USRE43041E1 - Control module for flywheel operated hand tool - Google Patents

Control module for flywheel operated hand tool Download PDF

Info

Publication number
USRE43041E1
USRE43041E1 US11/955,996 US95599607A USRE43041E US RE43041 E1 USRE43041 E1 US RE43041E1 US 95599607 A US95599607 A US 95599607A US RE43041 E USRE43041 E US RE43041E
Authority
US
United States
Prior art keywords
signal
rotary
target speed
speed
trigger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/955,996
Inventor
Shane Adams
Conrad Garvis
Richard Louis Leimbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Senco Industrial Tools Inc
Original Assignee
Senco Brands Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senco Brands Inc filed Critical Senco Brands Inc
Priority to US11/955,996 priority Critical patent/USRE43041E1/en
Application granted granted Critical
Publication of USRE43041E1 publication Critical patent/USRE43041E1/en
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. SECURITY AGREEMENT Assignors: SENCO BRANDS, INC.
Assigned to LBC CREDIT PARTNERS III, L.P., AS AGENT reassignment LBC CREDIT PARTNERS III, L.P., AS AGENT SECURITY AGREEMENT Assignors: SENCO BRANDS, INC.
Assigned to SENCO BRANDS, INC. reassignment SENCO BRANDS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A., AS AGENT
Assigned to SENCO BRANDS, INC. reassignment SENCO BRANDS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: LBC CREDIT PARTNERS III, L.P., AS AGENT
Assigned to KYOCERA SENCO INDUSTRIAL TOOLS, INC. reassignment KYOCERA SENCO INDUSTRIAL TOOLS, INC. MERGER AND CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KYOCERA SENCO BRANDS, INC., KYOCERA SENCO INDUSTRIAL TOOLS, INC.
Assigned to KYOCERA SENCO BRANDS, INC. reassignment KYOCERA SENCO BRANDS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SENCO BRANDS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25CHAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
    • B25C1/00Hand-held nailing tools; Nail feeding devices
    • B25C1/008Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25CHAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
    • B25C1/00Hand-held nailing tools; Nail feeding devices
    • B25C1/06Hand-held nailing tools; Nail feeding devices operated by electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/047V/F converter, wherein the voltage is controlled proportionally with the frequency

Definitions

  • This invention generally relates to a hand-held electromechanical fastener driving tool, and more particularly to a fastener driving tool having an inertial member for imparting kinetic energy to drive a fastener into a work piece.
  • Corded AC electrical fastener driving tools are often used instead of pneumatic power since electrical power is more often available than air compressors.
  • much effort has been expended in the prior art in providing heavy duty, high powered, fastener driving tools employing a flywheel as a means of delivering kinetic energy sufficient to drive a heavy duty fasteners. Examples of such systems are disclosed in U.S. Pat. Nos. 4,042,036; 4,121,745; 4,204,622; 4,298,072; and 5,511,715.
  • Use of a flywheel is an attempt to limit the large current draws to actuate a solenoid to drive a fastener.
  • a DC motor is activated over a non-instantaneous period and then the kinetic energy thus developed in the flywheel is clutched to the driver in an “energy dump”.
  • corded electrical fastener driving tools may perform well, in many instances an AC outlet is not available. Even if an AC outlet is available, many users find dragging the electrical cord to be an impediment to use.
  • a portable power source such as a battery, such as solenoid-operated fastener driving tools.
  • These portable fastener driving tools are primarily used in light-duty applications such as in driving one inch brad nails, for example, rather than the larger 2′′ to 4′′ staples or nails used in framing.
  • One approach to an efficient portable electrically driven tool is a multiple impact tool, such as described in U.S. Pat. No. 4,625,903, wherein a linear inertial member is repeatedly raised by a cam against a compression spring and released to impact a fastener.
  • An electrical motor and portable battery pack are operated in a more efficient manner by running the motor for a period of time rather than providing a surge of power to a device such as a solenoid.
  • the relatively small amount of energy stored in the spring each cycle typically requires a large number of impacts to drive a staple or nail into a workpiece. During this time, the user is required to maintain an appropriate position and force on the fasten and to gauge the appropriate length of time to achieve the desired depth.
  • the multiple impact tool is efficient and effective in driving fasteners, some users prefer a single driving action comparable to pyrotechnic or compressed air systems.
  • the multiple impact tools also can damage a wood surface due to the vibrations the tool generates while stroking.
  • each specific application generally requires a fastener drive assembly and motor customized for the type of fastener.
  • the size of flywheel, the desired rotary speed of the flywheel, and the type of electric motor to accelerate the flywheel to the desired rotary speed are generally specifically sized for the type of fastener and work piece into which the fastener is typically driven.
  • each specific application was thought to require a custom control module, with the increased costs of design, manufacture and support.
  • the desired depth of drive is affected by the type of work piece into which the fastener is driven and to user preferences.
  • flywheel operated hand tools rely upon a given amount of kinetic energy imparted by the flywheel to achieve a desired depth of travel.
  • the depth of the drive will vary.
  • the user may prefer in some instances to sink the fastener below the plane of the work piece or to leave the head of the fastener exposed for easy removal.
  • a rotary member e.g., drill
  • Other tools employing a rotary member generally require the user to determine the proper speed of the tool.
  • the user provides the closed loop control of the tool, monitoring the tool for binding and proper operation and depressing the trigger an appropriate amount.
  • consistent operation of the tool is thus dependent upon the skill level and attentiveness of the user. Due to the speed in which a fastener must be driven into the workpiece, the user would only learn after the fact whether the rotary member (in this case a flywheel) was accelerated to an appropriate speed prior to firing.
  • control module that is responsive to a rotary speed of a rotational member of an electrically powered hand tool and is responsive to an adjustable target speed for the rotational member.
  • a control module for a hand tool includes a speed setting that is used for presetting the control module to an operating range of the intended rotational member of the hand tool.
  • the control module is readily adjusted to the operating environment, using the speed setting as a target for comparing a sensed speed.
  • a method of controlling a fastener-driving tool enforces a user input sequence to ensure that a fastener is driven into a workpiece.
  • a safety signal is received from a safety switch indicating a nose assembly of the tool is against a workpiece.
  • a safety time-out value is accessed. The duration of depression of the safety signal is timed.
  • the tool is activated to drive a fastener in response to receiving a trigger signal from a trigger switch before the timed duration of the safety signal exceeds the safety time-out value.
  • an electrically powered hand tool is provided a reliable interface to a control module through use of a thin film switch interface to user controls (e.g., safety and trigger) and through use of noncontact speed sensing.
  • FIG. 1 presents a left side elevational view of a hand held nailing tool, embodying the present invention, having a portion of its left side removed to show the general positioning of a fastener drive assembly and control module.
  • FIG. 1A presents a generally rearward elevated view of the control module of the nailing tool of FIG. 1
  • FIG. 2 presents a top view of the fastener drive assembly removed from the main body of the hand held nailing machine as illustrated in FIG. 1 .
  • FIG. 3 presents a left side elevational view of the fastener drive assembly as removed from the nailing machine illustrated in FIG. 1 .
  • FIG. 4 presents a bottom view, looking upward from the handle of the fastener drive assembly as removed from the nailing machine outer shell illustrated in FIG. 1 and having the electrical control module removed for clarity.
  • FIG. 5 presents an end elevational view of the fastener drive assembly as removed from the nailing machine illustrated in FIG. 1 and having the electrical control module removed for clarity.
  • FIG. 6 presents a pictorial view of the fastener drive assembly, having the electrical control module removed for clarity, showing the general arrangement the clutch drive assembly components.
  • FIG. 7 presents an exploded pictorial view showing the components of the fastener drive assembly illustrated in FIGS. 2 through 6 .
  • FIG. 8 presents a sectional view taken along line 8 — 8 in FIG. 3 .
  • FIG. 9 presents a sectional view taken along line 9 — 9 in FIG. 4 .
  • FIG. 10 presents an enlarged view of the circled section in FIG. 8 .
  • FIG. 11 is a sectional view taken along line 11 — 11 in FIG. 4 .
  • FIG. 12 is a sectional view taken along line 12 — 12 in FIG. 4 .
  • FIGS. 13A through 13C present a schematical presentation of the ball/cam action between the fixed plate and the activation plate.
  • FIG. 14 presents a graph showing the distance x between the fixed plate and the actuation plate as a function of degrees of rotation of the actuation plate.
  • FIG. 15 presents an expanded pictorial view of the solenoid camming plates.
  • FIG. 16 presents an expanded pictorial view of the activation camming plates.
  • FIG. 17 is a cross-sectional view taken along line 17 — 17 in FIG. 9 .
  • FIG. 18 presents a block diagram of a control system for the fastener-driving tool of FIG. 1 .
  • FIG. 19 presents a flow diagram for a sequence of steps, or main routine, for a controller of FIG. 18 to operate the fastener-driving tool.
  • FIG. 20 presents a flow diagram of a diagnostic routine, referenced by the main routine of FIG. 19 .
  • FIG. 21 presents an intermittent mode portion of the main routine of FIG. 19 .
  • FIG. 22 presents a continuous mode portion of the main routine of FIG. 19 .
  • FIG. 23A–23F present illustrative timing diagrams for sequencing of safety and trigger signals for a valid command, referenced in the main routine of FIGS. 19–22 .
  • FIG. 24A–24B present illustrative timing diagrams for motor activation and solenoid actuation in response to variations in battery charge and clutch wear, referenced in the main routine of FIGS. 19–22 .
  • FIG. 25 presents an illustrative control circuit for the control system of FIG. 18 .
  • FIG. 26 presents an indexing control circuit for the control circuit of FIG. 25 .
  • a portable flywheel operated hand tool depicted as a hand-held nailing tool 10 , includes a control system 12 that advantageously provides consistent speed control throughout a range of operating conditions.
  • the nailing tool 10 generally comprises a housing or main body 14 enclosing a fastener drive assembly 16 and a control module 18 , and further includes and a gripping handle 20 . Attached to the end of handle 20 is a removable, rechargeable battery 22 for providing the necessary electrical energy to operate a DC motor 24 and a solenoid 26 of the fastener drive assembly 16 , as well as the electrical control module 18 .
  • the present invention advantageously may utilize other types of batteries (e.g., Nickel Metal Hydride (NiMH), lithium Polymers).
  • the DC motor 24 when accelerated by the control module 18 , turns a flywheel 28 to build kinetic energy in the form of rotational inertia. Thereafter, the control module 18 actuates the solenoid 26 in response to user inputs and a sensed parameter of rotational speed of the flywheel 28 to impart the kinetic energy of the flywheel 28 to a fastener, which is described in further detail below
  • a user input to the nailing tool 10 are depicted as a trigger 30 of the handle 20 , which mechanically communicates with the control module 18 via a trigger linkage 32 .
  • Another user input is depicted as a safety device 34 of a nose assembly 36 that mechanically communicates with the control module 18 via a safety linkage 38 .
  • Yet another user input is depicted as a speed adjust knob 40 .
  • the nailing tool 10 includes a fastener supplying magazine assembly 42 , which is typically attached to the main body 14 and handle 20 , as illustrated, for supplying a strip of fasteners (not shown) to the nose assembly 36 .
  • a fastener supplying magazine assembly 42 which is typically attached to the main body 14 and handle 20 , as illustrated, for supplying a strip of fasteners (not shown) to the nose assembly 36 .
  • the control system 12 may be advantageously operated with different types of magazine assemblies 42 to include different numbers, types and sizes of fasteners.
  • the control system 12 advantageously enhances use of indexed magazine assemblies, as will be described in more detail below.
  • the control module 18 of the control system 12 advantageously enhances reliability, design flexibility, ease of assembly, and performance of the nailing tool 10 .
  • the control module 18 includes user speed selection capability, depicted as a potentiometer 44 that is adjusted by knob 40 .
  • a potentiometer 44 that is adjusted by knob 40 .
  • the user speed adjustment knob 40 By being responsive to the user speed adjustment knob 40 enables the nailing tool 10 to adjust a target speed of the flywheel 28 .
  • the user may adjust the knob 40 to compensate for variations in the workpiece or the desired depth of fastener insertion.
  • the control module 18 further includes a thin film printed circuit 46 that provides an extremely reliable electrical interface to the mechanical user inputs of the safety device 34 and the trigger 30 . Moreover, the printed circuit 46 is readily adapted to various three-dimensional orientations with the support of a molded bridge 48 . Thus, a trigger switch 50 and a safety switch 52 are readily positioned to receive the respective trigger and safety mechanical linkages 32 , 36 . It will be appreciated that thin film switches 50 , 52 provide a service life that exceed generally known trigger and safety switches and at a reduced cost.
  • the molded bridge 48 further supports and orients a portion of the printed circuit 46 that forms a rotary speed transducer 54 .
  • Two inductive pickups 56 , 58 of the printed circuit 46 are oriented to register to respectively to alternating north and south magnetic poles on a ring magnet (not shown in FIGS. 1 and 2 ) of the flywheel 28 , forming a rotary speed sensor 60 .
  • the non-contact nature of the rotary speed sensor 60 avoids degradation due to wear.
  • the sensor 60 provides an accurate measurement representative of the kinetic energy of the flywheel 28 .
  • the resulting measurement may contain variations due to friction, motor component degradation, etc. More accurate speed sensing allows more accurate transfer of kinetic energy to the fastener and thus a more consistent result.
  • the fastener drive assembly 16 is described that has features of efficiently uses DC electrical power by accelerating the flywheel 28 with the DC motor 24 .
  • a clutching technique is advantageously used that avoids the need for a manual reset.
  • components are described below that advantageously couple to the flywheel during acceleration to increase the inertial load prior to driving the fastener and then disengage after driving the fastener.
  • resetting the fastener drive assembly 16 with a vacuum return approach further conserves electrical power and avoids the generally known techniques that require a manual reset key.
  • FIGS. 2 , 3 , 4 , and 5 illustrate top, left side, bottom and rear views of the fastener drive assembly 16 as positioned within the main body 14 of the nailing tool 10 illustrated in FIG. 1 .
  • FIGS. 2 , 4 , and 5 have electrical control module 18 removed for clarity.
  • the primary operational elements of fastener drive assembly 16 comprise the flywheel 28 for providing kinetic energy, for driving a fastener into a workpiece, energized by an electric motor 24 .
  • Flywheel 28 is freewheeling upon a fixed central shaft 62 .
  • a clutch drive assembly 64 Upon achieving the required revolutions per minute (RPM), a clutch drive assembly 64 (see FIGS.
  • the fastener drive assembly 16 comprises clutch drive assembly 64 and flywheel 28 gear driven by electric motor 24 .
  • a gear drive between motor 24 and flywheel 28 is primarily illustrated herein, it is understood that a belt drive may also be used between motor 24 and flywheel 28 or any other suitable drive mechanism.
  • motor 24 it may be preferable to position motor 24 such that its axis of rotation is perpendicular to the axis of rotation of flywheel 28 and shaft 62 , thereby employing a bevel gear drive between the motor output shaft and the flywheel periphery.
  • flywheel 28 and clutch drive assembly 64 will be operationally described.
  • Clutch drive assembly 64 and flywheel 28 are axially aligned upon central shaft 62 as best illustrated in FIG. 9 .
  • Central shaft 62 is threadingly affixed to end plate 70 which in turn is rigidly attached to a frame 72 by an integral boss 74 extending axially from end plate 70 and received within a slotted groove 76 such that end plate 70 and central shaft 62 are non-rotatable.
  • the opposite end of central shaft 62 is received within supporting groove 78 in frame 72 .
  • Flywheel 28 is rotatingly positioned at the end of central shaft 62 , as best illustrated in FIG. 9 , upon a deep groove ball bearing 80 , whereby flywheel 28 freely rotates about central shaft 62 when energized by motor 24 .
  • Flywheel 28 includes a conical cavity 82 for receiving therein a conical friction surface 84 of conical clutch plate 66 .
  • Clutch plate 66 and an activation plate 86 are geared to a drum 88 by interlocking projections 90 and 92 respectively, whereby clutch plate 66 , activation plate 86 and drum 88 rotate freely about shaft 62 as a single unitary assembly.
  • Roller hearings 94 a and 94 b, positioned on the inside diameter of drum 88 are provided to assure the free rotational characteristic of activation plate 86 , drum 88 and clutch plate 66 as a unitary assembly.
  • Adjacent activation plate 86 is a fixed plate 96 .
  • Fixed plate 96 and activation plate 86 are connected to one another by three equally spaced axially expandable ball ramps 98 a, 98 b, 98 c, 98 a′, 98 b′, and 98 c′ as illustrated in FIG. 16 .
  • the operation of the ball ramps 98 between fixed plate 96 and activation plate 86 is described in greater detail below.
  • Fixed plate 96 is fixed to frame 72 such that fixed plate 96 is free to move axially upon central shaft 62 , but not free to rotate about central shaft 62 by an anti-rotation tang 100 slidably received within an axially aligned slot 102 within frame 72 . See FIG. 17 .
  • Fixed plate 96 includes a circular projection 104 receiving thereon freely rotatable thrust bearing 106 positioned between fixed plate 96 and a retarder plate 108 .
  • a pair of nested, parallel acting, Belleville springs 110 are positioned, as illustrated in FIG. 9 , between retarder plate 108 and a solenoid plate 112 the function of which is described in greater detail below.
  • Axially expandable ball ramps 113 see FIG. 15 , connect end plate 70 and solenoid plate 112 , the function of which is also described in greater detail below.
  • a compression spring assembly 114 Positioned upon central shaft 62 , between clutch plate 66 and flywheel 28 , is a compression spring assembly 114 comprising washers 116 and 118 having a coil spring 120 therebetween the function of which is described in further detail below.
  • the control module 18 Upon start of the fastener work, or driving, cycle, the control module 18 causes motor 24 to “spin up” flywheel 28 , in the counter clockwise direction as indicated by arrow A in FIG. 7 , to a predetermined RPM. Upon flywheel 28 achieving its desired RPM, or kinetic energy state, the control module 18 activates solenoid 26 which, through a flexible wire solenoid cable 122 extending from a solenoid plunger 124 and affixed to the periphery of solenoid plate 112 causes solenoid plate 112 to rotate clockwise, as indicated by arrow B in FIG. 7 .
  • solenoid plate 112 As solenoid plate 112 rotates clockwise, solenoid plate 112 is caused to move axially away from end plate 70 by action of the corresponding ball ramps 98 in end plate 70 and solenoid plate 112 . See FIG. 15 . As end plate 70 and solenoid plate 112 axially separate, the remaining elements of clutch drive assembly 64 are thereby caused to move axially toward flywheel 28 compressing coil spring 120 whereby clutch surface 36 preliminarily engages flywheel cavity 44 . Engagement of clutch plate 66 with flywheel 28 causes counter clockwise rotation of clutch plate 66 , drum 88 and activation plate 86 , as an assembly. By action of corresponding ball ramps 98 , between fixed plate 96 and activation plate 86 , see FIG.
  • cables 126 a and 126 b wrap about peripheral grooves 128 and 130 in drum 88 and clutch plate 66 respectively, thereby drawing a vacuum return piston assembly 132 downward, within a cylinder 134 , in a power, or working, stroke whereby the attached fastener driver 68 is likewise driven downward, through guide block 108 and opening 135 within frame 72 , thereby driving a selected fastener into a targeted workpiece.
  • FIGS. 13A through 13C sequentially illustrate the action between fixed plate 96 and activation plate 86 as plate 86 rotates during the power stroke of clutch drive assembly 64 .
  • ball ramps 98 of fixed plate 96 and activation plate 86 are helical as illustrated in FIG. 16
  • ramps 98 are illustrated as being linear in FIGS. 13A through 13C for simplicity of explanation.
  • FIG. 13A illustrates fixed plate 96 and activation plate 86 at the beginning of the tool's work cycle.
  • flywheel 28 drives activation plate 86 counter clockwise (to the left in FIG. 13A ) balls 136 , following the profile of ramp 98 , cause a fast and sudden separation x, between activation plate 86 and fixed plate 96 as illustrated in FIG. 13B .
  • Separation x is maintained throughout the power stroke of fastener driver 68 , as illustrated in FIG. 13B , thereby affecting the transfer of the kinetic energy, stored within flywheel 28 , to a driver 68 as described above.
  • FIG. 13C At the end of the power stroke, as illustrated in FIG. 13C , plates 96 and 86 suddenly close together thereby causing the rapid disengagement of clutch plate 66 from flywheel 28 .
  • FIG. 14 presents a representative graphical plot of the separation x between activation plate 86 and fixed plate 96 as a function of the angle of rotation of activation plate 86 .
  • a combination driver guide and resilient stop block 138 is preferably positioned at the bottom of cylinder 134 to stop piston assembly 132 , within cylinder 134 , at the end of the power stroke.
  • solenoid plate 112 Upon disengagement of clutch plate 66 from flywheel 28 , coil spring 120 urges all elements of clutch drive assembly 64 back toward end plate 70 . The resulting axial force and pressure now being applied to solenoid plate 112 , by action of coil spring 120 and Belleville springs 74 , cause solenoid plate 112 to close upon end plate 70 . The pressure being exerted, by solenoid plate 112 , upon balls 140 cause solenoid plate 112 to rotate, counterclockwise, towards its original start position whereby solenoid cable 122 , being wrapped about solenoid plate 112 , stops the rotation of solenoid plate 112 when solenoid plunger 124 returns to its start position as illustrated in FIG. 12 .
  • solenoid plate 112 In order to decrease the tensile stress applied to solenoid cable 122 as it stops, the counterclockwise rotation of solenoid plate 112 and retarder plate 108 is provided. By action of the axial force remaining within Belleville springs 72 , retarder plate 108 and solenoid plate 112 , as an assembly, exhibit a combined mass and/or inertia greater than that of solenoid plate 112 alone.
  • solenoid plate 112 has a lower angular momentum resulting in a lower tensile stress being applied to solenoid cable 122 as it stops rotation of solenoid plate 112 .
  • retarder plate 108 freely rotates about central shaft 62 until its kinetic energy dissipates.
  • the mass and/or inertia of solenoid plate 112 may be selectively chosen so as not to unnecessarily stress solenoid cable 122 upon stopping the rotation of solenoid plate 112 .
  • clutch plate 66 disengages from flywheel 28 thereby allowing flywheel 28 to continue spinning after clutch drive assembly 64 has reached the end of its power stroke.
  • the remaining kinetic energy is available for the subsequent operation thereby economizing battery power and saving the drive assembly elements and/or the frame 72 from having to absorb the impact that would otherwise occur by bringing flywheel 28 to a full stop immediately after the power stroke. This feature also permits “dry firing” of the tool.
  • the clutch drive system as taught herein also provides for automatic compensation for clutch wear in that the expansion between end plate 70 and solenoid plate 112 will continue until clutch plate 66 engages flywheel 28 thereby allowing solenoid plate 112 to take up the difference at the start of every power drive.
  • Vacuum return piston assembly 132 comprises piston 142 slidably received within cylinder 134 . Spaced from the top of piston 142 is a circumscribing groove 144 having positioned therein a sealing O-ring 146 . Positioned toward the bottom of piston 142 are two axial stabilizing bands 148 and 150 .
  • the inside diameter D, of cylinder 134 is flared outward to diameter D′ at the top of cylinder 134 as illustrated in FIG. 10 .
  • Diameter D′ is slightly greater than the outside diameter of O-ring 146 thus creating an annular gap 152 between O-ring 146 and inside diameter D′.
  • a resilient end stop 156 is preferably positioned within end cap to absorb any impact that may occur as piston assembly 132 returns to its start position at the top of cylinder 134 .
  • drum 88 returns to its start position tang 157 radially extending from drum 88 engages abutment block 158 affixed to frame 72 , see FIG. 11 , thereby preventing over travel of drum 88 as it returns to its start position.
  • fastener drive assembly 16 is illustrative and that aspects of the invention have application in other types of fastener drive assemblies.
  • FIG. 18 depicts a control system 200 for a nailing tool 10 that advantageously uses rotary speed sensing of a inertial member, depicted as a flywheel 202 , to more consistently and efficiently drive a fastener into a workpiece.
  • the control system 200 responds to input signals 204 received and processed by an electronic control module 206 to command a motive device, such as a flywheel motor 208 , to accelerate the flywheel 202 .
  • the control module 206 further commands a clutch actuator 210 to transfer kinetic energy from the flywheel 202 to a fastener.
  • a signal representative of the rotational rate (e.g., RPM) that a plurality 212 of radially arrayed pairs of magnetic poles rotate with the flywheel 202 is generated by a transducer 214 that senses each closest pair of registered magnetic poles 216 , 218 of the plurality 212 .
  • the control system 200 responds to other types of inputs.
  • the input signals 204 may include a trigger input 220 , a safety input 222 , a user speed adjustment input 224 , a continuous flywheel mode switch input 226 , a fastener type sensor input 228 , and a fastener transducer input 230 for sensing the presence of a fastener positioned for driving.
  • a fastener indexer 232 may advantageously respond to an electrical command from the control module 206 .
  • the electric interface to a separable indexing magazine (not shown) may be readily designed and assembled with electrical interconnects. This advantageously compares to pneumatic power tools with indexing wherein more complicated pneumatic plumbing at the interface of the magazine and main body is required.
  • the control module 206 may respond to an enabling condition input 234 .
  • the availability of electrical power in combination with actuation of a trigger or depression of a safety may be deemed an enabling condition for powering the nailing tool 10 .
  • the enabling condition input 234 may represent other input signals that enable or disable the nailing tool 10 .
  • the enabling condition input 234 may include a sensed motor overheat condition, an ON/OFF switch, a battery power voltage level, or presence of an AC electrical power input. The latter may cause the control module 206 to switch power source, or to charge a battery.
  • Battery input 236 may represent a source of power for the control module 206 .
  • the control module 206 may respond to the voltage level of the battery input 236 by altering time-out values when the control module expects to see acceleration and actuation performed. For example, for a given battery voltage level, the flywheel motor 208 should accelerate to a given target speed in a certain time range, whereas this time range would be expected to change in relation to the voltage level. Thus, mechanical failures would be more accurately detected by more accurately predicting the performance thereof.
  • the electronic control module 206 includes interfaces 240 – 256 for these input signals 204 .
  • a speed sensor 240 may convert the speed signal from the transducer 214 into another form. For instance, the speed sensor may convert an analog signal into a near DC signal (digital signal) suitable for digital signal processing.
  • a thin film switch “A” 242 converts a mechanical trigger input 220 into an electrical trigger signal.
  • a thin film switch “B” 244 converts a mechanical safety input 222 into an electrical safety signal.
  • a preset speed range interface 246 may fully comprise a speed selection or define a flywheel speed range for user speed adjustment input 224 .
  • the present speed range interface 246 may define a range constrained by a combination of the operable range of the flywheel motor 208 and/or clutch actuator 210 and the force requirements expected for the fastener and type of workpiece.
  • a continuous mode input 248 receives a selection for continuous or intermittent mode for the flywheel. It should be appreciated that continuous mode or intermittent mode may be used at the exclusion of the other mode. Alternatively or in addition, the selection may be determined based on another consideration such as state of charge of the battery (e.g., switching to intermittent mode to save electrical power when a battery is partially discharged).
  • a fastener type input interface 250 senses or accepts a selection from the fastener type sensor input 228 , which may advantageously adjust speed and timing considerations.
  • a fastener sensor interface 252 responds the fastener transducer input 230 to convert the signal into a form suitable for digital processing.
  • the control module 206 may respond to the presence or absence of a fastener ready for driving in a number of fashions. For example, dry firing may be prevented to avoid wear or a jam of a partially loaded or improper fastener; an indication of the need to load the magazine may be given, a continuous mode for the flywheel may be discontinued, etc.
  • an index control interface 254 provides an index signal suitable for the fastener indexer 232 .
  • the control module 206 is depicted as including a power supply 256 that responds to the enabling condition input 234 and the battery input 236 .
  • the power supply may comprise a power source for the control module 206 only, wherein power drain on the battery is prevented by shutting down the control module 206 except when commanded to drive a fastener or when in continuous mode and the tool 10 is enabled.
  • the power supply 256 may further represent logic to select a source of electrical power and/or to charge an attached battery.
  • the power supply 256 may represent additional safety features to prevent electrical power from inadvertently reaching actuating components.
  • the electronic control module 206 provides a motor control interface 260 to convert a control signal into a form suitable for the flywheel motor 208 (e.g., a logic signal to a pulse width modulated (PWM) power signal).
  • a clutch control interface 262 converts a control signal into a form suitable for the clutch actuator 210 (e.g., a logic signal to power signal).
  • the control system 200 may advantageously include additional features to the user to include an aim indicator 264 that is controlled by an indicator control interface 266 in the control module 206 .
  • an aim indicator 264 that is controlled by an indicator control interface 266 in the control module 206 .
  • a focused light or laser pointer may be directed at the expect point of the fastener.
  • the illumination thereof may assist the user in seeing the workpiece more clearly in dim lighting or to better appreciate the aim of the tool.
  • the electronic control module 206 advantageously includes a digital controller 300 that is programmed for additional features.
  • a processor 302 accesses instructions and data by indirect addressing through a pointer 304 of a Random Access Memory 306 .
  • the processor and/or memory access analog-to-digital (A/D) inputs 308 , such as from the speed sensor 240 , that are used and stored in digital form.
  • A/D analog-to-digital
  • another example may be the speed adjustment input 224 and preset speed range interface 246 as being analog inputs.
  • the memory 306 includes instructions 310 ; a switch timer 312 for monitoring a stuck or inadvertently held switch; interrupts code 314 for handling time sensitive signals or abnormal processing; a motor timer 316 for monitoring overlong motor operation that could result in overheating; a switch debounce buffer 318 for precluding inadvertent or spurious switch signals from being acted upon; a speed target register 320 for holding a preset or calculated value for a desired or appropriate flywheel speed; an actuation timer register 322 for holding a preset or calculated value for monitoring for abnormally long time for transfer kinetic energy to the driver by actuation; a no-operation (no op) timer 324 for timing when to deactivate; or other data structures or unused memory 326
  • the instructions 310 include diagnostic code to perform RAM checking, verifying that all memory locations are working properly prior to use and that the program counter 304 is indexing correctly.
  • the diagnostic code further checks that jumps and returns from subroutine locations return back to the correct location.
  • the diagnostic code checks that when the processor 302 tells a pin to go high or low that the line attached to the pin responds accordingly.
  • the control module 206 includes a watch dog timer circuit 330 that prevents a processing failure. Throughout processing, it will be appreciated that the watch dog timer circuit 330 is periodically reset by the processor 302 , lest a time limit be reached that initiates resetting or disabling the control module 206 .
  • a user setting Before driving a fastener, user settings are available (block 402 ).
  • a user setting may include an enabling condition such as an ON setting or a momentary actuation of a control (e.g., trigger, safety).
  • a user setting may include a MODE setting, such as continuous, intermittent, or automatic (e.g., the control system determines the appropriate mode).
  • the user setting may include a speed adjust setting, to include a factory preset range appropriate for the fastener drive assembly, a range appropriate for the type of fastener sensed, or a user selected range.
  • a user input begins processing (block 404 ) by enabling the control system (block 406 ).
  • the control module performs diagnostics to preclude failures that may cause an inadvertent activation and actuation of the tool (block 408 ), discussed in more detail below. It will be appreciated that certain diagnostic features continue to be performed throughout operation.
  • an aim indicator is activated (block 412 ). This feature is included to illustrate features that may be performed to give visual indications to the user about the operation or condition of the tool.
  • the main routine 400 is in an intermittent mode that advantageously accelerates the flywheel to a target speed each time a fastener is to be driven.
  • intermittent mode a determination is made as to whether a valid command to drive a fastener has been received (block 422 ), and if so, initiating intermittent acceleration of the flywheel will be discussed below, as well as the forced sequence of the safety and the trigger for a valid command.
  • FIG. 20 depicts the diagnostics routine 500 referenced in FIG. 19 .
  • Certain diagnostic tests are performed upon powering up the control module and other tests continue in background during operation of the tool.
  • a watchdog timer (block 502 ) is depicted, wherein a dedicated circuit times the period since the last update from the processor. If the watchdog timer is not updated before timing out, the control module is assumed to be processing abnormally and the tool is placed in a safety lockout mode (block 503 ). This watchdog timer continues operation throughout the main routine 400 .
  • digital parameters are initialized and any calibrations are performed (block 504 ). For example, interrupt vectors are set so that any resets will be appropriately handled. Also, analog devices like oscillators are calibrated. Then the processor memory is tested by checking for any failure to toggle and to read a memory location (Z BIT) (block 505 ). If Z BIT fails (block 506 ), then safety lock-out mode is set (block 503 ), else any unused memory is loaded with a reset code (e.g., interrupt vector) (block 508 ). In addition, a check is made as to whether the program counter (pointer) is corrupt (block 510 ), and if so safety lockout mode is set (block 512 ).
  • Z BIT memory location
  • routine 500 returns to the main routine 400 of FIG. 19 .
  • FIG. 21 depicts the intermittent mode from block 416 of FIG. 19 .
  • this portion of the main routine 400 begins with a valid command from the user indicating that the flywheel is to be accelerated to the target speed and the driver is to be driven by the flywheel.
  • the speed target is determined (block 600 ), which could be based on a preset value, a user selection, a preset speed range adjusted by a user selection, a selection based on a sensed fastener type, or a range based on a sensed fastener type as adjusted by a user selection.
  • a motor command is initiated (block 602 ).
  • the motor command begins with a Pulse Width Modulated (PWM) soft start is used.
  • PWM Pulse Width Modulated
  • a failure in the fastener drive assembly e.g., stuck clutch, motor failure, weak battery
  • a speed reduction threshold is determined for imparting or transferring kinetic energy from the flywheel to the linearly moving fastener driver.
  • a known amount of kinetic energy available in the flywheel but a known amount is transferred to the driver and thus to the fastener for a consistent depth of drive.
  • the speed reduction may be based on a look-up table for the given conditions, based on a fixed ratio of a current speed, or a fixed scalar amount below the target, or other measures.
  • the clutch is engaged to transfer the kinetic energy to the driver (block 620 ). Then a determination is made as to whether the threshold is reached (block 622 ). If not reached, then a further determination is made as to whether the actuation time-out has been reached (block 624 ), and if so, safety lock-out mode is set (block 626 ). If in block 622 the time-out is not reached, then actuation is still in progress by returning to block 620 . Returning to block 622 , if the reduction threshold is reached, then the clutch is deactivated (block 628 ). If installed and enabled, the fastener index is actuated (block 630 ). Then the control module is disabled (block 632 ) and main routine 400 ends.
  • FIG. 22 depicts the continuous mode portion after a trigger command in block 416 of the main routine 400 of FIG. 19 .
  • the speed target is determined (block 700 ) and the motor is started (block 702 ) in a manner similar to that described respectively for blocks 600 and 602 .
  • a determination is made as to whether the motor time-out has expired, indicating an inability to accelerate the motor in the expected time (block 704 ). If expired, then safety lockout mode is set (block 706 ). If not timed out, then a further determination is made as to whether the target has been reached (block 708 ). If not, then flywheel acceleration continues by returning to block 702 .
  • continuous mode allows addition safety/trigger sequences for a valid command.
  • the trigger signal may precede the safety signal (“bottom fire”).
  • a trigger time-out e.g., 3 seconds
  • the safety time-out e.g., 3 seconds
  • the speed is held (block 710 ). For example an operating range may be entered wherein the motor command is recommenced when a lower limit is reached and removed when an upper limit is reached. Then, a determination is made as to whether a valid command has been received from the user (block 712 ). If not, a check is made as to whether the no op time-out has occurred (block 714 ), and if not, the flywheel speed is continuously maintained by returning to block 710 . If the no-op timer has expired in block 714 , then the motor command is deactivated ( 716 ) and the control module is disabled (block 718 ).
  • FIG. 23A graphically illustrates a valid user command that initiates acceleration of the motor 24 and actuation of the solenoid 26 of FIG. 1 over a time period of “t 0 ” to “t 7 ”.
  • an enabling event depicted as depression of the safety, provides power to the control system.
  • the “Power or Safety” remains on throughout the depicted time scale to time “t 7 ”.
  • trigger signal is received, which also remains present throughout the remainder the graph, representing the tool placed against the workpiece followed by depression of the trigger.
  • the motor command (“Motor Signal”) begins.
  • FIG. 23B shows the soft start portion of the motor signal.
  • the PWM motor signal begins with an on time of 2 ⁇ sec and off time of 510 ⁇ sec, incrementing each cycle by 10 ⁇ sec until reaching a full command of 510 ⁇ sec on time and 10 ⁇ off time. It will be appreciated that other approaches to soft starting the motor may be implemented as well as omitting soft start.
  • the parameter of rotational speed of the flywheel and motor is sensed (“motor speed”).
  • the initial value of motor speed at time “t 2 ” may be nonzero if the flywheel has residual kinetic energy from a previous driving cycle.
  • the sensed speed enters the lowest speed of the speed range available for actuation.
  • the sensed speed reaches the target speed, whereupon several changes occur.
  • the motor command is deactivated.
  • a solenoid signal commands actuation, transferring the kinetic energy from the flywheel to the linearly moving driver to the fastener as shown by the decreasing motor speed.
  • the motor speed is sensed at having reduced to a threshold indicating the desired actuation, and thus the solenoid signal is deactivated.
  • FIGS. 23C–23F depict instances where an invalid command is given, resulting in no actuation of the tool.
  • FIG. 23C presents a trigger signal at time “t 1 ” that precedes the safety signal at time “t 2 ”, which in the illustrative embodiment precludes activating the motor and actuating the solenoid.
  • FIG. 23D presents a safety depressed at time “t 1 ”, but the safety signal reaches a time-out at time “t 4 ” before the trigger signal is received, thus precluding activation and actuation.
  • FIG. 23E presents a safety signal at time “t 1 ” and a trigger signal at time “t 2 ”, which is the required sequence and within the time-out value for the safety.
  • FIG. 23F presents a situation similar to FIG. 23E except that the safety signal is the one that is removed after time “t 4 ” before the motor speed reaches the speed target. Again, the motor signal is removed and actuation does not occur.
  • FIGS. 24A–24B illustrate the adaptability of the control system to a wide operating range of fastener types and battery charge.
  • FIG. 24A graphically illustrates a scenario where the flywheel accelerates rapidly with a fully charged battery and a low speed set point for the speed target.
  • the solenoid signal is present for a relatively short period until time “t 2 ”.
  • the battery voltage is shown as reaching a fully discharged level and the tool having been set to a high-speed set point.
  • the acceleration of the motor speed from time “t 5 ” to time “t 6 ” to the high-speed set point takes longer.
  • the solenoid signal is required to be present for a longer period from time “t 6 ” to “t 7 ” by actuating more slowly with a lower solenoid signal.
  • FIG. 24B illustrates a feature of the control system to accommodate increased tolerance within the clutch components due to wear or manufacturing variation yet still detect a failure condition.
  • the motor accelerates the flywheel to the target speed at time “t 1 ”.
  • a brief solenoid signal starts at time “t 1 ”.
  • the flywheel has slowed to the necessary speed drop off and the solenoid signal is deactivated, having provided the necessary amount of kinetic energy to the driver.
  • the motor accelerates the flywheel to the target speed at time “t 6 ”, prompting the solenoid signal to start.
  • the solenoid signal last for a longer period than the first trace.
  • the solenoid signal is deactivated.
  • the third trace represents a clutch that fails to engage.
  • the motor has accelerated the flywheel to the target speed and the solenoid signal starts. With the clutch failing to engage, the motor speed drops off slowly, still higher than the expected value at time “t 11 ”. Then, at time “t 12 ”, the clutch time-out value is reached, indicating the failure, and the solenoid signal is discontinued.
  • FIG. 25 depicts an exemplary control circuit 800 for a flywheel operated hand tool, such as the nailing tool 10 of FIG. 1 that advantageously provides selectable continuous or intermittent modes and economical speed sensing.
  • a speed sensor 802 is picks up alternating north and south magnetic fields 804 on a ring magnet with an inductive transducer 806 .
  • a series pair of coils 808 have their shared node is grounded and their opposite ends connected to a differential amplifier, or comparator U 1 , such as model no. TA75S393F.
  • comparator U 1 such as model no. TA75S393F.
  • the comparator U 1 is biased between power supply VDD and ground.
  • the positive bias is also coupled to ground via capacitor C 1 suppress high frequency noisy disturbances from the power supply.
  • the output node of the comparator U 1 is coupled to ground via a capacitor C 2 to rectify and low pass filter the differential speed output that is passed to the +T input of a monostable multivibrator (one shot) U 2 , such as model no. MM74HC4538 by Fairchild Semiconductor Corporation.
  • the one shot U 2 is an integrated circuit that, when triggered, produces an output pulse width that is independent of the input pulse width, and can be programmed by an external resistor-capacitor (RC) network to set the pulse width.
  • the RC input of the one shot U 2 is coupled to the common node of a series resistor R 1 and capacitor C 3 , the series coupled between power supply VDD and ground, respectively.
  • the inverted input CS of the one shot U 2 is coupled to the common node of a series resistor R 2 and capacitor C 4 , the series coupled between power VDD and ground, respectively.
  • the inverted output Q of the one shot U 2 is connected to the inverted input ⁇ T.
  • the bias V+ of the one shot U 2 is coupled to power supply VDD and to ground via capacitor C 5 .
  • the one shot U 2 outputs at noninverted output Q a series of pulses, the spacing between pulses being a function of the rate that the poles of ring magnet pass by the speed transducer 808 .
  • the pulse train at output Q of one shot U 2 is connected to a node 810 via a resistor R 3 .
  • the node 810 is also coupled to ground via capacitor C 6 .
  • the signal at node 810 is low pass filtered, creating a near DC signal whose amplitude is related to rate of pulses.
  • the sensed speed signal has been converted to a form suitable for digital processing.
  • a controller U 3 such as an 8-pin RISC microprocessor performs the digital processing, model PIC12C671.
  • the analog input GP 1 of the controller U 3 receives the near DC signal from node 810 .
  • This near DC signal is compared to a speed target reference signal at analog input GP 0 .
  • the controller U 3 changes the analog reference signal into a digital signal to be compared to the digitized speed signal with a resolution of one bit.
  • the speed target reference signal is produced by preset speed adjust range formed by a voltage divider of trimmable resistors R 4 and R 5 coupled between power supply VDD and ground. Inserting an infinitely variable potentiometer 812 between resistors R 4 and R 5 advantageously provides a user speed adjustment.
  • the pick off point of the potentiometer 812 is coupled to the analog input GP 0 and also coupled to ground via capacitor C 7 for noise suppression. It will be appreciated that the resistors R 4 and R 5 may be selected for a desired speed range within which the potentiometer 812 selects a target speed. The voltage thus produced at analog input GP 0 may advantageously be selected for a desired voltage level corresponding to a target speed.
  • the processor U 3 awaits a trigger signal at input GP 3 , as described above in the timing diagrams of FIG. 23A–23F before producing a motor signal at output GP 4 and thereafter a solenoid actuation signal at output GP 5 .
  • the user initiates these actions by selecting a mode, either continuous or intermittent, at mode select switch 814 , enabling the tool with safety switch 816 , and then commanding the driving of a fastener with a trigger switch 818 .
  • the safety signal is received in either continuous or intermediate mode, which affects the manner of operation of processor U 3 .
  • switch 814 couples battery voltage VBATT to a resistor R 6 whose value is selected to scale the battery voltage to the desired voltage VDD for the control system 800 .
  • the resulting power supply voltage VDD is further regulated by being coupled to ground via the parallel combination of a capacitor C 8 and zener diode Z 1 .
  • the control system remains enabled, awaiting a safety and trigger signal to initiate the tool.
  • the mode switch 814 in continuous mode also couples the battery voltage to a first input of an AND gate 820 , such as an SN74AHC1G08.
  • the other input to the AND gate 820 receives battery voltage VBATT when the safety switch 816 is closed, inverted by inverter 822 , such as an SN74AHC1G04.
  • the output of the AND gate 820 controls the input GP 2 via a biasing circuit 824 .
  • the output of the AND gate 820 is connected to input GP 2 via resistor R 7 .
  • the input GP 2 is also coupled to power supply VDD via a resistor R 8 and to ground via capacitor C 9 .
  • ground is coupled the input GP 3 of the processor U 3 via resistor R 9 .
  • the input GP 3 is connected to power supply VDD via resistor R 10 and to ground via a capacitor C 10 .
  • the resistor R 6 is connected to battery voltage VBATT when the safety switch 816 is closed. Also, the first input of the AND gate 820 is connected to ground.
  • the processor U 3 commands a DC motor 826 with a motor signal at output GP 4 that is coupled via resistor R 11 to the base of a buffer, depicted as a small signal transistor Q 1 such as a 2N4401.
  • the base is also coupled to ground via resistor R 12 to ensure that the transistor will be off if voltage is not applied to the base.
  • the collector is connected to power supply VDD.
  • the emitter is also connected to the base of a rectifier Q 2 , such as an IRL3803 that advantageously has a low RDS (on) characteristics minimizing energy dissipation, that is heat shielded.
  • the emitter is also coupled to ground via resistor R 13 to ensure that rectifier Q 2 if off when not supplied with a signal.
  • the turned-on rectifier Q 2 thereby couples to ground a negative terminal respectively of a DC motor 826 , a MOSFET configured as a diode Q 3 (such as a model MTD20N03HDL) that advantageously has a high current carrying capacity in a small package.
  • a MOSFET configured as a diode Q 3 (such as a model MTD20N03HDL) that advantageously has a high current carrying capacity in a small package.
  • a positive terminal respectively of the diode Q 3 and the DC motor 826 are coupled to battery voltage VBATT.
  • the DC motor 826 is activated when rectifier Q 2 closes.
  • the processor U 3 commands a solenoid 828 with a solenoid signal at output GP 5 that is coupled via resistor R 14 to the base of a MOSFET configured as diode Q 4 (such as a model MTD20N03HDL).
  • the base is also coupled to ground via resistor R 15 to ensure that the transistor will be off if voltage is not applied to the base.
  • the rectifier Q 4 has a negative terminal coupled to ground and a positive terminal coupled to a negative terminal of the solenoid 828 .
  • the positive terminal of the solenoid 828 is coupled to battery voltage VBATT, thus solenoid 828 activates when rectifier Q 4 is closed by the solenoid signal.
  • the rectifier Q 4 advantageously withstands the electrical current spikes associated with inductive loads of solenoids.
  • FIG. 26 presents an index circuit 830 for providing an electrical index signal, thereby avoiding the additional complexity of pneumatic index approaches.
  • the index circuit advantageously uses a one shot U 4 that is part of the same package as one shot U 2 .
  • the index circuit 830 is triggered by the solenoid signal from GP 4 of the processor U 3 to an inverted ⁇ T input, as would be appropriate for a solenoid that is triggered on a falling edge of a solenoid signal rather than a rising edge.
  • the one shot U 4 is configured with a positive bias V+ to power supply VDD and also coupled to ground via capacitor C 10 . A negative bias V ⁇ is grounded.
  • a noninverted output Q is connected to input +T to place the device into a non-retriggerable, monostable mode of operation.
  • An inverted input R is coupled to a shared node of a series combination of a resistor R 18 and capacitor C 11 that are connected across power supply VDD and ground, providing a reset RC network to hold the device in reset until power supply VDD is up and stable.
  • an input RC of the one shot U 4 sets up the output timing, i.e. time the output pulse is high.
  • the input RC is coupled to a shared node of a series combination of a resistor R 19 and capacitor C 12 connected between power supply VDD and ground, respectively.
  • the one shot U 4 has an output pulse of appropriate duration and delay from the solenoid signal to advance the next fastener after the previous fastener is driven.
  • the index pulse from output Q is given an appropriate voltage by passing through a series resistor R 16 to a base of a rectifier Q 5 (a MOSFET configured as a diode such as a model MTD20N03HDL.
  • the base is also coupled to ground through a resistor R 17 to ensure that rectifier Q 5 is off when no voltage is applied.
  • a negative terminal of the rectifier Q 5 is grounded.
  • a positive terminal rectifier Q 5 is connected to a negative terminal of an indexing solenoid 832 .
  • a positive terminal of the indexing solenoid 832 is connected to battery voltage VBATT.
  • a user loads the magazine 42 of the nailing tool 10 with a strip of fasteners, and installs a charged battery 22 .
  • the tool is in a mode, such as Intermittent, conserving battery power by accelerating a flywheel each time that a fastener is to be dispensed or driven.
  • the safety mechanical linkage 38 contacts a highly reliable thin film safety switch 52 , powering the control module 18 .
  • a trigger 30 is depressed, activating another highly reliable thin film trigger switch 50 via a trigger mechanical linkage 32 .
  • the processor U 3 calculates a target speed for the flywheel set as appropriate for the fastener drive assembly 16 and/or an appropriate setting for the fastener and workpiece. As the flywheel accelerates, the speed signal from a noncontact speed sensor 60 is compared to the target speed. Once reached, the motor 24 is de-energized and then a solenoid actuation signal couples a clutch to the flywheel 28 to impart kinetic energy to a linearly moving fastener driver 68 .
  • the processor U 3 uses a reduction threshold to determine when the flywheel 28 has imparted an appropriate amount of kinetic energy, thereafter allowing the flywheel 28 to continue spinning with any remaining energy available for the next cycle.
  • a reduction threshold By monitoring flywheel speed, fault conditions are detected such as a slow motor acceleration that could be due to low battery voltage, motor degradation or a stuck clutch.
  • the failure of the clutch drive assembly 64 to engage is detected, preventing jamming of the tool 10 if attempting to cycle again.
  • a portable tool 10 provides a consistent drive in a single stroke, yet efficiently uses electrical power from the battery 22 without detrimental surges by using a DC motor 24 to accelerate a flywheel 28 .
  • consistent drives are ensured across a range of battery voltages and component tolerance variations (e.g., clutch wear).
  • the consistent rotary sensing and control of a rotary member has application more broadly to hand tools in accurately and robustly setting a desired speed.
  • noncontact speed sensor applications of the present invention may include other types of speed sensing.
  • an optical encoding approach may be used, weigan sensor, variable reluctance sensors, Hall effect sensors, feedback from the motor such as a tachometer signal, and other techniques.
  • the described control circuit 800 employs a battery voltage VBATT having a nominal value with resistors and a zener diode Z 1 being used to step down the battery voltage to the power supply voltage VDD.
  • a power supply e.g., a switching power supply
  • the processor may adapt its command, timing, and other features to accommodate a wider range of battery voltage, thus extending service life.
  • a processor having additional available inputs such as an 18-pin processor, model PIC16C71 may be used.
  • a speed adjustment circuit may employ other types of voltage references, such as a sized digital resistor.
  • the processor may calculate or lookup in a table a digital reference against which the sensed speed signal is compared.

Abstract

A control module advantageously reduces cost and enhances reliability, design flexibility, ease of assembly, and performance of a flywheel operated hand tool. The control module includes a thin film printed circuit with non-contact speed sensing of a flywheel to more accurately set the target speed and control transfer kinetic energy thereof to a fastener, achieving a desired depth regardless of variations in component performance and battery voltage. The printed circuit also includes long service life thin film switches for responding to trigger and safety inputs. Furthermore, the control module responds to a user speed selection and to preset speed selection ranges to reconfigure the controls as appropriate to constraints of a fastener drive assembly and to user preferences.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This reissue patent application of U.S. Pat. No. 6,974,061 is related to Reexamination patent application Ser. No. 90/008,833, which is directed to U.S. Pat. No. 6,974,061. A reexamination certificate issued in Reexamination patent application Ser. No. 90/008,833 on May 11, 2010. The changes shown in this reissue patent application are relative to the changes to U.S. Pat. No. 6,974,061 as shown in the issued reexamination certificate.
This application is a divisional of U.S. Non-Provisional Patent Application Ser. No. 10/027,767, filed Dec. 20, 2001, now abandoned, entitled CONTROL MODULE FOR FLYWHEL OPERATED HAND TOOL.
This application claims the priority of Provisional Patent Applicant Ser. No. 60/258,022, filed on Dec. 22, 2000 and incorporates herein, by reference, the totality of the invention disclosure therein.
This application is related to three commonly-owned, co-pending U.S. non-provisional patent applications filed on even date herewith and respectively titled, “FLYWHEEL OPERATED TOOL” to Conrad Gravis, et al; “FLYWHEEL OPERATED NAILER” to John Burke, et al; and “RETURN MECHANISM FOR A CYCLICAL TOOL” to Kevin Harper, et al. This application further relates to the commonly-owned, co-pending U.S. non-provisional patent application to Shane Adams, et al., filed on even date herewith and titled “SPEED CONTROLLER FOR FLYWHEEL OPERATED HAND TOOL”.
FIELD OF THE INVENTION
This invention generally relates to a hand-held electromechanical fastener driving tool, and more particularly to a fastener driving tool having an inertial member for imparting kinetic energy to drive a fastener into a work piece.
BACKGROUND OF THE INVENTION
In the past, where relatively large energy impulses have been required to operate a fastener driving tool, such as an industrial nailer or stapler, it has been common practice to power such tool pneumatically. Such tools are capable of driving a 3″ or longer nail, or staple, into framing wood such as 2×4s, for example. However, pneumatic driving tools require an on-site air compressor, which is often unavailable or not desired. Also, dragging the pneumatic umbilical is often an impediment to the user.
Corded AC electrical fastener driving tools are often used instead of pneumatic power since electrical power is more often available than air compressors. In particular, much effort has been expended in the prior art in providing heavy duty, high powered, fastener driving tools employing a flywheel as a means of delivering kinetic energy sufficient to drive a heavy duty fasteners. Examples of such systems are disclosed in U.S. Pat. Nos. 4,042,036; 4,121,745; 4,204,622; 4,298,072; and 5,511,715. Use of a flywheel is an attempt to limit the large current draws to actuate a solenoid to drive a fastener. A DC motor is activated over a non-instantaneous period and then the kinetic energy thus developed in the flywheel is clutched to the driver in an “energy dump”.
While such corded electrical fastener driving tools may perform well, in many instances an AC outlet is not available. Even if an AC outlet is available, many users find dragging the electrical cord to be an impediment to use. To address these preferences, it is further known to employ a portable power source such as a battery, such as solenoid-operated fastener driving tools. These portable fastener driving tools are primarily used in light-duty applications such as in driving one inch brad nails, for example, rather than the larger 2″ to 4″ staples or nails used in framing.
One approach to an efficient portable electrically driven tool is a multiple impact tool, such as described in U.S. Pat. No. 4,625,903, wherein a linear inertial member is repeatedly raised by a cam against a compression spring and released to impact a fastener. An electrical motor and portable battery pack are operated in a more efficient manner by running the motor for a period of time rather than providing a surge of power to a device such as a solenoid. The relatively small amount of energy stored in the spring each cycle typically requires a large number of impacts to drive a staple or nail into a workpiece. During this time, the user is required to maintain an appropriate position and force on the fasten and to gauge the appropriate length of time to achieve the desired depth. However, while the multiple impact tool is efficient and effective in driving fasteners, some users prefer a single driving action comparable to pyrotechnic or compressed air systems. The multiple impact tools also can damage a wood surface due to the vibrations the tool generates while stroking.
It would be desirable to use a battery to power a flywheel operated hand tool to provide a portable fastener driver that can drive larger fasteners in a single drive. However, using a battery has been thwarted by a number of challenges. First, each specific application generally requires a fastener drive assembly and motor customized for the type of fastener. In particular, the size of flywheel, the desired rotary speed of the flywheel, and the type of electric motor to accelerate the flywheel to the desired rotary speed are generally specifically sized for the type of fastener and work piece into which the fastener is typically driven. Thus, each specific application was thought to require a custom control module, with the increased costs of design, manufacture and support.
Even assuming that various types of fasteners could then be used with a family of flywheel operated hand tools, each tool would suffer the disadvantages inherent in using battery power. The battery voltage varies as a function of the amount of charge remaining and the amount of electrical current being drawn. The rotary speed of the flywheel varies with the battery voltage, and thus the depth of drive of the fastener would unacceptably vary. The generally known controllers for corded flywheel operated hand tools are unable to accommodate these power variations.
Furthermore, even for a specific application, the desired depth of drive is affected by the type of work piece into which the fastener is driven and to user preferences. However, flywheel operated hand tools rely upon a given amount of kinetic energy imparted by the flywheel to achieve a desired depth of travel. Thus, when the work piece is more or less dense, the depth of the drive will vary. Moreover, the user may prefer in some instances to sink the fastener below the plane of the work piece or to leave the head of the fastener exposed for easy removal.
Other types of hand tools, such a pneumatic powered hand tools, generally rely on driving the fastener to a specific position in order to achieve a desired depth. For example, in U.S. Pat. Nos. 4,679,719, 5,732,870 and 5,918,788 a control module is described that advantageously determines the mode of operation for the trigger. In particular, a microprocessor provided additional capabilities by receiving two signal inputs initiated by the user and by selectively activating an electronic solenoid in response thereto. Although the increased functionality of the control module in such pneumatic tools has advantages, these control modules are not responsive to changes in operating conditions to vary the depth of drive.
Other tools employing a rotary member (e.g., drill) generally require the user to determine the proper speed of the tool. The user provides the closed loop control of the tool, monitoring the tool for binding and proper operation and depressing the trigger an appropriate amount. However, consistent operation of the tool is thus dependent upon the skill level and attentiveness of the user. Due to the speed in which a fastener must be driven into the workpiece, the user would only learn after the fact whether the rotary member (in this case a flywheel) was accelerated to an appropriate speed prior to firing.
Therefore, a significant need exists for a control module that drives medium and large fasteners into a work piece with a single driving action, yet has the increased portability of battery power. It would be further desired to have such a tool that consistently provides a depth of fastener regardless of the state of charge of the battery. It would be yet further desired to have a control module readily adapted to a family of hand tools.
BRIEF SUMMARY OF THE INVENTION
These and other problems in the prior art are addressed by a control module that is responsive to a rotary speed of a rotational member of an electrically powered hand tool and is responsive to an adjustable target speed for the rotational member. Thereby, the control module more consistently controls the hand tool, avoiding human error and the inconvenience of relying upon the user to modulate the speed of the tool.
In one aspect of the invention, a control module for a hand tool includes a speed setting that is used for presetting the control module to an operating range of the intended rotational member of the hand tool. Thus, the control module is readily adjusted to the operating environment, using the speed setting as a target for comparing a sensed speed.
In another aspect of the invention, a method of controlling a fastener-driving tool enforces a user input sequence to ensure that a fastener is driven into a workpiece. In particular, a safety signal is received from a safety switch indicating a nose assembly of the tool is against a workpiece. A safety time-out value is accessed. The duration of depression of the safety signal is timed. Then, the tool is activated to drive a fastener in response to receiving a trigger signal from a trigger switch before the timed duration of the safety signal exceeds the safety time-out value. By so enforcing this sequence, a user is less likely to inadvertently drive a fastener in instances where the trigger is inadvertently squeezed and the tool contacts a surface.
In yet another aspect of the invention, an electrically powered hand tool is provided a reliable interface to a control module through use of a thin film switch interface to user controls (e.g., safety and trigger) and through use of noncontact speed sensing.
These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.
BRIEF DESCRIPTION OF THE DRAWING
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
FIG. 1 presents a left side elevational view of a hand held nailing tool, embodying the present invention, having a portion of its left side removed to show the general positioning of a fastener drive assembly and control module.
FIG. 1A presents a generally rearward elevated view of the control module of the nailing tool of FIG. 1
FIG. 2 presents a top view of the fastener drive assembly removed from the main body of the hand held nailing machine as illustrated in FIG. 1.
FIG. 3 presents a left side elevational view of the fastener drive assembly as removed from the nailing machine illustrated in FIG. 1.
FIG. 4 presents a bottom view, looking upward from the handle of the fastener drive assembly as removed from the nailing machine outer shell illustrated in FIG. 1 and having the electrical control module removed for clarity.
FIG. 5 presents an end elevational view of the fastener drive assembly as removed from the nailing machine illustrated in FIG. 1 and having the electrical control module removed for clarity.
FIG. 6 presents a pictorial view of the fastener drive assembly, having the electrical control module removed for clarity, showing the general arrangement the clutch drive assembly components.
FIG. 7 presents an exploded pictorial view showing the components of the fastener drive assembly illustrated in FIGS. 2 through 6.
FIG. 8 presents a sectional view taken along line 88 in FIG. 3.
FIG. 9 presents a sectional view taken along line 99 in FIG. 4.
FIG. 10 presents an enlarged view of the circled section in FIG. 8.
FIG. 11 is a sectional view taken along line 1111 in FIG. 4.
FIG. 12 is a sectional view taken along line 1212 in FIG. 4.
FIGS. 13A through 13C present a schematical presentation of the ball/cam action between the fixed plate and the activation plate.
FIG. 14 presents a graph showing the distance x between the fixed plate and the actuation plate as a function of degrees of rotation of the actuation plate.
FIG. 15 presents an expanded pictorial view of the solenoid camming plates.
FIG. 16 presents an expanded pictorial view of the activation camming plates.
FIG. 17 is a cross-sectional view taken along line 1717 in FIG. 9.
FIG. 18 presents a block diagram of a control system for the fastener-driving tool of FIG. 1.
FIG. 19 presents a flow diagram for a sequence of steps, or main routine, for a controller of FIG. 18 to operate the fastener-driving tool.
FIG. 20 presents a flow diagram of a diagnostic routine, referenced by the main routine of FIG. 19.
FIG. 21 presents an intermittent mode portion of the main routine of FIG. 19.
FIG. 22 presents a continuous mode portion of the main routine of FIG. 19.
FIG. 23A–23F present illustrative timing diagrams for sequencing of safety and trigger signals for a valid command, referenced in the main routine of FIGS. 19–22.
FIG. 24A–24B present illustrative timing diagrams for motor activation and solenoid actuation in response to variations in battery charge and clutch wear, referenced in the main routine of FIGS. 19–22.
FIG. 25 presents an illustrative control circuit for the control system of FIG. 18.
FIG. 26 presents an indexing control circuit for the control circuit of FIG. 25.
DETAILED DESCRIPTION OF THE INVENTION
With reference to FIG. 1, wherein like numbers refer to like components throughout the several views, a portable flywheel operated hand tool, depicted as a hand-held nailing tool 10, includes a control system 12 that advantageously provides consistent speed control throughout a range of operating conditions. In particular, the nailing tool 10 generally comprises a housing or main body 14 enclosing a fastener drive assembly 16 and a control module 18, and further includes and a gripping handle 20. Attached to the end of handle 20 is a removable, rechargeable battery 22 for providing the necessary electrical energy to operate a DC motor 24 and a solenoid 26 of the fastener drive assembly 16, as well as the electrical control module 18. Unlike generally known batteries that are required to handle large current influxes (e.g., Nickel Cadmium), the present invention advantageously may utilize other types of batteries (e.g., Nickel Metal Hydride (NiMH), lithium Polymers).
The DC motor 24, when accelerated by the control module 18, turns a flywheel 28 to build kinetic energy in the form of rotational inertia. Thereafter, the control module 18 actuates the solenoid 26 in response to user inputs and a sensed parameter of rotational speed of the flywheel 28 to impart the kinetic energy of the flywheel 28 to a fastener, which is described in further detail below
A user input to the nailing tool 10 are depicted as a trigger 30 of the handle 20, which mechanically communicates with the control module 18 via a trigger linkage 32. Another user input is depicted as a safety device 34 of a nose assembly 36 that mechanically communicates with the control module 18 via a safety linkage 38. Yet another user input is depicted as a speed adjust knob 40.
The nailing tool 10 includes a fastener supplying magazine assembly 42, which is typically attached to the main body 14 and handle 20, as illustrated, for supplying a strip of fasteners (not shown) to the nose assembly 36. It will be appreciated that the control system 12 may be advantageously operated with different types of magazine assemblies 42 to include different numbers, types and sizes of fasteners. Moreover, the control system 12 advantageously enhances use of indexed magazine assemblies, as will be described in more detail below.
Control Module.
With reference to FIGS. 1 and 2, the control module 18 of the control system 12 advantageously enhances reliability, design flexibility, ease of assembly, and performance of the nailing tool 10. In particular, the control module 18 includes user speed selection capability, depicted as a potentiometer 44 that is adjusted by knob 40. By being responsive to the user speed adjustment knob 40 enables the nailing tool 10 to adjust a target speed of the flywheel 28. In addition to any preset target speed of the control module 18, the user may adjust the knob 40 to compensate for variations in the workpiece or the desired depth of fastener insertion.
The control module 18 further includes a thin film printed circuit 46 that provides an extremely reliable electrical interface to the mechanical user inputs of the safety device 34 and the trigger 30. Moreover, the printed circuit 46 is readily adapted to various three-dimensional orientations with the support of a molded bridge 48. Thus, a trigger switch 50 and a safety switch 52 are readily positioned to receive the respective trigger and safety mechanical linkages 32, 36. It will be appreciated that thin film switches 50, 52 provide a service life that exceed generally known trigger and safety switches and at a reduced cost.
The molded bridge 48 further supports and orients a portion of the printed circuit 46 that forms a rotary speed transducer 54. Two inductive pickups 56, 58 of the printed circuit 46 are oriented to register to respectively to alternating north and south magnetic poles on a ring magnet (not shown in FIGS. 1 and 2) of the flywheel 28, forming a rotary speed sensor 60. The non-contact nature of the rotary speed sensor 60 avoids degradation due to wear. In addition, by sensing rotary speed directly, the sensor 60 provides an accurate measurement representative of the kinetic energy of the flywheel 28. By contrast, if electrical current drawn by the motor was sensed instead, the resulting measurement may contain variations due to friction, motor component degradation, etc. More accurate speed sensing allows more accurate transfer of kinetic energy to the fastener and thus a more consistent result.
Before discussing the control system 12 in greater, the mechanical aspects of the fastener drive assembly 16 are discussed in greater detail.
Fastener Drive Assembly of the Flywheel Operated Hand Tool
The fastener drive assembly 16 is described that has features of efficiently uses DC electrical power by accelerating the flywheel 28 with the DC motor 24. A clutching technique is advantageously used that avoids the need for a manual reset. In addition, components are described below that advantageously couple to the flywheel during acceleration to increase the inertial load prior to driving the fastener and then disengage after driving the fastener. Furthermore, resetting the fastener drive assembly 16 with a vacuum return approach further conserves electrical power and avoids the generally known techniques that require a manual reset key.
FIGS. 2, 3, 4, and 5 illustrate top, left side, bottom and rear views of the fastener drive assembly 16 as positioned within the main body 14 of the nailing tool 10 illustrated in FIG. 1. FIGS. 2, 4, and 5 have electrical control module 18 removed for clarity. As illustrated in FIG. 6, the primary operational elements of fastener drive assembly 16 comprise the flywheel 28 for providing kinetic energy, for driving a fastener into a workpiece, energized by an electric motor 24. Flywheel 28 is freewheeling upon a fixed central shaft 62. Upon achieving the required revolutions per minute (RPM), a clutch drive assembly 64 (see FIGS. 7 and 9) causes engagement of a clutch plate 66 and flywheel 28 thereby transferring a portion of the kinetic energy of flywheel 28 to a linearly moving fastener driver 68 for driving a fastener into a workpiece. The flywheel 28 is thereafter allowed to continue spinning with any remaining kinetic energy between cycles to further conserve electrical power and to reduce cycle time.
Referring now to FIGS. 2, through 9, the elements and operation of the fastener drive assembly 16 will be discussed. The fastener drive assembly 16 comprises clutch drive assembly 64 and flywheel 28 gear driven by electric motor 24. Although a gear drive between motor 24 and flywheel 28 is primarily illustrated herein, it is understood that a belt drive may also be used between motor 24 and flywheel 28 or any other suitable drive mechanism. As an alternative to having the motor axis of rotation parallel to the axis of rotation of flywheel 28, as illustrated herein, it may be preferable to position motor 24 such that its axis of rotation is perpendicular to the axis of rotation of flywheel 28 and shaft 62, thereby employing a bevel gear drive between the motor output shaft and the flywheel periphery.
Referring particularly to FIG. 9 and additionally to FIGS. 6 through 8, the mechanical structure of flywheel 28 and clutch drive assembly 64 will be operationally described.
Clutch drive assembly 64 and flywheel 28 are axially aligned upon central shaft 62 as best illustrated in FIG. 9. Central shaft 62 is threadingly affixed to end plate 70 which in turn is rigidly attached to a frame 72 by an integral boss 74 extending axially from end plate 70 and received within a slotted groove 76 such that end plate 70 and central shaft 62 are non-rotatable. The opposite end of central shaft 62 is received within supporting groove 78 in frame 72.
Flywheel 28 is rotatingly positioned at the end of central shaft 62, as best illustrated in FIG. 9, upon a deep groove ball bearing 80, whereby flywheel 28 freely rotates about central shaft 62 when energized by motor 24.
Flywheel 28 includes a conical cavity 82 for receiving therein a conical friction surface 84 of conical clutch plate 66. Clutch plate 66 and an activation plate 86, although they are separable members, are geared to a drum 88 by interlocking projections 90 and 92 respectively, whereby clutch plate 66, activation plate 86 and drum 88 rotate freely about shaft 62 as a single unitary assembly. Roller hearings 94a and 94b, positioned on the inside diameter of drum 88, are provided to assure the free rotational characteristic of activation plate 86, drum 88 and clutch plate 66 as a unitary assembly.
Adjacent activation plate 86 is a fixed plate 96. Fixed plate 96 and activation plate 86 are connected to one another by three equally spaced axially expandable ball ramps 98a, 98b, 98c, 98a′, 98b′, and 98c′ as illustrated in FIG. 16. The operation of the ball ramps 98 between fixed plate 96 and activation plate 86 is described in greater detail below. Fixed plate 96 is fixed to frame 72 such that fixed plate 96 is free to move axially upon central shaft 62, but not free to rotate about central shaft 62 by an anti-rotation tang 100 slidably received within an axially aligned slot 102 within frame 72. See FIG. 17.
Fixed plate 96 includes a circular projection 104 receiving thereon freely rotatable thrust bearing 106 positioned between fixed plate 96 and a retarder plate 108. A pair of nested, parallel acting, Belleville springs 110 are positioned, as illustrated in FIG. 9, between retarder plate 108 and a solenoid plate 112 the function of which is described in greater detail below. Axially expandable ball ramps 113, see FIG. 15, connect end plate 70 and solenoid plate 112, the function of which is also described in greater detail below.
Positioned upon central shaft 62, between clutch plate 66 and flywheel 28, is a compression spring assembly 114 comprising washers 116 and 118 having a coil spring 120 therebetween the function of which is described in further detail below.
Upon start of the fastener work, or driving, cycle, the control module 18 causes motor 24 to “spin up” flywheel 28, in the counter clockwise direction as indicated by arrow A in FIG. 7, to a predetermined RPM. Upon flywheel 28 achieving its desired RPM, or kinetic energy state, the control module 18 activates solenoid 26 which, through a flexible wire solenoid cable 122 extending from a solenoid plunger 124 and affixed to the periphery of solenoid plate 112 causes solenoid plate 112 to rotate clockwise, as indicated by arrow B in FIG. 7. As solenoid plate 112 rotates clockwise, solenoid plate 112 is caused to move axially away from end plate 70 by action of the corresponding ball ramps 98 in end plate 70 and solenoid plate 112. See FIG. 15. As end plate 70 and solenoid plate 112 axially separate, the remaining elements of clutch drive assembly 64 are thereby caused to move axially toward flywheel 28 compressing coil spring 120 whereby clutch surface 36 preliminarily engages flywheel cavity 44. Engagement of clutch plate 66 with flywheel 28 causes counter clockwise rotation of clutch plate 66, drum 88 and activation plate 86, as an assembly. By action of corresponding ball ramps 98, between fixed plate 96 and activation plate 86, see FIG. 16, rotation of activation plate 86 causes axial separation of clutch plate 66 and activation plate 86. Belleville springs 72 are thus compressed against solenoid plate 112 thereby providing an opposite axial force, forcing clutch plate 66 into tighter engagement with flywheel 28.
As drum 88 rotates counter clockwise, cables 126a and 126b wrap about peripheral grooves 128 and 130 in drum 88 and clutch plate 66 respectively, thereby drawing a vacuum return piston assembly 132 downward, within a cylinder 134, in a power, or working, stroke whereby the attached fastener driver 68 is likewise driven downward, through guide block 108 and opening 135 within frame 72, thereby driving a selected fastener into a targeted workpiece.
FIGS. 13A through 13C sequentially illustrate the action between fixed plate 96 and activation plate 86 as plate 86 rotates during the power stroke of clutch drive assembly 64. Although ball ramps 98 of fixed plate 96 and activation plate 86 are helical as illustrated in FIG. 16, ramps 98 are illustrated as being linear in FIGS. 13A through 13C for simplicity of explanation.
FIG. 13A illustrates fixed plate 96 and activation plate 86 at the beginning of the tool's work cycle. As flywheel 28 drives activation plate 86 counter clockwise (to the left in FIG. 13A) balls 136, following the profile of ramp 98, cause a fast and sudden separation x, between activation plate 86 and fixed plate 96 as illustrated in FIG. 13B. Separation x is maintained throughout the power stroke of fastener driver 68, as illustrated in FIG. 13B, thereby affecting the transfer of the kinetic energy, stored within flywheel 28, to a driver 68 as described above. At the end of the power stroke, as illustrated in FIG. 13C, plates 96 and 86 suddenly close together thereby causing the rapid disengagement of clutch plate 66 from flywheel 28.
FIG. 14 presents a representative graphical plot of the separation x between activation plate 86 and fixed plate 96 as a function of the angle of rotation of activation plate 86. A combination driver guide and resilient stop block 138 is preferably positioned at the bottom of cylinder 134 to stop piston assembly 132, within cylinder 134, at the end of the power stroke.
Upon disengagement of clutch plate 66 from flywheel 28, coil spring 120 urges all elements of clutch drive assembly 64 back toward end plate 70. The resulting axial force and pressure now being applied to solenoid plate 112, by action of coil spring 120 and Belleville springs 74, cause solenoid plate 112 to close upon end plate 70. The pressure being exerted, by solenoid plate 112, upon balls 140 cause solenoid plate 112 to rotate, counterclockwise, towards its original start position whereby solenoid cable 122, being wrapped about solenoid plate 112, stops the rotation of solenoid plate 112 when solenoid plunger 124 returns to its start position as illustrated in FIG. 12. In order to decrease the tensile stress applied to solenoid cable 122 as it stops, the counterclockwise rotation of solenoid plate 112 and retarder plate 108 is provided. By action of the axial force remaining within Belleville springs 72, retarder plate 108 and solenoid plate 112, as an assembly, exhibit a combined mass and/or inertia greater than that of solenoid plate 112 alone. Thus, during the short period of time during which the combined solenoid plate 112 and retarder plate 108 assembly is rotationally accelerated the rotational velocity achieved has been reduced and upon separation of retarder plate 108 from solenoid plate 112, solenoid plate 112 has a lower angular momentum resulting in a lower tensile stress being applied to solenoid cable 122 as it stops rotation of solenoid plate 112. Once retarder plate 108 is uncoupled from solenoid plate 112, retarder plate 108 freely rotates about central shaft 62 until its kinetic energy dissipates. By use of retarder plate 108 the mass and/or inertia of solenoid plate 112 may be selectively chosen so as not to unnecessarily stress solenoid cable 122 upon stopping the rotation of solenoid plate 112.
By constructing the clutch drive assembly 64, as taught hereinabove, clutch plate 66 disengages from flywheel 28 thereby allowing flywheel 28 to continue spinning after clutch drive assembly 64 has reached the end of its power stroke. Thus in the event it is desired to successively drive additional fasteners, the remaining kinetic energy is available for the subsequent operation thereby economizing battery power and saving the drive assembly elements and/or the frame 72 from having to absorb the impact that would otherwise occur by bringing flywheel 28 to a full stop immediately after the power stroke. This feature also permits “dry firing” of the tool.
The clutch drive system as taught herein also provides for automatic compensation for clutch wear in that the expansion between end plate 70 and solenoid plate 112 will continue until clutch plate 66 engages flywheel 28 thereby allowing solenoid plate 112 to take up the difference at the start of every power drive.
Referring now to FIG. 10. Vacuum return piston assembly 132 comprises piston 142 slidably received within cylinder 134. Spaced from the top of piston 142 is a circumscribing groove 144 having positioned therein a sealing O-ring 146. Positioned toward the bottom of piston 142 are two axial stabilizing bands 148 and 150.
The inside diameter D, of cylinder 134, is flared outward to diameter D′ at the top of cylinder 134 as illustrated in FIG. 10. Diameter D′ is slightly greater than the outside diameter of O-ring 146 thus creating an annular gap 152 between O-ring 146 and inside diameter D′.
As piston assembly 132 is drawn axially into cylinder 134, during the power stroke of fastener driver 68, O-ring 146 slidingly engages the inside wall diameter D of cylinder 134 thereby forming a pneumatic seal between inside wall 153 of cylinder 134 and piston assembly 132. As piston assembly 132 progresses into cylinder 134, a vacuum is created within the top portion of cylinder 134, between advancing piston assembly 132 and the sealed end cap 154.
Upon disengagement of friction clutch plate 66 from flywheel 28, the vacuum created within the top portion of cylinder 134 draws piston assembly 132 back toward an end cap 154 thereby resetting activation plate 86, drum 88, and clutch plate 66, as an assembly, to their restart position.
As O-ring 146 passes from inside diameter D to diameter D′, on its return stroke, any air that may have by passed O-ring 146, during the power stroke, is compressed and permitted to flow past O-ring 146 through annular gap 152 and to the atmosphere through cylinder 134, thereby preventing an accumulation of entrapped air above piston assembly 132. A resilient end stop 156 is preferably positioned within end cap to absorb any impact that may occur as piston assembly 132 returns to its start position at the top of cylinder 134.
As drum 88 returns to its start position tang 157 radially extending from drum 88 engages abutment block 158 affixed to frame 72, see FIG. 11, thereby preventing over travel of drum 88 as it returns to its start position.
It will be appreciated that the above-described fastener drive assembly 16 is illustrative and that aspects of the invention have application in other types of fastener drive assemblies.
Additional structural and operational details of the fastener drive assembly 16 is completely described within the two co-pending patent applications identified in the “Related Patent Applications” section above and are incorporated herein by reference.
Speed Controller
FIG. 18 depicts a control system 200 for a nailing tool 10 that advantageously uses rotary speed sensing of a inertial member, depicted as a flywheel 202, to more consistently and efficiently drive a fastener into a workpiece. The control system 200 responds to input signals 204 received and processed by an electronic control module 206 to command a motive device, such as a flywheel motor 208, to accelerate the flywheel 202. The control module 206 further commands a clutch actuator 210 to transfer kinetic energy from the flywheel 202 to a fastener.
A signal representative of the rotational rate (e.g., RPM) that a plurality 212 of radially arrayed pairs of magnetic poles rotate with the flywheel 202 is generated by a transducer 214 that senses each closest pair of registered magnetic poles 216, 218 of the plurality 212. In addition to flywheel speed signal, the control system 200 responds to other types of inputs. For example, the input signals 204 may include a trigger input 220, a safety input 222, a user speed adjustment input 224, a continuous flywheel mode switch input 226, a fastener type sensor input 228, and a fastener transducer input 230 for sensing the presence of a fastener positioned for driving.
A fastener indexer 232 may advantageously respond to an electrical command from the control module 206. The electric interface to a separable indexing magazine (not shown) may be readily designed and assembled with electrical interconnects. This advantageously compares to pneumatic power tools with indexing wherein more complicated pneumatic plumbing at the interface of the magazine and main body is required.
The control module 206 may respond to an enabling condition input 234. In some instances, the availability of electrical power in combination with actuation of a trigger or depression of a safety may be deemed an enabling condition for powering the nailing tool 10. Alternatively or in addition, the enabling condition input 234 may represent other input signals that enable or disable the nailing tool 10. For instance, the enabling condition input 234 may include a sensed motor overheat condition, an ON/OFF switch, a battery power voltage level, or presence of an AC electrical power input. The latter may cause the control module 206 to switch power source, or to charge a battery.
Battery input 236 may represent a source of power for the control module 206. In addition, the control module 206 may respond to the voltage level of the battery input 236 by altering time-out values when the control module expects to see acceleration and actuation performed. For example, for a given battery voltage level, the flywheel motor 208 should accelerate to a given target speed in a certain time range, whereas this time range would be expected to change in relation to the voltage level. Thus, mechanical failures would be more accurately detected by more accurately predicting the performance thereof.
The electronic control module 206 includes interfaces 240256 for these input signals 204. A speed sensor 240 may convert the speed signal from the transducer 214 into another form. For instance, the speed sensor may convert an analog signal into a near DC signal (digital signal) suitable for digital signal processing. A thin film switch “A” 242 converts a mechanical trigger input 220 into an electrical trigger signal. A thin film switch “B” 244 converts a mechanical safety input 222 into an electrical safety signal. A preset speed range interface 246 may fully comprise a speed selection or define a flywheel speed range for user speed adjustment input 224. The present speed range interface 246 may define a range constrained by a combination of the operable range of the flywheel motor 208 and/or clutch actuator 210 and the force requirements expected for the fastener and type of workpiece. A continuous mode input 248 receives a selection for continuous or intermittent mode for the flywheel. It should be appreciated that continuous mode or intermittent mode may be used at the exclusion of the other mode. Alternatively or in addition, the selection may be determined based on another consideration such as state of charge of the battery (e.g., switching to intermittent mode to save electrical power when a battery is partially discharged). A fastener type input interface 250 senses or accepts a selection from the fastener type sensor input 228, which may advantageously adjust speed and timing considerations. A fastener sensor interface 252 responds the fastener transducer input 230 to convert the signal into a form suitable for digital processing. The control module 206 may respond to the presence or absence of a fastener ready for driving in a number of fashions. For example, dry firing may be prevented to avoid wear or a jam of a partially loaded or improper fastener; an indication of the need to load the magazine may be given, a continuous mode for the flywheel may be discontinued, etc. For applications with an indexing magazine, an index control interface 254 provides an index signal suitable for the fastener indexer 232.
The control module 206 is depicted as including a power supply 256 that responds to the enabling condition input 234 and the battery input 236. It should be appreciated that the power supply may comprise a power source for the control module 206 only, wherein power drain on the battery is prevented by shutting down the control module 206 except when commanded to drive a fastener or when in continuous mode and the tool 10 is enabled. The power supply 256 may further represent logic to select a source of electrical power and/or to charge an attached battery. In addition, the power supply 256 may represent additional safety features to prevent electrical power from inadvertently reaching actuating components.
The electronic control module 206 provides a motor control interface 260 to convert a control signal into a form suitable for the flywheel motor 208 (e.g., a logic signal to a pulse width modulated (PWM) power signal). A clutch control interface 262 converts a control signal into a form suitable for the clutch actuator 210 (e.g., a logic signal to power signal).
The control system 200 may advantageously include additional features to the user to include an aim indicator 264 that is controlled by an indicator control interface 266 in the control module 206. For example, in response to an enabling condition such as depression of the safety against a workpiece, a focused light or laser pointer may be directed at the expect point of the fastener. The illumination thereof may assist the user in seeing the workpiece more clearly in dim lighting or to better appreciate the aim of the tool.
The electronic control module 206 advantageously includes a digital controller 300 that is programmed for additional features. To that end, a processor 302 accesses instructions and data by indirect addressing through a pointer 304 of a Random Access Memory 306. The processor and/or memory access analog-to-digital (A/D) inputs 308, such as from the speed sensor 240, that are used and stored in digital form. Although not depicted, another example may be the speed adjustment input 224 and preset speed range interface 246 as being analog inputs. The memory 306 includes instructions 310; a switch timer 312 for monitoring a stuck or inadvertently held switch; interrupts code 314 for handling time sensitive signals or abnormal processing; a motor timer 316 for monitoring overlong motor operation that could result in overheating; a switch debounce buffer 318 for precluding inadvertent or spurious switch signals from being acted upon; a speed target register 320 for holding a preset or calculated value for a desired or appropriate flywheel speed; an actuation timer register 322 for holding a preset or calculated value for monitoring for abnormally long time for transfer kinetic energy to the driver by actuation; a no-operation (no op) timer 324 for timing when to deactivate; or other data structures or unused memory 326
It will be appreciated that the instructions 310 include diagnostic code to perform RAM checking, verifying that all memory locations are working properly prior to use and that the program counter 304 is indexing correctly. The diagnostic code further checks that jumps and returns from subroutine locations return back to the correct location. In addition, the diagnostic code checks that when the processor 302 tells a pin to go high or low that the line attached to the pin responds accordingly.
The control module 206 includes a watch dog timer circuit 330 that prevents a processing failure. Throughout processing, it will be appreciated that the watch dog timer circuit 330 is periodically reset by the processor 302, lest a time limit be reached that initiates resetting or disabling the control module 206.
In FIG. 19, an illustrative sequence of steps for utilizing the control system 200 to affect control of the tool 10 is depicted as a main routine 400. Before driving a fastener, user settings are available (block 402). For instance, a user setting may include an enabling condition such as an ON setting or a momentary actuation of a control (e.g., trigger, safety). A user setting may include a MODE setting, such as continuous, intermittent, or automatic (e.g., the control system determines the appropriate mode). The user setting may include a speed adjust setting, to include a factory preset range appropriate for the fastener drive assembly, a range appropriate for the type of fastener sensed, or a user selected range.
In the illustrative embodiment, a user input, such as depression of the safety switch, begins processing (block 404) by enabling the control system (block 406). Immediately, the control module performs diagnostics to preclude failures that may cause an inadvertent activation and actuation of the tool (block 408), discussed in more detail below. It will be appreciated that certain diagnostic features continue to be performed throughout operation.
Once diagnostics are complete, with a determination is made as to whether the safety is depressed (block 410). If so, an aim indicator is activated (block 412). This feature is included to illustrate features that may be performed to give visual indications to the user about the operation or condition of the tool.
Thereafter, a determination is made as to whether the tool is in continuous mode (block 414). This determination may be preset, user selected, or automatically selected based on considerations such as battery voltage. If in continuous mode in block 414, then a further determination is made as to whether an input has been made to ready the tool for actuation, for instance a depression of the trigger (block 416). And if so, the continuous mode is initiated as described below. Otherwise, an additional determination is made as to whether a no op timer has expired (block 418). If no operations have been received within a suitable time, then the control module is disabled (block 420) to prevent battery drain and preclude inadvertent actuation. If in block 418 the no op time-out has not occurred, then processing continues to wait for a trigger command to initiate the continuous operating of the flywheel.
Returning to block 414, if continuous mode is not selected or appropriate, then the main routine 400 is in an intermittent mode that advantageously accelerates the flywheel to a target speed each time a fastener is to be driven. Thus, battery power is conserved between driving cycles. Since residual kinetic energy of the flywheel is conserved by the fastener drive assembly, the cycle time is still short even in intermittent mode. In intermittent mode, a determination is made as to whether a valid command to drive a fastener has been received (block 422), and if so, initiating intermittent acceleration of the flywheel will be discussed below, as well as the forced sequence of the safety and the trigger for a valid command. If a valid command is not received in block 422, then a further determination is made as to whether a no op time-out limit has been reached (block 424), and if so the control module is disabled (block 420) and routine 400 is complete.
FIG. 20 depicts the diagnostics routine 500 referenced in FIG. 19. Certain diagnostic tests are performed upon powering up the control module and other tests continue in background during operation of the tool. For example, a watchdog timer (block 502) is depicted, wherein a dedicated circuit times the period since the last update from the processor. If the watchdog timer is not updated before timing out, the control module is assumed to be processing abnormally and the tool is placed in a safety lockout mode (block 503). This watchdog timer continues operation throughout the main routine 400.
Also, digital parameters are initialized and any calibrations are performed (block 504). For example, interrupt vectors are set so that any resets will be appropriately handled. Also, analog devices like oscillators are calibrated. Then the processor memory is tested by checking for any failure to toggle and to read a memory location (Z BIT) (block 505). If Z BIT fails (block 506), then safety lock-out mode is set (block 503), else any unused memory is loaded with a reset code (e.g., interrupt vector) (block 508). In addition, a check is made as to whether the program counter (pointer) is corrupt (block 510), and if so safety lockout mode is set (block 512). If the program is not corrupt in block 510, then a delay occurs to allow for the power supply to the control module to stabilize (block 514). If not stable (block 516), then safety lockout mode is set (block 518). If stable in block 516, then the trigger time-out counter is set up so that overly long trigger commands due not result in actuation (block 520). Also, switch debounce code is set up so that momentary or spurious trigger or switch signals are ignored (block 522). Thereafter, routine 500 returns to the main routine 400 of FIG. 19.
FIG. 21 depicts the intermittent mode from block 416 of FIG. 19. In particular, this portion of the main routine 400 begins with a valid command from the user indicating that the flywheel is to be accelerated to the target speed and the driver is to be driven by the flywheel. To that end, the speed target is determined (block 600), which could be based on a preset value, a user selection, a preset speed range adjusted by a user selection, a selection based on a sensed fastener type, or a range based on a sensed fastener type as adjusted by a user selection. With the target set, a motor command is initiated (block 602).
Advantageously, the motor command begins with a Pulse Width Modulated (PWM) soft start is used. Thus, the duty cycle of the PWM command ramps up to a full command level, reducing the initial electrical current demand on the battery and surge to the motor. Thereby, power consumption is greatly reduced and the service life of the motor is extended.
With the flywheel accelerating in response to the motor command, a determination is made as to whether the safety is still held (block 604). Withdrawal of the safety from the workpiece causes the motor command to be deactivated (block 606) and the control module to be disabled (block 608).
If the command is still valid in block 604, then a further determination is made as to whether the motor time-out has expired (block 610). If so, due to a failure in the fastener drive assembly (e.g., stuck clutch, motor failure, weak battery), the safety lockout mode is set (block 612). If the motor has not timed out in block 610, then the current sensed speed is compared to the target. If the target is not reached (block 614), then processing returns to block 602, continuing with a full motor command. If the target speed is reached in block 614, then the motor command is deactivated (block 616).
A speed reduction threshold is determined for imparting or transferring kinetic energy from the flywheel to the linearly moving fastener driver. Thus, not only is a known amount of kinetic energy available in the flywheel, but a known amount is transferred to the driver and thus to the fastener for a consistent depth of drive. Moreover, since the flywheel is not completely stopped during or after transferring the kinetic energy, the remaining kinetic energy is available for a subsequent operation. The speed reduction may be based on a look-up table for the given conditions, based on a fixed ratio of a current speed, or a fixed scalar amount below the target, or other measures.
The clutch is engaged to transfer the kinetic energy to the driver (block 620). Then a determination is made as to whether the threshold is reached (block 622). If not reached, then a further determination is made as to whether the actuation time-out has been reached (block 624), and if so, safety lock-out mode is set (block 626). If in block 622 the time-out is not reached, then actuation is still in progress by returning to block 620. Returning to block 622, if the reduction threshold is reached, then the clutch is deactivated (block 628). If installed and enabled, the fastener index is actuated (block 630). Then the control module is disabled (block 632) and main routine 400 ends.
FIG. 22 depicts the continuous mode portion after a trigger command in block 416 of the main routine 400 of FIG. 19. In particular, the speed target is determined (block 700) and the motor is started (block 702) in a manner similar to that described respectively for blocks 600 and 602. Then a determination is made as to whether the motor time-out has expired, indicating an inability to accelerate the motor in the expected time (block 704). If expired, then safety lockout mode is set (block 706). If not timed out, then a further determination is made as to whether the target has been reached (block 708). If not, then flywheel acceleration continues by returning to block 702.
Advantageously, continuous mode allows addition safety/trigger sequences for a valid command. For instance, rather than requiring the safety signal to precede the trigger signal, (“trigger fire”), the trigger signal may precede the safety signal (“bottom fire”). Again, a trigger time-out (e.g., 3 seconds) is applicable just as is the safety time-out (e.g., 3 seconds) to minimize inadvertent actuation. Bottom fire is included as an option in continuous mode for applications wherein the user desires very short cycle time between drives or has a personal preference for this technique.
If the target is reached in block 708, then the speed is held (block 710). For example an operating range may be entered wherein the motor command is recommenced when a lower limit is reached and removed when an upper limit is reached. Then, a determination is made as to whether a valid command has been received from the user (block 712). If not, a check is made as to whether the no op time-out has occurred (block 714), and if not, the flywheel speed is continuously maintained by returning to block 710. If the no-op timer has expired in block 714, then the motor command is deactivated (716) and the control module is disabled (block 718).
Returning to block 712 wherein a valid command has been received, then the clutch is actuated in a manner similar to that described above for the intermittent mode, wherein blocks 720734 correspond respectively to block 616630. However, after deactuating the clutch in block 732 and actuating a fastener index in block 634, control returns to block 710 to continue holding speed in a continuous fashion awaiting the next valid command to drive a fastener.
FIG. 23A graphically illustrates a valid user command that initiates acceleration of the motor 24 and actuation of the solenoid 26 of FIG. 1 over a time period of “t0” to “t7”. At time “t1”, an enabling event, depicted as depression of the safety, provides power to the control system. The “Power or Safety” remains on throughout the depicted time scale to time “t7”. At time “t2”, trigger signal is received, which also remains present throughout the remainder the graph, representing the tool placed against the workpiece followed by depression of the trigger. Also at time “t2”, the motor command (“Motor Signal”) begins.
The portion of the motor signal between times “t2” and “t3” of FIG. 23A are depicted in greater detail in FIG. 23B, which shows the soft start portion of the motor signal. In particular, the PWM motor signal begins with an on time of 2 μsec and off time of 510 μsec, incrementing each cycle by 10 μsec until reaching a full command of 510 μsec on time and 10μ off time. It will be appreciated that other approaches to soft starting the motor may be implemented as well as omitting soft start.
Returning to FIG. 23A, with the motor signal beginning at time “t2”, the parameter of rotational speed of the flywheel and motor is sensed (“motor speed”). The initial value of motor speed at time “t2” may be nonzero if the flywheel has residual kinetic energy from a previous driving cycle. At about time “t3”, the sensed speed enters the lowest speed of the speed range available for actuation. At time “t5”, the sensed speed reaches the target speed, whereupon several changes occur. The motor command is deactivated. In addition, a solenoid signal commands actuation, transferring the kinetic energy from the flywheel to the linearly moving driver to the fastener as shown by the decreasing motor speed. At time “t6”, the motor speed is sensed at having reduced to a threshold indicating the desired actuation, and thus the solenoid signal is deactivated.
FIGS. 23C–23F depict instances where an invalid command is given, resulting in no actuation of the tool. FIG. 23C presents a trigger signal at time “t1” that precedes the safety signal at time “t2”, which in the illustrative embodiment precludes activating the motor and actuating the solenoid. FIG. 23D presents a safety depressed at time “t1”, but the safety signal reaches a time-out at time “t4” before the trigger signal is received, thus precluding activation and actuation. FIG. 23E presents a safety signal at time “t1” and a trigger signal at time “t2”, which is the required sequence and within the time-out value for the safety. Although the safety signal remains present, the trigger signal is withdrawn after time “t4” before the motor speed has reached the speed target (“speed set point”). Without a valid command being removed, the motor signal is removed and actuation does not occur. FIG. 23F presents a situation similar to FIG. 23E except that the safety signal is the one that is removed after time “t4” before the motor speed reaches the speed target. Again, the motor signal is removed and actuation does not occur.
FIGS. 24A–24B illustrate the adaptability of the control system to a wide operating range of fastener types and battery charge. FIG. 24A graphically illustrates a scenario where the flywheel accelerates rapidly with a fully charged battery and a low speed set point for the speed target. Thus at time “t1” the low speed set point is reached and the solenoid signal is present for a relatively short period until time “t2”. Then, between time “t4” and “t5”, the battery voltage is shown as reaching a fully discharged level and the tool having been set to a high-speed set point. Thus, the acceleration of the motor speed from time “t5” to time “t6” to the high-speed set point takes longer. Moreover, the solenoid signal is required to be present for a longer period from time “t6” to “t7” by actuating more slowly with a lower solenoid signal.
FIG. 24B illustrates a feature of the control system to accommodate increased tolerance within the clutch components due to wear or manufacturing variation yet still detect a failure condition. In the first trace representing a clutch with a low gap, the motor accelerates the flywheel to the target speed at time “t1”. Then, a brief solenoid signal starts at time “t1”. After a brief period, the flywheel has slowed to the necessary speed drop off and the solenoid signal is deactivated, having provided the necessary amount of kinetic energy to the driver. In the second trace representing a clutch with a high gap, the motor accelerates the flywheel to the target speed at time “t6”, prompting the solenoid signal to start. The solenoid signal last for a longer period than the first trace. At time “t7”, the necessary speed drop off is reached and the solenoid signal is deactivated. The third trace represents a clutch that fails to engage. At time “t10”, the motor has accelerated the flywheel to the target speed and the solenoid signal starts. With the clutch failing to engage, the motor speed drops off slowly, still higher than the expected value at time “t11”. Then, at time “t12”, the clutch time-out value is reached, indicating the failure, and the solenoid signal is discontinued.
FIG. 25 depicts an exemplary control circuit 800 for a flywheel operated hand tool, such as the nailing tool 10 of FIG. 1 that advantageously provides selectable continuous or intermittent modes and economical speed sensing.
A speed sensor 802 is picks up alternating north and south magnetic fields 804 on a ring magnet with an inductive transducer 806. In particular, a series pair of coils 808 have their shared node is grounded and their opposite ends connected to a differential amplifier, or comparator U1, such as model no. TA75S393F. Thus, as each pair of fields 804 of the 32 alternating poles are encountered, the push-pull arrangement or differential arrangement enhances signal integrity and noise immunity of the differential speed signal of about 10–15 mV. The comparator U1 is biased between power supply VDD and ground. The positive bias is also coupled to ground via capacitor C1 suppress high frequency noisy disturbances from the power supply.
The output node of the comparator U1 is coupled to ground via a capacitor C2 to rectify and low pass filter the differential speed output that is passed to the +T input of a monostable multivibrator (one shot) U2, such as model no. MM74HC4538 by Fairchild Semiconductor Corporation. The one shot U2 is an integrated circuit that, when triggered, produces an output pulse width that is independent of the input pulse width, and can be programmed by an external resistor-capacitor (RC) network to set the pulse width. To that end, the RC input of the one shot U2 is coupled to the common node of a series resistor R1 and capacitor C3, the series coupled between power supply VDD and ground, respectively. The inverted input CS of the one shot U2 is coupled to the common node of a series resistor R2 and capacitor C4, the series coupled between power VDD and ground, respectively. The inverted output Q of the one shot U2 is connected to the inverted input −T. The bias V+ of the one shot U2 is coupled to power supply VDD and to ground via capacitor C5. Thus configured, the one shot U2 outputs at noninverted output Q a series of pulses, the spacing between pulses being a function of the rate that the poles of ring magnet pass by the speed transducer 808.
The pulse train at output Q of one shot U2 is connected to a node 810 via a resistor R3. The node 810 is also coupled to ground via capacitor C6. Thus, the signal at node 810 is low pass filtered, creating a near DC signal whose amplitude is related to rate of pulses. Thus, the sensed speed signal has been converted to a form suitable for digital processing.
A controller U3, such as an 8-pin RISC microprocessor performs the digital processing, model PIC12C671. The analog input GP1 of the controller U3 receives the near DC signal from node 810. This near DC signal is compared to a speed target reference signal at analog input GP0. The controller U3 changes the analog reference signal into a digital signal to be compared to the digitized speed signal with a resolution of one bit. The speed target reference signal is produced by preset speed adjust range formed by a voltage divider of trimmable resistors R4 and R5 coupled between power supply VDD and ground. Inserting an infinitely variable potentiometer 812 between resistors R4 and R5 advantageously provides a user speed adjustment. The pick off point of the potentiometer 812 is coupled to the analog input GP0 and also coupled to ground via capacitor C7 for noise suppression. It will be appreciated that the resistors R4 and R5 may be selected for a desired speed range within which the potentiometer 812 selects a target speed. The voltage thus produced at analog input GP0 may advantageously be selected for a desired voltage level corresponding to a target speed. When enabled by a safety signal at input GP2, the processor U3 awaits a trigger signal at input GP3, as described above in the timing diagrams of FIG. 23A–23F before producing a motor signal at output GP4 and thereafter a solenoid actuation signal at output GP5.
The user initiates these actions by selecting a mode, either continuous or intermittent, at mode select switch 814, enabling the tool with safety switch 816, and then commanding the driving of a fastener with a trigger switch 818.
The safety signal is received in either continuous or intermediate mode, which affects the manner of operation of processor U3. Specifically, in continuous mode, switch 814 couples battery voltage VBATT to a resistor R6 whose value is selected to scale the battery voltage to the desired voltage VDD for the control system 800. The resulting power supply voltage VDD is further regulated by being coupled to ground via the parallel combination of a capacitor C8 and zener diode Z1. Thus, in continuous mode, the control system remains enabled, awaiting a safety and trigger signal to initiate the tool.
To that end, the mode switch 814 in continuous mode also couples the battery voltage to a first input of an AND gate 820, such as an SN74AHC1G08. The other input to the AND gate 820 receives battery voltage VBATT when the safety switch 816 is closed, inverted by inverter 822, such as an SN74AHC1G04. The output of the AND gate 820 controls the input GP2 via a biasing circuit 824. In particular, the output of the AND gate 820 is connected to input GP2 via resistor R7. The input GP2 is also coupled to power supply VDD via a resistor R8 and to ground via capacitor C9. When the trigger switch is closed, ground is coupled the input GP3 of the processor U3 via resistor R9. The input GP3 is connected to power supply VDD via resistor R10 and to ground via a capacitor C10.
When the mode switch 812 is in intermittent mode, the resistor R6 is connected to battery voltage VBATT when the safety switch 816 is closed. Also, the first input of the AND gate 820 is connected to ground.
The processor U3 commands a DC motor 826 with a motor signal at output GP4 that is coupled via resistor R11 to the base of a buffer, depicted as a small signal transistor Q1 such as a 2N4401. The base is also coupled to ground via resistor R12 to ensure that the transistor will be off if voltage is not applied to the base. The collector is connected to power supply VDD. The emitter is also connected to the base of a rectifier Q2, such as an IRL3803 that advantageously has a low RDS (on) characteristics minimizing energy dissipation, that is heat shielded. The emitter is also coupled to ground via resistor R13 to ensure that rectifier Q2 if off when not supplied with a signal. The turned-on rectifier Q2 thereby couples to ground a negative terminal respectively of a DC motor 826, a MOSFET configured as a diode Q3 (such as a model MTD20N03HDL) that advantageously has a high current carrying capacity in a small package. A positive terminal respectively of the diode Q3 and the DC motor 826 are coupled to battery voltage VBATT. Thus, the DC motor 826 is activated when rectifier Q2 closes.
The processor U3 commands a solenoid 828 with a solenoid signal at output GP5 that is coupled via resistor R14 to the base of a MOSFET configured as diode Q4 (such as a model MTD20N03HDL). The base is also coupled to ground via resistor R15 to ensure that the transistor will be off if voltage is not applied to the base. The rectifier Q4 has a negative terminal coupled to ground and a positive terminal coupled to a negative terminal of the solenoid 828. The positive terminal of the solenoid 828 is coupled to battery voltage VBATT, thus solenoid 828 activates when rectifier Q4 is closed by the solenoid signal. The rectifier Q4 advantageously withstands the electrical current spikes associated with inductive loads of solenoids.
FIG. 26 presents an index circuit 830 for providing an electrical index signal, thereby avoiding the additional complexity of pneumatic index approaches. Moreover, the index circuit advantageously uses a one shot U4 that is part of the same package as one shot U2. The index circuit 830 is triggered by the solenoid signal from GP4 of the processor U3 to an inverted −T input, as would be appropriate for a solenoid that is triggered on a falling edge of a solenoid signal rather than a rising edge. The one shot U4 is configured with a positive bias V+ to power supply VDD and also coupled to ground via capacitor C10. A negative bias V− is grounded. A noninverted output Q is connected to input +T to place the device into a non-retriggerable, monostable mode of operation. An inverted input R is coupled to a shared node of a series combination of a resistor R18 and capacitor C11 that are connected across power supply VDD and ground, providing a reset RC network to hold the device in reset until power supply VDD is up and stable. Similarly, an input RC of the one shot U4 sets up the output timing, i.e. time the output pulse is high. In particular, the input RC is coupled to a shared node of a series combination of a resistor R19 and capacitor C12 connected between power supply VDD and ground, respectively. The one shot U4 has an output pulse of appropriate duration and delay from the solenoid signal to advance the next fastener after the previous fastener is driven. The index pulse from output Q is given an appropriate voltage by passing through a series resistor R16 to a base of a rectifier Q5 (a MOSFET configured as a diode such as a model MTD20N03HDL. The base is also coupled to ground through a resistor R17 to ensure that rectifier Q5 is off when no voltage is applied. A negative terminal of the rectifier Q5 is grounded. A positive terminal rectifier Q5 is connected to a negative terminal of an indexing solenoid 832. A positive terminal of the indexing solenoid 832 is connected to battery voltage VBATT. Thus, when the indexing signal closes the rectifier Q5, the indexing solenoid 832 is activated.
In use, a user loads the magazine 42 of the nailing tool 10 with a strip of fasteners, and installs a charged battery 22. The tool is in a mode, such as Intermittent, conserving battery power by accelerating a flywheel each time that a fastener is to be dispensed or driven. As the nose assembly 36 is placed against a workpiece, closing a safety device 34, the safety mechanical linkage 38 contacts a highly reliable thin film safety switch 52, powering the control module 18. A trigger 30 is depressed, activating another highly reliable thin film trigger switch 50 via a trigger mechanical linkage 32. If the safety and trigger switches are actuated within appropriate time intervals and sequence (e.g., safety depressed and held no more than 3 seconds prior to trigger), then the processor U3 calculates a target speed for the flywheel set as appropriate for the fastener drive assembly 16 and/or an appropriate setting for the fastener and workpiece. As the flywheel accelerates, the speed signal from a noncontact speed sensor 60 is compared to the target speed. Once reached, the motor 24 is de-energized and then a solenoid actuation signal couples a clutch to the flywheel 28 to impart kinetic energy to a linearly moving fastener driver 68. The processor U3 uses a reduction threshold to determine when the flywheel 28 has imparted an appropriate amount of kinetic energy, thereafter allowing the flywheel 28 to continue spinning with any remaining energy available for the next cycle. By monitoring flywheel speed, fault conditions are detected such as a slow motor acceleration that could be due to low battery voltage, motor degradation or a stuck clutch. Similarly, by detecting an actuation time-out, the failure of the clutch drive assembly 64 to engage is detected, preventing jamming of the tool 10 if attempting to cycle again.
By virtue of the foregoing, a portable tool 10 provides a consistent drive in a single stroke, yet efficiently uses electrical power from the battery 22 without detrimental surges by using a DC motor 24 to accelerate a flywheel 28. Moreover, consistent drives are ensured across a range of battery voltages and component tolerance variations (e.g., clutch wear). The consistent rotary sensing and control of a rotary member (e.g., flywheel 28) has application more broadly to hand tools in accurately and robustly setting a desired speed.
While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. For example, aspects of the invention are applicable to other sources of power, such as corded power tools or pneumatic power tools. As another example, although a programmed approach is described herein, it will be appreciated that digital logic or analog controls may be used.
As a further example, although a noncontact speed sensor is disclosed, applications of the present invention may include other types of speed sensing. For instance, an optical encoding approach may be used, weigan sensor, variable reluctance sensors, Hall effect sensors, feedback from the motor such as a tachometer signal, and other techniques.
As yet a further example, the described control circuit 800 employs a battery voltage VBATT having a nominal value with resistors and a zener diode Z1 being used to step down the battery voltage to the power supply voltage VDD. However, it will be appreciated that a power supply (e.g., a switching power supply) capable of regulating the voltage to the integrated circuit components may be used while providing a battery voltage signal to a processor. Thereby the processor may adapt its command, timing, and other features to accommodate a wider range of battery voltage, thus extending service life. For instance, a processor having additional available inputs such as an 18-pin processor, model PIC16C71 may be used.
As an addition example, a speed adjustment circuit may employ other types of voltage references, such as a sized digital resistor. In addition, the processor may calculate or lookup in a table a digital reference against which the sensed speed signal is compared.
As another example, although a specific safety and trigger sequence is described, other sequences and time-out schemes may be employed. Moreover, even a single trigger scheme without a safety may be employed.

Claims (45)

1. A control module for a hand tool powered by DC power having a rotary member;
comprising:
a target speed adjustment circuit operable to electronically communicate a target speed signal, wherein said target speed signal represents a target speed for the rotary member;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs; wherein the inputs of the controller comprise input signals comprising the target speed signal, the rotary speed signal, and the trigger signal; wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals.
2. The control module of claim 1, wherein the controller is a microprocessor.
3. A control module for a hand tool powered by DC power having a rotary member;, comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs; , wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal;, wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals;, wherein the controller is operably configured to command a clutch mechanism with electronic communciation communication of a second command signal in response to a function comprising a second function of the input signals;, wherein the clutch mechanism is operable to mechanically impart kinetic energy of the rotary member to a driving mechanism.
4. The control module of claim 3, said clutch mechanism comprising a solenoid.
5. A control module for a hand tool powered by DC power having a rotary member; , comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs; , wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal; , wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals;
wherein the trigger circuit further comprises: a mechanical control for receiving a user input for operation of the hand tool;, and a thin film switch in physical communication with the mechanical control and in electrical communication with the controller.
6. A control module for a hand tool powered by DC power having a rotary member; , comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs, wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal; , wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals;, wherein the first command signal is received by a direct current electric motor, wherein the direct current electric motor is in mechanical communication with the rotary member.
7. The control module of claim 1, further comprising a battery.
8. A control module for a hand tool powered by DC power having a rotary member; , comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs; , wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal; , wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals;
wherein the target speed adjustment circuit further comprises a variable potentiometer, wherein the variable potentiometer is operable to vary the target speed signal and where said adjustable target speed signal comprises a preset target speed range within which a user may adjust said target speed of said rotary member.
9. The control module of claim 8, wherein the variable potentiometer is operable to be varied by a speed adjustment knob.
10. A control module for a hand tool powered by DC power having a rotary member; , comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs; , wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal; , wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals; further comprising and
a mode circuit electronically operable to communicate a mode signal, wherein the mode signal represents a desired mode of constancy of rotation of the rotary member;, wherein the mode circuit comprises a mode selection switch, wherein said mode selection switch is responsive to a user's mode selection between continuous and non-continuous mode, wherein the mode signal further represents a user's mode selection of desired mode of constancy of rotation of the rotary member,;
wherein the inputs of the controller further comprise an input signal comprising a mode signal, wherein the controller is responsive to the mode signal by commanding the rotation of the rotary member in accordance with the user's mode selection.
11. A control module for a hand tool powered by DC power having a rotary member;, comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs;, wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal;, wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals; further comprising a mode circuit electronically operable to communicate a mode signal, and
a safety circuit electronically operable to communicate a safety signal, wherein the safety signal is operable to prevent kinetic energy from being imparted from the rotary member;
wherein the inputs of the controller further comprise an input signal comprising the safety signal, wherein the controller is configured to respond to a safety signal by commanding the prevention of the impartation of kinetic energy from the rotary member.
12. A control module for a hand tool powered by DC power having a rotary member;, comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
controller having a plurality of inputs and outputs;, wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal;, wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals; further comprising and
a safety circuit electronically operable to communicate a safety signal, wherein said safety signal is operable to allow kinetic energy to be imparted from the rotary member;
wherein the inputs of the controller further comprise an input signal comprising the safety signal, wherein the controller is configured to respond to a safety signal by allowing the impartation of kinetic energy from the rotary member.
13. The control module of claim 12, further comprising:
a mechanical safety control for receiving a safety input for detecting one or more safety conditions; and
a safety thin film switch in physical communication with the mechanical safety control and in electrical communication with the controller.
14. The control module of claim 13, wherein the mechanical safety control is responsive to pressure on a safety sensor.
15. The control module of claim 12, wherein the safety signal has a limited temporal duration, wherein said temporal duration is preset at a safety time-out value, wherein the safety signal ceases at the expiration of the temporal duration at the safety time-out value.
16. A control module for a hand tool powered by DC power having a rotary member;, comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs;, wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal;, wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals;, wherein the controller is responsive to one or more enabling conditions, wherein the controller is operable to command the impartation of kinetic energy from the rotary member in the presence of said one or more enabling conditions.
17. The control module of claim 16, wherein said one or more enabling conditions comprise:
a trigger signal;
a safety signal; and
a rotary speed signal, wherein said rotary speed signal is approximately equal to a target speed signal.
18. The control module of claim 16, wherein the controller is operable to prevent the impartation of kinetic energy from the rotary member in the absence of one or more enabling conditions.
19. A control module for a hand tool powered by DC power having a rotary member;, comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs;, wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal;, wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals;
wherein said rotary member further comprises a ring magnet comprising a plurality of radially arrayed pairs of magnetic poles and wherein the rotational speed of said rotary member is directly sensed by a transducer sensing alternating north and south magnetic fields during rotation of said rotary member.
20. The control module of claim 3, wherein said clutch mechanism comprises a conical clutch plate having a conical friction surface and wherein said rotary member comprises a conical cavity for receiving said conical friction surface upon engagement of the clutch mechanism.
21. The control module of claim 20, wherein said control module for a hand tool comprises a control module for a hand held fastener driving tool.
22. The control module of claim 21, wherein said adjustable target speed signal comprises a preset target speed range within which a user may adjust said target speed of said rotary member to compensate for at least one of variations in a workpiece and u desired depth of fastener insertion.
23. A control module for a hand tool powered by DC power having a rotary member;, comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs, wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal;, wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals;
wherein said target speed of said rotary member is independent of user displacement of said trigger.
24. The control module of claim 20, wherein said driving mechanism comprises a linearly moving fastener driver for driving a fastener into a workpiece.
25. A control module for a hand held fastener driving tool powered by DC power having a rotary member;, comprising:
a target speed adjustment circuit operable to electronically communicate an adjustable target speed signal, wherein said adjustable target speed signal represents a target speed for the rotary member and that is representative of user target speed input;
a speed sensor circuit operable to electronically communicate a rotary speed signal, wherein said rotary speed signal represents a rotary speed of the rotary member, wherein said rotary speed is determined by a sensor;
a trigger circuit electronically operable to communicate a trigger signal, wherein said trigger signal represents engagement of a trigger by a user; and
a controller having a plurality of inputs and outputs;, wherein the inputs of the controller comprise input signals comprising the adjustable target speed signal, the rotary speed signal, and the trigger signal;, wherein the controller is operably configured to command the rotary member with electronic communication of a first command signal in response to a function comprising a first function of the input signals;, wherein said controller is operably configured to command a clutch mechanism with electronic communication of a second command signal in response to a function comprising a second function of the input signals, and wherein the clutch mechanism is operable to mechanically impart kinetic energy of the rotary member to a driving mechanism.
26. The control module of claim 25, wherein said clutch mechanism comprises a conical clutch plate having a conical friction surface and wherein said rotary member comprises a conical cavity for receiving said conical friction surface upon engagement of the clutch mechanism.
27. The control module of claim 26, wherein said rotary member further comprises a ring magnet comprising a plurality of radially arrayed pairs of magnetic poles and wherein the rotational speed of said rotary member is directly sensed by a transducer sensing alternating north and south magnetic fields during rotation of said rotary member.
28. A hand tool, comprising:
a rotary inertial member;
an electric motor coupled to turn the rotary inertial member;
a magazine containing a plurality of fasteners;
a reciprocating driven mechanism positioned to sequentially drive one of the plurality of fasteners into a workpiece;
an energy transfer mechanism responsive to an engagement signal to couple the rotary inertial member to the reciprocating driven mechanism; and
a controller operatively configured to sense a parameter representative of rotational speed of the rotary inertial member, to command the electric motor to accelerate the rotary inertial member to a target speed in response to a user input, wherein the target speed is representative of an adjustable user-defined target speed input, and to generate an engagement signal in response to a determination of a firing condition.
29. The hand tool of claim 28, wherein the user input comprises a continuous mode selection.
30. The hand tool of claim 28, wherein the controller is further operatively configured to sense a time out condition and to cease commanding the electric motor to accelerate the rotary inertial member to the target speed.
31. The hand tool of claim 28, wherein the firing condition comprises satisfying a trigger fire mode.
32. The hand tool of claim 28, wherein the firing condition comprises satisfying a bottom fire mode.
33. The hand tool of claim 28, further comprising a portable electrical power source to power the controller and the electric motor.
34. The hand tool of claim 33, wherein the portable electrical power source comprises a battery.
35. The hand tool of claim 28, wherein the controller is further operatively configured to sense the parameter representative of the rotational speed decreasing to a second target speed lower and to then cease commanding the engagement signal to disengage the energy transfer mechanism.
36. The hand tool of claim 28, further comprising a feedback circuit responsive to rotation of the motor operable to provide the parameter representative of the rotational speed of the rotary inertial member.
37. The hand tool of claim 28, further comprising a sensor coupled to the rotary inertial member to produce the parameter representative of the rotational speed.
38. The hand tool of claim 28, wherein the controller is further operably configured to access a mode setting selected from a group consisting of a continuous mode and an intermittent mode, and, in response to the user input comprising a user dispense command, to initiate acceleration of the rotary inertial member toward and maintaining the target speed when the accessed mode setting is continuous mode, and to initiate acceleration of the rotary inertial member toward the target speed when the accessed mode setting is intermittent mode.
39. The hand tool of claim 28, wherein the energy transfer mechanism comprises a movable member positioned to selectively contact the rotary inertial member, the reciprocating driven mechanism tangentially coupled to an engaged combination of the rotary inertial member and the movable member.
40. The hand tool of claim 28, wherein the energy transfer mechanism is responsive to the engagement signal to couple an adjacent lateral face of the rotary inertial member to the reciprocating driven mechanism.
41. The hand tool of claim 28, wherein the energy transfer mechanism is responsive to the engagement signal to mechanically couple the rotary inertial member to the reciprocating driven mechanism, wherein the hand tool further comprises a battery providing electrical power to the electric motor and the controller.
42. A hand tool, comprising:
a rotary inertial member;
an electric motor coupled to turn the rotary inertial member;
a magazine containing a plurality of fasteners;
a reciprocating driven mechanism positioned to sequentially drive one of the plurality of fasteners into a workpiece;
an energy transfer mechanism responsive to an engagement signal to couple the rotary inertial member to the reciprocating driven mechanism; and
a controller operatively configured to sense a parameter representative of rotational speed of the rotary inertial member, to command the electric motor to accelerate the rotary inertial member to a target speed in response to a user input, and to generate an engagement signal in response to a determination of a firing condition, wherein the controller is further operatively configured to respond to the firing condition which comprises a trigger signal, a safety signal, and the parameter representative of the rotational speed being approximately equal to the target speed.
43. A hand tool, comprising:
a rotary inertial member;
an electric motor coupled to turn the rotary inertial member;
a magazine containing a plurality of fasteners;
a reciprocating driven mechanism positioned to sequentially drive one of the plurality of fasteners into a workpiece;
an energy transfer mechanism responsive to an engagement signal to couple the rotary inertial member to the reciprocating driven mechanism; and
a controller operatively configured to sense a parameter representative of rotational speed of the rotary inertial member, to command the electric motor to accelerate the rotary inertial member to a target speed in response to a user input, and to generate an engagement signal in response to a determination of a firing condition, wherein the user input comprises a user dispense command, wherein the controller is further operably configured to sense and time a held safety signal, to sense a trigger signal, and to determine the user dispense command when the held safety signal precedes and is simultaneous with the trigger signal so long as the held safety signal precedes the trigger signal by no more than a valid trigger time-out value.
44. The control module of claim 3, wherein the controller is a microprocessor.
45. The control module of claim 3, further comprising a battery.
US11/955,996 2000-12-22 2007-12-13 Control module for flywheel operated hand tool Expired - Lifetime USRE43041E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/955,996 USRE43041E1 (en) 2000-12-22 2007-12-13 Control module for flywheel operated hand tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US25802200P 2000-12-22 2000-12-22
US10/027,767 US20020185514A1 (en) 2000-12-22 2001-12-20 Control module for flywheel operated hand tool
US10/896,813 US6974061B2 (en) 2000-12-22 2004-07-22 Control module for flywheel operated hand tool
US11/955,996 USRE43041E1 (en) 2000-12-22 2007-12-13 Control module for flywheel operated hand tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/896,813 Reissue US6974061B2 (en) 2000-12-22 2004-07-22 Control module for flywheel operated hand tool

Publications (1)

Publication Number Publication Date
USRE43041E1 true USRE43041E1 (en) 2011-12-27

Family

ID=22978767

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/027,767 Abandoned US20020185514A1 (en) 2000-12-22 2001-12-20 Control module for flywheel operated hand tool
US10/896,813 Ceased US6974061B2 (en) 2000-12-22 2004-07-22 Control module for flywheel operated hand tool
US11/955,996 Expired - Lifetime USRE43041E1 (en) 2000-12-22 2007-12-13 Control module for flywheel operated hand tool

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/027,767 Abandoned US20020185514A1 (en) 2000-12-22 2001-12-20 Control module for flywheel operated hand tool
US10/896,813 Ceased US6974061B2 (en) 2000-12-22 2004-07-22 Control module for flywheel operated hand tool

Country Status (5)

Country Link
US (3) US20020185514A1 (en)
JP (1) JP2004536542A (en)
AT (1) ATE475512T1 (en)
CA (1) CA2432980A1 (en)
WO (1) WO2002051591A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10654154B2 (en) 2014-03-27 2020-05-19 Techtronic Power Tools Technology Limited Powered fastener driver and operating method thereof
USD887806S1 (en) 2018-04-03 2020-06-23 Milwaukee Electric Tool Corporation Jigsaw
USD900575S1 (en) 2018-09-26 2020-11-03 Milwaukee Electric Tool Corporation Powered fastener driver
US10835972B2 (en) 2018-03-16 2020-11-17 Milwaukee Electric Tool Corporation Blade clamp for power tool
US11014176B2 (en) 2018-04-03 2021-05-25 Milwaukee Electric Tool Corporation Jigsaw

Families Citing this family (483)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020185514A1 (en) 2000-12-22 2002-12-12 Shane Adams Control module for flywheel operated hand tool
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7686199B2 (en) 2004-04-02 2010-03-30 Black & Decker Inc. Lower bumper configuration for a power tool
US7137541B2 (en) * 2004-04-02 2006-11-21 Black & Decker Inc. Fastening tool with mode selector switch
US8231039B2 (en) 2004-04-02 2012-07-31 Black & Decker Inc. Structural backbone/motor mount for a power tool
EP1733406A4 (en) * 2004-04-02 2008-12-03 Black & Decker Inc Method for controlling a power driver
US10882172B2 (en) 2004-04-02 2021-01-05 Black & Decker, Inc. Powered hand-held fastening tool
US8123099B2 (en) 2004-04-02 2012-02-28 Black & Decker Inc. Cam and clutch configuration for a power tool
US7641089B2 (en) * 2004-04-02 2010-01-05 Black & Decker Inc. Magazine assembly for nailer
US8408327B2 (en) * 2004-04-02 2013-04-02 Black & Decker Inc. Method for operating a power driver
US8011549B2 (en) 2004-04-02 2011-09-06 Black & Decker Inc. Flywheel configuration for a power tool
US8302833B2 (en) 2004-04-02 2012-11-06 Black & Decker Inc. Power take off for cordless nailer
CA2561960A1 (en) 2004-04-02 2005-10-20 Black & Decker Inc. Driver configuration for a power tool
US7726536B2 (en) 2004-04-02 2010-06-01 Black & Decker Inc. Upper bumper configuration for a power tool
US7975893B2 (en) 2004-04-02 2011-07-12 Black & Decker Inc. Return cord assembly for a power tool
US7285877B2 (en) * 2004-04-02 2007-10-23 Black & Decker Inc. Electronic fastening tool
EP1591208A1 (en) * 2004-04-02 2005-11-02 BLACK & DECKER INC. Electronic fastening tool
US7213732B2 (en) * 2004-04-02 2007-05-08 Black & Decker Inc. Contact trip mechanism for nailer
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US6971567B1 (en) 2004-10-29 2005-12-06 Black & Decker Inc. Electronic control of a cordless fastening tool
WO2006112970A1 (en) * 2005-02-28 2006-10-26 Panint Electronic Ltd. Continuously variable frequency swinging armature motor and drive
US7121443B2 (en) * 2005-03-02 2006-10-17 An Puu Hsin Co., Ltd. Electric nailing apparatus
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
JP4771286B2 (en) * 2005-09-30 2011-09-14 日立工機株式会社 Electric nailer
JP4505818B2 (en) * 2005-09-30 2010-07-21 日立工機株式会社 Portable nailer
US7551411B2 (en) * 2005-10-12 2009-06-23 Black & Decker Inc. Control and protection methodologies for a motor control module
US8657031B2 (en) * 2005-10-12 2014-02-25 Black & Decker Inc. Universal control module
JP4688060B2 (en) * 2005-10-28 2011-05-25 日立工機株式会社 Driving machine
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
JP4662309B2 (en) * 2005-11-17 2011-03-30 日立工機株式会社 Driving machine
US7914362B2 (en) * 2005-11-30 2011-03-29 Hitachi Global Storage Technologies, Netherlands B.V. Method of evaluating the quality of a lapping plate
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8104659B2 (en) * 2006-03-27 2012-01-31 Stanley Black & Decker, Inc. Electromagnetic stapler with a manually adjustable depth adjuster
US8550324B2 (en) * 2006-05-23 2013-10-08 Black & Decker Inc. Depth adjustment for fastening tool
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
JP4692933B2 (en) * 2006-09-14 2011-06-01 日立工機株式会社 Electric driving machine
JP2008068356A (en) * 2006-09-14 2008-03-27 Hitachi Koki Co Ltd Electric driver
JP2008068355A (en) * 2006-09-14 2008-03-27 Hitachi Koki Co Ltd Electric driver
JP4556188B2 (en) * 2006-09-14 2010-10-06 日立工機株式会社 Electric driving machine
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US20080078802A1 (en) 2006-09-29 2008-04-03 Hess Christopher J Surgical staples and stapling instruments
US7427008B2 (en) * 2006-10-25 2008-09-23 Black & Decker Inc. Depth adjusting device for a power tool
DE102006059078A1 (en) * 2006-12-14 2008-06-19 Robert Bosch Gmbh Electric device with snap-on rotatable control element
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US7918374B2 (en) * 2007-01-29 2011-04-05 Halex/Scott Fetzer Company Portable fastener driving device
US20090001121A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical staple having an expandable portion
JP2008221436A (en) * 2007-03-15 2008-09-25 Hitachi Koki Co Ltd Combustion type power tool
US7646157B2 (en) * 2007-03-16 2010-01-12 Black & Decker Inc. Driving tool and method for controlling same
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
JP5100190B2 (en) * 2007-04-12 2012-12-19 株式会社マキタ Driving tool
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
DE102007027898A1 (en) * 2007-06-18 2008-12-24 Robert Bosch Gmbh Power tool with cold start function
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
JP5133000B2 (en) * 2007-06-28 2013-01-30 株式会社マキタ Electric driving tool
JP5073380B2 (en) * 2007-06-28 2012-11-14 株式会社マキタ Electric driving tool
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
TW200906566A (en) * 2007-08-07 2009-02-16 Nat Energy Technology Co Ltd Electric tool
US20090168445A1 (en) * 2007-12-26 2009-07-02 Night Operations Systems Covert filter for high intensity lighting system
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
JP5348608B2 (en) * 2008-06-30 2013-11-20 日立工機株式会社 Electric driving machine
US7934566B2 (en) * 2008-08-14 2011-05-03 Robert Bosch Gmbh Cordless nailer drive mechanism sensor
US7905377B2 (en) * 2008-08-14 2011-03-15 Robert Bosch Gmbh Flywheel driven nailer with safety mechanism
US7934565B2 (en) 2008-08-14 2011-05-03 Robert Bosch Gmbh Cordless nailer with safety sensor
US8136606B2 (en) 2008-08-14 2012-03-20 Robert Bosch Gmbh Cordless nail gun
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
KR100899004B1 (en) 2008-12-08 2009-05-21 정우화 Nail impacter high-speed
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
BRPI1008667A2 (en) 2009-02-06 2016-03-08 Ethicom Endo Surgery Inc improvement of the operated surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP5502352B2 (en) * 2009-03-23 2014-05-28 株式会社マキタ Electric tool
US8631986B2 (en) * 2009-12-04 2014-01-21 Robert Bosch Gmbh Fastener driver with an operating switch
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US8864009B2 (en) 2010-09-30 2014-10-21 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
DE102010063173A1 (en) * 2010-12-15 2012-06-21 Hilti Aktiengesellschaft A bolt gun and method for operating a bolt gun
JP6026509B2 (en) 2011-04-29 2016-11-16 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Staple cartridge including staples disposed within a compressible portion of the staple cartridge itself
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9272799B2 (en) 2011-10-04 2016-03-01 Signode Industrial Group Llc Sealing tool for strap
CN102520673B (en) * 2011-12-10 2014-05-14 桂林理工大学 Electrician contact electrical property experiment intelligence motion control device
US8991675B2 (en) 2011-12-19 2015-03-31 De Poan Pneumatic Corp. Dynamic clutch apparatus for electrical nail gun
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US20130240594A1 (en) * 2012-03-19 2013-09-19 Stanley Fastening Systems, L.P. Cordless carton closer
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
JP5854914B2 (en) * 2012-04-20 2016-02-09 株式会社マキタ Rechargeable power tool
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US20130345849A1 (en) * 2012-06-26 2013-12-26 Toyota Motor Engineering & Manufacturing North America, Inc. Laser location confirmation apparatus for tools
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
EP2866686A1 (en) 2012-06-28 2015-05-06 Ethicon Endo-Surgery, Inc. Empty clip cartridge lockout
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US9486907B2 (en) 2013-01-15 2016-11-08 Illinois Tool Works Inc. Reversion trigger for combustion-powered fastener-driving tool
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
DE102013106657A1 (en) 2013-06-25 2015-01-08 Illinois Tool Works Inc. Driving tool for driving fasteners into a workpiece
DE102013106658A1 (en) 2013-06-25 2015-01-08 Illinois Tool Works Inc. Driving tool for driving fasteners into a workpiece
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
DE102013224759A1 (en) * 2013-12-03 2015-06-03 Robert Bosch Gmbh Machine tool device
US9662776B2 (en) 2013-12-17 2017-05-30 Illinois Tool Works Inc. Fastener-driving tool including a reversion trigger with a damper
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
JP6304533B2 (en) * 2014-03-04 2018-04-04 パナソニックIpマネジメント株式会社 Impact rotary tool
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
JP6284417B2 (en) * 2014-04-16 2018-02-28 株式会社マキタ Driving tool
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
WO2015169350A1 (en) * 2014-05-07 2015-11-12 Husqvarna Ab Throttle lockout with dissimilar action
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
BR112017005981B1 (en) 2014-09-26 2022-09-06 Ethicon, Llc ANCHOR MATERIAL FOR USE WITH A SURGICAL STAPLE CARTRIDGE AND SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10615670B2 (en) * 2015-06-05 2020-04-07 Ingersoll-Rand Industrial U.S., Inc. Power tool user interfaces
US11491616B2 (en) 2015-06-05 2022-11-08 Ingersoll-Rand Industrial U.S., Inc. Power tools with user-selectable operational modes
WO2016196899A1 (en) 2015-06-05 2016-12-08 Ingersoll-Rand Company Power tool housings
US10668614B2 (en) 2015-06-05 2020-06-02 Ingersoll-Rand Industrial U.S., Inc. Impact tools with ring gear alignment features
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
CN106533281A (en) * 2015-09-11 2017-03-22 德昌电机(深圳)有限公司 Electric tool and motor driving circuit thereof
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) * 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10577137B2 (en) 2015-12-09 2020-03-03 Signode Industrial Group Llc Electrically powered combination hand-held notch-type strapping tool
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11325235B2 (en) 2016-06-28 2022-05-10 Black & Decker, Inc. Push-on support member for fastening tools
US11267114B2 (en) 2016-06-29 2022-03-08 Black & Decker, Inc. Single-motion magazine retention for fastening tools
US10987790B2 (en) 2016-06-30 2021-04-27 Black & Decker Inc. Cordless concrete nailer with improved power take-off mechanism
US11400572B2 (en) 2016-06-30 2022-08-02 Black & Decker, Inc. Dry-fire bypass for a fastening tool
US11279013B2 (en) 2016-06-30 2022-03-22 Black & Decker, Inc. Driver rebound plate for a fastening tool
US20180054033A1 (en) * 2016-08-19 2018-02-22 Signode Industrial Group Llc Portable crimping tool for strap
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168619A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
CN110087565A (en) 2016-12-21 2019-08-02 爱惜康有限责任公司 Surgical stapling system
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10926385B2 (en) 2017-02-24 2021-02-23 Black & Decker, Inc. Contact trip having magnetic filter
US20200086469A1 (en) * 2017-06-04 2020-03-19 JBT America, LLC Universal Pressure Tool for Fastening
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
EP3663049A4 (en) * 2017-07-31 2021-04-28 Koki Holdings Co., Ltd. Drive-in machine
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US10931102B2 (en) 2017-08-11 2021-02-23 Black & Decker Inc. Hardware control for prevention of dangerous restart in a power tool
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11065749B2 (en) 2018-03-26 2021-07-20 Tti (Macao Commercial Offshore) Limited Powered fastener driver
JP7057247B2 (en) * 2018-08-01 2022-04-19 株式会社マキタ Driving tool
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
TWI815857B (en) 2019-01-31 2023-09-21 鑽全實業股份有限公司 Flywheel device of electric nail gun and electric nail gun
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11491623B2 (en) 2019-10-02 2022-11-08 Illinois Tool Works Inc. Fastener driving tool
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
JP2022069810A (en) * 2020-10-26 2022-05-12 株式会社マキタ Driving tool
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
DE102021209654A1 (en) * 2021-09-02 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Driving tool with a human machine interface
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641410A (en) 1970-04-30 1972-02-08 Black & Decker Mfg Co Touch control for electrical apparatus
US3724558A (en) * 1971-09-22 1973-04-03 Texaco Inc Apparatus for controlling the rotary speed of a drill
US4042036A (en) 1973-10-04 1977-08-16 Smith James E Electric impact tool
US4121745A (en) 1977-06-28 1978-10-24 Senco Products, Inc. Electro-mechanical impact device
US4129240A (en) 1977-07-05 1978-12-12 Duo-Fast Corporation Electric nailer
US4179644A (en) 1978-01-10 1979-12-18 Skil Corporation Power tool switch including speed control
US4204622A (en) 1975-05-23 1980-05-27 Cunningham James D Electric impact tool
US4292571A (en) 1980-02-14 1981-09-29 Black & Decker Inc. Control device for controlling the rotational speed of a portable power tool
US4298072A (en) 1979-08-31 1981-11-03 Senco Products, Inc. Control arrangement for electro-mechanical tool
US4413936A (en) * 1979-10-27 1983-11-08 Robert Bosch Gmbh Control device in a machine tool
US4427077A (en) * 1979-10-25 1984-01-24 Rockwell International Corporation Portable fastening tool with manual turn on and automatic shut off
US4540318A (en) 1982-07-29 1985-09-10 Robert Bosch, Gmbh Rotary electrical tool with speed control, especially drill
US4625903A (en) 1984-07-03 1986-12-02 Sencorp Multiple impact fastener driving tool
US4679719A (en) 1985-12-27 1987-07-14 Senco Products, Inc. Electronic control for a pneumatic fastener driving tool
US5014793A (en) 1989-04-10 1991-05-14 Measurement Specialties, Inc. Variable speed DC motor controller apparatus particularly adapted for control of portable-power tools
US5069379A (en) * 1983-03-17 1991-12-03 Duo-Fast Corporation Fastener driving tool
US5098004A (en) * 1989-12-19 1992-03-24 Duo-Fast Corporation Fastener driving tool
US5154242A (en) 1990-08-28 1992-10-13 Matsushita Electric Works, Ltd. Power tools with multi-stage tightening torque control
EP0546834A1 (en) 1991-12-11 1993-06-16 Glynwed Engineering Limited Fastener applicator
US5365155A (en) * 1990-10-22 1994-11-15 Marquardt Gmbh Rotational speed control and use of same to control the rotational speed of an electric hand tool motor
EP0662750A1 (en) 1994-01-05 1995-07-12 Sencorp Motor control
US5440215A (en) 1993-07-06 1995-08-08 Black & Decker Inc. Electrical power tool having a motor control circuit for increasing the effective torque output of the power tool
US5484026A (en) * 1993-09-03 1996-01-16 Nikon Corporation Handheld electromotive tool with sensor
US5511715A (en) 1993-02-03 1996-04-30 Sencorp Flywheel-driven fastener driving tool and drive unit
US5605268A (en) 1993-12-06 1997-02-25 Max Co., Ltd. Portable motor-driven staple machine
US5732870A (en) 1994-10-21 1998-03-31 Senco Products, Inc. Pneumatic fastener driving tool and an electronic control system therefor
US5738177A (en) 1995-07-28 1998-04-14 Black & Decker Inc. Production assembly tool
US5747953A (en) 1996-03-29 1998-05-05 Stryker Corporation Cordless, battery operated surical tool
US5772096A (en) 1995-04-05 1998-06-30 Max Co., Ltd. Trigger device for box nailing machine and box nailing machine having the same
US5894095A (en) 1997-04-17 1999-04-13 Demali; Gary W. Mixing drill with speed sensing with multiple preset speeds
US5927585A (en) 1997-12-17 1999-07-27 Senco Products, Inc. Electric multiple impact fastener driving tool
US6059806A (en) 1996-02-26 2000-05-09 Aesculap A.G. & Co. K.G. Drill for surgical purposes
US20030047331A1 (en) * 2001-07-09 2003-03-13 Henderson Jeffery L. Microprocessor for controlling the speed and frequency of a motor shaft in a power tool
US6796475B2 (en) * 2000-12-22 2004-09-28 Senco Products, Inc. Speed controller for flywheel operated hand tool
US6974061B2 (en) 2000-12-22 2005-12-13 Senco Products, Inc. Control module for flywheel operated hand tool

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641410A (en) 1970-04-30 1972-02-08 Black & Decker Mfg Co Touch control for electrical apparatus
US3724558A (en) * 1971-09-22 1973-04-03 Texaco Inc Apparatus for controlling the rotary speed of a drill
US4042036A (en) 1973-10-04 1977-08-16 Smith James E Electric impact tool
US4204622A (en) 1975-05-23 1980-05-27 Cunningham James D Electric impact tool
US4121745A (en) 1977-06-28 1978-10-24 Senco Products, Inc. Electro-mechanical impact device
US4129240A (en) 1977-07-05 1978-12-12 Duo-Fast Corporation Electric nailer
US4179644A (en) 1978-01-10 1979-12-18 Skil Corporation Power tool switch including speed control
US4298072A (en) 1979-08-31 1981-11-03 Senco Products, Inc. Control arrangement for electro-mechanical tool
US4427077A (en) * 1979-10-25 1984-01-24 Rockwell International Corporation Portable fastening tool with manual turn on and automatic shut off
US4413936A (en) * 1979-10-27 1983-11-08 Robert Bosch Gmbh Control device in a machine tool
US4292571A (en) 1980-02-14 1981-09-29 Black & Decker Inc. Control device for controlling the rotational speed of a portable power tool
US4540318A (en) 1982-07-29 1985-09-10 Robert Bosch, Gmbh Rotary electrical tool with speed control, especially drill
US5069379A (en) * 1983-03-17 1991-12-03 Duo-Fast Corporation Fastener driving tool
US4625903A (en) 1984-07-03 1986-12-02 Sencorp Multiple impact fastener driving tool
US4679719A (en) 1985-12-27 1987-07-14 Senco Products, Inc. Electronic control for a pneumatic fastener driving tool
US5014793A (en) 1989-04-10 1991-05-14 Measurement Specialties, Inc. Variable speed DC motor controller apparatus particularly adapted for control of portable-power tools
US5098004A (en) * 1989-12-19 1992-03-24 Duo-Fast Corporation Fastener driving tool
US5154242A (en) 1990-08-28 1992-10-13 Matsushita Electric Works, Ltd. Power tools with multi-stage tightening torque control
US5365155A (en) * 1990-10-22 1994-11-15 Marquardt Gmbh Rotational speed control and use of same to control the rotational speed of an electric hand tool motor
EP0546834A1 (en) 1991-12-11 1993-06-16 Glynwed Engineering Limited Fastener applicator
US5443196A (en) 1991-12-11 1995-08-22 Illinois Tool Works, Inc. Fastener applicator
US5511715A (en) 1993-02-03 1996-04-30 Sencorp Flywheel-driven fastener driving tool and drive unit
US5440215A (en) 1993-07-06 1995-08-08 Black & Decker Inc. Electrical power tool having a motor control circuit for increasing the effective torque output of the power tool
US5484026A (en) * 1993-09-03 1996-01-16 Nikon Corporation Handheld electromotive tool with sensor
US5605268A (en) 1993-12-06 1997-02-25 Max Co., Ltd. Portable motor-driven staple machine
EP0662750A1 (en) 1994-01-05 1995-07-12 Sencorp Motor control
US5918788A (en) 1994-10-21 1999-07-06 Senco Products, Inc. Pneumatic fastener driving tool and an electronic control system therefor
US5732870A (en) 1994-10-21 1998-03-31 Senco Products, Inc. Pneumatic fastener driving tool and an electronic control system therefor
US5772096A (en) 1995-04-05 1998-06-30 Max Co., Ltd. Trigger device for box nailing machine and box nailing machine having the same
US5738177A (en) 1995-07-28 1998-04-14 Black & Decker Inc. Production assembly tool
US6059806A (en) 1996-02-26 2000-05-09 Aesculap A.G. & Co. K.G. Drill for surgical purposes
US5747953A (en) 1996-03-29 1998-05-05 Stryker Corporation Cordless, battery operated surical tool
US5894095A (en) 1997-04-17 1999-04-13 Demali; Gary W. Mixing drill with speed sensing with multiple preset speeds
US5927585A (en) 1997-12-17 1999-07-27 Senco Products, Inc. Electric multiple impact fastener driving tool
US6796475B2 (en) * 2000-12-22 2004-09-28 Senco Products, Inc. Speed controller for flywheel operated hand tool
US6974061B2 (en) 2000-12-22 2005-12-13 Senco Products, Inc. Control module for flywheel operated hand tool
US20030047331A1 (en) * 2001-07-09 2003-03-13 Henderson Jeffery L. Microprocessor for controlling the speed and frequency of a motor shaft in a power tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report dated May 16, 2000 for Application No. PCT/US01/49882.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10654154B2 (en) 2014-03-27 2020-05-19 Techtronic Power Tools Technology Limited Powered fastener driver and operating method thereof
US10759029B2 (en) 2014-03-27 2020-09-01 Techtronic Power Tools Technology Limited Powered fastener driver and operating method thereof
US10835972B2 (en) 2018-03-16 2020-11-17 Milwaukee Electric Tool Corporation Blade clamp for power tool
USD887806S1 (en) 2018-04-03 2020-06-23 Milwaukee Electric Tool Corporation Jigsaw
US11014176B2 (en) 2018-04-03 2021-05-25 Milwaukee Electric Tool Corporation Jigsaw
US11813682B2 (en) 2018-04-03 2023-11-14 Milwaukee Electric Tool Corporation Jigsaw
USD900575S1 (en) 2018-09-26 2020-11-03 Milwaukee Electric Tool Corporation Powered fastener driver
USD920759S1 (en) 2018-09-26 2021-06-01 Milwaukee Electric Tool Corporation Powered fastener driver
USD920761S1 (en) 2018-09-26 2021-06-01 Milwaukee Electric Tool Corporation Powered fastener driver
USD920760S1 (en) 2018-09-26 2021-06-01 Milwaukee Electric Tool Corporation Powered fastener driver

Also Published As

Publication number Publication date
ATE475512T1 (en) 2010-08-15
WO2002051591A1 (en) 2002-07-04
US20050040206A1 (en) 2005-02-24
US20020185514A1 (en) 2002-12-12
US6974061B2 (en) 2005-12-13
CA2432980A1 (en) 2002-07-04
JP2004536542A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
USRE43041E1 (en) Control module for flywheel operated hand tool
EP1349710B1 (en) Control module for flywheel operated hand tool
US10654155B2 (en) Return mechanism for a cordless nailer
AU2002319711B2 (en) Portable electrical motor driven nail gun
JP5348608B2 (en) Electric driving machine
US7494036B2 (en) Electric driving machine
WO2008032882A1 (en) Electric driving machine
EP1733408A2 (en) Method for operating a power driver
US20200039044A1 (en) Driving tool
JP5288322B2 (en) Driving machine
AU2002231229A1 (en) Control module for flywheel operated hand tool
AU2002232744A1 (en) Speed controller for flywheel operated hand tool
WO2008032880A1 (en) Electric driving machine
JP5256972B2 (en) Electric driving machine
CN111390843B (en) Electric tool and control method thereof
EP1733406A2 (en) Method for controlling a power driver
WO2022251171A1 (en) Flywheel driven fastening tool having at least two timeout periods for determining when to stop driving flywheel
CN117620951A (en) Electric tool

Legal Events

Date Code Title Description
CC Certificate of correction
AS Assignment

Owner name: BANK OF AMERICA, N.A., ILLINOIS

Free format text: SECURITY AGREEMENT;ASSIGNOR:SENCO BRANDS, INC.;REEL/FRAME:029561/0293

Effective date: 20121219

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: LBC CREDIT PARTNERS III, L.P., AS AGENT, PENNSYLVA

Free format text: SECURITY AGREEMENT;ASSIGNOR:SENCO BRANDS, INC.;REEL/FRAME:031891/0374

Effective date: 20131226

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: SENCO BRANDS, INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS AGENT;REEL/FRAME:043353/0958

Effective date: 20170807

AS Assignment

Owner name: SENCO BRANDS, INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:LBC CREDIT PARTNERS III, L.P., AS AGENT;REEL/FRAME:043760/0646

Effective date: 20170807

AS Assignment

Owner name: KYOCERA SENCO INDUSTRIAL TOOLS, INC., OHIO

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:KYOCERA SENCO BRANDS, INC.;KYOCERA SENCO INDUSTRIAL TOOLS, INC.;KYOCERA SENCO INDUSTRIAL TOOLS, INC.;REEL/FRAME:048467/0478

Effective date: 20180101

Owner name: KYOCERA SENCO BRANDS, INC., OHIO

Free format text: CHANGE OF NAME;ASSIGNOR:SENCO BRANDS, INC.;REEL/FRAME:048467/0077

Effective date: 20170807