foaming disinfectants used in surgical suction apparatus
US4753230A (en) 1985-06-12 1988-06-28 J. R. Crompton P.L.C. Wound dressing
US4758220A (en) 1985-09-26 1988-07-19 Alcon Laboratories, Inc. Surgical cassette proximity sensing and latching apparatus
US4787888A (en) 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
US4820291A (en) 1986-02-27 1989-04-11 Nippon Medical Supply Corporation Urinary applicance
US4826494A (en) 1984-11-09 1989-05-02 Stryker Corporation Vacuum wound drainage system
US4838883A (en) 1986-03-07 1989-06-13 Nissho Corporation Urine-collecting device
US4840187A (en) 1986-09-11 1989-06-20 Bard Limited Sheath applicator
US4848364A (en) 1986-10-23 1989-07-18 Patentico Ltd. Covering sheet which can be made form-retaining
US4863449A (en) 1987-07-06 1989-09-05 Hollister Incorporated Adhesive-lined elastic condom cathether
US4872450A (en) 1984-08-17 1989-10-10 Austad Eric D Wound dressing and method of forming same
US4878901A (en) 1986-10-10 1989-11-07 Sachse Hans Ernst Condom catheter, a urethral catheter for the prevention of ascending infections
GB2220357A (en) 1988-05-28 1990-01-10 Smiths Industries Plc Medico-surgical containers
US4897081A (en) 1984-05-25 1990-01-30 Thermedics Inc. Percutaneous access device
US4906240A (en) 1988-02-01 1990-03-06 Matrix Medica, Inc. Adhesive-faced porous absorbent sheet and method of making same
US4906233A (en) 1986-05-29 1990-03-06 Terumo Kabushiki Kaisha Method of securing a catheter body to a human skin surface
US4919654A (en) 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US4930997A (en) 1987-08-19 1990-06-05 Bennett Alan N Portable medical suction device
CA2005436A1 (en) 1988-12-13 1990-06-13 Glenda G. Kalt Transparent tracheostomy tube dressing
US4941882A (en) 1987-03-14 1990-07-17 Smith And Nephew Associated Companies, P.L.C. Adhesive dressing for retaining a cannula on the skin
US4953565A (en) 1986-11-26 1990-09-04 Shunro Tachibana Endermic application kits for external medicines
US4957484A (en) 1988-07-26 1990-09-18 Automedix Sciences, Inc. Lymph access catheters and methods of administration
WO1990010424A1 (en) 1989-03-16 1990-09-20 Smith & Nephew Plc Absorbent devices and precursors therefor
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
US4985019A (en) 1988-03-11 1991-01-15 Michelson Gary K X-ray marker
US4996128A (en) 1990-03-12 1991-02-26 Nova Manufacturing, Inc. Rechargeable battery
GB2235877A (en) 1989-09-18 1991-03-20 Antonio Talluri Closed wound suction apparatus
US5002541A (en) 1984-06-19 1991-03-26 Martin And Associates, Inc. Method and device for removing and collecting urine
US5037397A (en) 1985-05-03 1991-08-06 Medical Distributors, Inc. Universal clamp
US5073172A (en) 1987-01-20 1991-12-17 Medinorm Aktiengesellschaft Medizintechnische Produkte Device for aspirating wound fluids
US5086170A (en) 1989-01-16 1992-02-04 Roussel Uclaf Process for the preparation of azabicyclo compounds
US5092858A (en) 1990-03-20 1992-03-03 Becton, Dickinson And Company Liquid gelling agent distributor device
US5100396A (en) 1989-04-03 1992-03-31 Zamierowski David S Fluidic connection system and method
DE4037931A1 (en) 1990-11-23 1992-05-27 Detlef Dr Ing Behrend Swab for resorbable protection of wound cavity - with soft foam body in soft foam casing with embedded resorbable hollow fibres connected to tube
US5134994A (en) 1990-02-12 1992-08-04 Say Sam L Field aspirator in a soft pack with externally mounted container
US5149331A (en) 1991-05-03 1992-09-22 Ariel Ferdman Method and device for wound closure
US5167613A (en) 1992-03-23 1992-12-01 The Kendall Company Composite vented wound dressing
US5176663A (en) 1987-12-02 1993-01-05 Pal Svedman Dressing having pad with compressibility limiting elements
US5180375A (en) 1991-05-02 1993-01-19 Feibus Miriam H Woven surgical drain and woven surgical sponge
US5211639A (en) 1990-05-30 1993-05-18 Wilk Peter J Evacuator assembly
WO1993009727A1 (en) 1991-11-14 1993-05-27 Wake Forest University Method and apparatus for treating tissue damage
US5215522A (en) 1984-07-23 1993-06-01 Ballard Medical Products Single use medical aspirating device and method
US5232453A (en) 1989-07-14 1993-08-03 E. R. Squibb & Sons, Inc. Catheter holder
US5254084A (en) 1993-03-26 1993-10-19 Geary Gregory L Peritoneal catheter device for dialysis
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
US5278100A (en) 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5279550A (en) 1991-12-19 1994-01-18 Gish Biomedical, Inc. Orthopedic autotransfusion system
US5279602A (en) 1989-03-30 1994-01-18 Abbott Laboratories Suction drainage infection control system
US5298015A (en) 1989-07-11 1994-03-29 Nippon Zeon Co., Ltd. Wound dressing having a porous structure
US5342376A (en) 1993-05-03 1994-08-30 Dermagraphics, Inc. Inserting device for a barbed tissue connector
US5344415A (en) 1993-06-15 1994-09-06 Deroyal Industries, Inc. Sterile system for dressing vascular access site
DE4306478A1 (en) 1993-03-02 1994-09-08 Wolfgang Dr Wagner Drainage device, in particular pleural drainage device, and drainage method
WO1994020041A1 (en) 1993-03-09 1994-09-15 Wake Forest University Wound treatment employing reduced pressure
US5356386A (en) 1987-06-05 1994-10-18 Uresil Corporation Apparatus for locating body cavities
US5358494A (en) 1989-07-11 1994-10-25 Svedman Paul Irrigation dressing
US5419769A (en) 1992-10-23 1995-05-30 Smiths Industries Medical Systems, Inc. Suction systems
US5429601A (en) 1992-02-12 1995-07-04 American Cyanamid Company Aspiration control system
US5437622A (en) 1992-04-29 1995-08-01 Laboratoire Hydrex (Sa) Transparent adhesive dressing with reinforced starter cuts
US5437651A (en) 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US5449347A (en) 1994-07-05 1995-09-12 The United States Of America As Represented By The Secretary Of The Air Force Patient transport, plural power source suction apparatus
DE29504378U1 (en) 1995-03-15 1995-09-14 Mtg Medizinisch Tech Geraeteba Electronically controlled low-vacuum pump for chest and wound drainage
US5458582A (en) 1992-06-15 1995-10-17 Nakao; Naomi L. Postoperative anesthetic delivery device and associated method for the postoperative treatment of pain
US5466229A (en) 1993-08-06 1995-11-14 Davstar, Inc. Fluid collection system
WO1996005873A1 (en) 1994-08-22 1996-02-29 Kinetic Concepts Inc. Wound drainage equipment
US5522808A (en) 1992-03-16 1996-06-04 Envirosurgical, Inc. Surgery plume filter device and method of filtering
US5527293A (en) 1989-04-03 1996-06-18 Kinetic Concepts, Inc. Fastening system and method
US5549584A (en) 1994-02-14 1996-08-27 The Kendall Company Apparatus for removing fluid from a wound
US5549585A (en) 1993-07-01 1996-08-27 Abbott Laboratories Gelling treatment for suction drainage system
US5556375A (en) 1994-06-16 1996-09-17 Hercules Incorporated Wound dressing having a fenestrated base layer
US5565210A (en) 1993-03-22 1996-10-15 Johnson & Johnson Medical, Inc. Bioabsorbable wound implant materials
US5599292A (en) 1990-07-24 1997-02-04 Yoon; Inbae Multifunctional devices for use in endoscopic surgical procedures and methods therefor
US5607388A (en) 1994-06-16 1997-03-04 Hercules Incorporated Multi-purpose wound dressing
US5628735A (en) 1996-01-11 1997-05-13 Skow; Joseph I. Surgical device for wicking and removing fluid
WO1997018007A1 (en) 1995-11-14 1997-05-22 Kci Medical Limited Portable wound treatment apparatus
US5634893A (en) 1995-04-24 1997-06-03 Haemonetics Corporation Autotransfusion apparatus
US5679371A (en) 1994-12-08 1997-10-21 Kuraray Co., Ltd. Wound dressing
US5678564A (en) 1992-08-07 1997-10-21 Bristol Myers Squibb Liquid removal system
US5681579A (en) 1993-03-22 1997-10-28 E.R. Squibb & Sons, Inc. Polymeric support wound dressing
US5700477A (en) 1992-03-25 1997-12-23 Johnson & Johnson Medical, Inc. Bioabsorbable wound implant materials
US5733337A (en) 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5741237A (en) 1995-04-10 1998-04-21 Walker; Kenneth Gordon System for disposal of fluids
US5759830A (en) 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
US5776119A (en) 1996-09-30 1998-07-07 Bilbo; Sharon C. Portable suction unit
US5827246A (en) 1996-02-28 1998-10-27 Tecnol Medical Products, Inc. Vacuum pad for collecting potentially hazardous fluids
US5836970A (en) 1996-08-02 1998-11-17 The Kendall Company Hemostatic wound dressing
US5885237A (en) 1993-10-05 1999-03-23 Bristol-Myers Squibb Company Trimmable wound dressing
WO1999013793A1 (en) 1997-09-12 1999-03-25 Kci Medical Limited Surgical drape and suction head for wound treatment
US5891111A (en) 1997-04-14 1999-04-06 Porges Flexible surgical drain with a plurality of individual ducts
US5928174A (en) 1997-11-14 1999-07-27 Acrymed Wound dressing device
US5945004A (en) 1996-02-01 1999-08-31 Daiken Iki Co., Ltd. Method and apparatus for treating waste liquids containing body fluids
US5944703A (en) 1994-10-11 1999-08-31 Research Medical Pty Ltd. Wound drainage system
US5974344A (en) 1998-03-02 1999-10-26 Shoemaker, Ii; Charles Wound care electrode
US5977428A (en) 1996-12-20 1999-11-02 Procyte Corporation Absorbent hydrogel particles and use thereof in wound dressings
US5981822A (en) 1997-05-02 1999-11-09 Johnson & Johnson Medical, Inc. Absorbent wound dressings
US6024731A (en) 1995-10-18 2000-02-15 Summit Medical Ltd. Wound drainage system
US6071267A (en) 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
US6077526A (en) 1995-05-17 2000-06-20 Texon Uk Limited Wound dressing
US6095998A (en) 1998-07-29 2000-08-01 The Procter & Gamble Company Expandable bag tampon and spreading tampon applicator therefor
US6126675A (en) 1999-01-11 2000-10-03 Ethicon, Inc. Bioabsorbable device and method for sealing vascular punctures
US6135116A (en) 1997-07-28 2000-10-24 Kci Licensing, Inc. Therapeutic method for treating ulcers
US6152902A (en) 1997-06-03 2000-11-28 Ethicon, Inc. Method and apparatus for collecting surgical fluids
US6175053B1 (en) 1997-06-18 2001-01-16 Japan As Represented By Director General Of National Institute Of Sericultural And Entomological Science Ministry Of Agriculture, Forrestry And Fisheries Wound dressing material containing silk fibroin and sericin as main component and method for preparing same
US6179804B1 (en) 1999-08-18 2001-01-30 Oxypatch, Llc Treatment apparatus for wounds
US6210360B1 (en) 1999-05-26 2001-04-03 Carl Cheung Tung Kong Fluid displacement pumps
US20010001835A1 (en) 1998-07-06 2001-05-24 Greene George R. Vascular embolization with an expansible implant
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US6245961B1 (en) 1997-12-03 2001-06-12 Sca Hygiene Products Ab Absorbent article
US6248112B1 (en) 1998-09-30 2001-06-19 C. R. Bard, Inc. Implant delivery system
US6287316B1 (en) 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
US6334064B1 (en) 1988-08-26 2001-12-25 Instrumentarium Corp. Remote sensing tonometric catheter apparatus and method
US6352525B1 (en) 1999-09-22 2002-03-05 Akio Wakabayashi Portable modular chest drainage system
US6356782B1 (en) 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6365149B2 (en) 1999-06-30 2002-04-02 Ethicon, Inc. Porous tissue scaffoldings for the repair or regeneration of tissue
US6398767B1 (en) 1997-05-27 2002-06-04 Wilhelm Fleischmann Process and device for application of active substances to a wound surface area
US20020077661A1 (en) 2000-12-20 2002-06-20 Vahid Saadat Multi-barbed device for retaining tissue in apposition and methods of use
US6411853B1 (en) 1997-07-25 2002-06-25 Laboratoires D'hygiene Et De Dietetique (L.H.D.) Device for therapeutic treatment of wounds
US20020095218A1 (en) 1996-03-12 2002-07-18 Carr Robert M. Tissue repair fabric
US20020115951A1 (en) 2001-02-22 2002-08-22 Core Products International, Inc. Ankle brace providing upper and lower ankle adjustment
US20020120185A1 (en) 2000-05-26 2002-08-29 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
US20020143286A1 (en) 2001-03-05 2002-10-03 Kci Licensing, Inc. Vacuum assisted wound treatment apparatus and infection identification system and method
US20020150604A1 (en) 2001-04-11 2002-10-17 Chin-Feng Yi Device and method for tissue engineering
US20020161346A1 (en) 2000-11-29 2002-10-31 Lockwood Jeffrey S. Vacuum therapy and cleansing dressing for wounds
US20020165581A1 (en) 1998-10-07 2002-11-07 Brucker Gregory G. Vascular sealing device and method
US6488643B1 (en) 1998-10-08 2002-12-03 Kci Licensing, Inc. Wound healing foot wrap
US6493568B1 (en) 1994-07-19 2002-12-10 Kci Licensing, Inc. Patient interface system
AU755496B2 (en) 1997-09-12 2002-12-12 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
US6503450B1 (en) 1998-12-30 2003-01-07 Cardiovention, Inc. Integrated blood oxygenator and pump system
US20030015203A1 (en) 1995-12-01 2003-01-23 Joshua Makower Device, system and method for implantation of filaments and particles in the body
US6514515B1 (en) 1999-03-04 2003-02-04 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
US20030040809A1 (en) 1999-03-20 2003-02-27 Helmut Goldmann Flat implant for use in surgery
US6530472B2 (en) 2000-02-25 2003-03-11 Technicor, Inc. Shipping container with anti-leak material
US6536291B1 (en) 1999-07-02 2003-03-25 Weatherford/Lamb, Inc. Optical flow rate measurement using unsteady pressures
US6548569B1 (en) 1999-03-25 2003-04-15 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
US6557704B1 (en) 1999-09-08 2003-05-06 Kci Licensing, Inc. Arrangement for portable pumping unit
US6566575B1 (en) 2000-02-15 2003-05-20 3M Innovative Properties Company Patterned absorbent article for wound dressing
US20030109855A1 (en) 2001-09-28 2003-06-12 Solem Jan Otto Method, a device, and a system for organ reconditioning and a device for preserving an internal body organ
US20030158577A1 (en) 2002-02-21 2003-08-21 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US20030208149A1 (en) 2000-05-22 2003-11-06 Coffey Arthur C. Combination sis and vacuum bandage and method
US20030212357A1 (en) 2002-05-10 2003-11-13 Pace Edgar Alan Method and apparatus for treating wounds with oxygen and reduced pressure
US6648862B2 (en) 2001-11-20 2003-11-18 Spheric Products, Ltd. Personally portable vacuum desiccator
US20030225347A1 (en) 2002-06-03 2003-12-04 Argenta Louis C. Directed tissue growth employing reduced pressure
US6685681B2 (en) 2000-11-29 2004-02-03 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US20040030304A1 (en) 2000-05-09 2004-02-12 Kenneth Hunt Abdominal wound dressing
US6693180B2 (en) 2002-04-04 2004-02-17 China Textile Institute Composite sponge wound dressing made of β-Chitin and Chitosan and method for producing the same
US6695823B1 (en) 1999-04-09 2004-02-24 Kci Licensing, Inc. Wound therapy device
US20040073151A1 (en) 2002-09-03 2004-04-15 Weston Richard Scott Reduced pressure treatment system
WO2004047649A1 (en) 1998-11-06 2004-06-10 Carag Ag An implant for occluding a passage
US6755807B2 (en) 1999-11-29 2004-06-29 Hill-Rom Services, Inc. Wound treatment apparatus
US6764462B2 (en) 2000-11-29 2004-07-20 Hill-Rom Services Inc. Wound treatment apparatus
US6767334B1 (en) 1998-12-23 2004-07-27 Kci Licensing, Inc. Method and apparatus for wound treatment
US20040230179A1 (en) 2003-02-07 2004-11-18 Alfred E. Mann Institute For Biomedical Engineering Surgical drain with sensors for monitoring fluid lumen
US6840960B2 (en) 2002-09-27 2005-01-11 Stephen K. Bubb Porous implant system and treatment method
US6855153B2 (en) 2001-05-01 2005-02-15 Vahid Saadat Embolic balloon
US6860873B2 (en) 1999-03-12 2005-03-01 Integ, Inc. Methods for collecting body fluid
US20050065484A1 (en) 2003-09-10 2005-03-24 Watson Richard L. Wound healing apparatus with bioabsorbable material and suction tubes
WO2002092783A3 (en) 2001-05-15 2005-07-28 Childrens Medical Center Methods and apparatus for application of micro-mechanical forces to tissues
US20050261780A1 (en) 2001-06-08 2005-11-24 Harri Heino Form-fitting bioabsorbable mesh implant
US6994702B1 (en) 1999-04-06 2006-02-07 Kci Licensing, Inc. Vacuum assisted closure pad with adaptation for phototherapy
US7070584B2 (en) 2001-02-20 2006-07-04 Kci Licensing, Inc. Biocompatible wound dressing
US7182758B2 (en) 2003-11-17 2007-02-27 Mccraw John B Apparatus and method for drainage
US20070185426A1 (en) 2001-02-16 2007-08-09 Kci Licensing, Inc. Biocompatible wound dressing
US7361184B2 (en) 2003-09-08 2008-04-22 Joshi Ashok V Device and method for wound therapy
JP4129536B2 (en) 2000-02-24 2008-08-06 ヴェネテック インターナショナル,インコーポレイテッド Highly compatible catheter anchoring system
US7790945B1 (en) 2004-04-05 2010-09-07 Kci Licensing, Inc. Wound dressing with absorption and suction capabilities

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL91918A0 (en) * 1989-10-06 1990-06-10 Rosenberg Lior Fluid drain system for wounds

Patent Citations (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355846A (en) 1920-02-06 1920-10-19 David A Rannells Medical appliance
US2547758A (en) 1949-01-05 1951-04-03 Wilmer B Keeling Instrument for treating the male urethra
US2632443A (en) 1949-04-18 1953-03-24 Eleanor P Lesher Surgical dressing
GB692578A (en) 1949-09-13 1953-06-10 Minnesota Mining & Mfg Improvements in or relating to drape sheets for surgical use
US2682873A (en) 1952-07-30 1954-07-06 Johnson & Johnson General purpose protective dressing
US2910763A (en) 1955-08-17 1959-11-03 Du Pont Felt-like products
US2969057A (en) 1957-11-04 1961-01-24 Brady Co W H Nematodic swab
US3026874A (en) 1959-11-06 1962-03-27 Robert C Stevens Wound shield
US3066672A (en) 1960-09-27 1962-12-04 Jr William H Crosby Method and apparatus for serial sampling of intestinal juice
US3089492A (en) 1961-05-11 1963-05-14 Owens Neal Wet surgical dressing
US3142298A (en) 1962-01-29 1964-07-28 William L Koski Stomach pump apparatus
US3367332A (en) 1965-08-27 1968-02-06 Gen Electric Product and process for establishing a sterile area of skin
US3472230A (en) 1966-12-19 1969-10-14 Fogarty T J Umbrella catheter
US3520300A (en) 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3682180A (en) 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
US3648692A (en) 1970-12-07 1972-03-14 Parke Davis & Co Medical-surgical dressing for burns and the like
US3826254A (en) 1973-02-26 1974-07-30 Verco Ind Needle or catheter retaining appliance
US4096853A (en) 1975-06-21 1978-06-27 Hoechst Aktiengesellschaft Device for the introduction of contrast medium into an anus praeter
DE2640413A1 (en) 1976-09-08 1978-03-09 Wolf Gmbh Richard CATHETER MONITORING DEVICE
US4245630A (en) 1976-10-08 1981-01-20 T. J. Smith & Nephew, Ltd. Tearable composite strip of materials
US4233969A (en) 1976-11-11 1980-11-18 Lock Peter M Wound dressing materials
US4080970A (en) 1976-11-17 1978-03-28 Miller Thomas J Post-operative combination dressing and internal drain tube with external shield and tube connector
US4139004A (en) 1977-02-17 1979-02-13 Gonzalez Jr Harry Bandage apparatus for treating burns
US4184510A (en) 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4165748A (en) 1977-11-07 1979-08-28 Johnson Melissa C Catheter tube holder
US4256109A (en) 1978-07-10 1981-03-17 Nichols Robert L Shut off valve for medical suction apparatus
US4275721A (en) 1978-11-28 1981-06-30 Landstingens Inkopscentral Lic, Ekonomisk Forening Vein catheter bandage
US4382441A (en) 1978-12-06 1983-05-10 Svedman Paul Device for treating tissues, for example skin
WO1980002182A1 (en) 1979-04-06 1980-10-16 J Moss Portable suction device for collecting fluids from a closed wound
US4421583A (en) 1979-04-18 1983-12-20 Courtaulds Limited Man-made filaments and method of making wound dressings containing them
US4464172A (en) 1979-04-30 1984-08-07 Lichtenstein Eric Stefan Computer-control medical care system
US4284079A (en) 1979-06-28 1981-08-18 Adair Edwin Lloyd Method for applying a male incontinence device
US4261360A (en) 1979-11-05 1981-04-14 Urethral Devices Research, Inc. Transurethral irrigation pressure controller
US4261363A (en) 1979-11-09 1981-04-14 C. R. Bard, Inc. Retention clips for body fluid drains
US4569348A (en) 1980-02-22 1986-02-11 Velcro Usa Inc. Catheter tube holder strap
US4480638A (en) 1980-03-11 1984-11-06 Eduard Schmid Cushion for holding an element of grafted skin
US4297995A (en) 1980-06-03 1981-11-03 Key Pharmaceuticals, Inc. Bandage containing attachment post
US4536217A (en) 1980-07-30 1985-08-20 Ceskoslovenska Akademie Ved Of Praha Absorbing cover for wounds and the method for manufacturing thereof
US4333468A (en) 1980-08-18 1982-06-08 Geist Robert W Mesentery tube holder apparatus
US4465485A (en) 1981-03-06 1984-08-14 Becton, Dickinson And Company Suction canister with unitary shut-off valve and filter features
US4392853A (en) 1981-03-16 1983-07-12 Rudolph Muto Sterile assembly for protecting and fastening an indwelling device
US4373519A (en) 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4409974A (en) 1981-06-29 1983-10-18 Freedland Jeffrey A Bone-fixating surgical implant device
US4392858A (en) 1981-07-16 1983-07-12 Sherwood Medical Company Wound drainage device
US4419097A (en) 1981-07-31 1983-12-06 Rexar Industries, Inc. Attachment for catheter tube
AU550575B2 (en) 1981-08-07 1986-03-27 Richard Christian Wright Wound drainage device
US4608041A (en) 1981-10-14 1986-08-26 Frese Nielsen Device for treatment of wounds in body tissue of patients by exposure to jets of gas
US4525166A (en) 1981-11-21 1985-06-25 Intermedicat Gmbh Rolled flexible medical suction drainage device
US4551139A (en) 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
US4444545A (en) 1982-04-08 1984-04-24 Sanders David F Pump control system
US4475909A (en) 1982-05-06 1984-10-09 Eisenberg Melvin I Male urinary device and method for applying the device
EP0100148A1 (en) 1982-07-06 1984-02-08 Dow Corning Limited Medical-surgical dressing and a process for the production thereof
EP0117632A2 (en) 1983-01-27 1984-09-05 Johnson & Johnson Products Inc. Adhesive film dressing
US4533352A (en) 1983-03-07 1985-08-06 Pmt Inc. Microsurgical flexible suction mat
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4540412A (en) 1983-07-14 1985-09-10 The Kendall Company Device for moist heat therapy
US4543100A (en) 1983-11-01 1985-09-24 Brodsky Stuart A Catheter and drain tube retainer
US4468219A (en) 1983-12-20 1984-08-28 International Business Machines Corporation Pump flow rate compensation system
US4525374A (en) 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
EP0161865A2 (en) 1984-05-03 1985-11-21 Smith and Nephew Associated Companies p.l.c. Adhesive wound dressing
US4897081A (en) 1984-05-25 1990-01-30 Thermedics Inc. Percutaneous access device
US5002541A (en) 1984-06-19 1991-03-26 Martin And Associates, Inc. Method and device for removing and collecting urine
US5215522A (en) 1984-07-23 1993-06-01 Ballard Medical Products Single use medical aspirating device and method
US4664662A (en) 1984-08-02 1987-05-12 Smith And Nephew Associated Companies Plc Wound dressing
US4872450A (en) 1984-08-17 1989-10-10 Austad Eric D Wound dressing and method of forming same
US4655754A (en) 1984-11-09 1987-04-07 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
US4826494A (en) 1984-11-09 1989-05-02 Stryker Corporation Vacuum wound drainage system
US4605399A (en) 1984-12-04 1986-08-12 Complex, Inc. Transdermal infusion device
US5037397A (en) 1985-05-03 1991-08-06 Medical Distributors, Inc. Universal clamp
US4753230A (en) 1985-06-12 1988-06-28 J. R. Crompton P.L.C. Wound dressing
US4640688A (en) 1985-08-23 1987-02-03 Mentor Corporation Urine collection catheter
US4710165A (en) 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
US4758220A (en) 1985-09-26 1988-07-19 Alcon Laboratories, Inc. Surgical cassette proximity sensing and latching apparatus
US4733659A (en) 1986-01-17 1988-03-29 Seton Company Foam bandage
WO1987004626A1 (en) 1986-01-31 1987-08-13 Osmond, Roger, L., W. Suction system for wound and gastro-intestinal drainage
US4820291A (en) 1986-02-27 1989-04-11 Nippon Medical Supply Corporation Urinary applicance
US4838883A (en) 1986-03-07 1989-06-13 Nissho Corporation Urine-collecting device
US4906233A (en) 1986-05-29 1990-03-06 Terumo Kabushiki Kaisha Method of securing a catheter body to a human skin surface
US4840187A (en) 1986-09-11 1989-06-20 Bard Limited Sheath applicator
GB2195255A (en) 1986-09-30 1988-04-07 Vacutec Uk Limited Method and apparatus for vacuum treatment of an epidermal surface
US4743232A (en) 1986-10-06 1988-05-10 The Clinipad Corporation Package assembly for plastic film bandage
US4878901A (en) 1986-10-10 1989-11-07 Sachse Hans Ernst Condom catheter, a urethral catheter for the prevention of ascending infections
US4848364A (en) 1986-10-23 1989-07-18 Patentico Ltd. Covering sheet which can be made form-retaining
US5759830A (en) 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
US4953565A (en) 1986-11-26 1990-09-04 Shunro Tachibana Endermic application kits for external medicines
GB2197789A (en) 1986-11-28 1988-06-02 Smiths Industries Plc Anti-foaming disinfectants used in surgical suction apparatus
US5073172A (en) 1987-01-20 1991-12-17 Medinorm Aktiengesellschaft Medizintechnische Produkte Device for aspirating wound fluids
US4941882A (en) 1987-03-14 1990-07-17 Smith And Nephew Associated Companies, P.L.C. Adhesive dressing for retaining a cannula on the skin
US4787888A (en) 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
US5356386A (en) 1987-06-05 1994-10-18 Uresil Corporation Apparatus for locating body cavities
US4863449A (en) 1987-07-06 1989-09-05 Hollister Incorporated Adhesive-lined elastic condom cathether
US4930997A (en) 1987-08-19 1990-06-05 Bennett Alan N Portable medical suction device
US5176663A (en) 1987-12-02 1993-01-05 Pal Svedman Dressing having pad with compressibility limiting elements
US4906240A (en) 1988-02-01 1990-03-06 Matrix Medica, Inc. Adhesive-faced porous absorbent sheet and method of making same
US4985019A (en) 1988-03-11 1991-01-15 Michelson Gary K X-ray marker
GB2220357A (en) 1988-05-28 1990-01-10 Smiths Industries Plc Medico-surgical containers
EP0358302A2 (en) 1988-05-28 1990-03-14 Smiths Industries Public Limited Company Medico-surgical suction container
US4957484A (en) 1988-07-26 1990-09-18 Automedix Sciences, Inc. Lymph access catheters and methods of administration
US4919654A (en) 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US6334064B1 (en) 1988-08-26 2001-12-25 Instrumentarium Corp. Remote sensing tonometric catheter apparatus and method
CA2005436A1 (en) 1988-12-13 1990-06-13 Glenda G. Kalt Transparent tracheostomy tube dressing
US5086170A (en) 1989-01-16 1992-02-04 Roussel Uclaf Process for the preparation of azabicyclo compounds
WO1990010424A1 (en) 1989-03-16 1990-09-20 Smith & Nephew Plc Absorbent devices and precursors therefor
US5279602A (en) 1989-03-30 1994-01-18 Abbott Laboratories Suction drainage infection control system
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
US5527293A (en) 1989-04-03 1996-06-18 Kinetic Concepts, Inc. Fastening system and method
US5100396A (en) 1989-04-03 1992-03-31 Zamierowski David S Fluidic connection system and method
US5298015A (en) 1989-07-11 1994-03-29 Nippon Zeon Co., Ltd. Wound dressing having a porous structure
US5358494A (en) 1989-07-11 1994-10-25 Svedman Paul Irrigation dressing
US5232453A (en) 1989-07-14 1993-08-03 E. R. Squibb & Sons, Inc. Catheter holder
GB2235877A (en) 1989-09-18 1991-03-20 Antonio Talluri Closed wound suction apparatus
US5134994A (en) 1990-02-12 1992-08-04 Say Sam L Field aspirator in a soft pack with externally mounted container
US4996128A (en) 1990-03-12 1991-02-26 Nova Manufacturing, Inc. Rechargeable battery
US5092858A (en) 1990-03-20 1992-03-03 Becton, Dickinson And Company Liquid gelling agent distributor device
US5211639A (en) 1990-05-30 1993-05-18 Wilk Peter J Evacuator assembly
US5599292A (en) 1990-07-24 1997-02-04 Yoon; Inbae Multifunctional devices for use in endoscopic surgical procedures and methods therefor
DE4037931A1 (en) 1990-11-23 1992-05-27 Detlef Dr Ing Behrend Swab for resorbable protection of wound cavity - with soft foam body in soft foam casing with embedded resorbable hollow fibres connected to tube
US5180375A (en) 1991-05-02 1993-01-19 Feibus Miriam H Woven surgical drain and woven surgical sponge
US5149331A (en) 1991-05-03 1992-09-22 Ariel Ferdman Method and device for wound closure
US5278100A (en) 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
WO1993009727A1 (en) 1991-11-14 1993-05-27 Wake Forest University Method and apparatus for treating tissue damage
US5636643A (en) 1991-11-14 1997-06-10 Wake Forest University Wound treatment employing reduced pressure
US5645081A (en) 1991-11-14 1997-07-08 Wake Forest University Method of treating tissue damage and apparatus for same
US5279550A (en) 1991-12-19 1994-01-18 Gish Biomedical, Inc. Orthopedic autotransfusion system
US5429601A (en) 1992-02-12 1995-07-04 American Cyanamid Company Aspiration control system
US5522808A (en) 1992-03-16 1996-06-04 Envirosurgical, Inc. Surgery plume filter device and method of filtering
US5167613A (en) 1992-03-23 1992-12-01 The Kendall Company Composite vented wound dressing
US5700477A (en) 1992-03-25 1997-12-23 Johnson & Johnson Medical, Inc. Bioabsorbable wound implant materials
US5437622A (en) 1992-04-29 1995-08-01 Laboratoire Hydrex (Sa) Transparent adhesive dressing with reinforced starter cuts
US5458582A (en) 1992-06-15 1995-10-17 Nakao; Naomi L. Postoperative anesthetic delivery device and associated method for the postoperative treatment of pain
US5678564A (en) 1992-08-07 1997-10-21 Bristol Myers Squibb Liquid removal system
US5419769A (en) 1992-10-23 1995-05-30 Smiths Industries Medical Systems, Inc. Suction systems
DE4306478A1 (en) 1993-03-02 1994-09-08 Wolfgang Dr Wagner Drainage device, in particular pleural drainage device, and drainage method
WO1994020041A1 (en) 1993-03-09 1994-09-15 Wake Forest University Wound treatment employing reduced pressure
US5565210A (en) 1993-03-22 1996-10-15 Johnson & Johnson Medical, Inc. Bioabsorbable wound implant materials
US5681579A (en) 1993-03-22 1997-10-28 E.R. Squibb & Sons, Inc. Polymeric support wound dressing
US5254084A (en) 1993-03-26 1993-10-19 Geary Gregory L Peritoneal catheter device for dialysis
US5342376A (en) 1993-05-03 1994-08-30 Dermagraphics, Inc. Inserting device for a barbed tissue connector
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US5344415A (en) 1993-06-15 1994-09-06 Deroyal Industries, Inc. Sterile system for dressing vascular access site
US5549585A (en) 1993-07-01 1996-08-27 Abbott Laboratories Gelling treatment for suction drainage system
US5466229A (en) 1993-08-06 1995-11-14 Davstar, Inc. Fluid collection system
US5437651A (en) 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US5885237A (en) 1993-10-05 1999-03-23 Bristol-Myers Squibb Company Trimmable wound dressing
US5549584A (en) 1994-02-14 1996-08-27 The Kendall Company Apparatus for removing fluid from a wound
US5607388A (en) 1994-06-16 1997-03-04 Hercules Incorporated Multi-purpose wound dressing
US5556375A (en) 1994-06-16 1996-09-17 Hercules Incorporated Wound dressing having a fenestrated base layer
US5449347A (en) 1994-07-05 1995-09-12 The United States Of America As Represented By The Secretary Of The Air Force Patient transport, plural power source suction apparatus
US6493568B1 (en) 1994-07-19 2002-12-10 Kci Licensing, Inc. Patient interface system
WO1996005873A1 (en) 1994-08-22 1996-02-29 Kinetic Concepts Inc. Wound drainage equipment
US5944703A (en) 1994-10-11 1999-08-31 Research Medical Pty Ltd. Wound drainage system
US5679371A (en) 1994-12-08 1997-10-21 Kuraray Co., Ltd. Wound dressing
DE29504378U1 (en) 1995-03-15 1995-09-14 Mtg Medizinisch Tech Geraeteba Electronically controlled low-vacuum pump for chest and wound drainage
US5733337A (en) 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5741237A (en) 1995-04-10 1998-04-21 Walker; Kenneth Gordon System for disposal of fluids
US5634893A (en) 1995-04-24 1997-06-03 Haemonetics Corporation Autotransfusion apparatus
US6077526A (en) 1995-05-17 2000-06-20 Texon Uk Limited Wound dressing
US6024731A (en) 1995-10-18 2000-02-15 Summit Medical Ltd. Wound drainage system
WO1997018007A1 (en) 1995-11-14 1997-05-22 Kci Medical Limited Portable wound treatment apparatus
US6142982A (en) 1995-11-14 2000-11-07 Kci Medical Limited Portable wound treatment apparatus
GB2336546B (en) 1995-11-14 2000-06-14 Kci Medical Ltd Apparatus for applying negative pressure to a wound
GB2307180B (en) 1995-11-14 2000-06-14 Kci Medical Ltd Wound treatment apparatus
US20030015203A1 (en) 1995-12-01 2003-01-23 Joshua Makower Device, system and method for implantation of filaments and particles in the body
US6235009B1 (en) 1996-01-11 2001-05-22 Joseph I. Skow Surgical wicking and fluid removal platform
US5628735A (en) 1996-01-11 1997-05-13 Skow; Joseph I. Surgical device for wicking and removing fluid
US5945004A (en) 1996-02-01 1999-08-31 Daiken Iki Co., Ltd. Method and apparatus for treating waste liquids containing body fluids
US5827246A (en) 1996-02-28 1998-10-27 Tecnol Medical Products, Inc. Vacuum pad for collecting potentially hazardous fluids
US20020095218A1 (en) 1996-03-12 2002-07-18 Carr Robert M. Tissue repair fabric
US5836970A (en) 1996-08-02 1998-11-17 The Kendall Company Hemostatic wound dressing
US5776119A (en) 1996-09-30 1998-07-07 Bilbo; Sharon C. Portable suction unit
US5977428A (en) 1996-12-20 1999-11-02 Procyte Corporation Absorbent hydrogel particles and use thereof in wound dressings
US5891111A (en) 1997-04-14 1999-04-06 Porges Flexible surgical drain with a plurality of individual ducts
US5981822A (en) 1997-05-02 1999-11-09 Johnson & Johnson Medical, Inc. Absorbent wound dressings
US6398767B1 (en) 1997-05-27 2002-06-04 Wilhelm Fleischmann Process and device for application of active substances to a wound surface area
US6152902A (en) 1997-06-03 2000-11-28 Ethicon, Inc. Method and apparatus for collecting surgical fluids
US6175053B1 (en) 1997-06-18 2001-01-16 Japan As Represented By Director General Of National Institute Of Sericultural And Entomological Science Ministry Of Agriculture, Forrestry And Fisheries Wound dressing material containing silk fibroin and sericin as main component and method for preparing same
US6411853B1 (en) 1997-07-25 2002-06-25 Laboratoires D'hygiene Et De Dietetique (L.H.D.) Device for therapeutic treatment of wounds
US6135116A (en) 1997-07-28 2000-10-24 Kci Licensing, Inc. Therapeutic method for treating ulcers
US6345623B1 (en) 1997-09-12 2002-02-12 Keith Patrick Heaton Surgical drape and suction head for wound treatment
WO1999013793A1 (en) 1997-09-12 1999-03-25 Kci Medical Limited Surgical drape and suction head for wound treatment
US6553998B2 (en) 1997-09-12 2003-04-29 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
AU755496B2 (en) 1997-09-12 2002-12-12 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
EP1018967B1 (en) 1997-09-12 2004-08-18 KCI Licensing, Inc. Suction head for wound treatment and combination with a surgical drape
US6814079B2 (en) 1997-09-12 2004-11-09 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
GB2333965A (en) 1997-09-12 1999-08-11 Kci Medical Ltd Surgical drape
AU745271B2 (en) 1997-09-12 2002-03-14 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
GB2329127B (en) 1997-09-12 2000-08-16 Kci Medical Ltd Surgical drape and suction head for wound treatment
US5928174A (en) 1997-11-14 1999-07-27 Acrymed Wound dressing device
US6245961B1 (en) 1997-12-03 2001-06-12 Sca Hygiene Products Ab Absorbent article
US6071267A (en) 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
US5974344A (en) 1998-03-02 1999-10-26 Shoemaker, Ii; Charles Wound care electrode
US20010001835A1 (en) 1998-07-06 2001-05-24 Greene George R. Vascular embolization with an expansible implant
US6095998A (en) 1998-07-29 2000-08-01 The Procter & Gamble Company Expandable bag tampon and spreading tampon applicator therefor
US6248112B1 (en) 1998-09-30 2001-06-19 C. R. Bard, Inc. Implant delivery system
US20020165581A1 (en) 1998-10-07 2002-11-07 Brucker Gregory G. Vascular sealing device and method
US6488643B1 (en) 1998-10-08 2002-12-03 Kci Licensing, Inc. Wound healing foot wrap
WO2004047649A1 (en) 1998-11-06 2004-06-10 Carag Ag An implant for occluding a passage
US6767334B1 (en) 1998-12-23 2004-07-27 Kci Licensing, Inc. Method and apparatus for wound treatment
US6356782B1 (en) 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6503450B1 (en) 1998-12-30 2003-01-07 Cardiovention, Inc. Integrated blood oxygenator and pump system
US6126675A (en) 1999-01-11 2000-10-03 Ethicon, Inc. Bioabsorbable device and method for sealing vascular punctures
US6514515B1 (en) 1999-03-04 2003-02-04 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
US20030072784A1 (en) 1999-03-04 2003-04-17 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
US6860873B2 (en) 1999-03-12 2005-03-01 Integ, Inc. Methods for collecting body fluid
US20030040809A1 (en) 1999-03-20 2003-02-27 Helmut Goldmann Flat implant for use in surgery
US6548569B1 (en) 1999-03-25 2003-04-15 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
US6287316B1 (en) 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
US6994702B1 (en) 1999-04-06 2006-02-07 Kci Licensing, Inc. Vacuum assisted closure pad with adaptation for phototherapy
US6695823B1 (en) 1999-04-09 2004-02-24 Kci Licensing, Inc. Wound therapy device
US6210360B1 (en) 1999-05-26 2001-04-03 Carl Cheung Tung Kong Fluid displacement pumps
US6365149B2 (en) 1999-06-30 2002-04-02 Ethicon, Inc. Porous tissue scaffoldings for the repair or regeneration of tissue
US6536291B1 (en) 1999-07-02 2003-03-25 Weatherford/Lamb, Inc. Optical flow rate measurement using unsteady pressures
US6179804B1 (en) 1999-08-18 2001-01-30 Oxypatch, Llc Treatment apparatus for wounds
US6557704B1 (en) 1999-09-08 2003-05-06 Kci Licensing, Inc. Arrangement for portable pumping unit
US6352525B1 (en) 1999-09-22 2002-03-05 Akio Wakabayashi Portable modular chest drainage system
US6755807B2 (en) 1999-11-29 2004-06-29 Hill-Rom Services, Inc. Wound treatment apparatus
US6800074B2 (en) 1999-11-29 2004-10-05 Hill-Rom Services, Inc. Wound treatment apparatus
US6566575B1 (en) 2000-02-15 2003-05-20 3M Innovative Properties Company Patterned absorbent article for wound dressing
JP4129536B2 (en) 2000-02-24 2008-08-06 ヴェネテック インターナショナル,インコーポレイテッド Highly compatible catheter anchoring system
US6530472B2 (en) 2000-02-25 2003-03-11 Technicor, Inc. Shipping container with anti-leak material
US20040030304A1 (en) 2000-05-09 2004-02-12 Kenneth Hunt Abdominal wound dressing
US20030208149A1 (en) 2000-05-22 2003-11-06 Coffey Arthur C. Combination sis and vacuum bandage and method
US20020120185A1 (en) 2000-05-26 2002-08-29 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
US6856821B2 (en) 2000-05-26 2005-02-15 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
US6752794B2 (en) 2000-11-29 2004-06-22 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US20020161346A1 (en) 2000-11-29 2002-10-31 Lockwood Jeffrey S. Vacuum therapy and cleansing dressing for wounds
US6764462B2 (en) 2000-11-29 2004-07-20 Hill-Rom Services Inc. Wound treatment apparatus
US6685681B2 (en) 2000-11-29 2004-02-03 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US20020077661A1 (en) 2000-12-20 2002-06-20 Vahid Saadat Multi-barbed device for retaining tissue in apposition and methods of use
US20070185426A1 (en) 2001-02-16 2007-08-09 Kci Licensing, Inc. Biocompatible wound dressing
US7070584B2 (en) 2001-02-20 2006-07-04 Kci Licensing, Inc. Biocompatible wound dressing
US20020115951A1 (en) 2001-02-22 2002-08-22 Core Products International, Inc. Ankle brace providing upper and lower ankle adjustment
US20020143286A1 (en) 2001-03-05 2002-10-03 Kci Licensing, Inc. Vacuum assisted wound treatment apparatus and infection identification system and method
US20020150604A1 (en) 2001-04-11 2002-10-17 Chin-Feng Yi Device and method for tissue engineering
US6855153B2 (en) 2001-05-01 2005-02-15 Vahid Saadat Embolic balloon
WO2002092783A3 (en) 2001-05-15 2005-07-28 Childrens Medical Center Methods and apparatus for application of micro-mechanical forces to tissues
US20050261780A1 (en) 2001-06-08 2005-11-24 Harri Heino Form-fitting bioabsorbable mesh implant
WO2003028786A3 (en) 2001-09-28 2003-11-06 Jan Otto Solem A method, a device, and a system for organ reconditioning and a device for preserving an internal bodyorgan
US20030109855A1 (en) 2001-09-28 2003-06-12 Solem Jan Otto Method, a device, and a system for organ reconditioning and a device for preserving an internal body organ
US6648862B2 (en) 2001-11-20 2003-11-18 Spheric Products, Ltd. Personally portable vacuum desiccator
US20030158577A1 (en) 2002-02-21 2003-08-21 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US6693180B2 (en) 2002-04-04 2004-02-17 China Textile Institute Composite sponge wound dressing made of β-Chitin and Chitosan and method for producing the same
US20030212357A1 (en) 2002-05-10 2003-11-13 Pace Edgar Alan Method and apparatus for treating wounds with oxygen and reduced pressure
US20030225347A1 (en) 2002-06-03 2003-12-04 Argenta Louis C. Directed tissue growth employing reduced pressure
US20040073151A1 (en) 2002-09-03 2004-04-15 Weston Richard Scott Reduced pressure treatment system
US6840960B2 (en) 2002-09-27 2005-01-11 Stephen K. Bubb Porous implant system and treatment method
US20040230179A1 (en) 2003-02-07 2004-11-18 Alfred E. Mann Institute For Biomedical Engineering Surgical drain with sensors for monitoring fluid lumen
US7361184B2 (en) 2003-09-08 2008-04-22 Joshi Ashok V Device and method for wound therapy
US20050065484A1 (en) 2003-09-10 2005-03-24 Watson Richard L. Wound healing apparatus with bioabsorbable material and suction tubes
US7182758B2 (en) 2003-11-17 2007-02-27 Mccraw John B Apparatus and method for drainage
US7790945B1 (en) 2004-04-05 2010-09-07 Kci Licensing, Inc. Wound dressing with absorption and suction capabilities

Non-Patent Citations (103)

* Cited by examiner, † Cited by third party
Title
"The mini V.A.C.(TM) System Users Guide", KCI Medical Ltd., Jun. 8, 1998.
"The mini V.A.C.™ System Users Guide", KCI Medical Ltd., Jun. 8, 1998.
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation).
Advisory Action date mailed Sep. 27, 2007 in U.S. Appl. No. 10/715,164.
Ametek Product Bulletin, Lamb Electric, Mar. 1998. *
Ametek Product Bulletin, Model No. 116763-13; Mar. 1998.
Appeal Brief filed Jun. 16, 2008 in U.S. Appl. No. 10/818,454.
Arnljots, Björn et al.: "Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers", Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213.
C.E. Tennants, "The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax," Journal of the American Medical Association 64 (1915), pp. 1548-1549.
Chariker, Mark E., M.D., et al; "Effective Management of incisional and cutaneous fistulae with closed suction wound drainage"; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63.
Chinn, Steven D. et al.: "Closed Wound Suction Drainage", The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81.
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513.
Dattilo, Philip P., Jr., et al; "Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture"; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5.
Davydov, Yu. A., et al; "Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds"; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof.
Davydov, Yu. A., et al; "Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy"; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof.
Davydov, Yu. A., et al; "Vacuum Therapy in the Treatment of Purulent Lactation Mastitis"; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof.
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24.
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection-Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2.
Examiner Interview Summary date mailed Jan. 12, 2010 in U.S. Appl. No. 10/818,454.
Examiner's Answer to Appeal Brief date mailed Sep. 15, 2008 in U.S. Appl. No. 10/818,454.
F.E. Johnson, "An Improved Technique for Skin Graft Placement Using a Suction Drain," Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585.
Final Action date mailed May 19, 2010 in U.S. Appl. No. 10/715,164.
Final Office Action date mailed Dec. 26, 2007 in U.S. Appl. No. 10/818,454.
Final Office Action date mailed Jun. 5, 2007 in U.S. Appl. No. 10/715,164.
Final Office Action date mailed Mar. 28, 2006 in U.S. Appl. No. 10/715,164.
Final Office Action date mailed Oct. 20, 2008 in U.S. Appl. No. 10/715,164.
Final Office Action date mailed Oct. 7, 2009 in U.S. Appl. No. 10/818,454.
Final Office Action dated Jul. 17, 2008 in U.S. Appl. No. 11/004,586.
G. {hacek over (Z)}ivadinovic, V. ukié, {hacek over (Z)}. Maksimovic, . Radak, and P. Pe{hacek over (s)}ka, "Vacuum Therapy in the Treatment of Peripheral Blood Vessels," Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation).
G. {hacek over (Z)}ivadinović, V. ukié, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (s)}ka, "Vacuum Therapy in the Treatment of Peripheral Blood Vessels," Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation).
George V. Letsou, MD., et al; "Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch"; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639.
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995.
James H. Blackburn, II, MD, et al; "Negative-Pressure Dressings as a Bolster for Skin Grafts"; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457.
John Masters; "Reliable, Inexpensive and Simple Suction Dressings"; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK.
K.F. Jeter, T.E. Tintle, and M. Chariker, Managing Draining Wounds and Fistulae: "New and Established Methods," Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246.
Kostyuchenok, B.M., et al; "Vacuum Treatment in the Surgical Management of Purulent Wounds"; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof.
Louis C. Argenta, MD and Michael J. Morykwas, PhD; "Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience"; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 563-576.
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, "The 'Sandwich Technique' in the Management of the Open Abdomen," British Journal of Surgery 73 (1986), pp. 369-370.
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, "Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation," Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I).
N. A. Bagautdinov, "Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues," Current Problems in Modem Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (copy and certified translation).
Non-Final Action date mailed Jun. 3, 2010 in U.S. Appl. No. 10/818,454.
Non-Final Office Action date mailed Apr. 24, 2009 in U.S. Appl. No. 10/818,454.
Non-Final Office Action date mailed Dec. 8, 2006 in U.S. Appl. No. 10/715,164.
Non-Final Office Action date mailed Feb. 28, 2003 in U.S. Appl. No. 09/996,970.
Non-Final Office Action date mailed Jan. 17, 2007 in U.S. Appl. No. 10/818,468.
Non-Final Office Action date mailed Jan. 29, 2008 in U.S. Appl. No. 10/715,164.
Non-Final Office Action date mailed Jul. 6, 2009 in U.S. Appl. No. 10/818,468.
Non-Final Office Action date mailed Jun. 20, 2005 in U.S. Appl. No. 10/715,164.
Non-Final Office Action date mailed May 7, 2007 in U.S. Appl. No. 10/818,454.
Non-Final Office Action date mailed Oct. 9, 2007 in U.S. Appl. No. 10/818,468.
Non-Final Office Action date mailed Sep. 15, 2010 for U.S. Appl. No. 12/840,438.
Non-Final Office Action dated Mar. 19, 2007 in U.S. Appl. No. 11/004,586.
Non-Final Office Action dated Oct. 18, 2007 in U.S. Appl. No. 11/004,586.
Non-Final Rejection date mailed Nov. 6, 2009 in U.S. Appl. No. 10/715,164.
Notice of Abandonment Mar. 18, 2009 in U.S. Appl. No. 11/004,586.
Notice of Allowance date mailed Apr. 22, 2010 in U.S. Appl. No. 10/818,468.
Notice of Allowance date mailed Jul. 1, 2003 in U.S. Appl. No. 09/996,970.
Notice of Panel Decision from Pre-Appeal Brief Review dated mailed May 15, 2008 in U.S. Appl. No. 10/818,454.
Online encyclopedia article, polyacrylonitrile. Http://en/wikipedia.org/wiki/Polyacrylonitrile. Accessed Jul. 13, 2008.
Online encyclopedia artilce, acrylonitrile. Http://en/wikipedia.org/wiki/Acrylonitrile. Accessed Jul. 13, 2008.
Orringer, Jay, et al; "Management of Wounds in Patients with Complex Enterocutaneous Fistulas"; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80.
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997.
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999.
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997.
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999.
Pre-Appeal Brief filed Mar. 24, 2008 in U.S. Appl. No. 10/818,454.
RCE and Response filed Oct. 30, 2007 in U.S. Appl. No. 10/715,164.
RCE/Response filed Feb. 20, 2009 to Final Office Action date mailed Dec. 26, 2007 in U.S. Appl. No. 10/818,454.
RCE/Response filed Jan. 21, 2009 to Final Office Action date mailed Oct. 20, 2008 in U.S. Appl. No. 10/715,164.
RCE/Response filed Jan. 7, 2010 to Final Office Action date mailed Oct. 7, 2009 in U.S. Appl. No. 10/818,454.
RCE/Response filed Nov. 19, 2010 for U.S. Appl. No. 10/715,164.
Response filed Apr. 29, 2008 in U.S. Appl. No. 10/715,164.
Response filed Aug. 20, 2007 to Non-Final Office Action dated Mar. 19, 2007 in U.S. Appl. No. 11/004,586.
Response filed Aug. 6, 2007 in U.S. Appl. No. 10/715,164.
Response filed Feb. 11, 2008 to Non-Final Action dated Oct. 9, 2007 in U.S. Appl. No. 10/818,468.
Response filed Feb. 16, 2010 to Non-Final Rejection date mailed Nov. 6, 2009 in U.S. Appl. No. 10/715,164.
Response filed Jul. 13, 2007 to Non-Final Action dated Jan. 17, 2007 in U.S. Appl. No. 10/818,468.
Response filed Jun. 30, 2009 in U.S. Appl. No. 10/715,164.
Response filed Jun. 30, 2009 in U.S. Appl. No. 10/818,454.
Response filed Mar. 18, 2008 to Non-Final Office Action dated Oct. 18, 2007 in U.S. Appl. No. 11/004,586.
Response filed Mar. 6, 2007 to Restriction Requirement date mailed Feb. 27, 2007 in U.S. Appl. No. 10/818,454.
Response filed Mar. 8, 2007 in U.S. Appl. No. 10/715,164.
Response filed May 28, 2003 in U.S. Appl. No. 09/996,970.
Response filed Nov. 21, 2005 in U.S. Appl. No. 10/715,164.
Response filed Nov. 23, 2010 for U.S. Appl. No. 10/818,454.
Response filed Oct. 20, 2006 to Restriction Requirement dated Sep. 22, 2006 in U.S. Appl. No. 10/818,468.
Response Filed Oct. 21, 2009 to Jul. 6, 2009 Non-Final OA dated Jul. 6, 2009 in U.S. Appl. No. 10/818,468.
Response filed Oct. 25, 2007 in U.S. Appl. No. 10/818,454.
Response filed Sep. 28, 2006 in U.S. Appl. No. 10/715,164.
Restriction Requirement date mailed Feb. 27, 2007 in U.S. Appl. No. 10/818,454.
Restriction Requirement date mailed Jun. 4, 2009 in U.S. Appl. No. 10/715,164.
Restriction Requirement date mailed Sep. 22, 2006 in U.S. Appl. No. 10/818,468.
S.E. Greer, et al "The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin" British Journal of Plastic Surgery (2000), 53, pp. 484-487.
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211.
Susan Mendez-Eastmen, RN; "When Wounds Won't Heal" RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24.
Svedman, P. et al.: "A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation", Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133.
Svedman, P.: "A Dressing Allowing Continuous Treatment of a Biosurface", IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221.
Svedman, P.: "Irrigation Treatment of Leg Ulcers", The Lancet, Sep. 3, 1983, pp. 532-534.
V.A. Kuznetsov & N.A. Bagautdinov, "Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds," in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 ("Bagautdinov II").
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) ("Solovev Guidelines").
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) ("Solovev Abstract").
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007).
Yusupov. Yu. N., et al; "Active Wound Drainage", Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108870A1 (en) * 2007-07-12 2010-05-06 Abb Research Ltd Pressure sensor
US8344314B2 (en) * 2007-07-12 2013-01-01 Abb Research Ltd Pressure sensor
US9814806B2 (en) 2009-12-23 2017-11-14 Kci Licensing, Inc. Reduced-pressure, multi-orientation, liquid-collection canister
US11173236B2 (en) 2009-12-23 2021-11-16 Kci Licensing, Inc. Reduced-pressure, multi-orientation, liquid-collection canister
US8986269B2 (en) 2010-11-11 2015-03-24 Ulcerx Medical Inc. Wound leakage vacuum collection device
US20130066301A1 (en) * 2011-09-13 2013-03-14 Christopher Brian Locke Reduced-pressure canisters having hydrophobic pores
US9327063B2 (en) * 2011-09-13 2016-05-03 Kci Licensing, Inc. Reduced-pressure canisters having hydrophobic pores
US10980924B2 (en) 2011-09-13 2021-04-20 Kci Licensing, Inc. Reduced-pressure canisters having hydrophobic pores

Also Published As

Publication number Publication date
US20030097100A1 (en) 2003-05-22
US6648862B2 (en) 2003-11-18
US20040167482A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
USRE42834E1 (en) Personally portable vacuum desiccator
US11813394B2 (en) Device and method for wound therapy
JP7406557B2 (en) Canister for mobile negative pressure wound therapy device
JP5571663B2 (en) Portable negative pressure wound therapy device
US4710165A (en) Wearable, variable rate suction/collection device
JP5600132B2 (en) Apparatus and method for applying reduced pressure treatment to a tissue site
US7857806B2 (en) Pump system for negative pressure wound therapy
US20200129340A1 (en) Wound Dressing containing a vacuum pump
EP2066365A1 (en) Pump system for negative pressure wound therapy
KR20110086860A (en) Delivery tube, system, and method for storing liquid from a tissue site
US20110015592A1 (en) Diffuser disk for negative pressure wound therapy
WO2021080631A1 (en) Wound dressing containing a vacuum pump
AU2012258379A1 (en) Device and method for wound therapy

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees